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I. INTRODUCTION

For scattering problems involving strongly-interacting particles, we are often interested in final states with large
multiplicities, sometimes including thousands of hadrons. To get to this level, we cannot rely solely on full fixed-
order calculations. Tree-level event generators [1-4] only go up to 8-10 external particles as Monte Carlo for higher
multiplicity phase space is increasingly intractable. At one-loop, the frontier is 2 — 4 processes, which have been
done at the level of differential cross sections for W+ 3 jets [5, 6] and t£bb [7]. At two-loops, there are 2 — 1 exclusive
calculations for weak boson production by hadrons followed by decay (W and Z [8] and W [9] to leptons, and H
decaying to photons [10, 11].). Additionally, ete™ — 3 jets to NNLO is known [12-15]. In any case, a strict fixed
order counting is not suitable for exclusive observables with large multiplicities, nor for many inclusive observables
where certain regions of phase space receive kinematic enhancement by large logarithms. If @ is a hard scale in
the process, then a subset of the amplitude gets enhanced so that its coefficient is (as In*(Q/p))™, where p < Q
refers to a small scale that is induced by the choice of observable or cuts. Since we can resum these large logs
by systematically treating real radiation, we can give a leading log (LL) description of these observables without
performing multiloop computations. The soft and collinear limits that yield these large logs also allow us to simplify
the amplitude. Therefore, capturing the dominant contributions to these observables and simulating processes with
a large number of particles becomes feasible. This is a main goal of parton Shower Monte Carlo (SMC).

A final state SMC is based on the “strongly-ordered limit,” which describes the leading log contribution (accounting
for soft emission by angular ordering or other approximations). In this kinematic configuration, each radiated particle
comes off much more collinear to its parent than the previous one, a situation that can be formulated in terms of
perpendicular momenta or virtualities, i.e.

QoL > QL > qaL > ..., or B>E>E>.... (1)

Furthermore, and important for practical computation, in this limit each collinear emission is independent of the
previous one. Thus, if we have calculated the differential cross section for i-parton emission, do;, then we can obtain
the (i + 1)-parton case as
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where P is the leading order (LO) “splitting function” that captures the probability for the ‘" emitted parton,

of type j, to split into two others, kl, and ¢? is its virtuality. Thus, we can formulate the process in terms of a
probabilistic Markov chain of ¢ 1 — 2 particle splittings. The probabilities are determined by the functions PJ@M,
which are the LO Altarelli-Parisi kernels. As an example, for ¢ — qg, after averaging and summing over spins,
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where z is the longitudinal momentum fraction of the daughter with respect to the parent. This classical, probabilistic
process gives rise to the SMC algorithms used by event generators such as Pythia [16, 17] and Herwig [18, 19] to
model radiation. For a virtuality-ordered shower, such as the original version of Pythia, given some initial offshellness,
g3, and an initial momentum fraction, zo, SMCs generate the virtuality and the momentum fraction of the daughter
particle after the spitting. The former is determined by a Sudakov factor, A(g?, ¢2), which gives the probability of a
parton to evolve from ¢2 to ¢? without branching,

7’ dq’? Qg
A(q®,q5) = exp l— /2 ;z /dz gpj(g)@)] : (4)
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The traditional LL parton shower makes the multiplicity problem tractable, but it has shortcomings related to the
leading log approximation. Even though Eq. (2) is only correct in the collinear limit, the shower is used everywhere
in order to generate events that cover the full phase space. In addition, since each collinear emission is independent
from the previous one in the shower, the LL approximation does not include their spin or color correlations, nor any
of their interference. The situation is different for soft gluons where the inclusion of color effects allows one to work
in the simplifying limit of angular ordering.

The hierarchy of scales in the parton shower makes it amenable to an effective field theory treatment. Since the
shower regime occurs for particles in the soft and collinear regions, we can describe it with Soft-Collinear Effective
Theory (SCET) [20-23]. Like any EFT, SCET comes with an expansion that allows, in principle, for systematic



improvement. The first work on parton showers using SCET came in [24, 25], which we review in Sec. II B, where
the authors showed how the splitting functions and corresponding Sudakov factors, along with the factorization of
emissions emerge naturally. Furthermore, they could include virtual corrections by matching to QCD at higher order
in ag. Unfortunately, in reproducing the LL shower in SCET, they introduced many conventions whose extension
to higher orders in the kinematic expansion is unclear. We therefore develop a modified approach to alleviate these
difficulties.

Before discussing our setup, we give an overview of advances in the parton shower literature beyond the basic
LL picture. The structure of these advances depends on what aspect of the shower one aims to improve. Possible
motivations include accuracy at higher orders in ay, higher order in logs, and higher order in powers of the kinematic
expansions. We first introduce some terminology for higher order log resummation. If the resummation of large logs,
L, is at the cross section level

do ~ [Z(asLQ)kLL + [ aska,)] T (5)
k

k

then we will refer to it as LL, NLL, etc, as indicated. If the cross section transformed to an appropriate set of variables
has a resummation of logs in the exponent

Indo ~ L[Z(aSL)’“LL + [Z(asL)’f}NLL . (6)

k

then we will attach a subscript “exp” to the orders to indicate this.

A major concern with parton showers is how one handles the merging with matrix element (ME) calculations that
describe the initial underlying hard process. One can consider a simple setup where one declares that a scale, o,
divides collinear from hard radiation. Here, emissions above p are described through tree-level ME calculations, and
those beneath by running SMC. Each regime would get a reasonable treatment, but naively interfacing the two leaves
leading-log sensitivity to po. This is because the LO (in ;) result contains no Sudakov log resummation. Methods for
carrying out matrix element and parton shower merging including this information have been considered in Refs. [26—
28] and are referred to as CKKW-L and MLM. In CKKW-L, one distributes the particles in an event according to
the probabilities given by the exact tree-level matrix element, with 3 as a lower cutoff related to the perpendicular
momentum between any two particles. One then clusters the event using the kp algorithm [29] to determine the
splitting scales, ¢?. With these in hand, one reweights the event by multiplication by appropriate Sudakov factors,
as well as factors of as(g;7)/as(Q), where @ is some hard scale. We can then run a parton shower algorithm on these
squared amplitudes, vetoing any splitting ¢; 7 harder than 3 to avoid double counting. It was demonstrated that the
n-jet rate depends on jo only beyond NLL order, with the first missing term being o2 In*(Q /). CKKW-L has been
built into Sherpa [30].

Another important effect concerns soft gluons, which are also kinematically enhanced. Collinear emissions reinforce
the picture of partonic radiation as an isolated jet since they get distributed within some narrow cone about the
original hard parton. A priori, soft gluons have no preferred direction and can communicate between elements of
the shower. Fortunately, wide-angle radiation only observes the net color charge contained in the cone of emission.
Therefore, the pattern of soft radiation far from the collinear jet is not sensitive to splittings that have taken place
within it. This coherent branching and angular ordering can be accommodated by methods such as evolving the shower
by decreasing angle monotonically, as is done in Herwig [31], or by enforcing it with a veto in a virtuality-ordered
shower (the rightmost expression in Eq. (1)), which is an option in Pythia [16]. Accounting for coherence properties
leads to LL resummation for the soft emissions [32-36]. Additional considerations treated in shower programs include
putting as at the kp scale of each splitting, and encoding momentum conservation at each vertex, which give the
parton shower information beyond an analytic LO/LL calculation. These along with the overall choice in evolution
variable (mass, k1, angle, etc.) are treated in different fashions by different SMC codes.

There are of course further corrections to include to go to NLO in «y, denoted NLO(«), NLL in kinematic logs,
and/or NLO in power corrections to the strong ordering, denoted NLO(A). The most effort to date has gone to
working out the NLO(«;)/LL contribution to incorporate one-loop corrected amplitudes at the top of the shower.
Adding a; corrections involves the numerical challenge of combining real and virtual results which separately have IR
divergences. The basic resolution is to extract the pole-portion of the real emission of i-partons and include it along
with the virtual contributions to the ¢ — 1 case. Unfortunately, this does not sum leading logs. One cannot blindly
extend the CKKW procedure to NLO(a;)/LL, as it leads to double-counting problems; the Sudakov factors in the
reweighting contain a portion of the one-loop contributions. Separately adding the full one-loop result would clearly
overcount.

There are two main solutions to the NLO(«;)/LL merging problem in the context of standard 1 — 2 splittings.
MC@NLO [37] works by means of subtraction, finding the places where the Sudakovs will contribute at NLO(«y),



and removing the splitting function contribution. This approach is conceptually clear. Since the full amplitude and
splitting function portions are calculated separately before subtraction, the latter for each SMC program, this is time-
consuming. Furthermore, since the subtractions occur for the amplitude squared, one cannot guarantee positivity of
the result and must deal with negatively weighted events. To avoid the computational difficulties of process-by-process
subtraction and negative weights, an alternative is the POWHEG algorithm [38]. It keeps the IR-safe NLO(«) cross
section manifest, and defines a Sudakov factor based on a modified splitting function to handle LL¢y, and a subset
of NLLeyp resummation for the hardest emission. In this way, it makes use of quantities already obtained in the
fixed order NLO(a) calculation, requiring fewer additional steps for its implementation for each known process. The
conservation of probability obeyed by the splittings and related Sudakov factors avoid double countings and give back
ONLO Upon integration.

A separate set of approaches goes beyond the 1 — 2 formalism to consider the radiation’s effects on one or more
“spectators.” The consideration of an additional parton in the pre-emission configuration has led to work known as
dipole subtraction and dipole antennas. The former was initially developed in [39, 40]. It explicitly subtracts the IR
divergence from real emission via a simplified “dipole” term. Refs. [41, 42] have proposed algorithms based on these
techniques. There has also been development on the theoretical side of subtractions by Nagy and Soper [43-46], with
the aim of including spin and color effects, while improving the efficiency of implementation [47]. The original use
of antennas came in the ARTIADNE program, which treats the 2 — 3 splitting as its basic unit [48-51] and allows
for exact momentum conservation. There have since been more systematic attempts to extract the 2 — 3 “antenna”
functions from QCD and implement them in a shower, e.g. VINCIA [52]. Ref. [53] even derives spin-dependent
antenna functions, though its SMC implementation is yet to appear.

A different approach is the GenEvA framework [54, 55] which allows the issues of phase space double counting and
combining matrix elements and log resummation to be treated independently. This is done using effective theory
ideas for how to separate scales. In this setup, one manifestly avoids negative weights and double counting by using
multiplicative merging. For example, GenEvA yields a calculation that is equivalent to POWHEG for the NLO(«)/LL
matching and at the same time a CKKW-L type matching onto LO(c;)/LL type matching for additional emissions.
In a similar fashion, the power suppressed matrix element computations and subleading no-branching probabilities
derived here could be implemented in GenEvA, and work in this direction is commencing.

Another approach to go beyond LL is to incorporate the contribution of the O(a?) corrections to the Altarelli-Parisi
splitting kernels, Pq(q1 ). This was done to resum soft logs to NLL for semi-inclusive variables in DIS and Drell-Yan [56].
In order to conserve probability, these corrections must be correctly accounted for in both the probability for real
emission in Eq. (3), as well as no-branching branching probabilities. This is related to why POWHEG only implements
them for the hardest splitting, where they have information from the full fixed-order computation. The KRKMC group
incorporates the subleading real emission contributions into fully exclusive partonic configurations in SMC [57-59].
Some of the subleading contributions take the form of 1 — 3 splittings, requiring a modification of the usual 1 — 2
algorithm. Similar to CKKW, the KRKMC groups corrections take the form of a multiplicative reweighting. For
a particular configuration of partons in phase space, they reweight by a factor that includes the insertion of 1 — 3

“defects” and loop-corrected 1 — 2 splittings that account for the effects of Pq(ql). If p is the fully differential cross
section, they define a corrected weight for n partons, w,, as:

_ prolku, k) + S0 pxevo(ks - k)
pro(k, ... ky) ’

where r determines the number of defect insertions in any configuration. Since this reweighting involves splitting
probabilities and not subleading no-branching probabilities, it does not clearly improve the level of log resummation.

In this work we set up an EFT framework to classify and study perturbative a, corrections, higher order log
resummation and/or kinematic power corrections to parton showers. While the ultimate goal is to facilitate the im-
plementation of a NLL/NLO(«;) parton shower algorithm accounting for the leading deviations from strong ordering,
our task here is much more modest.! We focus primarily on kinematic power corrections in the fully differential cross
section for an arbitrary number of final state emissions. That is, our main goal is to compute

(7)

n

doO doNLO(N)

- o — — .
dpy ---dpyy ~ dp} - dp}}

(8)

Here NLO()) is the next-to-leading order power correction in the cross section, which involves terms that are NLO())
and NNLO(A) in the amplitude. Similarly to [24, 25], we use an operator approach based on SCET. A main issue

I In particular we note that soft NLL resummation may only be feasible at leading orders in 1/N. [60, 61].



to resolve is taking into account different possibilities for the kinematic configurations of subsequent emissions, to go
beyond the strong ordering described in Eq (1). The hierarchy between regions is expressed by the power counting
parameter A < 1. We overcome this issue by setting up a tower of related soft collinear effective theories, called
SCET;, which also helps us deal with several technical obstacles. We formulate the shower description as a standard
matching procedure between operators in different SCET;. Power corrections are encoded by performing matching
computations at subleading order in the kinematic expansion. These corrections modify the processes that initiate the
shower, modify certain early branching probabilities, and open up the 1 — 3 splitting channel. Virtual perturbative
a5 corrections are included by performing matching calculations beyond tree level between SCET; theories. Finally,
corrections to the Sudakov no-branching probabilities are encoded through anomalous dimensions of leading and
subleading operators at the appropriate order within different SCET;’s. When we refer to a parton shower in the
context of our calculations, we mean an explicit amplitude formula that would agree numerically with a corresponding
shower algorithm. We will carry out the necessary computations for the power corrected matching equations, and
a subset of the required calculations for anomalous dimensions occurring for operators beyond the LL shower. This
analysis includes the leading corrections to the shower from interference and from spin correlations. As much as
possible, we attempt to give pointers for additional computations that are needed in places where our analysis is
incomplete. For example, to simplify things we have not treated color correlations since doing so increases the basis
of operators and the number of computations, but does not change the conceptual setup.

The outline of our paper is as follows. We present a brief overview of SCET in Section IT A. We review the Bauer-
Schwartz SCET shower method in Section II B and discuss the technical obstructions to extending it to include power
corrections. In Section IIC, we present our SCET; framework to resolve these issues. In Section III, we analyze
the LL shower in the SCET; framework, and show that the transition between SCETs, SCET; — SCET,;1, can
be encoded by operator replacement rules on single parton collinear fields. Soft emissions in SCET; are discussed,
and we summarize the correspondence between SCET; objects and LL shower ingredients. In Section IV, we use
the SCET; formulation to classify and compute various corrections to the shower to O(A\?) in the cross section. Two
main categories of branching corrections emerge, which we refer to as “hard-scattering” and “jet-structure.” We also
discuss ingredients needed for renormalization group evolution corresponding to no-branching probabilities, derive all
the LL anomalous dimensions for our subleading operators. Additionally, we mention the issues involved in obtaining
NLL¢xp resummation from our results. A summary of corrections in the SCET; framework is presented as a table in
section IV E, including the type of corresponding ingredients needed in a subleading shower. We present in Eqgs. (104)-
(106) a parton shower reweighting factor that should allow one to implement our corrections. We also discuss the
correspondence of these corrections with those currently included in other Monte Carlos. Conclusions are given in
Section V. At the present time, we do not have an algorithmic implementation of our power suppressed shower results,
but work in this direction is in progress.

Many details are relegated to the Appendices. Further details about SCET can be found in Appendix A. We
describe finite reparametrization transformations in Appendix B, which is an important symmetry that we use in our
matching computations to disentangle kinematic coordinate conventions from kinematic power corrections. Details
on the matching of QCD — SCET;, SCET; — SCET5, and SCETy — SCETj3 can be found in Appendices C, D, and
E, respectively. A complete list of the operators needed to compute Eq. (8) in SCETy is given in App. E. Appendix
F contains a cross-check on our results, where we integrate a subset of our power suppressed terms to rederive the

abelian terms in Pq(L)qQ, namely the O(ay) correction to the ¢ — ¢g splitting function [62].
Those readers looking to find a quick summary of our results should look in Secs. IITC and IV E.

II. OBTAINING THE PARTON SHOWER WITH SCET

A. SCET Basics

Soft-Collinear Effective Theory is an effective field theory of QCD that describes the interactions of collinear and
soft particles [20-23]. We present here the basic ideas needed for our analysis of the parton shower, including how
collinear sectors are organized into equivalence classes by the power counting parameters. Further SCET concepts
are reviewed in Appendix A.

The momentum, p, of any particle can be decomposed along two light-cone vectors, n and 7, with n? =0, 72 =0
and n-n =2, as

w g
p#:ﬁn_+p/i+n.pn_7 (9)

2 2
where p = 7 - p and the particle’s invariant mass is p> = n - pp + pi. We use a Minkowskian notation for pﬁ_ = —ﬁf_,
where p| is Euclidean. SCET’s degrees of freedom include n;-collinear fields for a set of distinct directions {n;}, and



soft fields.2 A particle is collinear to a direction n if its momentum scales as:

(n-p, 0, pr) ~ (A% 1, N)p, (10)
where p ~ @ is some hard scale in the process, and A < 1 is the SCET power counting parameter. A particle is soft if
(n-p, B, p1) ~ (A% A%, 0%) Q. (11)

Collinear and soft fields have virtuality ~ Q22 and Q?\%, respectively. We obtain SCET from QCD by expanding in
powers of A, integrating out hard modes, and dividing the remaining ones into collinear and soft fields. Our collinear
and soft degrees of freedom also contain all the IR regions that can be obtained by a rescaling of A — \¢, for i > 1.
The leading order SCET Lagrangian is

E(SOC)}ET =LO + Z ), (12)
ne{n;}

where L%O) is defined in Eq. (A9) and has only interactions among particles collinear to the same n. Lgo) is the
Lagrangian for soft interactions discussed further in App. A. Particles collinear to different directions can interact
either by the exchange of soft modes, or from their coupling to other sectors in external operators. Two collinear
sectors in SCET, ny and ng, are distinct if [63]:

nyng > A2, (13)

so any particle is collinear in at most one direction within a given SCET. The collinear sectors {n;} in SCET are really
sets of equivalence classes of null vectors, {[n;]}, where the equivalence class is [n;] = {n € [n;]|n-n; < A?}. A class

[n;] consists of all light-like vectors connected to n/ by a type-I reparametrization invariance (RPI) transformation,

nf — nff + AL ,L» where the scaling of the transformation parameter is AZJ_ | ~ A (see App. B for a detailed discussion

of RPI). Physically, the class [n;] corresponds to light-like vectors for particles whose momenta is in a cone centered
on 7; with an opening angle ~ A (¢f. Fig. 15).

Thus, the defining concepts of a SCET-theory are its hard-scale @, its collinear sectors {[n;]}, and its power counting
parameter A\ which governs the importance of operators and the size of the collinear sectors in phase space.

Most of our discussion will involve interactions with collinear fields, and we use the notation x,, for quarks and B!, |
for gluons (definitions of these fields can be found in Eq. (A13), and they incorporate collinear Wilson lines built out
of n- A, fields). We can match QCD onto a series of SCET operators organized by powers of A\. The key building
blocks are: x,,, Bf |, and P!'| (a type of derivative operator that yields the perpendicular momentum of an n-collinear
field), each of which scale as A in the kinematic power counting. A general notation for the i-parton operators we will
consider is:

J/2 J k
0GR (pl] gl :[H(Pm)%xnaH 1T (PnbL)“xnb}{H(PRCL)%BM} (14)

a=1 b=j/2+1 e=1

where the number of partons is the sum of quarks and gluons, j + k = ¢, and the total number of | derivatives is
{= Z]r::k1 L. In the operator argument, we list the index labels, ng4, of the parton fields on the RHS. The superscripts
in the argument on the LHS denote the number of derivatives acting on the field with the corresponding direction.
There may be a degeneracy among the index labels, ng, and so the operator has at most 4 distinct collinear directions.
The scaling of these operators is OU*8) ~ \+k+¢ They are tensors in the space of spinors and Lorentz vectors, and
the indices get contracted with structures contained in the Wilson coefficient C for the operator. If CO is a Lorentz
scalar, then j is even. Since the collinear fields carry a label referring to a specific light-cone vector, these operators
describe particles in a specific region of phase space. SCET therefore distinguishes situations with the same particle
content, but different kinematics, in a straightforward way.

For example, one can take an amplitude for three external particles: a quark, gluon, and antiquark. We can consider
two different configurations, |gn,9gn,qn) and |gn, gn;Gn). In the first, shown in Fig. 1(I), the quark and the gluon are

2 Qur primary interest here is the perturbative structure of jets, so we use SCET; theories with collinear and ultrasoft modes. For
simplicity we will always use the phrase soft in place of ultrasoft.



/

FIG. 1: Different kinematic configurations of a final state with a quark, antiquark, and gluon are described by different SCET
operators. In (I), the quark and the gluon are collinear to the direction ng, represented by their sharing a common cone. In
(II), the vectors ¢; and k| are too far apart to be collinear. The Feynman diagrams show that collinear particles can come from

Lagrangian insertions, whereas non-collinear ones arise exclusively from higher-multiplicity operators. The Feynman diagram
in (1) only depicts the first term on the RHS of Eq. (16).

ng-collinear, and the antiquark is collinear to a different direction, n. Here the amplitude is described by operators
with two distinct directions, say

0200 (g, ) = Xnolxn ~ A2, 010 (ng,ng, n) = XnygBl | T'xn ~ A, (15)

where the form of the Dirac structures T' and T’ are not central to our discussion here. O0:9 can emit 7+ A,,, gluons
from the Wilson line in xy,,, but requires a Lagrangian insertion to emit an A,J;O gluon. Schematically, the amplitude
for a transverse gluon has contributions:

Al = / dx (0|7 {LL) (@) X TX7(0)}dno 9no @) + (0| Xn0 9Bl L T'X5(0) |G Grno G ) - (16)

In Fig. 1(I1), each of the particles is collinear to a distinct direction, so no cone of size ~ \ fits two of the momenta.
In this case, the amplitude can only come from an operator with three distinct labels, such as )anBZ T X
1

AT = (01X, 9By, | T X4y 9y @) - (17)

The ability of SCET to cleanly separate contributions such as those in Eqgs. (16) and (17) will be useful for formulating
a complete set of power suppressed corrections to the parton shower.

B. Bauer-Schwartz Method

The original application of SCET to study and improve the parton shower was carried out in [24, 25] by Bauer &
Schwartz. The main reasons why SCET is useful for this are:

e The SCET fields, soft and collinear quarks and gluons, have support in the infrared exactly where the parton
shower amplitudes have their dominant contributions in phase space.



e Since SCET is improvable order-by-order in the kinematic expansion parameter, A, one has the potential to
systematically correct the shower.

We will give a short overview of the Bauer-Schwartz approach, and then discuss the complications that arise when
trying to extend the analysis to NLO in the A expansion, namely NLO(A). In this section we will use notation that
is not found elsewhere in the paper to retain consistency with [24, 25].

The procedure of [24, 25] starts by constructing i-parton operators, O;, through matching SCET to QCD at a hard
scale. For example, their Oy will equal O(%9:9)(n;, ny) in the notation of Eq. (14), and O3 will be OZ19 (ny, ny, ns).
As we run O;(u) down, the leading log renormalization group evolution (LL RGE) does not mix operators and the
exponential evolution kernel encodes the no-branching probability. The evolution continues until another parton
becomes apparent at a scale yu = pr.

If we have an i-parton operator, O; = QU39 (ny, ... n;) with all n’s distinct, then it has the RG solution

Oi(p) = UG=29(Q, 1) O;(Q) with
Q /
—/ di,v(j’”’o)(u’)] : (18)
o

UGI0(Q, p) = exp
W

where 7(7#=7:0) is the operator’s anomalous dimension. The leading-log resummation effects of the Sudakov factor
in the PS enter through one-loop operator running in SCET, as dictated by the cusp anomalous dimension. The
one-loop cusp portion is especially easy to calculate in SCET as it depends solely on the number of collinear fields,
even though the calculations have loops involving soft ones as well [24, 25],

w
Q*
This form of the kernel gives a product of Sudakov factors which are the no-branching probabilities for each parton
in the operator:

s [Ng

Ng,Ng,0
i) = =G

Cr+ %CA} log (19)

izj

UGIQ, p) = AFQ, AT (@, p). (20)

Here, as in [27], one accounts for leading-log effects for any particle multiplicity by simply multiplying matrix elements
by appropriate Sudakov factors.
As we run O;(u) down, another parton becomes apparent at a scale u = pp. To account for this, Bauer-Schwartz

devised a “threshold matching” of O; to a new, higher multiplicity operator, (95_?1, where the subscript still denotes
the number of partons in the operator and the superscript tracks the parent operator. The general threshold matching
equation is

[Cv(lj)<01(zj)>h:pT+e = [Cfﬁﬂ@fﬁﬁ]ﬂzwﬁ ’

(21)
After further running and threshold matching, we eventually have (’)7(11 ) for various n > i. The n —i particles emitted
at increasingly lower scales by this process correspond to the parton showering of the original fields created at the
hard scale by O;. Additionally, they also showed that an appropriate list of SCET operators (O;’s and Ogn)’s) can
interpolate between fixed-order QCD and parton shower (PS) calculations of IR-safe observables. Furthermore, they
derived the O(a;) effects from matching QCD to SCET at one-loop for Os.

That subsequent emissions reproduce the usual parton shower splitting function emerges easily from SCET. Consider
an operator O; = ¥n,$2, where €2 is arbitrary and we have made explicit a single collinear quark field, X,,. If we
emit a collinear gluon from this quark, ¢(¢f) — q(¢}")g(kY¥), the amplitude for the process is

_ o Q0
ALGY = g (a1)p 2% (22)
0

where uy, is the collinear quark spinor, and p® is the combination of the SCET single gluon emission Feynman rule
plus the ¥, Wilson line emission (the quark ESIO) can be found in Eq. A9),

(gl)nol/ygoJ_ + Wr?oj_(_go)noJ- _ @ (z_?) + (gl)nol-(go)noJ- '

q1 q1 qo | k1 q1

o =ng + (23)

Note that p* in SCET comes entirely from y,, without reference to anything residing in Q. The subscript (ng L)
refers to components perpendicular to nf and 7, which we denote by L for the remainder of this computation.



The amplitude in Eq. (22) is gauge invariant and k{p, = 0. Squaring Afg %9 and summing over spins we have

> spin Uno (@1)Un, (q1) = q17hy/2, and the gluon polarization sum denoted - . €a€j = dag. Since p* commutes with
o, We get an answer proportional to pptP dog, where without loss of generality we can use a light-cone gauge,

dop = —9op + (Rakis + k1afig)/k1. Crucially, this is a Dirac scalar:

2¢3 4L | 290L-¢11 9%
8 — 2 _ 0 1L 0L
p*p"Wdag = |p —2(#___+f___)><]147 24
w0 = Iol kigo @ qoq1 @ 29
where we have used the on-shell conditions ¢ = 0 and k} = 0.
In a frame where g5 = 0 we have ¢1; = —ki, and qo/q2 = 1/(no - qo). Here ng-qo = no - k1 +no - q1 =
—k?, /g0 2(1 — 2)], where z = ¢1/go. Thus we have the simpler expression

o = ng 4 et Tol, (25)
0
which we have written in light-cone gauge without the Wilson line contribution (x n%¢3), and
2n-ky  2¢? 2 2k, (14 27)
o 18 _ 1 9ir 4L _ 1L
pp" da —2(7——,—7—_—)><H4—— L= L 26
7 k1 okl @ @ 21— 2)? (26)
Putting these properties together in the full amplitude squared we get
20r q 20pq 7
ANtz = _9F Dy jaqof,te) g = I 2P 21&[—0991
20" (70 - qo0)* 2 [%p g ] g (NO'QO)lel 2
1 2
— pCp2UEE) 22) Tr [qoﬁﬂﬂq : (27)
|k | 2

Thus, all information about the emission factors out to the front and is independent of the rest of the process encoded
by €. Since the power expansion is built into SCET, there was no need to expand terms in the amplitude to obtain
this result (unlike the analogous computation in full QCD). In order to recover Eq. (3), we still need to include the z-

dependence from phase space, since Pj(,g) (2) operates at the level of the cross section. Using d®k/(2Ey) = dkd?k, /(2k),
for ¢; and k1 we have

dqrd®qi 1 dkid®ki dgod*qor dzd®kiy
— —

) 28
2q1 2k 2q0 22(1—2) ( )

where the arrow means that we insert d*qy 6¥) (o — q1 — k1) and integrate d3q; along with d(ng - qo). Thus, we recover
the expected 1/(1 — z) dependence from the measure. Combining pieces and performing the trivial azimuthal integral
doyr, , we get the expected expression:

dk? | o)
2. P2 (2) dox g, (29)
1

doxiqq = dz

where Pq@qg (2) is the quark splitting function in Eq. (3). Here dox 44 is the cross section for the rest of the process
with emission of a momentum ¢g quark, and the corresponding amplitude squared is Tr [%"7/LOQQT] Whether
represents a simple hard current or an entire chain of collinear splittings, we see that the ¢ — gg emission factors out
with the expected soft-collinear double pole, as in Eq. (2).

In order to obtain their results, Bauer-Schwartz introduced choices and approximations at several points which
obscure the path toward systematically computing NLO(X) corrections. Indeed, they concluded that obtaining these
corrections may be prohibitively difficult [25]. Some of the issues one encounters trying to work at higher orders are:

1. At NLO()), it becomes crucial to distinguish which simplifications correspond to approximations with power
corrections, and which involve a choice of coordinates where a symmetry makes the final answer coordinate
independent. For example, a collinear state typically has nonzero momentum components perpendicular to the
index n of the field that annihilates it. Refs. [24, 25], however, dictated that collinear SCET fields in their
operators only create particles whose momenta perfectly align with their index direction, n:

Xn|Q> = 5n,nqa where TL‘:; = q#/Eqv (30)

leaving it ambiguous what amount of symmetry protects this choice. Eq. (30) enforces certain kinematical
restrictions on final state particles, and requires that fermion fields be rotated to an appropriate nf via §, —

(%%/4)57111
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2. At LO, it was possible to avoid a potential double counting between collinear and soft fields by dropping
soft emission and Wilson line emission, and taking only collinear emissions with transverse polarization. The
threshold matching procedure is designed to avoid double counting of collinear operators, such as a Lagrangian

emission from Oy and direct emission from (9;2), since only one of these is allowed to operate at a time. However,
the threshold matching in Eq. (21) makes the technical procedure for incorporating power corrections unclear.

3. Threshold matching contains another impediment to systematic improvement. Through this procedure, the
initial operator Oy has nonzero projection onto Fock states of any multiplicity, but the number of particles
created by an operator is a scale-dependent question. The matching scales are determined by the strong ordering
kinematics, p11 > ... > pm1. At the scale of an emission, say p;, one threshold matches to the operator
OgZ), which only adds one parton at a time. However, going to higher orders in the shower necessitates more
general configurations.

In carrying out their method, Bauer-Schwartz carefully enumerated the above approximations. They affect the ability
to include corrections in A, but do not impact the terms necessary for a LL shower.

Building on the work of Refs. [24, 25], the main goal of the framework we develop in the next section is to overcome
this list of issues so that we can determine power corrections to the shower using SCET.

C. Using SCET;

The main feature of the parton shower is the ability to capture the dominant physics of particles emitted in
kinematically hierarchical regions of phase space. Our goal is to formulate the SCET interface with the shower using
a standard sequence of matching and running steps in different versions of SCET,

QCD — SCET; — SCETy — -+ — SCETy . (31)

We refer to this as the SCET; procedure. The key distinction between a SCET at one stage and the next is the
definition of the corresponding resolution parameters 1 > A1 > Ay > --- > Ay, where \; sets the power counting
for SCET;. As we move down the chain, the corresponding SCET resolves smaller ~ (Q\;)? invariant masses and
relative squared perpendicular momenta, and has a different meaning for its collinear sectors {[n;]}scer,. To keep
track of this, we will attach a subscript to the operators to denote the SCET; in which its fields live,

OY9*O (g njn). (32)
Effectively with Eq. (31), we partition the momenta of partons in the shower history into classes,
QQDQlD...DQN, (33)

where €, contains the momenta of all propagators having p? ~ (Q\;)? or smaller, or an equivalent condition on
relative perpendicular momenta. The allowed momenta in €); correspond to the collinear modes of SCET,;. The
sequence of SCET)’s is truncated when we resolve a scale of order the parton shower cutoff, QAN = pStt ~ 1 GeV,
that is in SCET y.

Note that we do not associate a large hierarchy to the hard scales p; between SCET; and SCET; ;. That is to
say we do not associate the energy loss due to splitting with a power of A;. Instead if @) is the scale of the primary
hard interaction then we consider p; ~ 1/ Q in SCET,, where n > \; and for numerical estimates we can take 1 ~ %
(For each branching the geometric mean of the two daughters’ p fraction averages to 0.4 which is roughly one half.)
Parametrically, the decrease in the parton energy is not as rapid as that for the perpendicular momenta encoded in
the power counting parameter A;. In principle, we can account for n as a separate factor. In practice, we will be
most interested in tracking powers of A; and will only include 7 factors in places where the corresponding powers of
two have a numerical impact on the implementation, or if we wish to disentangle the changes in offshellness due to
strong-ordering effects and those coming from the more modest decrease in p;.

The strongly ordered configuration of partons in Eq. (1) corresponds with removing a single qu in ; as we pass
from Q; — Q,41. However, with Eq. (33), nothing stops us from having multiple emissions at a single scale. If two
mother particles, with qJQ- and qj2- 11, are associated to the same €, then when we integrate out that scale in SCETy 1
this configuration just contributes to an operator with a different parton multiplicity from the strongly ordered one.
Thus, with Eq. (31) there is no obstacle to considering corrections from an arbitrary assignment of qu’s to Q’s. This
resolves issue 3. of Sec. II B since we can treat emissions where the shower tree has momenta with the same parametric
scaling in .
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FIG. 2: The same three—papcon process as seen in two different SCETs, SCET; and SCET;4+1. Above: Kinematic configuration
of the quarks and gluon. The solid cones represent the regions considered collinear to the vectors drawn. Below: Feynman
diagrams for the corresponding amplitude. Note that in SCET;;1 we have removed a degree of freedom that propagates in
SCET;. The amplitude thus comes from a higher dimension operator OEPU rather than from a time-ordered product of LsceT,

with O as it did in SCET;.

To carry out calculations in the SCET; framework, it is convenient and sufficient to take a specific definition of
the power counting parameters, \; = (A)®. We want the hierarchy between neighboring splittings to stay the same
throughout the shower so as not to privilege any portion of it. We will see in Sec. IVD that this democratic setup
allows us to interpret part of our O()\) corrections to i-parton amplitudes as universal corrections to the splitting
probability, given at LO by Eq. (3). As we go to lower scales, our definition of collinearity also changes, and by
analogy to Eq. (10), fields collinear to n within §2; have:

(’I’L * i, qiu qu_) ~ ()\2i7 17 )‘l) qia (34)

and virtuality ~ (g;)?A\*. In SCET}, ESIO) again only couples collinear fields in the same direction n. Since different
SCET,’s have different definitions of collinearity, our description of identical physical processes changes when we
switch to a theory with a lower scale. For convenience, we will use the same auxiliary vector n* for any nj-collinear
field in any SCET;. If n is a valid auxiliary vector for n-collinear fields in SCET}, then it is readily apparent that
it will be a valid choice for all subsequent collinear fields in SCET;’s that descend from an n-collinear mother in
SCET;. Our default choice is stronger: given a set of light-like vectors in {n;} in SCET; we take a light-like 71 that
is parametrically close or aligned with the antiquark direction. We then adjust the magnitude of ng and of 77; so that
nf =0 and fi - n; = 2 (for a related discussion based on RPI see Appendix C).

We depict the different descriptions of the same physical configuration in Fig. 2, where the left panel is in SCET;
and the right panel is in SCET; ;. In SCET;, the quark (¢1) and gluon (El) are ng-collinear. This means that at LO
they are emitted from a gqg vertex in the LO SCET; Lagrangian (or a Wilson line interaction). Schematically, the
amplitude for a L-polarized gluon looks like?

Avs = (2:00) / 4z (0T { Lscer, (109 |qgg), (35)

3 From here on, we will drop the superscript (0) and the subscript n from the collinear Lagrangian.
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namely like the first term in Eq. (16). The right-hand panel of Fig. 2 denotes the same configuration as seen by
SCET;41. The scale of this theory is lower and the definition of collinearity stricter, so the quark and gluon are not
collinear here. Therefore, the amplitude now comes from a three-parton operator,

AT = OO (0] qgqg), (36)

as in Eq. (17). We match SCET; — SCET,4; to calculate 210,

Given the above conventions and with the notation in Fig. 2 at hand, it is worth stating some simple kinematic
relations that we will use later on. Take an ng-collinear mother particle of momentum ¢ = g (7*/2) + go(nf /2).
Let go decay to two onshell massless daughters, k1 and ¢1, with momentum fractions x and (1 — ), back-to-back

1-momenta k 1, and light-like directions n; and n}, then

o _onb M T 1 ot
kf:kf7+k170+kﬁt_:k1%, ﬁtzf}{r?*'fh?o—ki:ih?l (37)

Note that our convention of using the same n* auxillary vector ensures that in these decompositions the momentum
multiplying nf is the same as the momentum multiplying ngl)“ . The collinearity of k1 and ¢; can be determined by

the size of kﬁ_, qg, or np - n}, and the relation between these three choices is

, 2k% 2¢3
ny-n;, = = . 38
VS G0 R @)Pe(l—a) (38)

Since we take k2 /(go)? ~ A2 in SCET;, we have ¢3/(Go)? ~ A2/n? and ny - 14 ~ A2/n*. Thus, all three choices are
equivalent for counting powers of A;, but differ with respect to how powers of the energy loss parameter n ~ 1/2
appears.

After this introduction to SCET;, we now list some technical advantages of this framework for our analysis:

1. Collinear fields in SCET with different n-labels, as well as soft fields, do not overlap in Hilbert space. This allows
us to separate an i-jet process with ¢ distinguished partons, from an (¢ — 1)-jet process with ¢ partons, where
two are collinear and unresolved. Lower-scale SCET;’s distinguish configurations more finely based on their
stricter definition of collinearity. This resolves issue 2, avoiding the double-counting of similar configurations,
from Sec. ITB. This SCET property also illuminates simplified structures in the power corrections, such as the
form of the amplitude interference (cf. section IV D).

2. Soft modes communicate between collinear sectors and threaten the factorization of different jets. Fortunately,
SCET constrains the interactions they have with collinear fields. In fact, one can decouple them using soft Wilson
lines in the LO SCET Lagrangian. At LO, using the SCET; soft Wilson lines, we maintain factorization, obtain
angular ordering, and rederive the coherent branching of soft emissions (cf. section IIIB). Soft interactions
which are power suppressed can also be systematically studied in SCET with Lagrangians available in the
literature [64-66], which we give in Eq. (108).

3. In SCET;, we have a symmetry group RPI; which corresponds to coordinate choices. In SCET; 1, only a
subset of this, RPI;;; C RPI;, remains a symmetry of the new theory. The kinematics in the coset portion
RPI;/RPI; 41 within SCET; give a set of higher-dimension operators in SCET; 1, and describe configurations
which would not otherwise be contained in the SCET;;1 Lagrangian (cf. section III and Appendix B). This
resolves issue 1. from Sec. II B making the difference clear between approximations and conventions chosen for
simplicity.

4. In matching between SCET; and SCET; 1, suppressed operators in the lower-scale theory are needed to re-
produce the physics of the higher one. It can be proven that all higher order purely collinear operators can
be built from quark fields (. ), perpendicular gluon fields (B ,,), and the perpendicular momentum operators
(PLn) [67]. Thus the symmetries and equations of motion of SCET greatly simplify the operator basis one
needs to consider at each order in A (cf. section IV and Appendices C, D, and E).

The final SCETy corresponds to the scale where the shower stops, i.e. where QnN AN ~ p5*t. In SCETy, we only
need the coefficients of the operators where all collinear partons have distinct n-labels, and which have no P, s,
C](\?’k’o)(’)%’k’o). Once we reach the physical resolution scale, it is only meaningful to have one collinear parton in each
distinguished block of phase space. Using RPIy, we can set ng = pé‘/p?. This is as in Eq. (30), but we only do
this when we run up against the physical limit that requires just one parton per equivalence class. At intermediate
stages, we allow different fields to share n-labels, which also results in operators containing P, . The coefficients
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p’~ Q> | QCD

p?~Q%)\2| SCET

P2~ Q*X'| SCET,

p2~Q°\°| SCET;

p2~Q*\*| SCET;

FIG. 3: Operators that reproduce strongly-ordered gluons are constructed through a series of matching computations with
emissions in different SCET;. The horizontal dashed arrows refer to the radiation of a gluon from a time-ordered product
of the SCET; Lagrangian with the operator creating fields at the point marked by @. The diagonal solid arrows denote the
matching onto a higher multiplicity operator in SCET; .

C](\?’k’o) encode the history of the shower. They can be written entirely in terms of: dot products n; - n;/, equivalent to

products of final parton momenta, which carry the scaling in A; hard momenta p;, the renormalization scale u, and
collinear cutoff parameters encoded in ©-functions.

As far as the shower is concerned, A is merely a bookkeeping device which determines what pieces are needed
beyond LO. One could try defining \y = k1, /Q, A2 = kay /Q, etc., but this is not ideal since there is a chance for
events where k1, ~ Q or k1, ~ p$'. The organization in Eq. (33) instead exploits the fact that on average showers
are strongly-ordered. Our expansion in A will then on average give a description of the most likely deviations from
strong-ordering. Our goal in using the SCET; framework is to extract an amplitude suitable for reweighing the parton
shower to this level of accuracy.* From the SCET side, we pass to the shower weights built from SCETy squared
amplitudes (¢f. Egs. 104-107). They contain the information needed to describe a strongly-ordered shower and its
leading kinematic corrections.

Before proceeding to our computations, it is worth commenting explicitly on which shower ingredients we do not
compute. We only treat the case of a showering quark ¢ — ¢g and in general take the abelian limit of QCD (C4 = 0).
We have left out gluon splittings, ¢ — ¢gq and g — gg, from this analysis, though we expect that the extension to
these cases should be straightforward. We have also not determined the effect of NLO(X) power corrections from
subleading soft interactions, although we briefly examine the factorized structure of LO softs in section (III B). These
items are all left to future investigations.

IIT. PARTON SHOWER IN SCET VIA OPERATOR REPLACEMENT

In the previous section, we presented our approach of using a series of EFTs, the SCET;, to handle processes with
a hierarchy of many scales. We will now use this technique to calculate the leading contribution to a series of collinear

4 As a well-defined EFT, one certainly could also do standard factorized cross section computations in any SCET; if one wanted.
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FIG. 4: The opening angle of the light grey (blue) cone is ~ A%, and the opening angle of the dark grey (red) one is ~ A2+,
The particle with momentum p is collinear to both n and n’ in SCET};, but only to n’ in SCET;+1. RPI; allows us to move
the field label, n, to any location inside the appropriate cone for SCET; while keeping the theory invariant.

emissions, as occurs in the parton shower. Our ultimate goal is to incorporate corrections, but as a starting point we
want to easily reproduce the strongly-ordered configuration of Eq. (1). We can do this if we declare that in a shower,
the i*" particle decomposes as:

(TL * qi, q’ia Q’LL) ~ (>\2ia 15 AZ) q’iv (39)

and therefore has virtuality ¢? ~ (g:)?\** (c¢f. Fig. 8). This is exactly the same condition as Eq. (34), which we used
to define the EFT, SCET;.

To calculate the operators that describe 7 emissions in the strongly-ordered limit, we will perform a series of
matchings SCET; — SCET;;;. We will find that the most efficient way to describe the process at LO in A is to be in
SCET;; for i-parton radiation. Thus, we emit and match i-times in series, as shown by Fig. 3. At LO, we will show
that one can implement this using an operator replacement rule. In the case of ¢ — gg emission, it takes the form:

Xniy — CgB?z‘SJ_ Xnz » (40)

where x,, and B, are the SCET fields associated with collinear quarks and gluons, respectively, and c is the Wilson
coefficient whose spin and color indices are suppressed. Though we do not compute them, there are similar B | —
¢ XnsXns + ¢’ 852 LBZS | rules as well. In SCET, each collinear field carries the label n, which gives its direction of
collinearity. Note that the quark field on the LHS of (40) has a different one from those on the RHS. This relates to
the stricter definition of collinearity in SCET;;; shown in Fig. 4. In order to perform the matching, we will make use
of the reparametrization invariance (RPI) discussed in point 3. of Sec. IIC to change fields’ n-labels.

A. Leading Shower Revisited

We first want to reproduce the strongly-ordered contribution to i-gluon radiation from the quark in an initial
~v* — qq pair production. Our iterative matching procedure for multiple EFTs takes a particularly simple form at LO
in \. For our standard example, we take the process ete™ — jets. Starting in QCD, we couple the quarks to another
sector via the operator, J(SCD = @qI'*q. This allows us to avoid complications that come from the initial state such
as backward evolution. In SCET; (which is equivalent to the usual SCET), matching to QCD at tree-level converts
the quark coupling to the following operator at LO: x,,I'* x5, which produces ¢ and ¢ in different collinear directions.
Details on the matching of QCD to SCET; are given in App. C. Using the notation in Eq. (14), we write the SCET,
operator in the following way:

Tl = (CF") (0P (o)) (41)
ij

]

where

(0P (0, m) = (Xna)ilxa)s (42)

)

(c8),, =
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q1 k1
(4)

FIG. 5: Momentum labels for single (A) and double (B) gluon emission.

and ¢ and j are spinor indices. The subscripts 1 in Eq. (42) indicate that the fields are defined in SCET;. Our focus
is on gluon emissions from the quark, and we always take the antiquark in the same direction, 7, therefore we drop
it from the list of n-labels. Also, we will use the following shorthand notation for the most common operator,

ng’k’o) (ny,nfy,...,n},n) = ng) (n1,nf, ..o m), (43)

where the subscript marks these as being in SCET;. In the rest of the paper, we will often drop the spinor indices.
Using the above convention, we write the operator in Eq. (41) as:

Xno T = O o0 (o). (44)

The LO derivations are independent of the exact structure of I'*. In fact, even the antiquark is a spectator, and we
could just as easily use 0@ = x,,,Q, where Q is arbitrary. However, as we will discuss in Sec. IV, matching QCD to
SCET; at higher orders requires us to specify €.

To calculate operators in SCET2, we start with single gluon radiation. In this case, shown in Fig. 5, the emission
amplitude is:®

Al = O (0] [da T{LSET (2) O (110) }dng G ) (45)
= Gin(@1) (na + w) D Tiy, (py), (46)
q1 q0

where we have labeled the collinear directions of the particles in the state |gn,gn, ) for later convenience. The SCET,
Lagrangian is given in Eq. (A9). Here we study the process in the center of mass frame with p, = (Q,0,0,0) and the
quark (go) and antiquark (pg) along the directions ng = (1,0,0,1) and 7 = (1,0,0, —1), respectively:

Q Q_
Py =g + 5t
P = 2,
do ng - qo _
do = 5y + —5 1 (47)

We decompose the emitted quark (g;) and gluon (k1) along the directions (ng,7),

q1 no - q1 _
q' = 3”5 + (@), + n*, (48)
k1 ng - k1 _
kf‘: ETL'LOL—F(kl)Z]OL—F nt.
The variables are illustrated in Fig. 5. By momentum conservation we have (k1)no1 = —(q1)no1, @ = Go = k1+q1 and
ng -pg = Q —no-q1 —no - k1. We take all the external particles on-shell, thus ng - ¢1 = _(ql)ioj_/ql and similarly for

5 All the amplitudes we write in this work refer only to the hadronic part of ete~ — jets, thus Agfg} is the amplitude of v* — qgg.
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FIG. 6: (Left panel) Single gluon emission in SCET; comes from the time-ordered product of the Lagrangian with a quark-
creating operator, A = <O|T{ESCETIO§O)}|qu>. (Right panel) For parent quarks with virtuality > Q?\*, the gluon comes
from the central vertex in SCET?> via a higher-dimensional operator, A = <0|(’);1) lggX).

ng - k1. As we discussed in Section IIB, [24, 25] showed that single gluon emission in SCET reproduces the splitting
function, Eq. (3), and factorization behavior, Eq. (27), of the standard parton shower. This simple behavior for a
single radiation will reproduce the shower for an arbitrary number of gluons.

We now want to match the single emission to SCET5 (c¢f. Fig. 6). There is a slight technical complication due to the
different definitions of collinearity in the two theories, as illustrated by Fig. 4. In SCET}, a collinear field with label
n can annihilate a state containing a particle whose momentum vector lies anywhere in a cone with angle ~ \* about
n. When we change to a lower-scale theory in a matching equation, we have to take care that the operators’ n-labels
are appropriate for the desired amplitude. Using the terminology of Fig. 4, while any label vector in the light (blue)
cone is sufficient for a particle with momentum p in SCET;, for SCET;;; we need one in the dark (red) cone. This
is where RPI; comes in, as mentioned in Sec. IIC. We use it in SCET; to transform all quantities in the amplitude
(spinors and vectors) that depend on the label vectors, such that the label after rotation lies within a collinear cone
with angle ~ A1 about the particle momentum.

The simplest convention is to choose the n-label to align perfectly with the particle. If desired, we could make any
choice consistent with RPI;;; transformations. For the process under consideration, we define labels, ni, n} such
that,

(49)

In SCET;, we are free to use ng or ny to describe the ¢; quark and k; gluon because of the RPI; symmetry. Since
ny is a valid index for the quark field in SCET2, we do the matching computation using the same spinor, ., (¢1), in
both theories. In App. B, we derive the RPI transformations we use here and other rotation formulas. For now, we
quote the results we need:

ot

’LLnO = Tunl, (50)
9 2
n% = ng + (ql_)noL _ (‘h}goLﬁa,
a1 a3
2(k k1)?
e =g 4 2E0nar ot o

k1 K
As required, the two different n;-vectors’ directions lie within cones of size A\ about ng. It is simple to check that in

the new basis, (¢1)n, 1 = q1 — (n1-p)n/2 — g1 n1/2 = 0 and similarly for (1), 1. Acting on Eq. (46), we get:

= q ( )n L”Ys/
AqL%] = gq—gﬂm ng + gl 0— = %Fuvﬁ ) (51)
490 q1 4

where ¢ = ¢1 + k1. Having changed bases, we can easily write the SCETy operator that reproduces Eq. (51),
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02(,1130 Oél) (n1,n}), where:5
1 V2 (0

Os,[n1 - n]. (52)

q1 ik

q (4 Ino L 1 i
L Loty =03 @ [ (g 4 BT ) B
0

We note that we have also given the Wilson coefficient the n-labels of the operator it multiplies. In cases where it is
clear, we will only explictly label one of C' or O. In addition to the expected tree-level amplitude term in brackets,

we also give the RG kernel, U?L’O’O), and an angular phase-space cutoff, ©;,. We discuss each of them in turn.

The former comes from running the SCET; operator Ogo) from @ to the scale 1 ~ AQ. When Uy, refers to an
operator where all collinear directions are distinct, we will drop n’s from the notation. From Eq. (20), we have

U3 (no; Q1) = Ag(Q 1), (53)

where LL refers to the fact that we take the one-loop cusp anomalous dimension, which resums the leading logs of
this running. As mentioned in Sec. II B, [24, 25] showed this resummation to be equivalent to that of no-branching
Sudakov factors of CKKW-L. We discuss the running of our operators in more detail in Sec. IV C.

The phase-space cutoff ©s,[n1 - n}] encodes that ny -n} < A2/n* (the power of n~* was discussed in Sec. I1 C). The

SCET> operator, Ogl)(nl,n’l), can only distinguish that the quark and gluon are not collinear in SCET5, but does
not know that they were collinear in SCET;. Thus, we put a cutoff on how far apart they are using n; - n} to ensure
that this SCETs operator cannot create them in a region of phase-space where they would have been non-collinear,
even in SCET;. As an example, we could choose © to be the usual step-function

1 ni'njgak
0 n; - Ny >61€7

Osy [0 - ny] = {
Osp =1— 65, . (54)

For later convenience, we defined the complement, égk. In working with SCET; operators, we relate d; to A. In
general, the Wilson coefficient in SCET; has to encode whether n; - n; < )\2(1_})/774 or n;-nj > )\2(1_1)/774, in order
to do it we will set §; = A\%73/n*. This satisfies the necessary criteria since A?*=2 < A%=3 < 1 (and recall that 7 is

the parameter that accounts for the decrease in p of a daughter relative to its mother). For C’élﬁo above, this means

82 = A/n*. At the end of Sec. II C, we discussed how A gives us a way to parametrize strong-ordering and deviations
from it. To this end, we did not need to assign it a numerical value beyond A < 1. Here for the implementation, we
do have to make an explicit choice as to where our © functions turn over, and for this purpose we will use fixed values
such as A = 0.1 and n = 1/2. This means J = 1.6 and since the n~* is a common overall factor that all dr>3 < 0.16.
The smoothness of both ©® and our physical processes gives us great leeway in the choice for A, and we expect that
any A ~ 0.1 will suffice (¢f. Fig. 10).

Once we square and integrate our operators, we have certain practical considerations to take into account. For
example, it is better to use a smoothed step. We give an example of such a function in Eq. (D21), and plot it in
Fig. 7. where we choose an appropriate numerical value for d;. If one only wishes to recover the LL shower, then one
should use © = 1, as the errors induced by this do not affect the leading resummation. Furthermore, taking © = 1
ensures that the LL shower can cover all of phase space. Once we include corrections, though, then it is important
to keep different types of collinearity distinct and include non-trivial ©’s. In the presence of corrections, there will
always be amplitudes with a © and others with a ©, which together cover all of phase space (see also Fig. 10).

Unlike standard SCET, where all the coefficients are of order \°, 02(,1110 has an overall weight of A™!. We get A~2 from

the SCET; propagator, 1/¢g3. The numerator is proportional to A and comes from the vertex: (ng‘ + (f1)no LV J_/(jl).
1

The second term is straightforwardly O(A) from (¢, )n,1. Since n§ gets contracted with Bg,l |, it only contributes its

perpendicular component in the n} frame. From Eq. (50), we see that (ng)n 1 ~ no —nf ~ (k1)ng1/k1 ~ A

6 See Appendix D for more detail on this matching. Though we have written Eq. (52) to look as much like the SCET; amplitude as
possible, we can rewrite it purely in terms of external momenta, as in Eq. (D13).
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FIG. 7: Plot of the smoothed ©-function, ©(z)a,q, defined in Eq. (D21), taking A = 0.1 and a = 0.016. The parameter A
determines the value of x where the function switches from 0 to 1, and 2a is the range in x over which the transition is made.
Comparing this smoothed ©-function to ©s in Eq. (54), we have parametrically A ~ §; and a < . This plot is for the case
03 = 0.1.

Oé}ﬁo is gauge invariant despite the presence of the ©g, function. This follows from writing Eq. (52) only in
terms of scalar products of n vectors, (¢f. Eq. D13), since collinear directions are invariant under collinear gauge
transformations [23].

We note that we can obtain C;lgo(?él)(nl, n}) from the original two-parton operator, Cf?ﬁo(’)go) (ng), in two steps:
first we multiply it by the running factor

Ui (no; Q. 1) = Ag(Q. 1) (55)

where the formulas for UIE%) are given in Eqgs. (18-19). Secondly, we apply the replacement rule
(Xno)i = (fo(no))ji (Xni)i985; 15 (56)

(63 ia-
where cf'y is:

& 1 Os,[n1 - n]. (57)

(%)ZUJ_”Yff/ll) %

Qo
To(no) = o (ng +
0

The relation (56) is the operator statement of splitting in the parton shower. The scale u; defines the endpoint of
running in the UV theory. As we evolve down, more partons become apparent. We can see this here by the presence of
two fields where there had been one. It makes the basic aspects of the shower manifest. The replacement rule affects
the quark alone, and so we see that the amplitude for splitting factorizes off from the rest of the process. The RG
kernel reflects the no-branching probability. Lastly, we can interpret the vertex portion of cf as the “square root”
of the splitting function. The spinor projector (jist,/4) in Eq. (57) rotates the spin-sum from 74, to 74, in accordance
with Eq. (2). The remaining part of ¢{ after stripping off the O3, is:

q( ( )n L'Yg/
P, = Z—g <n8—|— Womotmi , (58)
0

q1

which squares to a trivial Dirac structure. Furthermore, even though p,(q/q3) # Pa because of the RPI rotations we
performed (where p is defined in Eq. 25), we have |p|?(q0/q3)? = |P|* with respect to the gauge polarization sum,
dag, SO

(59)
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FIG. 8: (Left panel) Our kinematic convention for a strongly ordered process. Quark momenta are denoted by ¢; and gluon
momenta by k;. (Right panel) Power counting of the LO coefficient in SCETx. The powers of A with negative exponents refer
to the propagator contribution to the amplitude. Those with positive exponents refer to the perpendicular momentum of the
gluon with respect to its parent, which appears in the SCET vertex Feynman rule.

Just as before, including the z-dependence from the measure and spin-sum, we recover the the standard splitting
function o< (1+ 22)/(1— z). Thus, ¢f, weights the probability assigned to the expectation value of Oé}ﬁOOgl)(nl, n})
appropriately.

Having computed the LO result for a single gluon, it is straightforward to proceed to an arbitrary number
of emissions. In SCETj, we know that a two-gluon process comes from the T-product of the Lagrangian with

CQ(?I)JO(’)él)(nl, n}). Similarly to before, the amplitude has the contribution,

A9 = OSH (0 [de T{Lscrr, ()05 (n1, 1)) Y, G Gt @) - (60)

The vertex for gluon emission in the SCET, Lagrangian is identical to that in SCET;. Thus, integrating out the parent
of the Lagrangian-emitted gluon, we obtain a two-gluon SCETj3 operator, Cé?io(’)gm (ng,nfi,nb), similarly to before.

Also like in the matching SCET; — SCET3, we can obtain Cy (o O3 (n2,n}, 1) from the SCETy, C§}) o O8" (n1,1}),
by multiplying it by the running factor for Ogl),
U&) = Aq(po, p2) AQ(M17M2)1/27 (61)

with po ~ @ and applying the replacement rule:

(Xnz)i = (Lo (n1))ji (Xns)59B5,1 5 (62)
q (ﬂ )7111-/77?’
Tolm) = q—é ny + L e ik Os,[n2 - 5,
q7 ’p) 4

where no and n} are directions proportional to the quark and second gluon momenta, defined in Eq. (B15), and
83 = A3/n%. One can iterate this procedure to obtain the LO result for (N — 1)-gluon emission. If we use the
replacement rule N — 1 times we go down to the SCET y operator C](V]\fgol) O%Nﬁl)(nN_l, nh,...,ny_1), after which
Lagrangian emissions are no longer distinguished as separate particles. We have:

N—-1
O?”lemamnmlwww<IIﬂﬂﬁ>m, (63)
k=1

N-—1
Cﬁﬁ%mth~mkﬂ=(II%iWMqMHﬁUWqOFK
k=1

qr_ (ﬂ )nkﬂL%?/’l % _
A (npr) = Bt (nzﬂ — . ﬂi = 05, [(nk - 4]

qk—1 qy,
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U™ k-t ) = B, 6) (B 1, ) 72,

2
The variables for N — 1 emissions are illustrated in Fig. 8, where qp_1 = ((JN—l + Zjv:_kl kj) and 8§ = A\2F73 /pt.

From the power counting one knows that pp = @, and ux ~ QA¥, where the latter scaling determines how y depends
on p’ momenta, but not how it depends on ratios of the large g; momenta. To sum LLey, the approach taken by
CKKW and elsewhere is to use p2 = k2 , namely the transverse momentum squared of the emission [29, 68-71]. This
accounts for soft interference effects and coherent branching, see Ref. [69] for a review. To investigate this scale choice
in the SCET; framework requires an examination of the logs in the one-loop matching computation for c¢ro, and
consideration of soft gluons in SCET; and SCET;;,. Having not carried out this computation ourselves, we rely on
the previous literature. For our variables using Eq. (38) this implies

Qi \2 |nk - n)
pe = (a) |727€| (64)

(In contrast, the choice of invariant mass ¢2_, would have yielded p7 = (Gxks)|nx - n},|/2, but this leads to incomplete
cancellations of soft divergences, and therefore problems with the resummation of soft logs [68].) The directions ny
and nj are aligned with the external quark, g, and the gluon momenta, k. They are related to ny_; through an RPI,,

transformation. We can extend the argument to calculate the scaling of C’élﬁo to the SCET y coefficient in Eq. (63).

Counting the contributions from the tree-level terms, ¢, J(VNI:ol) ~ va_l /A7 = A" NWV=1/2" of Fig. 8.
Similarly to the discussion above Eq. (59), we can extract the vertex part of ¢'¢) to define P**. We get that:

1+ 27

[PorfE = e
(Q%)nk,lL

; (65)

where zi = G /qr—1. Thus, the amplitude squared goes like the factorized product of the appropriate 1 — 2 splitting

functions. Since OEVNA) (nn=1,m],...,n)y_q) is just built up from the repeated use of Eq. (56), we see that it requires
no added information after we compute the first ¢ — qg splitting. Thus, what we need to pass to a shower algorithm
comes just from single real and single virtual gluon computations, as we list below in Sec. III C in Table I. The

collinear splitting needed for a LL shower is entirely handled by the replacement rule in Eq. (56).”

Lastly, we note that at higher orders in SCET y, we will only ever need to compute the Wilson coefficient, C](VNfl),

of OEVNA). Since each field in this theory has its own direction by the physical resolution constraint, we can use RPIy
to make all operators with P,,; equal to zero.

B. Soft Emissions

SCET describes soft degrees of freedom using soft quark and gluon fields: gs(z) and As(x). In this work, we focus
on fully differential cross sections where we can always distinguish collinear and soft modes. In an integrated cross
section in SCET, we have to implement soft emissions with some form of zero-bin subtractions [72] to avoid double
counting between soft and collinear radiation. (In the shower literature a proper treatment of softs is also often
implemented by subtraction methods [39, 40, 43-46, 73].) The collinear sector and the soft sector couple through the
covariant derivative,

iDl = " + gA (66)

acting on the collinear fields. At LO in A, the collinear particles only couple to the n- A; component of the soft gluons
and the soft-collinear factorization guarantees that we can absorb this interaction into a Wilson line, Y'(x), along the

7 It is straightforward to see that we do not have additional contributions at LO in \. Firstly, consider the possibility of operators that do
not take the form of a single-field replacement rule. These would depend on the details of the hard process that produced the quark in the
first place and could threaten the factorization of the shower. In fact, we will get such terms when we match QCD — SCET], but they
are always suppressed, as we discuss in Sec. IV. Returning to single-field replacement, let us consider matching SCET; — SCET?2, as
results in this case will generalize to all SCET;. Rule (56) sends xn, — C’B’ﬁSL Xno- At LO, we cannot get such a replacement involving

multiple gluon fields, B, . | , as this implies that we have integrated out multiple, hard (~ Q)\z) propagators. Such a contribution would
not be strongly ordered, and is suppressed. In Sec. IV, we will also see that we do have such contributions at higher orders.
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direction of the collinear particle,
0
Y. (x) = Pexp [zg/ dsn-Ag(x + sn)| . (67)

In SCET, this is accomplished by making field redefinitions [23], so that the new collinear fields no longer couple to
soft gluons through their kinetic term, as we review in App. A. The outcome for the composite fields considered here
is that

Xn = ¥YnXn, By — YnBv‘fYJ . (68)

Note that here we consider nonabelian soft interactions, which is why the soft Wilson lines do not cancel for the B
field.

In matching SCET; to SCET;, 1, we will only consider external soft modes in SCET, 7 with momenta k ~ QN2+
These are contained as a subset of the softs in SCET;. We do not consider particles with soft momenta k ~ QA%
that could not be encoded by onshell modes in SCET;;;. Such modes are forced to have larger momenta than the
soft fields in SCET}; 1, and they are not responsible for IR divergences. Any contributions from momenta of this type
can be encoded in the Wilson coefficients of our SCET;;; operators.

In a given SCET;, after making the field redefinition, the effect of soft gluons is encoded by Wilson lines Y;, in the
operators, with the form

YOyt HY B(O Y T Yaxa (69)

'n«N nN

The angular ordering property and the coherent parton branching formalism for soft emissions with multiple hard
partons emerge naturally from such operators in SCET; ;1. If we take the Fourier transform of Y,,(z) we get

i (_g)m n.Aal ...n.Aanl
-1 s s T4m ... T% 70
+ZZ m! n-kin-(k+ka) -n- (3 ki) (70)

m=1 perms

where k1, ko, ... k, are the momenta of the gluon fields. The eikonal structure of (70) leads to angular ordering. If a
collinear particle with momentum g¢; in the n; direction emits a soft gluon of momentum ks, the amplitude acquires
a term proportional to

Ni-€s o qi-€s

Fyopy = = +O(N), 71

soft n ks P 'ks ( ) ( )

where £, is the polarization vector of the soft radiation and ¢! = gn!'/2 up to power corrections. If A,,(q1,¢2, - ,qn)
is the amplitude to emit n collinear particles with momenta ¢i,qs,- - , ¢, and A, 1 the amplitude with one more

emission, ks, in the soft region, we get A, 1(q1,92,  ,qn, ks) ~ An(q1,92, s qn) Z?:l Ciq; -€s/¢; - k, where C; is
a color factor. For the cross section this implies

dE, Qs o,
doniy = don =550 ZC”W”, (72)

where df2; and E, are the element of solid angle and the energy of the emitted soft gluon, and C; ; is a color factor.
Here

Ef qi-qj

Wiy = — 2
7 Qi'ksqj'ks

(73)
is known as the radiation function. Without color weights, the integration of W; ; over azimuthal angular variables
would imply that soft gluons only contribute when the gluon is confined to the cones centered in the directions of
particles ¢ and j, and are hence angular ordered.

To see how coherent branching emerges, we consider effects encoded by operators with exactly the same collinear
field content in SCET,; and SCET;;1. Graphs involving soft gluons will agree, and there is no contribution to the
matching. If we consider instead the collinear calculations that lead to the LO replacement rule x,, — cLo)’(mle-,l,
then the soft gluons are encoded by

SCET; : Xn,Y,!

no

SCETit1 ¢ cLoXn, Y, Yo By ij; . (74)
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For soft gluons at wide angles relative to ng, n1, and n}, the effect of attachments to Y, , Yy are power suppressed
because soft emission from these two lines cancels up to terms that are power suppressed by ni - nj ~ A\?'/n*. The
remaining attachment to YJ, looks the same as those to Y,IO at leading power, since ng - n} ~ A% /n%. Thus, wide

angle soft gluons do not resolve the substructure revealed by matching to SCET, 1 and effectively only couple to
the overall color charge of the parent quark ¥,,. Soft radiation that is close in angle to n; and n resolves the split
into quark ¥,, and gluon Bi,l, compensating for the ny - n) suppression by additional collinear singularities in its
propagator factors. Thus, the coherent branching formalism for soft gluons emerges naturally for amplitudes in our
SCET; picture.

From the SCET point of view, it would be natural to distinguish soft and collinear radiation in the shower and
treat them independently, being careful not to double count. For simplicity, all available shower codes treat them in
a simultaneous fashion. Accounting for soft coherent branching in the shower typically leads to modifications of the
Sudakov probability factors (see for example Ref. [74]), and affects the choice of evolution variable or adds additional
vetoes. In the context of SCET, the implications of this were discussed recently in [75].

C. Summary for LO Parton Shower

In Table I, we summarize results for the mapping between the LL parton shower and our SCET); picture at LO in A.
In the first column, we put the elements needed for showering, and in the central column the translation to elements
in the SCET; setup. The usual splitting function is related to our replacement rule y,, — c*© )‘(me{,l , that in turn

is related to the SCET5 coefficient of the operator (’)él). The LL Sudakov comes from LL running factors related to
the one-loop cusp anomalous dimension as in [24, 25]. At leading order, soft emission in SCET; is taken into account
by adding soft Wilson lines Y,, into our operators. This leads to angular ordering and coherent branching, which
must be accounted for with modifications to the shower to account for the soft singular regions. Finally, showers are
constructed with different choices of evolution variables and the choice effects the structure of power corrections. In
SCET;, we have seen that we can write all coefficients in terms of the large momenta (g) and dot product of n vectors
(ni-n;), which are natural variables in the SCET; picture. One can convert these variables to k%, virtuality, or angles
as desired. At LL this translation is straightforward.

Shower Concepts | Quantity in SCET; |Found In:|

Splitting function | Replacement rule | Eq.(56)
LL Sudakov factor One-loop cusp Eq. (20)
anomalous dimension
Soft emission Soft amplitude Eq. (69)

TABLE I: Mapping between parton shower and SCET; at LO/LL.

IV. SCET POWER CORRECTIONS TO THE SHOWER

As we have seen in the previous section, we reproduce the usual parton shower by matching collinear gluon emissions
to increasingly lower-scale EFTs, the SCET;. Our goal is to catalog the leading power corrections (in A) to the
differential cross section for the emission of an arbitrary number of collinear gluons to a quark. By this we mean all
amplitude terms to LO(A) and NLO()), as well as those at NNLO(A) that can interfere with LO(A). As we will argue
in Sec. IV D, in most cases of interest, there is no LO(X)/NLO(\) interference, and so we focus on the most important
power suppressed terms which are NLO(A)xNLO(XA) and LO(A)xNNLO(A). Just as in the strongly-ordered case, it
is convenient to integrate down to SCET;;; when describing the emission of i-gluons. We obtain these corrections
by doing our matching computations at higher order. We will show that there are two distinct types of subleading
matching, and they have a different physical interpretation:

e One type originates in matching QCD — SCET; at higher orders. This generates a set of subleading terms that
remain suppressed as we move down to lower-scale SCET;’s. We call them hard-scattering power corrections
as they involve the details of the hard-scale process that created our original partons. Also, they are most
important for partons radiated closest to the hard vertex.
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e The other type comes from the subleading matching SCET; — SCET;;;. They involve processes described by
the SCET; Lagrangian, but ones that get integrated out into higher dimension operators at lower scales. These
corrections are ubiquitous. They do not depend on the hard-scattering details, and we can determine them for
arbitrary SCET; — SCET,;;1 once we have found them in SCET; — SCET2. Furthermore, they relate to
known O(ay) corrections to the ¢ — ¢g splitting function, which exponentiate to sum part of NLL. For this
reason, we call them jet-structure corrections.

Determining the above to NLO(A) in the cross section will only involve single and double gluon emission.
Thus, we will never need to compute in a lower-scale theory than SCET3. We perform all the necessary
QCD—SCET;—SCET>;—SCET3 matchings for these amplitudes in Appendices C-E. Below, we discuss the final
results for the corrections, with Sec. IV A focusing on hard-scattering and Sec. IV B on jet-structure. For these por-
tions of the paper, the matching is only done at tree level, though formulas in the Appendices include one-loop RG
kernels. We give the effects of LL running on correction terms in Sec. IV C along with a discussion of how to include
NLL resummation for the LO (in A\) Wilson coefficients. In Sec. IV D, we will study the amplitude squared and will
see there is a great simplification of the interference structure in SCETy, and hence for NLO()) power corrections
in a shower. Lastly, we give in Sec. IVE the NLO counterpart to our LO table in Sec. III C. We describe how our
corrections from subleading operators relate to improvement of the parton shower with higher order resummation of
logs, corrections at higher order in ag, as well as corrections to spin correlations and interference. These effects are
summarized in a shower reweighting formula, Eq. (104).

A. Hard-Scattering Corrections

Just as in Sec. IIT A, we begin by examining the matching QCD—SCET; for single gluon emission collinear to
the quark. For this case, all corrections are of the hard-scattering type. Beyond LO, we can have dependence on
the process that creates the gg pair. For concreteness, we will consider the coupling of QCD quarks to the vector
current, JéCD = @y*q. The matching is performed in the center of mass frame with the initial virtual photon having

momentum, p, = (Q,0,0,0). The full details of this matching calculation for QCD to SCET; are in Appendix C. To
reproduce the full QCD current, JgCD, we need an infinite tower of SCET; operators increasingly higher order in .

However, to get the required amplitude to NNLO()), we only need four:

A8 o = CO o (o) / 4z {0|T{ Lscrr, ()0 )] dno o)

1 1 _ 1 1 _
+ 0 M0 (10, 10) (01O | 4o Guo@n) + CL 7 (10, 710) (01T | Gy G100 G
+ M (01,1010 | Gy gy @) (75)

where
= Xno 9Bng 1 X7 »

O (n1, 1) = Xm, 9B 1 X (76)

Here we introduced a short-hand for the notation established in Eq. (14), ’Tl(l)(no, ng) = (952’1’1)(710,71%1]). We give
the expression for Cl((,)io in Eq. (42). The amplitude from the operator (950) (ng) is shown in the first diagram in
the SCET; column of Fig. 9, those from Ogl)(no, ng) and Tl(l)(no, ng) in the second, and that for Ogl)(nl, n}) in the
third.

We call (’)gl) (ng, ng) and ,2—1(1) (ng,no) “two-jet” operators as they are labeled with two distinct collinear directions (ng
and 71) (we do not denote the antiquark direction explicitly, following the convention in Eq. 43). They describe a gluon

collinear to the quark. We obtain the coefficients 051)(710,710) and C{}%—(no,no) by expanding the QCD amplitude
in the limit of small gluon momentum transverse to the quark’s direction with the usual SCET proportionality:
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QCD SCET,

FIG. 9: Matching QCD to SCET; to SCET2 for one gluon emission which is either collinear to the quark or is in its own
direction (SCET graphs for emission collinear to the antiquark are not shown). The figures represent operator structures that
describe this process in each of the three theories. The QCD contribution is standard. In SCET;, we either emit a collinear
gluon through the time-ordered product of the Lagrangian with an two-parton operator, or from three-parton operators. In
SCET?2, the emission relevant for us only arises from higher-dimension three-parton operators.

(no - k1, k1, k1ng 1) ~ (A2, 1,0)Q. Cfl)(no, ng) and Cfl)(nl,n'l), are derived above Eq. (C13) and given here:

1 1 o
Of,%\mo(no,no) = a(”g - ”“)”YnOL )
1 1 a 2 o
Of,%(novno) =R vﬁoﬂffoﬂn@ " 70 gL (77)

We use the same kinematic variables as in Fig. 5. For C£1)(n0,n0) and C’fl%(no,no), the initial current is not a
spectator, so neither term is simply proportional to the v* with which we started. This dependence on the details
of the rest of process is a characteristic feature of hard-scattering corrections. There are an additional set of two-jet
configurations corresponding to the gluon collinear to the antiquark. These are trivial to obtain by charge conjugation.

The operator (’)gl)(nl, nj) is a three-jet configuration, as it describes three distinct directions. Whenever we have
an operator where each field has its own index label, we can choose the n; such that they are exactly aligned with
the external particle momenta. We give the coefficient C{l)(nl, n}) in Eq. (C16).

Going to SCETs for single gluon emission is straightforward. The basis of operators needed to reproduce the
amplitude (75) is equal to (76), but with SCET;, fields: (950) (no), Oél)(no, no), 7;(1)(n0,n0), and Oél)(nl,n’l). As the
computations get more complicated with subsequent emissions, we wish to minimize our effort by only including those
terms necessary to give the corrections to a shower Monte Carlo. This means we are only interested in the following:

1. We will need to keep those NNLO()) contributions that can interfere with LO(\). These give terms at the
same order as an NLO()) operator squared. We do not compute NNLO(A) amplitude terms which have zero
interference with the LO(X) amplitude. A list of the necessary computations is found in App. D.

2. Our ultimate goal is not a complete SCET; theory from which one can do computations, but an improved shower
algorithm. In Table I, we give a list of those ingredients needed to construct a map between SCET; and a LL
parton shower. We will augment the map with items needed for corrections (Eq. 104, Table II), but will not
calculate contributions which only contain redundant information for the shower amplitude.

The latter point has important implications for the sorts of operator structures we need to consider. If we wanted to
do computations in SCET5, then we would need all operators and Wilson coefficients to the order we are working.
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However, single gluon contributions in SCETs where the gluon and the quark are collinear (inside a cone of angle

~ A2 e Oél)(no, ng) or 7'2(1)(111, n1)) correspond to a quark which does not split until after the scale of matching
SCET; — SCET32. The corresponding no-branching probability, however, is already determined in SCET; from the
one-loop RG kernel. Thus, the coefficients of these operators in SCET5 are not required. We only need to calculate

those single gluon contributions where each field has its own index label in SCETj, which means Cél)(nl,n'l) for
03" (m, nf).
The matching equation for Cél)(nl,n’l) in SCET) is:
1 1 _
C3" (1, 71) (0105 g, 9, ) (78)
= %o (o) [ da Q17 {Lscen, (@O Han gng 32

! 1 = 1 1 _
+ Cf,%\ILO(n‘J? n0)<0|05 )|Qn1 n/ Qﬁ> + Cf )(nl,n'l)<0|(’)§ )|qn1 In), (Jﬁ>
+ €17 (10, 70) O |, G @) -

It is convenient to decompose Cél)(nl, n}) as

1 1) 1) ()H
5V (1, mf) = 02( Lo(ni,ni) + Cé NLo(n1,mh) + Cé NLo(n1,nh) + C2 awo(n1,mh), (79)
where the four terms on the RHS of Eq. (79) correspond to each of the contributions on the RHS of Eq. (78). We
calculated in 02(71}40 in Eq. (52) using RPI; to rotate objects in the SCET; amplitude such that they can come from

SCET; operators that annihilate the given external state. The second through fourth terms can be calculated in a
similar manner. Their values are derived in Egs. (D17)- (D19):

.a 1 ]% nlu +q ’I’LH q k B o
02(,11)\1111[40(711,11’1) = §($ - (1 + 21 21.(n1.n’1)>nﬂ>%,ﬁ@52[n1 ], (80)
C(l)H,b mnl) = —— 2o 7#
2,NLO( 1,17) (nl'nll)(jlkl pv T
_ 2(n-p—) _ } ~
© _ S\ Sk a9
{ )kl (VT? - an) i (nl'nll)(jlkl mr] 7" Oslm - m)
1 «
Oé NNLO(nlanl = ( ( J_\/nl n ¢1 + nH= )'Ynfll

n)
];1 ( /ny - ot — 7t (n .n/)@) a )@ [n1 1]
Q2 1 1%1 17 2 Q2 /Yn’lJ_ g2 101 1l
Here ny and n} are aligned with the direction of the quark and the gluon, and v; is defined in Eq. (B12). In Eq. (80),
we have left off the running factors from evolution of the SCET; operators. The terms in Egs. (76) run differently. In
particular, the two-jet and three-jet operators have different LL evolution. Therefore, it is important to decompose
02(1) as in Eq. (79), so that we can keep track of which SCET; evolution factor to include for each. The running of
these operators is discussed further in Section IV C. ~

We also note the different © dependence of the terms, where © and © we introduced in Eq. (54) and the surrounding

discussion. We can read off from Céll)fig its origin as a three-jet term in SCET;, while the others come from two-
jet operators. The O functions are necessary because without them SCET; operators, (e.g. (952) (n1, nf)) can only

tell that the quark and gluon are not collinear according to the SCET5 definition. By including these phase space
cutoffs, we can keep the distinct origins of different contributions manifest. By adopting a smoothed step function, as

suggested in Sec. IIT A and given in Eq. (D21), the amplitude squared for 02(1)(951) will be continuous despite having
different supports in different parts of phase space. An example of this is shown in Fig. 10. The full expression for the
plot is given in Eqs. (D24) and (D25). To illustrate the effects of including hard-scattering corrections, in Fig. 11 we
plot the ratios RLo = [A999(7 /|A%9(3cp and Ryvo = (JAYY[7 o 4 [A999)R10.9jet) /| A% G cp versus the gluon perp
momentum. Here, [A9%92, ., is the QCD amplitude squared for one-gluon emission, [A999]2 ; is the SCET amplitude
squared for one-gluon emission from the LO coefficient 02(71%40(951) (from Eq. 52), and [A999(3; o5 . is the NLO())

amplitude squared for one-gluon emission in the two-jet region that comes from the coeflicients C’élf\f{’g and Cz(lg\fﬁLO
(given in Eq. 80). As we expect, including corrections up to NNLO()) in the amplitudes squared extends the region
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FIG. 10: Merging of the two-jet and and three-jet squared amplitudes using a smooth theta function for the v* — ¢gg process.
Plots of the amplitude squared components from C’él)Ogl): |A%992 6 + |A%%R10. 2 jer (short dashed green), |A% |10 3 jet
(long dashed blue), and sum (solid red) versus |k1|n,1. The amplitudes are evaluated without running coefficients, and taking

k1/Go = 0.4. The J2 parameter in the ©-function is 1.2, which for the above p fraction corresponds to n = 0.5, and A = 0.08.

where tree-level SCETs and QCD agree. The advantage of using the one-gluon SCET, amplitude over QCD comes
from factorization properties that effect interference as well as renormalization group evolution. For example the
one-loop running in SCET5 performs the LL Sudakov resummation.

With two-gluon emission, the SCET; graphs will include jet-structure corrections in addition to hard-scattering
ones. It is straightforward to distinguish the types as the former result from taking time-ordered products of the
SCET; Lagrangian with operators generated by the LO replacement rule, Eq. (56), while the latter will come only
from terms involving a power suppressed SCET; operator. To fully identify the subleading contributions to two-gluon
emission, we must match down to SCETy where the LO contribution is first uniquely identified. We already know
that it comes from two applications of Eq. (56).

In Fig. 12, we show the contributions to two-gluon emission in QCD, SCET;, SCET5, and SCETj3. The first column
in the SCET; category corresponds to the jet-structure corrections to be considered in the next section. In the second
column we have a set of hard-scattering corrections from taking the T-product of the SCET; Lagrangian with the

suppressed single gluon operators we calculated above in Egs. (77), Cil)(’)gl) and Cf)l%—’fl(l).
In considering the basis of operators in SCETy we do not need operators such as ’2'2(1)(711, n}), since Py 1 Bpyi =

0, with n} lying along the gluon momentum. We can use RPI; in SCET> to make a coordinate choice where they
are not necessary. As mentioned above in the single gluon matching section, our interest is only in calculating those

terms needed to improve a shower algorithms, which precludes us from considering operators such as Tz(l)(no, ng) or

(’)él)(no, ng), corresponding to an unbranched quark passing from SCET; into SCETs. Therefore, for double gluon
emission we only need to calculate the coeflicients of the following operators:

08 (n1, 1) = X, 9B, L X (81)
05 (n2,n2,m1) = Xna 9B, 1 9BL, X
O (n2, 1) = X983 L 9BL, | Xa
O (n2, nf,nh) = Xn, 9B, 1 9B, | Xn -
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FIG. 11: Plot of the ratios of the amplitudes squared for v* — ¢gg, namely RrLo = |Aqqg|%o/|Aqqg|éCD (blue short dashed)
and Rxro = (A% 76 + [A9% Rno.o—jer) /| A% |Gop (red long dashed) versus |ki|ng ., for k1/go = 0.4. The amplitudes are
evaluated without running factors.
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FIG. 12: Matching QCD to SCET; to SCET2 to SCET3 for two gluons emitted collinear to the quark direction (SCET graphs
for other gluon kinematic configurations not shown). Once again, we depict the operator structures that lead to this process in
each of the theories. Gluons drawn away from the central vertex are emitted by the leading order Lagrangian in that theory,
while those coming from the vertex are due to higher dimension operators.

Thus in SCET5, we are interested in two-gluon operators where two fields can have the same label. When we pass to
SCET3, we can restrict our interest to only ng) (ng, nf, nj).

We already gave the coefficients of Oél)(nl, n}) needed to compute the leading power corrections in Egs. (80)
and (D17)-(D19). We get an NLO(\) contribution to the two gluon amplitude by computing the matrix element,

02(11\)1LO<O|T{ESCET2 (’)él)}|q(jgg> (first SCET3 column in Fig. 12). The contribution receives no further suppression as
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the gluon from Lscrr, gives a tree-level vertex x propagator factor of A=2, just as with LO. There are also coefficients
we need from two-gluon matching calculations for the operator (9;2) (second SCET5 column in Fig. 12). Putting
in the index structures, these include C’é?f\}lLo(ng, n}, nb) for (952) (ng,ny,nb), C’é?f\}lLO (ng, nf, n}) for (9§2) (ng,ni,n})

and Cé)z%\IJLO (na, na, nb) + Cé)z])\ﬁl\mo(ng, na, nh) for (’)éz) (na,na,nb). We include NNLO(A) for the last one as only it
interferes with LO(A). In the next subsection, we give the jet-structure corrections. All hard-scattering contributions

to these structures just listed are beyond the order we need except for 05,21)\1?%0 (na, na, n}), given by the matching
equation:

€ om0, 0) [de{OT{Lscm, (2)OF (10, 10)}anagna g ) (52)

— OSTS (naymh) /d$<0|T{ESCET2 (@)O5 (2, 14) Yy Gz 9o, @)

2)H 2 _
= O o (n2, 2, 14 (0105 (2, 112, 1)) |y Graa Gt )

where we subtract the Lagrangian emission graph in SCET5 from that in SCET; (Cf}%mo is given in Eq. 77 and

02(11)\50'1 in Eq. 80). The result for 02(721)5%0(712, ng, nb) is given in Eq. (D61). It is straightforward to see why Oém

only gets hard-scattering at NNLO()) and higher. By definition, hard-scattering has to involve a suppressed operator
from the QCD — SCET; matching, and so we begin at NLO()\) at the lowest order. Including a second gluon, but
demanding that we cannot write it as coming from a SCET5 Lagrangian emission takes us to one order higher, namely
NNLO(A).

All the contributions we have discussed so far have come from the hard-scattering, single-gluon, suppressed operators
in SCET;. There are also those with two gluons. That is to say a process where neither gluon comes from the SCET;
Lagrangian, represented by the diagram in the third SCET; column in Fig. 12. One example is double |-gluon
emission from the antiquark, as shown in the third QCD graph of Fig. 12. We know from applying Eq. (56) twice,
that LO for this process is at O(A~2), counting only the tree-level vertexxpropagator factors, as these are all we
need to compare different gggg processes. We readily see that double antiquark emission is ~ A° as there are no
small virtualities or emission angles for this term. Thus, they are N3LO, and beyond this analysis. Besides antiquark
vertices, we also have subleading emissions from the quark in QCD that arise from the suppressed SCET-spinor
portion of the QCD quark propagator (¢f. Appendix A). If both emissions come from the suppressed propagator,
once again, this is ~ A° at lowest order, and so we can neglect it. Mixed antiquark/suppressed spinor contributions
are also N3LO.

Thus, we do not need corrections to double emission collinear to the quark if they do not involve at least one SCET;
Lagrangian insertion. We can extend this argument further. If there are no SCET; Lagrangian insertions, then the
contribution goes like O(A\°), while LO goes like O()\_%). Thus, to the order we are working, we only need the
single gluon hard-scattering corrections given by Eq. (80), plus Lagrangian insertions.

B. Jet-Structure Corrections

The jet-structure corrections only involve contributions from the SCET; Lagrangian. These arise from the graphs
in the first SCET; column in Fig. 12. We specifically designed our leading order replacement rule in Eq. (56), so
when used twice it only contains that part of double emission corresponding to the leading strongly-ordered limit.
This occurs for the gluons having collinearities ~ A, A2, respectively. However, SCET; describes other kinematic
situations and in this section we compute the corrections from them.

The prescription for obtaining two-gluon jet-structure corrections is to compute the double gluon emission amplitude
in SCET; coming from two Lagrangian insertions and take different limits on the relative collinearities of ng, nj, and
n}, where these labels refer to the null vectors exactly proportional the corresponding particle momenta. We can
define:

ALS = ) o (no) /dzldz2<0|T{£scm (1) Lscrr, (22)ON Y dna Gt Gy i) (83)
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and then calculate,

qJ. 2)J 2 _
A8 = O o (2, n, 1) (0105 |y Gt Gy @) (84)

J 2)J 2 _
A8 = O Lo (2, n, n)) (0105 |y Gt 9y @) (85)

lim  AGEE = O35 (n2, )OI T{ Lscrr, O} an, Gng 9, @)

2)J 2 _
+ OS2 o (n2, 15, 12)(0108 |4y Gt 9y ) - (86)

We note a few things about the above equations. Firstly, there is a correction to the LO Wilson coefficient obtained

from the replacement rule (Eq. 56). We cannot get it purely as a limit of AqN‘YIf’g, so we need to subtract off the LO

contribution. Secondly, the limit in Eq. (84) does not lead to an expansion of any part of AqN‘YIf’g, as the scaling of the
n-indices’ dot products is exactly that from SCET;. Even though it just gives back the same expression as the SCET;

amplitude, ALYS, the SCET, result for C’é?f\}lLO (ng, nf, n’2)(9§2) tells us something more. This Wilson coefficient is

proportional to ©s, [nf - n’2]652 [ng - nb], where the ©’s only have support outside the phase space region of Eq. (85),
as well as the strongly-ordered limit, Eq. (86), (see Eqs. (54) and (D21) for the definition of ©, ©). The full results
for the Wilson coefficients shown in Eq. (86) can be found in Egs. (D37), (D52), and (D59). At the amplitude level,
given a particular phase space configuration for an external state, we will only ever need one of these terms for double
gluon emission in SCET,. Squaring the result is straightforward as there will be no interference between them.

We will now examine how to improve the matching of SCET; to SCET; 1, and show that the jet-structure corrections
computed here generalize to that case. We first notice that the first two operators above do not interfere with the one
giving LO, as they have different index structures. The subleading term in Eq. (86) does inhabit the strongly-ordered
region of phase space, but as we will argue in Sec. IVD, LO(A)/NLO()) interference cancels out of most observables
of interest. Before proceeding, we note that our description of corrections to two-gluon emission gets even simpler
when we match to SCET3. In SCET3, the only operator we need has distinct collinear directions for all fields. Thus,
we can write all hard-scattering and jet-structure corrections to two-gluon emission we have found in the coefficient,

03(2), for the operator O§2) (ng,nf,nb) = )_(mng{,llng,Lxﬁ, as we do in Eqgs. (E2). The same will hold for i-gluon
2
emission in SCET; ;1. Our NLO(\) jet-structure operators therefore have the following form:

J, I af — o
C2on2, ma, n)OS = 13 Xy gBi 1 9B, T, (87)

where h?ﬁ is given by Eq. (E11). Here I = {1,2, 3}, and we distinguish the coefficients Cé?l)\fi]o depending on which
SCET; operators they come from in order to properly account for their RG evolution in SCET5.

When doing the LO matching for SCET,; to SCET; i, we found that the replacement rule to go from SCET;
to SCET; generalized to the case of i-gluon strongly-ordered emission. Similarly, we can take the above operator,

Eq. (87), and recast it as a replacement rule for our original current insertion, C£0£00§0). It takes the form of a1 — 3
replacement rule:

Xno = 157 X983, LB, |, (88)

with contributions from I = 1,2, 3.
If we want to consider the NLO(\) radiation of i+1 gluons, we can perform a very similar matching between SCET;

and SCET;, 2 to the one above for SCET; — SCET3 to obtain an operator ijrz}%\IJLOOglgl). Since the first (i — 1)
emissions are strongly ordered, they completely factor out. Thus, the amplitude for the emission of the final two
gluons will be identical to that for simple two-gluon emission. We can therefore take the (i — 1) gluon LO operator,
Ci(fg(l)) ng_l), and use the replacement rule in Eq. (88), to obtain C’fi;)l%\IJLOIO&J;D. Our NLO()) replacement rule
corresponds to violating strong ordering at any location in the shower, either by taking the j®* and (j 4+ 1)*" gluons
to have the same parametric collinearity with respect to their parents, kj111 ~ k;j1 (Eqgs. 84 and 85); or by including
the region of phase space where the propagator between them is hard even in SCET;, and so we get no collinear

divergence as the quark and second gluon become collinear (86).%

8 At this point, one may ask why we do not go farther and consider the case kjy11 > kj;1. In fact, we do not have to. Since the
amplitude for i-gluon emission has an underlying Bose symmetry, we are free to partition phase space into 4! regions, each of which
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It is not difficult to see that this gives an NLO(X) contribution for any j. If we have i-gluon strongly-ordered emission,
the tree-level factors, ¢t (nx_1), (¢f Eq. 63) will go as A7+1/2 where the j*" gluon contributes A™7. If we violate
strong ordering as we mention above for any two gluons, the product of their vertices times propagators goes like A =2
instead of A~(29t1)_ Thus, we can insert Xno — P Xn9Bny 19Bny 1 instead of two successive Xn, — cLOXn, BryL’s in
operator matching as a “defect” in strong ordering at any stage and obtain an NLO()) jet-structure correction. The
O-functions contained in the Wilson coefficients, Ci(f;\?i)oJ, allow us to read off at which step in the shower we violated
strong-ordering.

In App. F, we show that an integrated version of h?ﬁ is related to the splitting function at NLO in a,, which serves
as a cross-check on our computations.

C. Operator Running

Up until now, our discussion of matching has taken place mostly at tree-level. Connecting to the no-branching
probabilities and log resummation in the parton shower however, requires that we include the anomalous dimensions
needed for running. For this reason, our final expressions for Wilson coefficients in Apps. C-E include the necessary
notation for evolution kernels. Identifying the power suppressed amplitudes as corresponding to perturbative correc-
tions to more inclusive observables, it is natural to take only LLecy, evolution for power suppressed or o, suppressed
corrections, and include NLLey,, evolution only for the leading shower terms. For the former, we assume (without car-
rying out the proof in SCET;) that we must make the k2 choice for the scales u? as in Eq. (64), and that this accounts
for the difference between LL and LLeyxp. NLLey, would require full one-loop, two-loop cusp, and NLL «a, running,
plus any modifications to the evolution induced by subleading soft effects. If subleading soft effects are neglected then
in the terminology of [60, 61], this gives the full collinear NLLey, resummation. The subleading logarithms coming
from pure soft effects involve the exponentiation of nonabelian matrices. As mentioned earlier, we do not compute
the effects of subleading soft SCET); operators here. (In fact, for more than three hard, colored particles, the problem
is quite non-trivial [60].)

In this section, we determine the LLcy, running for our subleading operators and discuss what is missing in our
setup for a NLL¢y, evolution kernel for emission anywhere in the shower. To set the stage, we consider SCET;
matched to QCD at the scale @) for the first order power corrections. We then run down to p in preparation for
matching to SCETs. The zero and single gluon operators in SCET; acquire the following running factors, U, (cf. the
tree-level version in Eq. (77)):

C§ (no) = U0 (ng; Q, ) 7%, |
nk —aH
CS%VLO(”Da”O) = U1 (ng,ng; Q, ) ® OT%C:DL,

1 2,1,1 1 @ 2 a
O (no,no) = UMY (no, no; Q. p) @ T (”Yf:oﬂfjoﬂnol - 70 “B%M) ,
cWn ,nh) = Loy, ,nh Q, ( — K
1 (n1,n7) (n1,n3 1) (nl'n/l)cﬁkl’y OLPV'YT
1 _ 2(n-pg) } )
_ H _ M 4/ mH |, 89
* [(n.pq)kl (o p, —mntin) + (- )aiky ) (89)

where the superscripts follow the convention in Eq. (14). We inserted the symbol ® in the second and third line
of Eq. (89) since an operator with multiple fields sharing the same collinear direction can convolve the momentum
fraction of p between the corresponding RG kernel U and momenta in the tree-level coefficient. This is because
collinear fields that are in the same direction in SCET can exchange momentum while running down from @ to
. The anomalous dimension of an operator is independent of which SCET; it is defined, but does depend on the
field content and in particular how many different collinear directions are in the operator. Thus, the RG-kernel for
Xno 9By, 1 X is different from that of Xn, gBy, | Xn- In Ref. [24, 25], the LL part of UU#=3:9(Q, 1) was related to the

Sudakov form factor, Eq. (20) (up to accounting for the soft effects of angular ordering [75]). The cusp term in the

gives an identical contribution to the cross section. Thus, to get the final answer, we only need to integrate over one of them. While
we can choose this region such that k;1 11 > k;| never occurs, we are forced to include kj 1, ~ kj;, . If we do not wish to partition
phase space in this manner, then the Bose symmetry implies that the result for k; 11 > k;1 can be obtained from the configurations
already discussed.
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anomalous dimension resums the LL, and comes from soft and collinear one-loop diagrams. The result from the soft
diagrams is constrained by that of the collinear diagrams in order to cancel out infrared sensitivity that cannot be
absorbed in local counterterms at the hard scale. Here we will use this same argument, but in reverse, in order to
determine the LL., anomalous dimension of various subleading operators.

Due to the soft-collinear factorization, the soft structure only depends on the number of collinear directions. After
making the field redefinition, operators like X, xn and Xn,9B;, | xn both have Y,IO Y5, and so both have the same soft
divergences. Hence they have the same one-loop cusp term and the same LL anomalous dimension from the sum of
collinear and soft loops. Thus, the leading-log resummation only depends on the number of collinear index directions
in the operator, and not on the number of active partons. (At leading power these concepts are the same, but it is
not so for the power corrections.) We therefore have

Utz (no) = Uiz " (no,no) = U{T 7" (no.ma) (90)
where we give Uﬁ’o’o) in Egs. (18) and (19). Thus, at LL order we have the full set of evolution kernels for subleading
collinear operators, and we account for these factors in the appendices. Since this is a LL effect, we expect soft
radiation and angular ordering to be incorporated in a manner identical to the evolution factor in the LL shower.

An important consequence of this result for the LL evolution is that it justifies treating our hard-scattering correc-
tions as improvements to the fixed-order, matrix-element calculation that goes into a shower algorithm. Correcting

the two-jet amplitude with either C{}%\ILO or Of})q—, we see that the LL resummation is the same as that in the standard
shower except that there is an extra parton already inside the leading jet. We thus get a shower correction just by
using a matrix element improved by including our hard-scattering terms. This is unlike simply running a LL shower
on higher order matrix elements, as different anomalous dimensions control different operators’ evolution. Some, like
those just mentioned with only ng and n collinear directions, run like two-jet configurations, that is with a quark-

antiquark Sudakov. Others, (e.g. Cil)(?gl)(n'l, n1)) have three-parton running since they have three distinct collinear
directions. This latter set corresponds to the usual implementation of fixed order corrections in parton showers, but
the former is a novel type of shower improvement.

On the other hand, the effect of jet-structure corrections is not to modify the initial scattering process, but to go

hand in hand with the NLL change to the leading operators’ running. Similarly to Eq. (63), we might anticipate the

)

following Wilson coefficient for OEVNfl with evolution:

N-1
N-1 k—1 a
C](V,NL%;,I(m): H UL(L )(Nk—laﬂk)ch(nk—l)
k=1, k#m
KU (1 ) €55 (1) | T, (91)

with a sum over all locations where the NLL evolution can be inserted:

N-1
N-1 N-1
Cz(v, NLi,l = Z OJ(V, NL)L,l(m)' (92)
m=1

One would expect to use C](VNQ& 1O§VN_1) along with our real emission corrections (Eq. E13) to correct a shower to

resum at NLL the ratios of all emission scales (c¢f. Eq. 104). The complication we face for the calculation of Ulgngg Yig
that this correction to the evolution kernel must, in principle, be carried out in the same scheme used to distinguish
the phase space regions for the jet-structure corrections, and hence can depend on the choice for the © functions. In
particular, we could have non-trivial operator mixing on the edge where the cutoff makes a smooth transition between
operators with different numbers of jets, and we have not yet performed the analysis that would determine whether
this effects the resummation at NLLey, order. Furthermore, it is possible that power suppressed soft effects will also
have implications for the subleading evolution kernel, and may make the nonabelian generalization of Eq. (92) tricky.
Our lack of an appropriate NLLqxp, evolution factor for the shower is due to these two issues.

To setup the distinction between kinematic regions, we used Wilsonian type © functions, but from the point of view
of evolution MS would be simpler. Although it is only indirectly relevant to our setup, it is nevertheless still interesting
to consider how the NLL evolution kernel would arise in MS. As we discuss below in App. F, when integrated over
phase space in dimensional regularization the jet-structure corrections give the real emission portion of Pq(; ), which is
the O(as) correction to the Altarelli-Parisi splitting kernel. Combined with known SCET results for single-emission

at one-loop, we can recover all of the abelian portion of Pq(; ), Obtaining this expression is important conceptually. It
validates our formal expansion in A, showing that corrections to O()\?), along with a set of known one-loop diagrams,
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capture contributions needed for collinear NLLcy, resummation. On the practical side, it provides a cross check on
our computations.

With Pq(;) in hand, we can extend the argument of [24, 25] that the Sudakov factor gives the LL part of the the
RG kernel UZ40(Q, ) (Eq. 20) to the NLL level, looking at U2:%-9)(Q, u) for running of the operator CloioO(O)
Using the Sudakov factor of [27] for quarks, we have:

_V
CF/QdMI N i d 1+ 22 (93)
m

AQ(QaM) = eXpy — 5= 7(18(”) g z 1— » )

where we recognize Pq( ) Eq. (3). Performing the z integral and expanding in the limit of large @ gives:

Ag(Q,p) ~ eXP{% AQ %‘,/as(u’) {log (g—/z) + g} } (94)

which is identical to UZ%9(Q, ) at one-loop. The term in the exponent proportional to log(u/?/Q?) sums the
leading logs in the parton shower. We also see that upon u’ integration, we get the double logarithm characteristic
of the soft-collinear divergence of collinear splitting. Interpreting Eq. (94) as an RG kernel, this log piece is coming
from the one-loop cusp anomalous dimension, Cr. The factor of 3/2 is the remaining part of the one-loop anomalous
dimension, and it sums part of the collinear NLL.? In order to get the full collinear NLLey, summation, one also
needs corrections corresponding to the two-loop cusp anomalous dimension. This is a known result in SCET for the
operator X, xs, which we can relate to Pq(q), by adding the subleading splitting function to the exponent of A, (Q, p).
We wish to stress, however, that the ultimate goal of improving parton showers through resummation is to include
all next—to—leading—logs.lo In this paper, as mentioned previously we have not considered the effects of soft NLL, nor
those related to the two-loop running of ay, which will affect collinear NLL. Our formulas in Apps. C-E include LL
running for all subleading operators. In App. I we discuss the relation of our 1 — 3 splitting amplitude with Pq( )
MS. The collinear-NLL-improved Sudakov corresponding to this is

NLL @ dy -
AYHQu) = exp ] - / WL 7 e [PO o) + PP 0n))] 3 (95)
I
where Pq(g) given in Eq. (3) and Pq,}) . Once again, we integrate in z, expanding in large ) to get:
Q du’ 2
ANLL (Q, 1) exp{ U H)C’F <1og <%) +g)

67 w2 20 2
2 (cq(g_§>_§Cﬂw)%ﬂ},

where the term o a2 reproduces the known result for the two-loop cusp anomalous dimension. While including this
MS NLL effect for “no-branching” was already possible, our result in Eq. (E13) allows one to modify the differential
cross section for real emission to include the effects of Pq(;), as well. Without including both, one does not have a
systematic improvement beyond LL. In [56], the authors were able to get NLLey, soft resummation by treating the
subleading real and virtual effects in semi-inclusive observables for DIS and Drell-Yan. A full implementation in our
framework with more exclusive observables must wait for computations that address the missing NLL ingredients
mentioned above.

D. Squared Amplitudes and Interference Structures

As discussed previously, our series of matchings terminates with SCETy, where each field has its own index
direction. Further Lagrangian emission from these operators is physically meaningless, as the resolution scale is set

9 Since Eq. (94) resums the NLL contributions expanded in the cross section (cf. Eq. 5), Ref. [27] calls it the NLL Sudakov factor.
10 At a practical level, while we see full collinear NLLexp as coming from a straightforward extension of this work, pure soft NLL may only
be possible at the leading orders in 1/N.[60, 61].
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FIG. 13: Amplitude squared for the LO SCET shower operator C’](\,IYEOI) OEVNfl). Rather than drawing the less intuitive squared
amplitude in SCETn, we illustrate the process here with a cut SCET; Feynman diagram in order to emphasize the simple
ladder structure.

~ O(GeV), below which we stop computing in perturbation theory and pass to a hadronization routine. Thus, we

match everything to the single operator O&Nﬁl)(nN, nl,...,nly_;) and all the information about the shower at LO
and NLO is encoded in the Wilson coefficients. In this SCETy, we square amplitudes and compute corrections to
observables, as we detail in Sec. IVE. As we saw in Secs. IV A and IV B, for arbitrary N, we only needed one and
two-gluon computations to obtain leading corrections in A to the differential cross section. Using the LO replacement
rule (Eq. 56) will account for the rest of the multiplicity. Since the strongly-ordered emissions it describes have trivial
interference, we should expect that squaring our results retains the simple picture we have for corrections at the
amplitude level.

1. Interference for LO? and for Jet-Structure Corrections

It is a general statement about SCET fields with different n index labels that they have no overlap in Hilbert space.
As an example, we can take two different operators, O,, and O,, where all the fields in O,,, and O,,, are identical,
except those labeled by n; and ny (e.g. Xn, versus n,). For generality the field labeled by ne may or may not be in
the same equivalence class as n;. We thus have:!!

<Q17 qz, - -, Qm|Oll|0><0|On2|Q1a q2, - - qm>
= 6[77,1], [n2] <q17 q2, -+ Qm|OLI|O><O|On2|q17 qz, - -+, qm> (97)

This relation between nj and ns is simple when the difference is encoded in the collinear fields in operators. However,
as discussed in Sec. IV A, we also had to deal with situations where this information ended up in Wilson coeflicients
when matching SCET; to SCET, ;. It is to guarantee a relation like Eq. (97) that our Wilson coefficients contain
O-functions (¢f. Egs. 54 and D21), which will cutoff the overlap regions in phase space once we begin integrating.
The amplitude squared is particularly simple in SCET , where we have only the operator OEVN_I) (nn,ny, .. y_1),
and where each particle is defined in a different collinear direction.

SCETy (or SCET;, in general) easily distinguishes which configurations are strongly-ordered by the structure of

their Wilson coefficients. This means that we have no interference between C](V]\fgol) (’)ng_l) and Cj(vjt[gﬁg(’)gvjv_l) where

C](V]Ychl)) is the LO SCETy coefficient given in Eq. (63), and CJ(Vngﬁ)OJ is in Eq. (E12). Even though the O’s are the

11 By RPI, n; and n2 do not have to be exactly equal, but must concur up to an angle of O(\?) in SCET;.
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same, the O-functions in the C’s enforce different conditions, where the former is strongly ordered, while the latter is
not. Thus, in the analog of Eq. (97), the Kronecker delta will give zero.

We get a further simplification when we square the NLO(A) contributions. Looking at C'J(VNNﬁ)OJ in detail, we have:

N—1)J
N NLO = Z CJ(V NL)O (98)

where

3 -1
1)J k—1) -1 ,
N NL)O Z [( UéL (t—1, pr)er & (na— 1)) U}EL )(/Lk—h fik) @ h?ﬂ(nlJrlvnEvnngl)
I=1 k=1
N

-1

(T U8V e, moes i) 7 (99)
l

k=l+1

In CN Nﬁg( 1), we have made explicit that the [, (I + 1)** gluons violate strong-ordering and come with the factor

he# of the subleading splitting rule, Eq. (88). The sum in the last term over I counts the different types of NLO
jet-structure terms given in Eq. (87). The c['fy are defined in Eqs. (63) and (E7), and the U’s are running factors
given in Egs. (18)-(20). The complete explanation of the symbols in Eq. (99) can be found in the discussion around
Eq. (E13). The convolution factor is explained below Eq. (89). Since different I correspond to a violation of strong-
ordering at different points in the shower, each of the Cz(lf\?io (1,1 + 1) encodes a different © structure. Therefore,
there is no interference for different values of I, and we have that the amplitude squared to NLO(\) for jet-structure
corrections (we call corrections of O(A?) at the amplitude squared level NLO())) is just the sum of squares of the

individual operators:

|ACN 90T 12010 = [ATNTDI0R ) 4 |AAN =190 R (100)
where
—1)gd N-1 N-1 p
A0 = ORT PIOION ™V la(N ~ 1ga)f (101)
N-2

1o N-1)J N— 7
AT D9 R = 3 10N Lo WP 110K a(N — Dga)l?,
=1

and |g(N — 1)gq) indicates the state with N — 1 gluon emission. The simplification even extends inside each of the
terms, since the j*' gluon only gets contracted with itself. Diagrammatically, this means there are zero nearest-
neighbor crossings in the |[LO|? diagram, as we see in Fig. 13, and a maximum of one in the [NLO|?, Fig. 14. We thus
only slightly modify the factorized emission formula, Eq. (2). Even for an arbitrary number of gluon emissions, we at
most have to take into account a single defect that involves a full two-particle phase space.

We can see why terms that have non-trivial interference with more than two gluons are suppressed by looking at
the propagators in the amplitude. The amplitude for i + 1 emissions has a factor 1/¢? x 1/¢3 x -+ x 1/q?. The
LO term comes form the strong-ordered region where ¢7 > ¢3 > --- > ¢2, Eq. (1). The jet-structure NLO()) is
given when qu ~ qj2- 1, which allows the two gluons k;;1 and k;;2 to share the same region of the phase space and
therefore interfere. To have an overlap of three or more gluons, we would need q]2- ~ q]2- SRR q]2- e which is
clearly suppressed beyond NLO().

2. Interference for Hard-Scattering Corrections

The corrections to the differential cross section to O(\?) involve squaring the subleading hard-scattering amplitudes
as well. Unlike the jet-structure case, these involve amplitude terms up to NNLO(X). As we argued above, they only
modify the gluons closest to the hard interaction. Thus, we will not need to sum over many terms as we do in
Eq. (101). In fact, for hard-scattering corrections, we only need to worry about interfering SCET; operators that arise

from acting with the LO replacement rule Eq. (56) on either Cl(?io, Cl()l%\mo, and CS)T, given in Eqs. (42) and (77),
or 02()21)\]}1{”40 given in Eq. (D65). Since the 3" through i*" gluons arise from the LO rule for all three coefficients, they
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FIG. 14: Contribution to the amplitude squared of the jet-structure piece at NLO. We show a cut SCET; Feynman diagram
to emphasize that the square of the SCET y operator, CI(V]YQi)OJOE\,Nfl), contains only a single deviation from the simple ladder
structure appearing at LO in Fig. 13.

proceed as in the [LO|? case. The interference to look at in detail is that of the first two gluons. In SCETy, we have:

—1)gq N-1)t ~(N-1)H N—1)Ht ~(N—1 N-1)H
|AIN=DITH R o :(|C](V,LO)TOJ(V,NL)O +OJ(V,NL)O TOJ(\/,LO)| + |OJ(V,NL)O 2 (102)
N-1)f ~(N=1)H N—1)Ht ~(N—1 N-1 ~
+ |Cj(v LO)TCJ(V, NN)LO + Cz(v, NN)LOTC](V, LO)|)|<O|O§V )|Q(N - 1)9Q>|2

The Wilson coefficients are found in Egs. (E6), (E8), and (E9), respectively. Nontrivial interference in Eq. (102)
occurs between the first two-gluon emissions.
The interference between LO and NLO(\) simplifies in many cases of interest. For example for one-gluon emission,

q 4q1pg _
|A%%1/NLO iu = q—qulJ_u(nu — Ap). (103)
0

If we can cleanly separate the initial and final states (e.g. eTe™ — jets), then by a classic proof involving the Ward
identity (reproduced, for example, in [76]), once we have integrated over final state vector quantities (we can keep
scalars such as z; unintegrated), the resulting differential observable depends on g**|Arq /NLOEL ., which for Eq. (103)
is zero. This is quite straightforward for leptonic initial states, and one may be able to extend it to certain hadronic
ones as well.

One can account for these corrections by modifying the hard-scale matrix element and then running a parton shower
modified to include the different no-branching probabilities for different phase space configurations of the same particle

content. In the next section we discuss using a reweighting to implement these corrections.

E. Correction Summary at Subleading Order

In general, our corrections avoid double counting issues, because all contributions, whether LO, hard-scattering,
or jet-structure corrections are kept separately with distinct © structures. Given the SCETy amplitude for N + 1
final state particles with corrections implemented both for the branching and for the no-branching, one can consider
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reweighting a LL shower in order to implement our results. For correcting the abelian emissions off a single quark
line, this weight factor would take the following form:

[J(N —1,0) + H(N —1,0)]

v AN — 1, 0) : (104)

where A(N — 1,0) is the LL amplitude squared for N — 1 emissions from the quark line, J(N — 1,0) includes the
LL result along with power corrections and subleading resummation associated with jet-structure corrections, and H
contains hard scattering corrections. With our LO()) result,

AN —1,0) = [C{ o’ PIOIOY VeV - 1)gg)|2, (105)

but in general A could be whatever amplitude squared a particular shower algorithm has for a given configuration.
Eq. (104) then reweights that particular shower to our NLO(A) corrected result. An example of shower Monte Carlo
with an analytic expression for A(N —1,0) is GenEvA [54]. For a leading log shower without an explicit formula for
A(N —1,0) one can use Eq. (105) with the understanding that it is likely a good approximation to the shower output.
For the terms in the numerator of Eq. (104) we have:

N-1)J N— s N-1)J N— _
J(N —1,0) = [C5 it 1 PHOIOS " Pla(N = 1)ga)|? + 1CS it PIOIOS ™V a(N — 1)9a) 2,
H(N —1,0) = |C{ xin PHOIOF ™V ]g(N — 1)g)?

N—1 N-1)H N—-1 _ At (N—1
+ (CR'io’ CN RS 0108 Vla(N = 1)ga) (a(N = 1)ggl 0K j0) + hic.), (106)
where we give formulas for CJ(VNIjol ) and (’)ng_l) in Eq. (63), CJ(VNIGﬁiJl is discussed near Egs. (91) and (92), C}éﬂ;ﬁg

is given in Egs. (98) and (99), CJ(Vngﬁ)OH is given in Eq. (E8), and C](VNgé)L% is given in Eq. (E9). Our operators,
OgVN_l), describe a process with N — 1 emissions off the quark line. The A(N — 1,0) amplitude squared in Eq. (105) is
contained within the first term in J(N — 1,0). As discussed in Sec. IV C, while we have worked out the real emission
terms (CJ(Vngﬁ)OJ) completely, we have yet to determine the subleading RG kernels needed for C](Vngﬁ{]l

We introduce the A, J, H notation to describe more general abelian processes. A(j, k) gives the amplitude squared
necessary for the LL shower of j gluons collinear to the quark, and & collinear to the antiquark. The correction,
J(j, k), contains the virtual and real corrections necessary for NLLey, resummation of collinear logs. Since it contains
an implicit sum over insertions of a single defect, which can occur anywhere in the shower, it depends on the total
number of collinear emissions. Including the hard-scattering contributions to NLO(X) only requires modification of
the first two emissions, after which one simply uses the LO replacement rule, Eq. (56). In the general case we denote it
by H', which differs from the above by including corrections to antiquark emissions as well. These are easily obtained
by charge conjugation. Thus, an abelian two-jet process with j 4+ k gluons gets the following reweighting factor:

w(j, k) = [J(j, k) + H'(j, k)] JAG, k). (107)

These weight factors are positive definite. All contributing terms are squares of amplitudes, except for LO(A) x
NNLO(A) in H(N — 1,0). This contributes in the same region of phase space as the LO()) amplitude squared, and
the sum of these terms is positive. In the full nonabelian case, with the presence of gluon splittings, one must sum
over possible shower histories in writing down the analog of Eq. (107). Algorithms for handling this complication can
be found in [1, 54].

In Table IT we list concepts that are addressed by our shower framework at subleading order, and associate these
concepts with corresponding calculations in SCET;. This table provides a summary of our results which appear in
the weights given in Eq. (107), as well as pointers for future calculations. Since it is easier, in the table we use the
language of SCET; and SCET} to discuss the corrections, rather than referring to terms in the final SCETy. In
SCETy, the features of the SCET; operators that avoid double counting and allow the various contributions to be
distinguished are encoded by © functions in the Wilson coefficients, and the operator language makes the discussion
easier. For the total differential cross section, we found at NLO()) two kinds of power corrections. This includes a set
of matrix-element corrections called hard-scattering corrections (Sec. IV A), and a set of contributions that improve
double real emissions that we called jet-structure corrections (Sec. IV B).

In the the hard-scattering category, we have overall three different kinds of corrections. The first is due the the
SCET; operator Xn, By xn that gives the SCET; coefficient 02(711)&8 in Eq. (80). This is an improvement of the hard
matrix element that takes into account the emission of an extra parton at the hard scale. The second is due to the

SCET; operators YngBnoXn and Xno[PLBn]|xn that give the SCETy coefficients Céll)ﬁg and 02(,11)\111{%0 in Eq. (80).
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Category Shower Concepts Quantity in SCET; | Found In: |
Hard Scattering Hard matrix elements Wilson coeff. of )anBi‘,l X Eq. (80)
with more partons in SCET,
Power correction to initial branching| Wilson coeff. of xn, Bﬁo X Eq. (80)
within the leading jet and Y, [P B IXn
O(a,) hard virtual One-loop matching for See [24, 25]
correction Xni1 X7
Jet Structure 1 — 3 Splitting functions Double gluon real Eq. (87)
emission in SCET}
Combining 1 — 2 splittings with |Compute weights from SCET| Eq. (107)
the various 1 — 3 splittings squared amplitudes
O(a) virtual correction One-loop correction Left for
for LO 1 — 2 splitting to 1 — 2 replacement rule future work
No Branching NLL Sudakov factor for NLL anomalous dimension |See Sec. IV C,
Probabilities leading branching for leading operators Left for
future work
LL Sudakovs for LL anomalous dimensions for| Egs. (20,90)
subleading branching subleading operators
Soft Emission Subleading corrections Include effects of soft Left for
from soft gluons emission from subleading future work
SCET soft Lagrangians

TABLE II: Mapping between concepts in a NLO parton shower algorithm and computations in SCET;. For exclusive cross
sections these ingredients would together yield results accurate to NLO in the power expansion (\), and with corresponding
NLL resummation.

This correction also accounts for more partons, but it describes a situation where they are initially emitted close to
the collinear quark. Therefore, they are corrections which improve the description of the first branching within the
leading jet. It is important to note that because these two types of hard corrections occur in different regions of
phase space they have different renormalization group evolution, and thus different Sudakov no-branching factors.
The required LL Sudakov factors were determined in our analysis. For a full NLO(a;) treatment we also need a third
type of hard scattering correction, the one-loop virtual corrections to the leading shower operator. For the required
operator, Xn,Xn these types of corrections were discussed in Refs. [24, 25].

For the jet-structure corrections, there are several ingredients to consider. We derived a replacement rule for two
emissions 1 — 3, Eq. (88), that involved three different types of terms. This correction takes into account emissions
in a region of the phase space that is not strongly-ordered and automatically avoids double counting from multiple
1 — 2 emissions.'? In addition at NLO(a;)/NLL we require the O(a) virtual correction to the LO splitting rule.
This would be derived from a one loop matching computation that should be straightforward, but was not considered
here.

We also discussed how no-branching Sudakov factors are associated with the operator RG kernels, and by extension
their anomalous dimensions (Section IV C). To NLL, we need the NLL Sudakov factor for leading branching and
the LL Sudakovs for subleading branching. These are associated to the full one-loop and two-loop cusp anomalous
dimensions for the leading operators, and one-loop cusp for the subleading ones. At LL, we have determined all
the Sudakovs for subleading branching (Eqgs. 20 and 90). We have not yet calculated the NLL Sudakov for leading
branching in the scheme with ©-functions that is needed for our setup, as described in Sec. IV C.

The last item in the table is the treatment of soft radiation at NLO. This can be achieved by considering time-
ordered products for the matching of QCD to SCET; and SCET; to SCET;; that involve soft gluons and subleading

12 The method by which we avoid double counting for two gluon emission should be obvious, coming directly from our implementation of
the © functions. Since © + © = 1, the double 1 — 2 and 1 — 3 together cover all of phase space without double counting. For three
emissions we have either i) three 1 — 2 emissions, ii) a 1 — 3 followed by a 1 — 2 emission, or iii) a 1 — 2 followed by a 1 — 3 emission.
Here there is an apparent combinatoric issue, as ii) and iii) both provide corrections for the middle gluon in i). However they do so in
nonoverlapping regions of phase space. The same is true for more than three emissions. We thank J. Thaler for asking this question.
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soft Lagrangians that are known in SCET [64-66] up to O(\?). For the terms involving collinear quarks they read

£ = (@) iPhg (ViDL ) + (€iDi W) Zim, (WT Pe. (108)
_ 1 _ 1
Lg? - (gnw)i — us%(wfgn) + (gnup,f )ﬁzn Doys = (WWDL&n) ,
‘Cél gn in-D ZQEJ_WQuS + h.c. gnﬁl-wj_( ) g BJ_ WQus + h.c.
£ = it D .
§n2 "D, [ifs - Dpyin - Dy + gn - Ays|W qus + hec.,

while the analogous pure glue Lagrangians can be found in Ref. [64]. Here the expressions are prior to the soft field
redefinition, and igB} = [if - Dy, iJP7]. One must then work out the effect that these NLO soft amplitudes have on
interference. The associated soft calculations and investigations have also been left for future work.

We also briefly comment on how the corrections in Table II relate to those already implemented in parton shower
codes in the literature. In most cases, the goal of these codes differed from the power suppressed corrections considered
here. This makes a strict association impossible, but there is still a general correspondence that can be made.
CKKW [27] is a LO(a,)/LL procedure whose goal is to merge matrix elements involving multiple partons with a
parton shower in a manner that avoids double counting. In our language, this corresponds to the real emission
hard-scattering corrections in the first row of Table II. The x,,x» and )anBj{,l X7 operators describe processes with
different numbers of initial well-separated jets. In CKKW, a parameter y.u; is used to separate the extra emission in
the matrix element from emissions in the shower. In our analysis, the contributions from showering X, x» does not
interfere with the direct contribution from )‘(mB#l X#, and this is encoded by © functions in the Wilson coefficient of
SCETy. CKKW carries out this procedure for several matrix element emissions, while we have only considered one.

In MC@NLO [37] and POWHEG [38], virtual and real matrix element corrections at NLO(«;) are incorporated
into the shower, with the goal of ensuring that it reproduces an associated cross section completely at NLO(as).
The implementation includes careful handling of the cancellation of real and virtual IR divergences. Our goal was to
implement corrections at NLO(A) and we discussed NLL, but for all emissions from the shower rather than just the
first jet needed for the NLO(a;) cross section. At NLL, we would have only terms up to O(a, log) in the total cross
section, and hence this does not encode the entire NLO(a;) result. In our language, the corrections that contribute
to the NLO(a) cross section correspond to the hard scattering corrections in the first through third rows of Table II.
In order to compute the NLO(a;) cross section it is not necessary to distinguish between the terms in the first and
second rows of the table, and these terms are indeed considered simultaneously in MCQNLO and POWHEG. The
full NLO(a,) virtual result are obtained in our language by including the items mentioned in the 3* and 9" rows of
Table II.

The work of KRKMC [57-59], on the other side, aims to improve the shower algorithm taking into account an

exclusive version of the Altarelli-Parisi splitting function at NLO(«s), Pq(;). In our language, this corresponds to
jet-structure corrections and we show in Appendix F how our replacement rule in Eq. (88) is also related to Pq(;).
Hence our 1 — 3 emission corresponds to an exclusive version of Pq( ) though in a different scheme. Part of the

corrections in Pq(q) involve order a; corrections to the 1 — 2 splitting function, which are taken into account by O(c)
virtual 1 — 2 matching corrections in our framework (6" row of Table II). In fact, in Sec. IV D, we saw that SCET;
also leads one to view corrections to the shower as a “defect” insertion just as KRKMC. In addition to these splitting
corrections, in our framework the amplitude also involves no-branching probabilities given by evolution kernels that
appear in the weight factors, which do not appear in the KRKMC weights. Keeping track of the evolution also
determines the appropriate scale for evaluating as.

V. CONCLUSION

In this paper we developed a framework based on a tower of independent but related EFTs, the SCET;, to study
corrections to the parton shower. The work of [24, 25] showed how to formulate the LL parton shower in terms of
SCET, and how virtual corrections are straightforward to incorporate by one-loop matching. Our SCET; framework
extends these ideas in a manner that makes it easy to deal with: double counting, the issue of disentangling coordinate
choices from kinematic power corrections, and the construction of a complete set of operators for corrections at a
desired order. The interference structures, and hence the leading corrections that give spin and color correlations,
also appear in a straightforward manner in the SCET; setup.
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The SCET; are iteratively used to integrate out the characteristic scale, QA for increasing i. This approach allows
us to perform a systematic expansion which can correct both the hard-scale process that produces partons to setup
initial conditions for the shower algorithm and the iterative shower itself. We described the parton shower through

a set of operators (95] ) in SCET;, and used standard matching procedures to make the transition from SCET; to
SCET; 1, where more partons become apparent. Performing the matching relied crucially on the RPI symmetry of
SCET, and we extended the usual infinitesimal version to carry out the finite rotations that we needed. At LO, a
simple operator replacement rule generates the LL shower, X», — ¢fg )‘(nlng;/l | » where cro is related to the standard
LO splitting-function. Also, angular ordering and coherent branching for LO soft emissions emerge naturally in the
SCET; framework. A summary of ingredients required for the shower with power corrections at NLO(\) are given in
Table II, including both calculations carried out here, as well as those left for future work. The main results of our
paper are:

1. At NLO()\) we found two kinds of branching corrections: hard-scattering and jet-structure. The hard-scattering
corrections depend on the hard process and appear near the top of the shower tree. They came from matching
QCD to SCET}; at higher order. Since they only occur at the top of the shower, one can treat these as a modified
form of matrix-element corrections. A subset of these corrections correspond to the usual implementation of
fixed-order matrix elements, while the remaining ones give power corrections to the initial branching in the LL
shower. These two types require different Sudakov factors. This effect is apparent for the kinematic power
corrections, but is beyond NLO(«y) for the fixed order counting.

2. The jet-structure corrections are independent from what happens at the hard scale, hence they are universal
for any process we want to study. They come from matching SCET; to SCET,; at higher order for any .
They can appear anywhere in the shower tree and they take into account emissions in regions of the phase space
that are not strongly-ordered. For these corrections we found that the NLO(\) operators are related to the LO
operator via a replacement rule for two emissions: xp, — h?ﬁ Xns ngl‘,l L 985/2 - This NLO(A) rule automatically
avoids double counting with the iteration of two LO operator replacements.

3. The SCET; picture allowed us to easily take into account interference for the NLO(\) power corrections. Once
we reach the final SCET  theory, all the fields are labeled in a different collinear directions. Because in SCET
we can only contract collinear fields that share the same collinear direction, in SCET y calculating the amplitude
squared becomes very easy. Kinematic information that is encoded by the shower history from passing through
earlier SCET;’s is encoded by © functions in the final SCET y Wilson coefficients. We demonstrated that when
emitting an arbitrary number of partons, the non-trivial part of the amplitude squared involves at most four
fields.

A comparison of how these SCET; results relate to earlier parton shower literature that goes beyond LL is given in
Sec. IVE.

The framework developed here allows for systematic improvement to arbitrary orders in the kinematic expansion.
There are still several important steps to take, though, before this picture can lead to a practical implementation,
including additional computations that we outlined in Sec. IVE. We list here three topics which are natural next
steps, and which we believe should be straightforward to approach:

1. This work has only considered ¢ — ¢g splittings and an abelian theory. One should include the full nonabelian
results and compute the coefficients required for gluon splitting as well. This is required to properly treat color
correlation corrections in a manner determined by the NLO()) interference pattern. For collinear particles we
expect that one can include the dominant part of these effects by considering nearest-neighbor interference since
this arises from the kinematic expansion, and thus leaves the rest of the shower as before.

2. Only a subset of the terms required for a full NLLey, resummation were considered here. We determined the
LLexp evolution for subleading operators, but did not carry out the computation of the NLLey;, evolution of the
leading operator in a scheme that is consistent with our power corrections (we only considered it in MS). In order
for a consistent treatment as a probabilistic process, the real emission probabilities and Sudakov no-branching
corrections must go hand in hand. Furthermore, once these evolution factors are determined, the reweighting
discussed in Sec. IV E must be tested in an actual shower Monte Carlo.

3. Since soft modes in SCET can communicate between different collinear jets, they carry the ability to spoil their
factorization. Fortunately, this does not happen for their LO interactions, which yield angular ordering and
coherent branching of soft gluons in SCET;. It is open question as to what extent NLO soft couplings can be
factorized in the shower tree and the necessary SCET computations were discussed but not carried out here.
The treatment of soft NLO interactions in SCET in other contexts has always led to factorized structures, so
we remain optimistic that such effects will be tractable for the shower.



40

Future investigation of these items is well warranted.
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Appendix A: More SCET basics

Soft-Collinear Effective Theory describes the interactions of collinear and soft quarks and gluons [20-23]. As we
mentioned in Sec. IT A, to define the collinearity of a particle, the momentum is decomposed along two light-cone
vectors, n and A, with n? =0, 72 =0 and n-n = 2

Ak

p”*np7+p7+m, (A1)

where p = 7 - p. A particle is collinear to the direction n if its momentum scales as:

(n'p,ﬁ,pL)N()\2,17A)Q7 (A2)
where () is the hard scale of the process, and A < 1. A particle is soft if:
(n-p, B, p1) ~ (A% A%, 0%) Q. (A3)

We obtain SCET from QCD by expanding in powers of A and integrating out modes harder than ~ Q?)X2. Both
Egs. (A2) and (A3) imply that p?> = p(n-p) +p2 < Q3N

In addition to the expansion, we also want to divide the quark and gluon fields into separate soft and collinear
modes. For the collinear case, the fields are indexed by n, and two collinear sectors are distinct if n; - n; > A%, In
addition, we introduce a momentum-space lattice for the O(A\°) and O()\) momenta in order to facilitate carrying
out the multipole expansion with respect to the O(A\?) momenta. To divide the QCD fields in this way, we split the
momentum of a collinear particle into a “large” part p* and a residual one k* ~ A2

_ _ nt
pt =pt +k*, where pt = np +p . (A4)
We can pull out the large momenta p from the fermion field by the phase redefinition

Y(x) = e PP ;. (A5)

D,n

For a collinear particle along n, 0", 5(x) ~ A?. The four component field, 1, 5, has two large components, &, 5, and
two small components &5 5, that can be separated using the following projectors:

it il

Ynp = wn,p + _wn,p §np + &npe (A6)

These satisfy the relations,
gn,p é—n,p ) %571,;5 =0

4 &p = &a s Hénp=0. (A7)

3\

Similarly, we can define a collinear gluon field, A .(x). Pictorially, we can think of &, 5(z) and A}, () as fields that
create a particle whose three-momentum lies 1ns1de a cone with opening angle ~ A about the three direction ©. P#
is the momentum operator that picks up the large components of the momentum, P &, 5(z) = p* &, 5(x). Collinear
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fields always appear with a sum over p, and both label and residual momenta are separately conserved. Therefore it
is often useful to abbreviate the notation as

The SCET collinear Lagrangian, £,,, describes the interaction between the collinear fields &, and A% (z). It is derived
from the QCD Lagrangian by integrating out the field, £5. At LO, for the kinetic and purely collinear interaction
terms we have [21, 22]:

B 1
LO =&, (in-0+gn-A, + il WoW]iilD, ) i

where we intrinsically sum over the large, label momenta, p. The in -9 derivative picks out the O(\?) momenta. The
collinear derivative, D¥, and collinear Wilson line, W,,, are defined as [23]:

iDy =Py + gAy,
Wi (a [ 3 exp(_%ﬁ-An(x))]. (A10)

perms.

The leading order coupling of collinear quarks to soft gluons is eikonal,
E.(S?l) :gngn'As ggna (All)

while the Lagrangian for purely soft quarks and gluons has the same form as full QCD. The LO collinear Lagrangian
for gluons has similar properties and is given in Ref. [23]. The interactions between soft and collinear particles, such
as the one in Eq. (A11), can be removed from the Lagrangian by the field redefinitions [23]:

&n — Y &n, Al S Y, ARYT (A12)

where the soft Wilson line Y, is defined in Eq. (67). This causes soft interactions to be represented by Wilson lines
in operators, as in Eq. (69).

Now that we have split up gluons according to a momentum-space lattice, the gauge structure of the theory has
become more complex and involves global, collinear, and soft gauge transformations. Fortunately, with the collinear
Wilson line, it is possible to construct fermion and gluon fields that are manifestly invariant under collinear gauge
transformations. The definitions are:

Yo (&) = Wi (2)En () Bi(w) = £ [Wl @) iDEW@)] (A13)

where the derivative in B¥ does not act outside of the brackets in its definition, and we always have 71 - B,, = 0. In the
n - A, = 0 light-cone gauge, W,, = 1 and B¥ = A¥. One can construct collinear operators out of just three objects:
the fermion field, x,, the perpendicular gluon field, B!, and the perpendicular momentum operator, P~ . All the
other operators, like n- B, or n-0 can be written in terms of these three using the equation of motions [67].

Appendix B: Finite RPI

Even though SCET explicitly breaks Lorentz invariance, the symmetry returns at each order in A by reparametriza-
tion invariance (RPI). RPL; is the version appropriate for SCET;. As usual, we define p as collinear to the direction
n in SCET); if its components scale as (n-p, p, pr) ~ (A%, 1, \))Q , where @ is the hard scale and A < 1 (cf.
Eq. A1). The vector n has physical meaning as its 3-vector subset, 77, is the direction where most of the momentum
is allocated. The direction p is therefore inside a cone of opening angle ' around 7, (¢f. Fig 15). By contrast,
7 is an auxiliary only needed to decompose the momentum. The parameter A gives the amount of collinearity to
n. The decomposition is not unique since we can shift n by an amount A and the particle we still be collinear to it.
This means that if we move n inside the cone in Fig. 15, p is still collinear to it. This is called a reparametrization
invariance (RPI) transformation of type-I. Thus, if a particle is collinear to n, it is also collinear to any direction
n’ related by a type-I transformation. To be more formal, we can divide the space of light-cone vectors, {n;}, into
equivalence classes, {[n;]}, where [n;] = {n € [n;]|n-n; < A?}. The meaningful objects in SCET; are the [n;].
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FIG. 15: In SCET, a particle is collinear to the direction n if it is inside a cone centered in 77 and of opening angle .

By extension from SCET [63], two collinear sectors in SCET;, n; and no, are distinct if
ni-ng > A% , (B1)

Just as in regular SCET, we can write the external state with the m-label to which each particle is collinear. For
working in SCET};, we give a subscript to indicate the appropriate definition of collinearity. For example, |¢y,); is a
state with one quark, collinear to n; that can be annihilated by any y,, such that n-n; < A%, or n € [ny].

For each {n,n}, the type-I RPI infinitesimal transformations are'3

1) { it A (B2)

nH* — nH

\{Zhere AP~ Xand n-A, ;| =n-A, =0. These transformations preserve the relations n? = 0, n* =0 and n-n = 2.

The general problem of matching SCET; — SCET,; is our need to rotate the direction n of objects in the
amplitude (such as spinors and vectors) to n’ that is close enough to the particle momentum such that p is collinear
to n' in SCET;,1. Thus, RPI; is crucial for matching as it determines how formerly identical SCET; configurations
wind up in different SCET; ;1 terms. Any transformation in RPI;/RPI; 1, is therefore of consequence. By contrast,
the choice within SCET; 1 is purely a convention we may use to our convenience (¢f. Fig. 4). For example, we can
pick n’ as that direction n, such that p as zero perpendicular momentum in the n, — 7 frame:

_ny n*
p=Do (B3)
This is satisfied for:
W 2
ng:nﬂ+2p—}—ﬁﬂ—(p}2) , (B4)
p p

with p, defined in the n-frame. Unlike Eq. (B2), this RPI; transformation is finite. It is easy to check that ng =0,
n,-n = 2 and that prL =p' —nypnt/2 —pnk/2=0.

We can derive similar relations for other quantities. To see how the quark field transforms, we use the RPI invariant
fermion field [67]:

A New. (B5)

nzl
v <+ﬁ~Dn2

Since (B5) is invariant under RPI, ¢, = v,,, and we can write,

L
(D)o (45 D) 2

13 Infinitesimal does not refer to the expansion in .
14 It is also possible to rotate 7 — 7 + e where €| ~ A°, which is a type-II RPI transformation. Finally, a type-III transformation takes
n—e*nand n — e *n.
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qo,m0 _ do, Mo B
Pg,n bgsn

/ / / /%é’ / /

dy,™ k1,m7 q2,n2 k2,n5 ki,my Qi ni ki,n; - ki,ng

(4) (B) (©)

FIG. 16: Kinematic variables for one-gluon emission (A), two-gluon emission (B) and i-gluon emission (C'). The n’s are defined
such that the corresponding particle’s momentum has no perpendicular component along the directions n — n. Note that ¢; is
a different vector for single and double emissions.

Multiplying (B6) by the projector #/4 we get the finite RPI; relation

_
gn—T

The relation (B7) is in agreement with the spinor equation (A7) in [24] upon setting 7; = fia. Objects with a full
Lorentz index, like p* or 4*, are RPI invariant as there is no reference to the light-cone vectors n and n. Those in
the perpendicular direction though, such as p/| or 4/, are not, as L is defined with respect to n and 7. Using the
relation v = +* — k4 /2 — n* /2, we derive the expression

&n, - (B7)

2
WP ul o (p1)
=A== =Pl = A= B8
npl = V1 » 15 2 (B8)
We now focus on those transformations needed for one-gluon emission. As in Sec. IIT A, we consider the case of a
virtual quark with momentum ¢y emitting an external gluon and quark with momentum k; and ¢;, respectively. In
Fig. 16(A), we portray this kinematics for one-gluon emission where the initial quark go comes from a QCD current

gy"q. We call ng, n} and n; the directions where qg, k1 and ¢; zero have perpendicular component, that is:

B ng n nH
= _— n . JES—
do = 4o D) 040 9
'n
- n
kl = leI )
nH
Q= (11% ) (B9)
Using Eq. (B4), we can relate n} and ny to no,
n/'u‘ _ ny, _ 2 (q12Z0J_ _ ’FL'U' (qIJiUJ-
e k1 k2
I 2
nt = nt + 2(q12"°L — qk (q%i , (B10)
1 0 2
q1 q7
where we have used the equality (k1)) | = —(q1) - Some useful relations are:
-2 -2 2 2
/ + 40 40 (01)7, 10
NNy =ngNj=5 =NoN1—5 = —2——75 >
' 'k @ ai ki
Funlf + qunt ik
o b ok
do 24
ik I ik (B2 — &2
(@) = B g S gy PR L)
"o do 2 4 qq
(dy Ino 1 it i
L ) Y K ey VRNV L A0 a uupy A 5 U
Tnol = ’Yn’lL n El (QI)nOJ_ 151 +n (n1 n1)2qg » (Bll)
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where
B e
p_ M1 T
o =11 M B12
and |v?| = 2. Another useful relation is
2 _ 2 _ 1 a1k
¢ = (qu + k1) = ny-m——. (B13)

We can express all quantities of interest in terms of the vectors nf, n; and the momenta ¢; and k1.
In two-gluon emissions, the kinematic variables are assigned in Fig. 16(B). We define ng, n}, nj and ny as follows
(note that ¢ and ny are different from above):

T
qo = 4o D) 090 9
k1=k1n717
B n‘f nH
fh:(h?-i-m'(h?,
I
-n
k2:k2727
n
QQ:%%, (B14)

Eq. (B10) is still valid, and we can similarly define n}, and ns as:

(QZ)ZQ_ _am (Q2)1211J_

n/2p‘ = nllt -2 ]}2 152 )
2
W 2
nfy = nj +2 @m —at (QQEQIL ; (B15)
q2 q3

where (k2)n, 1 = —(¢2)n, 1. Also, Eq. (B11) is still valid, and we get a new set by sending 0 — 1 and 1 — 2:

=2 =2 2 =2
/ s 41 qi (QZ)mJ_‘h
Ny My = Ny Ng=5 = N1 -Nog—5 = —2—5+—, (B16)
k3 7 7 k3
konlt' + gont ok
nf = P (g 222
a1 2qy

Goko vh B2ka (k3 — @3)
(%)le = —ql Vv n2 né% —nt (”2'"'2) Ag )
1

(dy)n: 1 i @
o B Hu 27T Iz 0 / 2
—AH g2 - + nh) ===k,
YniL ’Ynzj_ n ks (Q2)n1J_ s n (n2 n2)2q%7i
where
-
vh = Ty — My (B17)

and |v3] = 2. We can write n; - n} and v; in terms of no, n} and n} so that once again we only need to work with
external quantities:

ko(n -1 = . ik
S 2(nh-nh) j’qQ(nz ny) (n2,n/2)q{_21, (B18)
7 4o

2koqing' + 2qqen! — koo (no-nb) ' — 2 (q1)*nt!

v =
' 2(q1)%y/m -1}
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Eq. (B13) for two emissions is modified to:

Gok Gok kik
G = (@2 + k1 + ka)? = momy B2t 4 myony B2 oy 22 (B19)
Other useful relations are
’YH _ ’7“[ _ ﬁu((glgnoL i (g22n1L) _ ((QIZZOL + (Q22Z1L)%
mol T Tnpl k1 ko k1 ko
B ﬁ#%((ql_)ioL N (qQ_)ilL)
ki k3 /)
2 _ 2 _ k2o
qi = (k2 +q2)° = g M2 o
I;: —

(kl + QQ)2 = n/l ~n2—12q2 . (B2O)

For i gluon emissions, Fig. 16(C), n}, is parallel to the k-gluon, n; parallel to the external quark, and ny is the light
cone vector such that the k' virtual quark has zero perpendicular momentum with respect to (n, ). To calculate
n;, n; we can iterate the formulas above up to ¢ emissions. That is we can calculate n;, n} from n;_; using Eq. (B10)
with 0 — (i — 1), 1 — .

Appendix C: Matching QCD to SCET;

To study the process of ¢ — ¢g emission, we match the QCD current,
JSCD =qy"q, (C1)

to SCET; operators for a final state with a quark, antiquark, and gluon. The particle momenta are ¢; for the quark,
pg for the antiquark, and k; for the gluon, (c¢f. Fig. 17). We do the matching in the center of mass frame with

Dy =q1 +pq+k1:(Q705070) (02)

SCET;, being equivalent to the usual SCET, is formulated as an expansion in the parameter X\. The current in
Eq. (C1) matches onto an infinite series of SCET; operators. We will perform the matching up to NNLO(X) for one
gluon emission, and focus only on the cases when the gluon is either collinear to the quark or has its own direction.
Obtaining the result for gluon-antiquark collinearity from our work is a simple exercise in charge conjugation. We
can construct the SCET; operators out of a few building blocks: the quark field x,,, the gluon field B{}, and the
perpendicular momentum operator P¢ , plus Dirac structures. x,, BY, and P, all scale ~ A. The basis of SCET;
operators for one emission up to NNLO()) is [67]: 15

(C3)

Il
=
3
Q@
(O]
Hﬁ\Q
}_
>
S

Following the convention of Eq. (14), we do not write the antiquark direction as it is always 7. Ogo) is the LO operator
and scales as A2, O (ng, ng) and O (n1, n}) are NLO(A) operators, scaling like A3, and T, ~ A%,

In SCET}, two particles are collinear if they are inside a cone with opening angle ~ \, equivalently p1-p2 < (QA)?/nt.
Usually, we formulate this condition with dimensionless quantities, n,, -n,, < A?/n*, where n,, is exactly proportional

~

to the particle momentum. To distinguish a “two-jet” from a “three-jet” state, we label the external states with the

15 7'1(1)(n1,n’1) encodes redundant information that can be obtained with RPI. For example we can choose the directions n; and n’l to

align perfectly with particle momenta such that e.g.. P, 1 By, 1 = 0. This is not possible for ﬂ(l)(no,no).
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FIG. 17: Matching QCD to SCET; for the two-jet configuration: In the first column there are the two Feynman graphs for
one-gluon emission in QCD, labeled by the 4-momenta. In the second column there are the two Feynman graphs in SCET; that
reproduce the same amplitude in the case the quark and gluon are collinear along the direction ng. The first graph comes from
the operator (9;0) (no) with the insertion of the SCET; Lagrangian, the second graph comes from the operators O;l)(no, no)

and ,1-1(1) (no, mo).

direction to which the particles are collinear. A state |gn,)1 indicates a state where a quark with momentum ¢ is
collinear to the direction ng, that is (g1, 70 - q1, (q1)ny) ~ (1,22, 1)@, and the subscript, 1, tells us the state can be
annihilated by any operator, x,, where n and ng are in the same SCET; equivalence class, {[n]}. As we will see, when
we match to lower-scale SCET;, we will change this number appropriately. A two-jet state with a collinear quark
and gluon, and an antiquark is given by |gn, gn, Gn)1- The fact that the quark and gluon share an index label implies
that ¢ - k1 S (QX)?/n*. A three-jet state is indicated by |gn, gn; Ga)1, Where each particle is collinear to a different

direction. The operators Ogo) (ng), (951)(710, ng) and Tl(l)(no, ng) can only create a two-jet state, whereas (951)(n1,n’1)
is for three-jets. Multiplying the terms in (C3) by the Wilson coefficients, we have:

Joep = Ci?go(no)(’)go) + Cl(,ll)\ILO(n07 ”0)051) + Ci}%(nl, ”11)71(1)
+ Wy, npoV + ., (C4)

where the ellipses indicate higher order terms in A. When it is unambiguous, we will only write the n-labels in the
Wilson coefficients, as above. We begin by looking at two-jet operators in detail. Here, because we are in the center
of mass frame, the two jets are back to back. We define the kinematics as follows, the antiquark is exactly parallel
to m = (1,0,0,—1), while the quark and the gluon are collinear to ng = (1,0,0,1), such that go = ¢1 + k1 has no
component perpendicular to ng and 7, and:

A
pf{ = ”0'?:77 )
_nh n#
Q) = Q170 +n0'Q17 +(q1)h, 1 s
w_ Mo nt "

Ky ZQ17+n0'k17+(7€1)n0L7 (C5)
where (no - q1,q1,q11) and (ng - k1, k1, k11 ) scale as (A2, 1, ), and (ql)me = —(kl)me by momentum conservation.
The Wilson coefficients are defined through the equation

(0175 cp gm0 9o )1 =Ci' Yo (0, 70) / dz* (0T {Lscrr, (2)O Han gno G (C6)

+ O (ng,10) (0105 |4y 9o @)1 + CL 9 (10, 10) (O T [ Gy @)1 -

Calculating the C’s for this two-jet process goes as follows. We decompose the QCD amplitude along n¢ and 7, using
Eq. (C5), and we write the QCD spinor in terms of the SCET; spinor, Eq. (C8). Expanding in A up to NNLO, on
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the RHS we compute the amplitudes for the three SCET; terms. The coefficient Cl(?ﬁo was already determined from
matching QCD to SCET; for zero gluon emission, it is:

0 =" (C7)

The coefficients Cil) and 01(17)— come from solving Eq. (C6) at NLO(X) and NNLO()), respectively. Since (’)gl) and

,2—1(1) are at different orders in A, there are no ambiguities.
In order to do the matching, we need the relation between the QCD and SCET spinors. Using Eq. (B5), we can
write:

L
ulp) = (14 280, ) (8)
p
where u(p) is the QCD spinor and u, (p) is the SCET; one. It easy to see that the SCET spinor satisfies:
%un =0,

Up = Un ,

4
> usup = ot (C9)
" 2
The QCD amplitude for v* — ¢gg (shown in Fig. 17) is:
99 = : aigo m - . uiﬁo o
AGcp = ulq1)igy 27 v(pg) — u(q1)igy Pl v(pg) - (C10)
0 0
Using Egs. (C5) & (C8) in (C10) and expanding to NNLO in A we get:
A?fgn = A%qg + Ag%i]o + Alq\rqf\(I]Lo ) (C11)
where,

(gl)nol e’

Qo , n“
FYnOJ_) ) + __:| ’Yﬁoj_vﬁ 5
0

A%g = —Gln, [(ng‘ +

a1 q k1
7 ng —nk (g (F)nol _a
Allifql?o o QOT’U,"O (’ynoj_ - 1];710” )’Uﬁ N
q 1 1 1 ~ « (% )"l 1L _qo
Aqul\?LO = g((j_l + ];3_1> @Uno”Yon_(kl)noL (’YnoL - 1%710” )Uﬁ
2 = « (kl)n 1l _«
— g@uno (kl)zoj_ (FynOJ_ — —151 °—n )Uﬁ . (012)

We already know C’f?ﬁo, and it is easy to determine the other two Wilson coefficients to reproduce Aqué’D, they are:

1 1 S
Cl(,%\ILO(n(J?nO) = a(ng - ””)%mj_ )

1 2
C(l) ng,Ng) = —— H B 70; _ = ﬁ#g‘ , C13
17 (no,m0) T Yot Tna L Vol ~ 25 9 gL (C13)

where we have used the relation q; + k1 = Q.

For the three-jet operator Ogl)(nl,n’l), the matching was already done in [67], but we will translate it to the
notation used here. In this case, we need three distinct directions in SCET; to describe the three external particles,
and there is no small parameter to expand in. This means that the amplitude for this operator is exactly equal to
the tree-level QCD amplitude for a ¢gg process. One may wonder then, why we simply do not apply this everywhere
instead of just the three-jet region. The answer has to do with factorization and running effects. The RG kernels
of our two-jet operators, Ogo), Ogl), and ,71(1)7 will resum the large collinear logarithms of those configurations (cf.
Sec. IV C). Tt is for this reason that we gain by keeping track of them as separate contributions.
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Even though they are all in independent directions, we need only four independent vectors to decompose the
particles. In the center of mass frame, gy = ¢1 + k1 is back to back with the antiquark, pg oc . We decompose g
along (ng, ) such that it has no component perpendicular to them: gy = 7 - go no/2 + no - go /2. Using Eq. (B10)
we can define ny and n such that they are parallel to ¢; and k;, respectively and such that the quark is decomposed
along (n1, ) and the gluon along (n}, ), both without | components. Unlike the two-jet case, where (g1)no1 < A,
since the quark was collinear to ng, here (g1)n,. > A in Eq. (B10). We have:

w_ - ny

4 = n'fh? ) (C14)
M

Pg ”01%777
Ip
n

kl—’fL-/ﬁTl,

where 71 - q1, ng - pg and 71 - ky are O(Q), and ny - nf > A?/n*. With this setup ’Tl(l)(nl,n’l) = )an’PnL,lel‘,lLXﬁ =0.
The matching is therefore given by:

_ 1 1 _
(01 T4l ans gn a1 = C1V (m1, 1) (0101 [gn, G G (C15)
and the Wilson coefficient is:
2
cYn ) =" I
1 (n1,m7) (nl'nll)(jlk17 P,

2(n-pg)

L gaty) + 200
Ve VT 1 (n1-nh) @k

{(n.pq, ﬁ%} Ty L (C16)

where the subscript 7' applied to a generic four vector f# means: fr = f* —ph(f - Dy) /p%7 and p, is defined in
Eq. (C2).

Before moving on to lower scale SCET;, we note that all the Wilson coefficients in SCET; are of order \°. This will
change with SCET5 as these factors will determine the relative importance of different contributions. As we discussed
at the very end of Sec. IV A, we do not need to compute any suppressed two-gluon operators in SCET; to the order
at which we are working. Their Wilson coefficient will be O(A°). Matching this contribution to a two-gluon SCET5
operator will leave this factor unchanged as there are no further emissions from it. The field content in SCETs will
scale ~ A8, As shown in Eq. (D7) though, LO in SCET; is at \°.

Lastly, we described the effects of adding running effects in Sec. IV C. In the next Appendix we will match SCET;
to SCET,. Before doing it we have to run the SCET; operators from ) down to uq, where we have the first emission:

C§” (no) = U0 (ng; Q, p) Yool

m
b
CS%\ILO(TLOJLO) = U0 (ng,ng; Q,p) ® 2—— 0 VoL »

1 2,1,1 1 «a 2 a
Cf}(noanO) = U (no,no; Q, 1) @ T (VZoﬂfoﬂnOL - — Q“B%M) ,

e
2
O(l) Iy — U(2,1,0) /. _ A M
1 (na,nY) (n1,n1; @, ) ( 7(711.”,1)61]{1%@% V1
1 B 2(n-pg) _
— | —("p - ¢ ST T o
[(n']?q)kl (WTp” " an) T bk nT} %OQ ' (c17)

For the definition of the running factors U®7¥)(Q, 1) see Egs. (18)-(20), and (90). The convolution symbol, ®, is
only relevant beyond LL, that is beyond the level required here.

Appendix D: Matching SCET; to SCET2
1. One-Gluon Emission

We now match SCET; to SCETj for one and two-gluon emissions, starting with the former. The basis of SCET; op-
erators necessary for the matching up to NNLO()) is equal to Eq. (C3), but defined in SCET5: (’)éo) (ng), (’)él) (no,no),
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’2'2(1)(110, no),(’)él)(nl, n}).16 In the previous section, we matched QCD to SCET; for one emission and found either a
two-jet (|gn, gno Gn)1) or three-jet configuration (|gn, gn; Gn)1), depending on the collinearity of the external particles.
When we go to SCET5, our definition of collinearity becomes stricter. Particles with momenta p; and py are collinear
only if p1 - pa < Q%M /n*, where 1 ~ % is the average energy loss factor between mother and daughters discussed in
Sec. ITC. As a result of this change, a two-jet configuration in SCET; can be matched both onto |gn, gn, Gn)2 and
|G, In), Gn)2 in SCET3. The three-jet configuration in SCET; can, of course, only go to the three-jet state |gy, In), dn )2
in SCET5. The matching is given by

Thop = C1%6(10)01” + CH o (n0,10) O + C1Y (n1,nf) OF) (D1)
+ O (no,no) Y + -+
= (ng) O + M (ng, n0)OSY + Y (ny, n,) OV (D2)

+ CQ(}’;—(TL()vnO)/];(l) +oe

where we give the decomposition into both SCET; and SCET5 operators. The ellipses indicate higher order terms.
If we close Eq. (D2) with the state |¢n, gn @ )2, We get

C{0)o(m) [ da QT {Lscrr, (@O g 9n, 30):
+ C]E,lz‘mNLO(n(J? n0)<0|0§1) |qn0 Ing Cjﬁ>2 + C]il’;’(nO? n0)<0|71(1)|QR0 Ino Qﬁ>2
=) [ da 0T {Es0p1, (1)K Han 1, )
+ 5" (10, 10)(0105" 4y gy @n)2 + C3'7(n0,10){01 Ty a1 G G - (D3)
Since the structure of the operators in Eq. (D3) is the same on the LHS and RHS, we simply get:
0 0
05" (no) = Cf Lo (no)
O5M (no, no) = CS%\ILO(”O, no) ,
Cy 'z (no,mo) = Ci '3 (no,no) (D4)

Acting on Eq. (D2) with the state [gn, gn; Gn)2, We have:

C{0%o(m) [ det O {Lscr, (2108 Ham gug @)z + CF Ao na,10) 0101, g )2
+ D (g, 1) 010 gy gur )2 + O (00, 120) (O T |Gy G, G )2
= 03" (11, 71)(0105 4, 9 Gz (D5)
We decompose C’él)(nl, n}) as
C5" (n1mh) = Cfl o (n1,mh) + CENL6 (1) + CELG (1, ) + Cf Ko (nasmh) (D6)

where Cé)lio is the coefficient that reproduces the first term on the LHS of Eq. (D5), etc. All the SCET; coefficients

in Eq. (D4) scale as A\°, like in SCET;, but we will see that those in Eq. (D6) scale differently, giving the hierarchy
indicated in the subscript. We will show that:

O3 (no) O ~ A%, C3 o (n1, )OS ~ X, (D7)
€50, )03 ~ X° O )OS .
CLtp o m) T ~ X0, O g, O ~ S,
Cé,ll)\llf\mo (n1, nll)Oél) by

16 As before, we do not consider operators like Ogl)(no, 7) that describe a gluon collinear to the antiquark.
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In the second column we have only one operator Oél)(nl,n'l) and we have decomposed its coefficient according to
Eq. (D6). The matching does not conserve the power counting, as collinear SCET; fields scale as A, but in SCET,

they go as A2. For example, we have that the LO operator in SCET is C{O)OEO) ~ A2, but for the LO operator in
SCET; we have C{” O) ~ A%,

If we want to calculate a cross section for a fixed number of external particles, then we need all the SCET5 operators
in Eq. (D2). Our interest, though, is in improving shower Monte Carlo, and so we only calculate operators needed
for that (¢f. discussion in Sec. IIT A). To reproduce the LL emission of two gluons, the only higher dimension

operator we need is Cé}io(nl, n’l)(’)él). The operators (’)éo) (ng) and (’)él)(no, ng) only tell us about the no-branching
probabilities already determined by the one-loop cusp anomalous dimension. For example, 050) (ng) describes a quark
which does not emit until after the scale of matching k1, . For this reason, we call Cé,lio (na, n’l)(’)él) our LO operator.

Naively, two-gluon contributions from 050) (ng) and Oél)(no, ng) are lower order at tree-level, but this does not take
into account the exponential suppression from running. The dominant contribution to showers comes from strong-

ordering, not “every emission as collinear as possible.” Thus, we build our shower around Célio (nl,n’l)Oél). The

coefficients Cé NLo(n1,ny) and 02 NNLO (n1,n}) give corrections for one emission. We therefore obtain a correction
if we run a LL shower based on a matrix element computed with one of these suppressed terms.

We now turn to calculate the terms in Eq. (D6). in three steps: first we calculate the amplitudes in SCET; on
the LHS of (D5); second we rotate it using the finite RPI; transformations defined in App. B, so that the necessary
operators overlap with SCET; states; and third we calculate the Wilson coefficients necessary to match the two sides.

We do it order by order and we start calculating the coefficient 02(}{0. The first term of the LHS of (D5) is

= ( )" 17n
AL = U0 s Qupr) 96, + LT )

’Yﬁoj_é.ﬁ ) (DS)
where U29:0)(ng) is the running factor (¢f. Eqs. 18, 19, and 90), and i, ~ AQ is at the scale of the emission. In (D8),
we have omitted the terms proportional to n® as they are unnecessary for matching. Gauge invariance constrains
all appearances of nn - A,, to come from the Wilson lines in y and B. The amplitude is written in terms of objects
projected in the ng and 7n directions. As discussed in Appendix B, these directions are not suitable for a SCET9
states, but we can use the formulas (B7) and write (D8) in terms of the directions n; and n} where the quark and
gluon have zero perpendicular component, this gives

qqq (2 0, 0 y2e% (ql)zol (gl)’n’oj"-)/'rolé/lL QO s

AT = U0 (ng; Q1) g &y | i +2—20= + - 5V 1 &n - (D9)
k1 q %

In (D9) we have rotated the spinor in the n; direction, ,,, in the n} direction and we have written ng in terms of

n1, nf and (q1)n,1. We have dropped all the terms proportlonal to n® and we made use of relations j#j% = 0 and

§m7/zl = 0. Smce the gluon momentum is parallel to ”1 , only the polarizations in the perpendicular direction with

respect to ”1 are physical, thus we can neglect the term proportional to n} in Eq. (D9). The SCET, amplitude

<0|)7(n198g/1LXﬁ|Qn1gn'1(7ﬁ>2 is
<O|>_<nlng’ILXﬁ|qnlgngqﬁ>2 = gﬂmez;ﬂ’ﬁ ) (D10)

where in Eq. (D10) we have explicitly written the polarization vector for the gluon. From Eq. (D9) and Eq. (D10),
we can see that the LO Wilson coefficient is

a q
Cgio = U9 (ny; Q,/Ll)CLo(no)q—gVﬁfDL ) (D11)
0
where
o (q1)p () moL Y 1
%dmﬂ—<2 ity S ) o g oy . D12)

The difference with Eq. (57) is that we replaced ng in terms of external vectors. Os,[n1 - n}] is the phase space cutoff
that guarantees (n1 - n}) < A?/n*,17 we will say more about it below. Since this comes from matching to a SCET;

17 The factor of n ~ % tracks the average energy loss between mother and daughter. In choosing appropriate values for the parameters d
in the numerical implementation of © it is important to track these n factors in the scaling of n1 - nj.
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operator, (q1)n,1 ~ A and g3 ~ A%, thus Cé)lio scales as A\~1. Using formulas (B11), we can write (D11) only in terms
of ny and nf, this gives

q o« B . 24
Oé,lio = UG (ng; Q, 1) <§1 ny-njoy + ﬁ ni - nif, ”Ynu) ( -

ni-ny) gk
la
x (1 —ﬁ“§$m¢1)a (D13)
! qo0

where v{' is defined in Eq. (B12), 1 + k1 = Q. For u1, as explained in Sec. IIT A, we take it at the scale of (k1) noL
as in Eq. (64) for k = 1. Since |v}| = 2, the power counting of (D13) is given by the scalar product n; - n}, that is
O()\?). In a similar way, we can calculate C’élf\fig and OS,I%\IIE{ILO'

We have done the matching starting from the vector current JgCD = gy*q. If we had started from a general

structure, gI'*q, the results (D11) for Oé,lio would have been the same upon the substitution
Yoo — T (D14)

We can obtain Cé)lio (nl,n’l)(’)§2) from the SCET; operator Xn,[*xs by running down from @ to p;, multiplying by
the factor U (2’0’0)(n0; @, u1), and subsequently using the replacement rule

(Xno)i = (0(70)) i (Xny )5 98" (D15)

The coefficients Célf\fig , 02(,1%\1}1{8 , 02(,1%\51\11407 however, are sensitive to the particular QCD current. This is why we
refer to them as hard-scattering corrections, denoted by the superscript, H.
For the NLO(\) and NNLO(\) amplitudes in the second and third line of the LHS of Eq. (D5) we have

B = B =

g ng —nt _ ng —nt _
Ao = U™ (o, nos Q. 1) =590y 100 = =5 gTm Vi 10
AL o = U D (ng, no; @, pa)
1 1\1 o, . 2
X (a + ];—1) éguno%ol(kl)nu%owﬁ - @Quno(/ﬂl)nol%owﬁ
= UMD (ng,no; Q, 1)
1 1 1 - H @ 2 — ® [e%
X (a + 15—1) agunﬂnoj_(kﬂnw%u”ﬁ - @gunl (kl)noJ_”Yn/lLvﬁ- (D16)
The SCET; coefficients needed to reproduce the amplitudes in Eq. (D16) are:
C’élf\fig = U (ng, no; Q, p11) ® chnipo(no, o), (D17)
1)H 2,1,1
CQ(,%\INLO = U(T )(”07”0§ Q, 1) ® 5 nnwo(n0,m0),

where

H.a — 210 . ng —nt o / D18
CQ,NLO(n07n0) = (no,no; Q, Ml)T%OL 5> - mi] ( )

1 klnlu+61nu 671];1 _
=UY0 (ng,ng; Q, 1) —= [% - (1 + = (n1-n] )n“
X Vi1 Osy[n1 -1y,

2,11 1 1\1 o 2 o
e nro (o, mo) = USHY (ng, no; Q, Nl){(q—l + -—1) @ﬁoL(%l)noﬂn;L—@(kl)ioﬂnu

X Og,[n1 - nf]

2,1,1 1 @ N
= _Ué )(noano; Q, m)(m(”yr’fiﬂ/nl . n’1¢1 +n“§(n1 .n/l))%,lL

k ~ k2 — @)\
+ o (vt -t e S0 Yo ).
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The coefficients scale 0211)\1}1{8 ~ A% and Cé,ll)\III{ILO ~ A. As discussed below Eq. (89), we have a convolution because

SCET fields collinear to the same direction can exchange longitudinal momentum during the running. However, this
convolution is only needed beyond the LL level considered here.

For the coefficient C2 NLO, the matching comes from the SCET; three-jet operator where nq -nf ~ \°/n*.18 Since

the n-labels in Cf (n1,n}) are already parallel to the external particles, we can simply write:
Cs Lo (n1inh) = €1 (n1,m3)Os, [na - mi] (D19)

where (:)(52 [n1 - nq] only has support for (nq - nj) > A/n*, where it is equal to 1. Knowing that for this term,

(1)H.b
ny-nf ~ A0/n?, Cy, %\ILO(nl,nl) scales ~ A% and

CS N S (n, nh) 05D ~ 28 (D20)

In keeping with our conventions, we keep track of dependence on 7 ~ % for our © functions and their dot product
arguments, where the various 2™ factors affect where the step function turns over. We do not include them in the
power counting for operators, where A parametrizes strong-ordering and the deviations from it. Accounting for 7 here
is certainly possible, but in the end we always will compare amplitudes with the same number of external particles,
so n factors from operators will not play any role.

The operator Ogl)(nl, ny) only knows that ny - n} > A*/n?, it is not able to distinguish its two-jet contributions,
Eq. (D13) and Eq. (D17), from its three-jet one, Eq. (D19). This information must then be in the Wilson coefficients,
and we have put it in the functions © and O, first described in Sec. IITA. We can think of Os,[z] as usual theta
function: Oj,[z] = 0[d2 — 2] and Oy, [x] = 1 — Og,[z], but for integrating phase space, this can lead to numerical
problems. Instead, we can use a smoother theta function, such as the following, plotted in Fig. 7

0 fe<A-—a
Onalz) = { —SBE-N) 24 oSG 4 SBE ML Ay cp<Ata (D21)
1 fz>A+a

The parameter A determines where the function switches from 0 to 1, and a governs how fast it does it. For the SCET5
coefficients, we have A ~ d5. In order to have ny - nf < A?/n?, we need \?/n* < d5 < 1/n?, so we choose 52 = \/n?.
When we go down to lower SCET}, in general the Wilson coefficient has to encode the that either n;-n; < \20=1) /p?
or n; -n; > A207Y/pt in order to do so, we will use ©5, where §; = A\?~3/n. To see how this © works, we look at
the amplitude squared up to NLO()).1? The LO amplitude squared is

149392 = |C8) o (1, n})[2Glau, k1, k2, pg) (D22)
where
Gla1, k1, 2,05) = 24 6o, 2l OF (11, 1)[0)01OF (11,71 ldn, G )2 (D23)
The NLO(A) amplitude squared is
[A9%9%10 = 1A% |R10, 2—jet T 147 RL0, 3-jet (D24)

where

g 1 1),
|Aqqg|t20NLo,2—jet = (Oé IZI) (n1, nl)cé IZINLO(nlv nt)
(1),H 1
+ Cz IZINI]LO (n1, ”1)Cz(,go (n1,m7)
),Ha
|C§1NLO (”17”1)| )G (q1, k1, k2,pg) »

. (1),Hb
|Aqqg|2NLO,37jct |C2 131Lo (n1,n})I*G(q1, kr, k2, pg) - (D25)

18 With our conventions where n; - i = 2, two well seperated directions n1 and no really do give nj - ng ~ 16.

19 We perform some trivial azimuthal integrals in order to eliminate some terms that will drop out of typical observables. Also, by NLO())
corrections for amplitudes squared, we mean suppressed by two powers of A. Since there are no odd powers of A in the expansion, this
means NLO(A) for the cross section.
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In Fig. 11 we plot the ratios |A%99[3 /|A%99[3, oy and (JA%99]3 6 4 [AY9 R 6 5 e) /| A9 {cp versus (Ki)n, 1, We note
that including NLO(A) corrections extends the region where tree-level SCET2 and QCD agree. In Fig. 10, we plot
the the merging of the two-jet and and three-jet amplitude squared using the theta function. Although we have not
undertaken any systematic study of how our phase space cutoff enters observables, we take Fig. 10 as visual evidence
of minimal sensitivity. Lastly, in Fig. 18 we plot [49%9)2 ;) +|A9%9]%, ; with and without running factors. As expected,

Amplitude 2

1500 |-
i ‘ _ .
| - = = = without running
1000 with running

500 |

Gluon Perp

| +
Q Q 3Q Momentum
8 4 8
FIG. 18: Plot of the SCET> amplitude square up to NLO, |A999|2 4| A% |} o, with (green) and without (red) running factors

versus (k1)n,1 for I_cl/(jo = 0.4.

the latter is suppressed relative to the former.

2. Two-Gluon Emission

As discussed at the very end of of Sec. IVA and in App. C, we do not need the two-gluon, SCET; operator,
(’)§2) (ng, no,no) at this order. Thus, the ones in (C3) are sufficient.
The SCET> basis has the following two gluon operators:

O (n2,nl, n2) = Xn, B3 L 9B, | X (D26)
O (na, nt,nt) = X, 9B, L 9B X
O (n2, nl, ) = Xn, B3 | 9B L X7
OF) (10,110, 10) = Xno B2 1 9B | X -

The last operator in (D26) is not necessary for the matching at NNLO(A). It can only be closed with states
|Gno Gno Gno@n)2 having both gluons collinear in SCETs. Its coefficient can only come from the SCET; operator

(9%2 (ng, ng, ng). Any contribution involving SCET; Lagrangian emission that matches to a higher-dimension operator
in SCET; will necessarily have some partons in different SCETy directions, e.g. (ng,ng,n}). Since C£2) (no, no, no) ~
A%, and the matching does not change this, (9%2) (no,no,no) contributes at N®LO. The Wilson coefficients of the
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FIG. 19: Matching SCET; to SCET:2 to SCET3 for two emissions to the two-jet configuration in SCET:. We organize here by
column number: (1) QCD Feynman diagrams; (2) SCET; diagrams from the operator Ogo)(no); (3) SCET; diagrams from the
operators (’)51)(7107710) and Tl(l)(nmno); (4) SCET; diagram from the operator (952)(7107 no, no), this operator contributes only
at N3LO to the SCET> matching; (5) SCET> diagram from the operator (9;1) (n2,n1); (6) SCET, diagrams from the operators
Oéz) (na,ni,ns), Oéz)(ng,n'l,nz) and Oéz)(ng,n’l,n'l); (7) SCET3 diagram from the operator (9:(,)2) (n1,nh,ns).

operators (D26) are defined such that
Then = 1o (n0)0 + O (ng, no) 0 + iy 1,V (D27)
+ Y (ng,n)O + -
= (ng)08” + €Y (ng, n0)OF) + ¥ (ng, mo) T,”
+ O (n1,n0) 05 + 5P (na, n}, n2) OF
+ O (ng,nl, )05 + CF (ng,ny, np) O + -

where we have written the QCD current in terms of SCET; and SCET; operators. The ellipses indicate higher order
terms.

We divide the subleading Wilson coeflicients in two categories: jet-structure and hard-scattering, labeling their
contributions with the superscripts J and H. As mentioned previously, the latter come from suppressed operators in
the QCD — SCET; matching and depend on the details of the hard partons’ creation. The former are subleading
terms from the SCET; Lagrangian that correct Eq. (56) as we match to lower-scale theories. They are completely
independent of the initial hard process.

We have seen in the previous section that the LO single gluon coefficient xoperator is Cél)(nl,n’l)(’)él) ~ A5,
Eq. (D7). We are interested in calculating the amplitude squared to NLO(X). We therefore only need to calculate those

NNLO(A) contributions that can interfere with the LO amplitude. These operators are of the form (952) (na,na,nt),
as the others in Eq. (D26) are not strongly-ordered.?®

We now calculate the coefficients in (D26), starting with C§2) (ng,nf,nb), which we decompose as:

CSP (ny,ml, mh) = Y o (n2, nh, ) + 5 (na, ml ) (D28)
where
2)J 2 _
Oé, %\TLO (n2, nllv ”/2)<O|O§ ) |LIn2gn’19n’2 Gn)2, = (D29)

1% 6(no) / dayda (0T { Lscrr, (1) Lscrr, (12)O0F (10, 10) }n, Gng Gy G )2

20 Tn principle, we also have 7-2(2) (n2,n2,n}). However, the field content alone makes this MO, but all our correction operators have Wilson
coefficients at O(A\~2), so its contribution is beyond NNLO()).
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(B)

FIG. 20: Amplitudes for two emissions in SCET; from the operator (’)50).

and
O™ (3,1, 01O i Gy )z = (D30)
+C{Y (o, mo) / dz{0|T{ Lscer, ()01 }ns 9, 9u,Gn)
+ O (0, n0) / da(O|T{ Lsorr, ()T Han, G, 9o G )2

+ 0 ) [T {Escwn, )0t gl

We decompose C’émH(ng, nf,nh) as
b
C2(2)H(n2, ny,ny) = C'é)?%\ﬁl\fﬁlo(ng, ny,ny) + CQ(?%\II;ILO(TLQ, ny,ny) + 02(,2%\1]1{1)1,0 (n2,nf,nb), (D31)

where 02(72%\]}1{1’50 (na,n}, ny) is the coefficient that reproduces the the second line in Eq. (D30), etc.

Since Oém (ng,nf,nh) does not interfere with the LO operator, we only need the coefficient, C’é)?l)\IJLO(ng,n’l,n’Q).
We also calculate 02(,2%\1%50 (ng,ny,nf) though, because it will be useful later. We prove below that these coefficients
and their corresponding operators are of order A® and A7, respectively (in Eq. D7, we show that LO is at A%).
02(721)\IJLO(TLQ, nf,nh) and 02(72%\1}1{;50 (ng,nf,nf) come from two-jet operators in SCET;. Thus, they both contain factors
of Os,[n2-nj]Os,[n2 - nb]Os, [0, - nh]. We first described these phase space cutoffs in Sec. IIT A, and made use of them
in previous section on single-gluon matching. The subscript, d2, constrains the argument to be < \/n*.

To calculate the coefficients, we proceed as with one-gluon emission: on the LHS of Egs. (D29) and (D30) we
calculate the SCET; amplitude and rotate it along the directions ns, n}, ny where the quark and the two gluons are

aligned using the finite RPI; described in App.(B); on the RHS we write the SCET, amplitude and calculate the
Wilson coefficient necessary for the matching. We decompose the SCET; amplitude:

%8 — ¢ (no)/divldwz(OlT{ESCETl (z1)LsceT, ($2)O§0)}|qn29nggn;%>2, (D32)
in
S = A+ AT+ A . (D3)

where A, B, C correspond to the three graphs in Fig. 20. Using the SCET; Feynman rules, we have:
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_ (g )n 1 (g )n 1
Allifql?g = U(21070) (TL(), Q7 ,ul) g2 Ung |:TL§ + ’YgoL 1(71 - + (72 - FYTBL()L:|

(D34)

(4 )nol o 11 Go
- }_2_25

U b
41 4p +

Gz + k1 D) Tno L

s (dy+ K1)noL 8 ] B+k Qo
X |ng + = Vs
{ A R

B 1
AL = U0 (ng; Q, 1) ¢ i, [ T e oL T 7

(g2 + %1)noL 4 (gz)nol o :|

AL 5 = U (ng; Q, 1) g° i, [nB“ + oL

o u
— k FYnOJ_FYngL qg'ynoj_vn s
where q1 = q2 + k2 and qo = ¢2 + k1 + k2. As before, we do not write terms with 2® and AP, as they are not necessary
for the matching because the operator n-A,, is constrained by gauge invariance to be only in Wilson lines. Now we
rotate the amplitude (D34) to the directions ns and n} and n), parallel to the quark and the two gluons, as described
in Eq. (B14)

A2 = U0 o Qo) o [ 2+ ENTTALN (35)
1
q1 ¢ q1 9o
X [qox/nl nlvl —|— \/nl nl 1'yn J 2’7,‘;01_ )

4 95

q1 /
Aqufg) = U(200)(”0, Q, 1) g% tin, [%\/nl'nl vf' + UERL %%? L
2k2 ol
\/nl nl ’Yn J_ ’Yn’J_ 2

(J2+/€

k1k k
- m%ﬁ/’l}[%m o = 2 o]
0

(QZ + k1)

2k2 /— ko ka ,—yﬁ 3@+ ki o
n2 /Yn’zj_ nl 1 n2 :| ,YZOL’U’” )

((J2+/€1 (Q2+k1 (J2+k)

AL = U0 (ng; Q, 1) g i, [ .

e Vs
néL/yn’ll_:| q(Q) ’YnDL 5

1 1
+k '771 J_,yn2L+ 2+E2
and ny - n} is defined in terms of na, n} and n} in Egs. (B18),

The vectors v; and vy are defined in Egs. (B12), (B17) and (B18). The values of ¢3, ¢¢ and (g1 + k2)? are given

in Egs. (B19) and (B20). As with the one-gluon emission, we can neglect the terms with n/* and n’f as they are
orthogonal to the B, | and 85’21- fields. The SCET3 amplitude for <0|(’)§2) (12,71, 15)Gns Gt Gty @) 18t
<0|>Zn2983’zj_985/1LXﬁ|angn’19n’2(jﬁ> = 92717126?:’11_65/2L'Uﬁ- (D36)

In Eq. (D36) we have explicitly written the polarization vectors of the external gluons. For the jet-structure corrections,
we get:

OS2 o (n2, ) = U0 (ng; Q, ) df *° (na, mfy, ny)Os, [n2-1 )05, [n2-15) 05, [y ] (D37)
where

le o (n27 n/lv n/2) = d{,jﬁ (n27 nllv n/2) + d{,%ﬁ (n27 nllv n/2) + d{,gﬁ(n2= nllv n/2) ) (D38)



o7

nnnnnnnnnnnn%

FIG. 21: Amplitudes for two emissions in SCET; from the operator (951).

with
d]aﬁ(nQ,nll,n/Q) = [% 712-71/2 vg + Tf n2.nl2 ¢—2275,2L} (D39)
(jl\/—/a 71\/—/141 « 10 d u
X % ny-ny vy + » 1 S Vg 1 E%VﬂOL,
qQ1 ko
5 ) = [ o+ 22 B2
];:1 / /%1 a 62 ];:2 7« ¢2
+% ni n177”1i+m ) nz"yn/ng
klkz —
QO((J2+/€1 e i L }
q k
(2 g - q—¢—ﬁ
Q2k2 ko K 7P s }
ng N ”Y — =~ Vhn =7,
(Q2 +k1)q 2 nl (G + k1) o 1o Impd
72 +/€1 Qo _p
(g2 +k1)? 45 @ ot
Jap / / 1 1 B a do s
dy " (n2,my,ny) = [q T Vo L7n2 + D + ko '771’21_’771’11_} g%ol' (D40)

The O functions in Eq. (D37) show that Cf%\IJLO(nQ, nf,nh) comes from the two-jet SCET; operators. To examine

the power counting of 05,21)\}10(7127”117”5)7 we have to consider that this coefficient comes from matching SCET; to
SCET; in the region where ny - nj ~ ng - n ~ n} - nh ~ X?/n*, thus we have

Cz(,z%vJLo("% niong) ~ A7, (D41)

and since this multiplies (’)(2 ~ A8 by comparison with Eq. (D7) we see that we get an NLO()) contribution.

We proceed similarly to calculate the coefficient 0221)\15L%(n2,n1,n2) and show that it is O(A™!). We decompose

the SCET; amplitude:
1 1 _
ALY = O Mo (n0,m0) /d$<0|T{ESCET1 (@)ON Y s Gt Gns )2 »
in
ARE S = ARH o A+ AR 5, (D42)

where A, B correspond to the two graphs in Fig. 21. We have:
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G2
Aquh?I(io 4= —UP(ng,no; Q, 1) g° i, {Z_ VN2 nh Ug (D43)
1
ks 7 Pa o @ ny—nH

q1
Agﬁ\’?io B~ -u® 10)(”0 no; @, M1)g Uny {(jo VAR + \/nz nz ”Yn 1
f— & k2 b o
ni- nl FYn 1t n2:ny "Yn L

Q2+/€1

klkg 3 ql 7’LO nH
(@t k) ) 2 ¢ Q
where in Eq. (D43) we have already rotated the amplitude to the directions ng, nj and nj. From Eqs. (D36) and

(D43) we can see that the Wilson coefficient Cé?%\%fo(ng, ni,ny) is

C2(21)\TII{H:ZO (n27 nl? 7’L2) =y (n07 ng; @, Ml)d{{ o (n27 nllv n/Q)

X 652 [n2'nll]®52 [nQ'nIQ]®52 [nIinl] ) (D44)
where
di’ % (ng,n},n) = dy! 37 (na,m},nb) + dyi’ 5” (na, nf, n) (D45)
with
a2 (na, i, mh) = | =2 /gm0 (D46)
' Q2 + ko

\/—% } « fJ_ o — ¥
Q2+/€2 i Q% Q ’
q1
d{{gﬁ(ng,n'png) = {Zox/nl nf oy + \/ng n2 % n
G2k ko
\/”1 ”1 %’J_ \/n2 n27n¢

q—i—k

K1ks /—’Yn L%] 8 Q@ o — —Q n“ .

(Q2 + kl Ch

To get the power counting of 05,21)\1111{1’1:10 (ng,ny,nj), as in the previous case, we have to consider that the matching is

done in a region where ng - nj ~ ng - nh ~ n} - nh ~ A2 /n*. This implies:
2)H, -1
CQ( %\INI?O (n2,ny,m5) ~ A7, (D47)

which justifies its labeling as NNLO()).
We now turn to calculate the coefficient C§2) (n1,nf,n}). We will proceed as above. We decompose C2(2) (ny,nf,n})
as:

C (na,nf,n}) = C5 Lo (n2,nf,nl) + OS2 (ng,nf, nf) | (D4s)
where
052%\IJLO (n2,ni, ”1)<O|O§2) (n2, 11, 11)|qn, In', Gy Q)2 (D49)
= o (no) / dayd2 (0| T{ Lscer, (1) Lscer, (22)O08 (10) Hana G, gn, T2
and

H _
OS2 (na, 14 (01052 |y G, Gt T )2

= om0, m0) /d:c<0|T{cscm ()0 Y s Gt G T2

+ T(n07 no) /d$<0|T{»CSCET1 (@), s Gt G G2 - (D50)
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We further set:

C§2)H(n2, ny,n}) = C§2N11{1Lo (ng,ny,ny) + Cé.?%\llgLO (n2,ny,m1), (D51)

where Cé?l)vlio (ng,nf,n}) is the coefficient of the contribution that reproduces the second line in Eq. (D50), etc. We

will only calculate Oé?%\}JLO (na,n},n}) and show that it scales as A™2. This is the only operator of this form that we
need to calculate the amplitude squared at NLO(X).

To calculate the amplitude on the RHS of Eq. (D49), we can use Eqgs. (D35), which are written in terms of na, n}
and n% that are parallel to the external particles, and take the limit n} - nf — A*/n*. In this case the two gluons are

collinear in SCET5. Thus, we can define Cé?l)\IJLO(ng, ni,n}) as

C2ro (2 mh, ) = UG (ng; Q. jua)d3 % (g, ) O, Iz - ] (D52)
where
dj*F(ng,n,n}) = lim 4d?ﬁ(n2,n’1,n’2) (D53)

nyny—At/n

G2
= <[Z Vv n2: TL2’U2 \/TL TL2 ¢2 ﬁ jl
1
@ 7 240
7\/nnv—|— \/nn }—_ —
|:q0 1 1Y1 1 1 FY'n,L % k (TLQTL&)-F(]QICQ(TLQTLIQ)
+{Zl\/”1 ”1“1+ \/”2”2 ”Ynl
0
— Qka e
ni nl ’YnL ’YnL

X

qi( (J2 +k1
k 2 k
172 \/ni- nlwn N ] [q2\/n2 n2v2ﬁ — —1\/n1-n’1 vlﬁ
(Q2 + k1) q1 do
G2k ko 3&2 ka k1 ¢1 ﬁ }
\/ \/ n/
(Q2+k1 (@2 + k1) !
G2 + k1 _ 2qo _
(g2 + k1)% @2 k1(n2-ny) + @ ka(na-nb)
1 1 8 qo
+|: Fyn 771 + = = V! ’Yg/ :|7— —
B+ kTt Go + ko "2t ] G Ky (ng-m) + Go ko (na-nb)
x ’Y'I’L:OJ- ’ ’
n1:n2

In Egs. (D53) there is a difference in the notation between the LHS and RHS. On the LHS, we have labeled the quark

with ng and the two gluons with n{ because the coefficient (D52) is for the operator (’)52) (ng,nf,n}), where the gluons
are collinear. On the RHS, no, n} and n), are the directions parallel to the quarks and the two gluons as defined in
Egs. (B10) and (B15). We encode that the two gluons are collinear using the © function on the RHS of Eq. (D53)
with 83 = A3/n*. It restricts that nf - ny < A*/n*. On the RHS of Eq. (D53) we could decompose n} in terms of n}
and avoid inserting the O, but it is convenient to leave n/, explicit because it will make the matching easier to SCET3.
We notice that the RHS of Eq. (D53) is just equal to the coefficient Cé?l)\IJLO(ng, nf,nb) defined in Eq. (D37) with the
substitution ¢2 — Gok1(na-n})/4+ Goka(na-nb)/4. Knowing that nf -n ~ A /n*, ny -nb ~ X2/n* and ny -0} ~ A\2/n%,
it is easy to check that Eq. (D53) scales as A™2. The information that 02(2%;2) (ng,nf,n}) comes from a two-jet SCET,
operator, is encoded in the O-functions of Eq. (D52).
For the coefficient 02(2) (na2,n},n2), we decompose it as:

052) (n2,nf,ne) = CQ( %IJLO(TLQ, ny,na) + 052)111(”2, ny,n2), (D54)
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where
CSN10 (12,11, 112) (0105 |Gy Gt G G )2 (D55)
=1%o (n0) /divl da2(0|T{ Lscrr, (21)Lscr, (22) O }ana gn, gnan)2
o 02(1}-40(”17 ") /d$<O|T{LSCET2 (x)ogl)ﬂqnzgn’lgm@’zb )

and

O (19,1, 12) (01052 | Gt Grs G2 (D56)

= O huo(mo,na) [doOIT{Lscrn, (O ns gy st
—ctY dz(0|T{L oV 0
2 NLO(nQanl) ‘T< | { SCETQ(I) 2 }|Qn29n/lgnQQn>2
+ 1 (no, no) /d$<0|T{»CSCET1 (@) T}y 9y 9o Gn) 2
— O %o (n2,m1) [dz(0|T{Lsomr, ()05} g, gn, 9naGn)
2 NNLO\T¥2, T SCET, 2 Jl9n29ni 9n24n)2
We write C’émH(ng, ng,nj) as
O (n2,nl,n2) = CY N0 (n2, i, n2) + O Nap o (n2,mf, ma) | (D57)

where CZ2NI§LO (ng,nf,nb) is the coefficient of the contribution that reproduces the the second and third line in the

q. (D56), and C’f%ﬁLO the fourth and fifth line. As for the previous cases, the coefficient 02(721)\}]140 (ng,nj,ng) scales as

A 2, C2,NNLO (n2,n},n2) as A~ and C§2NQLO (n2,n},n2) as A°. Since (’)52) (ng,ny,ng) interferes with the LO operator,

(’)él) (n1,n}), to have the amplitude squared up to NLO(X) we need both 02(,21)\1JL0 nd 022%\1}1{1140 We start with CQQ%VJLO

To calculate the amplitude in the second line in Eq. (D55), we use Eq. (D35) and take the limit ng - nf — A*/n* with
ng - ny ~nj-nbh ~ A2/nt. (We could alternatively take the limit ng - nj — A*/n* with ng - nh ~nh-nj ~ X2/nt) It
is easy to check that

lim d %7

nz-my—A /0t

=) o (n2,n}) / d(0|T{ Lscrr, (2)O05" Hdna gnt naiin)2 - (D58)

2 _
12,1y, 1) (01057 |G Gt Gna T2

With Eq. (D58), we can write 02(27%\}]1‘0(”2, nf,ne) as

CPU o (n2,mh na) = UCOO) (ng; @, ) df °% (nz, nf,n)Os, [ - ) (D59)
where

d *? (na,nl, na) = lim 4(df§ﬁ(n2,nﬁvn§) + di]caﬁ(”?’ n1,ny)) (D60)
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k1 (ka(ny-nt) + g2 (n2-nt))

ng=nl
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The scaling of the dot products of n’s in this configuration make the coefficient 02(721)\IJLO(TL2,TL2,TL/1) ~ A2 As

previously for Cé?%\}]LO(nl, nf,n}), we prefer leaving (D59) in terms of ny, n} and n}. To calculate Cé%%\IHNLO(ng, na,n})
we proceed in the same way. We have

O (n2:mh n2) = UG (g, n; Q, )l ™ (na, ny, n2)Os, [z - ] (D61)
where
dfaﬁ(ng,n’l,ng) = lim d{{B ﬁ(TLQ,TLl,le)

no-nh—At/nt

eal
{qo\/nl ny vy + \/”1 ”1 FYn/L

kle :| ﬁ Q1 no — nH
—/n = . D62
( %o + kl F)/n iR q Q n2:n’2 ( )

In Eq. (D61) we use the fact that,

2 _
di' 5P (n2, 'y, 1) (0105 |4y Gt Gra G2

na-nbh—A4/nt
= o [do O {Lscrr, (008} s gur gnatile. (D63)

In Egs. (D60, D62) there is again a difference in the notation between the LHS and RHS similar to Eq. (D53).
Since C’é?i’]o(ng,n’l,ng) and CQ(%%VI{VLO(TL27TLII7TL2) come from SCET; two-jet operators, we include the appropriate
O-functions in Egs. (D59, D61).

We have that all the NLO(A) terms for two gluon matching come from the SCET; operator, Ogo) (ng), and are
jet-structure corrections. At NNLO(A) we have only hard corrections. Before matching SCETs to SCET3, we have

to insert in the coefficients the SCET5 running factors. Below we list all the needed SCET; coefficients to NNLO())
that we have calculated with the appropriate RG kernels. From the matching of one-gluon emission, we have:

Qo
C2(1£O (n17 nl) U(271)0) (nlu n/17 M1, /J‘)U(ZO)O) (’I’LO, Qu MI)CLO (nO)?/ygol ) (D64)
0
Oéli\fig (TLl, Tll) = U(27110) (nla nlla M1, IU)U(ZLO) (n07 no; Qa ,ul) & Cg.’l%LO (TL(), nO) ’
H
02(11)\1NL0(”17”1) = U(2’1’0)(n17 ny; i, M)U@’l’o)(noano; Q, 1) ® CgNNLO(n(JvnO)v
CYNTS (na,nh) = UL (ny nl; gy, ) O (ny,m}) O, [ - mf],

where the coefficient in (D64) without the SCET3 RG-kernel is defined in Eq. (D11), the second and third in Egs. (D17),
and the last in (D19). From the matching of two-gluon emission we have the coefficients:

C2(2,1)\TJLO (n27 nllu TL/2) = U(21170) (TLQ, nllu TL/2, K1, /1‘) U(27010) (’I’LO, Qu /Jfl) (D65)
X le (nQa nlla n/2)®52 [n2 'n/1]®52 [n2 'nl2]®52 [n/Q nll] )

02(21)\IJLO(n25 ny,n) = AR (n2,ny,nq; pa, ) @ U(Q’O’O)("m Q, p1)

x dy (ng,ny,n})Os,[ns - n)]0s, [Ny - Nl

)

@ U0 (ng; Q, 1)

1] 2]

C(Q)J 1) (
X dg (n2,n},m2)0s, 2 - n5]Os, [ - nj)
1) (

2,1,0 .
2, NLO(nQ’nlvnz) U( )(nQanlanQa M1, Qo

C(Q)H

1 2,1,0 . (2,1,0 .
2, NNLO(nQ;n1;n2) = U( )(n27n17n27 M1, (b & U ) No, No; QaMl)

® dif (n2,m,n2)Os, [n2 - n5]Os, [ - m3]

where the coefficients without SCET, running are defined in Egs. (D37, D52, D59, D61). The RG kernels are given
in Egs. (18, 19, and 90). As discussed below Eq. (89), we have a convolution because SCET fields collinear to the
same direction can exchange longitudinal momentum during the running.
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Appendix E: Matching SCET> to SCET3, SCETxn

We match SCET; to SCET3 before proceeding to the general case and listing a set of master operators for SCET y
The SCETj3 operators necessary for matching up to two-gluon emission are: Oéo) (nop), Ogl)(no,no), Ogl)(nl,n’l),
O§2) (ng,ny,nb), Oéz) (ng, na,nh), Oéz)(ng, nf,n}). We have seen that to describe the parton shower for one emission,
we only need the coefficient of the SCET; operator, Ogl) (n1,n}). Similarly, in SCET3 we need the coefficient of the op-

erator O§2) (ng,n,nh). We can follow the same steps from App. D to calculate the Wilson coefficients C§2) (ng,nfi,nb).
In this way, it is not difficult to show that

CLS>2) (n27 nllu n/Q) = C§2£O

2 H,a 2 H.b 2 Ja 2 2
+ C3 %\ILO + C3 %\ILO + C3 %\ILO + Ca(' NLO + Ca(' NLO
2 H.a 2
+ C3 %\INLO + CB(’ NNLO ’ (El)
where
O} o (n2,mly, my) = CSY o (2, ny) O o (n1,m)) (E2)
2)H,a 1)H,a
CNLS (n2,ml ) = C5H o (na, n) CENTG (1, 1)) |
2)H, b 1)H,b
O o (2, mh) = O o (n2, ) ST (na, )
OS2 (2, nl,ny) = CEX o (na, ., 1) O, [na -] Os, [n2-1} O, [ -nf ]
O & (n2, ) = CENy o (nz, iy, ), [n2- )05, [na -1 05, [y -nf ]
CXh8 (na,nf,mh) = CEN o (n2, 1, n2)Os, [na 1), [na 15105, [y -nf]
2)H, a 1
C?E %\INLO(nQ /17"/2) C?E io(”%%)cé NNLO(nhn/l)J
ol (n2,nf,nb) = o (n © n5]0 -n}]Os,[nh-n)
3, NNLO 15 Mo 2, NNLO 27”17”2) 83 [n2 n2] 83 [n2 nl] 83 [n2 nl]v
and

Os.na-n E3
e ) ST 6 o). (E3)

b ( )TLQL’Yf:/
Cé}io(ng,né) = (2 (qQZmJ_ n d, sl @ 7377{1

On the LHS of the equations in the first, second and third line of (E2) we can write ny in terms of ng, nj

and n} using the formulas in (B16). The SCETy coefficients 02(721)\}10 and 05,2%\1111{1140 are defined in Egs. (D65).

Céll)\fig(nl, D C’élf\ﬁg(nl,n’l), and C’é)l])\INLO(nl,n’l) are given in Eq. (D64), and C’é)lio(nl,n’l) in Eq. (52). As

with any SCET; — SCET,;; matching, we encode the definition of collinearity from the higher scale theory in the
lower one by © functions (¢f. discussion in Sec. IITA). Some of the SCETs coefficients above already contained
such factors as a result of matching to SCET;. In Eq. (E2), we write out the new ones that appear with Oy,
with 63 = A\3/n* according to our usual convention. Since all the coefficients above multiply (’)§2), the scaling of
contributions comes from them alone, with 03(72{0 ~ A3, the NLO terms ~ A2, and NNLO going as A~ !.

At LO, the contribution in SCETj is given by the replacement procedure on the LO contribution in SCET5,
02(}{0 (n1, n’l)Oél). We multiply it by the running function U™ (ny,n; p1, 1) and apply the replacement:

(Xna)i = (cfio(m1))ji(Xn)9Ba™ (B4)
where cffg(n1) is
. ( 2)711 7():/ 1 ’
fo(m) = (2 e, T “) " 0y fna . (E5)

Eq. (E4) has the same structure as Eq. (D15). If we go on with the matching down to SCET, we find that the
LO result would be given applying the above replacement N — 1 times. At SCETy we could match everything to the

operator OEVNfl)(nN_l, nli,...,nly_4), and the LO coefficient is
N—
N LO H 2k LO) nk—lun/lu"'?n;g—l;uk—la Mk)cgko(nk—l)l—‘ua (E6)

k=1
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with pg ~ (kk)n,_, 1 given in Eq. (64) and

o (q1€ 1)% (ﬂk )nklﬁyg/ L 'ﬁ
cfo(nk) = (2 ]*;HOL + o . % Oy [Mrg1 - Npia] (E7)

where 8 = \2k=3 /pt.

At NLO(M), we have two kinds of corrections: hard-scattering and jet-structure. We notice that the NLO(A) hard-
scattering terms in SCETj are just given by those in SCET2 with the application of the replacement rule (E4). If
we go on with the matching down to SCETy, we find that we get NLO(\) hard-scattering by applying the above
replacement rule N — 2 times to the SCETs hard-scattering operators. Thus, we can consider this as a correction to
the matrix elements that we pass to a LL shower:

N-1)H 1)H,a 1)H,b
CJ(V,NL()) = (Cé,%\TLO(nlvn/l) +C§,l)\ILO(n17n/1)) (E8)
N-1
X ( H UGFL0 gy nl, o m s e Mk)c%(nk—l)) :
k=2

This approach also works for hard-scattering at NNLO()). Since we did not get Cé?%\ﬁ\ffo from a replacement rule,
it contains one less factor of c['f).

N-2
N-1)H 1)H,a — (e}
OJ(V,NN)LO = CQ(,I)VNLO(nhnll) <H UCHFL0 /Lk)CLf)(”kl)>

k=2
N-3
+ O o (n2, ) (H U@F=L0 () mcie(nk_l)) , (E9)
k=3

where the coefficients Cé}%\lﬁl\ffo(nl, n}) and 02(711)\%20(712, nf,nb) are defined in Egs. (D65).
The NLO() jet-structure corrections in SCET3 are given by Cé?l)\}ié(ng, nl, n'2)(9§2), where I = {1, 2,3}, are given

by the LO SCET; operator Xn,Y*xn in three steps: First, we multiply it by the running factor U™ (ng; Q, 1),
second, we apply the replacements

— « — n’ L nh L
(Xn2)i - (hlﬁ)ji (n25 nlla ”é)(Xm)j 9B’ 9332 ) (EIO)
where

h(llﬁ(n%nllvn (n2,nll,né)éés[n2-né]éés[nz-nll]é(;s[n'z-n'l] ) (Ell)

p) = di”

hgﬁ (n27 nllv nl2) = dgﬁ (n27 nllv n/1)®53 [nQ 'nl2]653 [nQ 'nll]®53 [nl2 nll] )
/ af
o) = ds

h5” (ng,ni,n (n2, 11, 112)05, [n2-15] O, [n2 - 11O, [ny-nf ] -

The d‘}‘ﬁ coefficients are defined in Eqs.(D38, D53, D60). Third, we multiply the operators that come from applying
Egs. (E11) by the second running factor. This depends on the SCET; operator so each replacement rule (E10)
is followed by a different factor: h?ﬁ by U200 (ny, ), nb; p1, pz), hg‘ﬁ by U209 (ny, n!,n}; w1, pe) and hgﬁby
U (2’2’0)(712, n,ma; p1, p2). Since these corrections are independent of the initial hard process, we would encounter
the same calculations we have done just now for SCET; to SCET}3, at any matching SCET; to SCET;;2. Thus, the
NLO()) jet-structure coefficients for the SCET 5 operator are:

N-2
N—1)J N)J
Cz(v, NL)O = Z Cz(v, 1)\ILO(Z)7 (E12)
=1
where

3 -1
Oz(vjtflgli)ot](l) = Z [( H UGEL0 (gl m s e, /Lk)cgko(nk—l)) (E13)

I=1 k=1

l
X U} +1)(M, Pig1) ® h?ﬁ(nlﬂvnfv”fﬂ)

N-1
><( 11 U(Q”“’l’O)(nkfl,n’l,---,nkfl;ukq,uk)Cf’é(nkﬂ))}F”,
=l+1
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a2

FIG. 22: Two distinct real emission contributions to Pq(;) drawn as amplitudes squared. They are referred to as the box (L)
and crossed (R) contributions.

with
l
Ul( +1)(Nl, pugr) = U0 (0 mf, SUNCISHUAASYR (E14)
l
U2( +1)(/,L[, /,LH_l) = U(27l+110) (nl+17 n/17 ) 7”27 ’I’LZ, i, /J'H-l) ) (E15)
l
U?E +1)(/,Ll, Ml-‘,—l) = U(27l+1)0) (nl+17 nI17 ) 7”27 Ty415 M1, /J'H-l) )
and
h(llﬁ (nlJrlv nf, n;-i—l) = d(llﬁ (nlJrlv n;, n;+l)é5z+1 [nlJrl 'n2+l]é5z+1 [nlJrl 'nﬂé5l+1 [ng-i—l nll] )

h(llﬁ (nlJrla n;, n;) = dgﬁ (nlJrlv n;, n;+l)é5l+1 [nlJrl 'n2+l]é5z+1 [nlJrl 'nﬂ@5l+1 [ng-i—l n;] ,

hgﬁ (7’L1+1, nf, nl+1) = dgﬁ (nH—l ) ’rL;, n;+1)651+1 [nl-l-l -TL;_’_l]éng [nl+1 'nﬂé51+1 [ng-i—l TL;] : (E16)

The coefficients d?ﬁ here are equal to the coefficients d?ﬁ defined in Egs.(D38, D53, D60) upon the substitution
(n2,n,ny) — (niy1,ny,np,,) and 03 — 41.

Appendix F: O(a?) Correction to Splitting Function

One of the cross-checks on our results is the rederivation of (the abelian part of) the O(a?) correction to the ¢ — gg

(1)

splitting function, Pq; . This follows from obtaining the NLO()) correction to two-gluon emission. For comparison,

we have chosen the classic result of Curci et al. [62]. The full expression for Pq(;)

contributions. Here we will only explicitly calculate the ~ C% component of Pq(; ) and show it agrees. (Obtaining the
full result requires additional non-abelian diagrams.) Ref. [62] splits the abelian, two-gluon, real emission contributions

involves many real and virtual

to Pq(; ) into two topologically inequivalent diagrams, the box and crossed graphs, Fig. 22. We calculated each of these
individually.

The SCET; amplitude contains three graphs for two-gluon emission. These are shown in Fig. 20, and we give
the corresponding amplitudes in Egs. (D34). In order to obtain Pq(;), we will need to square the amplitudes and
partially integrate over phase space. Thus, we need to choose an explicit kinematics. We redraw, in Fig. (23), our
vector labels for two-gluon emission. We choose a somewhat nonstandard assignment for our variables. This is to
aid in the comparison with [62]. The final state parton shower occurs for timelike virtual particles, and momentum
fractions decrease the farther we are from the initial hard scattering. By contrast, [62] considered a DIS-type process
where the shower is spacelike. Since the radiation in that case comes from initial states, the momentum fractions
decrease toward the hard interaction. Only at LO in «; are the spacelike and timelike splitting functions equal, by the
Gribov-Lipatov relation [77]. At higher orders, this gets violated, but there is a straightforward conversion procedure,
detailed in [62, 78]. We, however, choose our kinematics such that our variable relations are equivalent to those for a

spacelike process. For example, Pq(; ) is a function of # = Go/d2- In a spacelike process, z € [0, 1]. Rather than convert
our answer, we will also define  as above, even though this means for us x € [1,00). Other integration variables will
have their ranges shifted so that they have the same relation with = as in DIS, and thus they enter into our expression
in the same way. Lastly, we do not do the phase space integration for ¢. While this is necessary for the timelike
splitting function, the analogous particle for a spacelike process is a fixed initial state. Thus, for comparison purposes,
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FIG. 23: Kinematics for double gluon emission. This particular diagram corresponds to the “A” graph of Fig. (20).

we can leave it undone. Our vectors are as follows (note that this is a different frame from the one used previously
for matching):

q2 = {p7 Oa Ovp}

i s k2
k= {—2117 - ﬁ;, k11 cos(¢1), ki1 sin(¢1), —z1p + ﬁ}

k3.1 k3
ky = §—z2p— 1z ka1, 0,—zop + Ipzy

24 ki +kot|? 24 ki +kot|?
— —
_ zp+ 90 11 21 ki ko, ap— 90 11 21 '
4dpx 4dpx

90 (F1)

Before proceeding, we wish to note some things about our assignment. First of all, while it is redundant to include
qo = k1 + k2 + ¢2, we will integrate over d*qy and wanted to present our parametrization. We see that = 1 — z; — 2.
This is consistent with the spacelike case, but here, z1, 2z € (—00, 0], hence the minus signs in k1 and ky. Additionally,
only the relative azimuthal angle between k; and ko is physical. Thus, to simplify our formulas, we fix ks in the z — z
plane.

As a last step before squaring and integrating, we will introduce our measure and integral parametrization. While
one could integrate the full final state phase space including the antiquark, we instead exploit the factorization of
the the cross section into a hard interaction H, a radiation-function K, and fragmentation functions ¢g, r(z) which
determine how the partons arrange themselves into hadrons. Schematically, 0 = H ® (Kro(z, ¢*) + K nLo(z,¢?) +
)®Ilgp rlx) =H® (RrLo + Rnro + -..). For our computations we need only integrate the phase space for R,
and it will remain independent of the details of H. Taking d = 4 + €:

7 d—1
52 T2 daae e 102 0108 ot~ o]
x8(x = Go/@i)3(q° — (a: + »_ k;)*) (2m) 6D (g0 = Y ky)),

J
j=1 j=1
R >2/ 1155 a0 0P 553 010l — g
= _— A N 7 —
J,NLO i 7 H o qo aq i, NLO i q aqq

Rro

x8(x = Go/@i)3(q° — (@ + Y k;)*) (2m) 6D (g0 = Y kj)), (F2)

j=1 j=1

and the ¢; phase space and spin-sum are moved into H. We define z; analogously to Eqs. (F1). The setup we
describe in the body of the paper uses Wilsonian cutoffs in phase space, both to keep the contributions of different
operators distinct via ©’s and to cutoff soft and collinear divergences via some shower resolution parameter which
keeps configurations outside of nonperturbative regimes. In the shower language the IIgp p(z) term in R signifies
the hadronization model and may depend on more than just x variables, and the IC term signifies the infrared finite
fully differential shower computations. In Eq. (F2) we are integrating over | -momenta to carry out the perturbative
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comparison with Curci et al. Here we are implicitly in the MS scheme, and it is the perturbative IR divergences
in R that get absorbed by ¢p, p(z). The R terms that we need consist of only the 1/¢€ and 1/€e portions of the

corresponding operator expectation values. The non-pole contributions from C’Z LO and C’Z NLO (Eqs E6 and E13),

along with higher-order corrections are in higher order terms in the R functions. The hard-scatterlng corrections are

in ‘H. The reason we extract only the pole terms is that these are precisely what give the expression for P(q) and

(1) We also define PP to remove those portions of the matrix element which enter into H such as the final quark
spln-sum , current I, and antiquark quantities.

In this MS factorization scheme, we need to define our correction operator differently than in Apps. D and E. Since
Pq(; ) requires the calculation of two-gluon emission, we find it simplest here to calculate in SCET3 where only O?EZ%\IJLE)
in Eq. (E2) contributes. This corresponds to taking limits such that only its ©-function equals one, while the other

jet-structure coeflicients are zero. Since we integrate it over all of phase space, which includes the strongly-ordered

(

limit, we need to subtract the LO contribution. This just comes from ng,zio (ng,nf, n'2)(932), but we take care to only

remove the pole parts consistent with MS. We can thus write the subtraction as:
— 2)J,1 2 _
Rg, Nqﬁ]g = / dlg, ks, q PP [|C?(, NLO (n27 n/lv n/2)<0|0§ )|qggq>|2

- (1o, ) 01O agam ) . (F3)

where 032%“:0 is evaluated such that ©® = 1 over all of phase space. We will describe the subtraction portion in detail

below, but first we concentrate on the correction term.

By ﬁxing the virtuality of g5 = ¢?, we can obtain an expression without having to know its exact limits, which
will depend on the details of the hard scattering. For Pq(; ), one only needs to calculate one-loop corrections to single
emission and tree-level double emission, and we now specialize to the latter case. We perform the d-dimensional
integration over d%qo and rewrite the integral in terms of k;; and k2, dependent functions with z; 2-dependent
coefficients. Using the same parametrization as Ref. [79], we can write:

J,NLO — W

Xd(qz—(alkli+a2kzi—li_~k2J_))

! ki -k ki, -k
X7 (A(Zlaz2) + B(21722)1L722L + 0(21,22)1L722L
1 li_ k2J_

- | dzy dzy 47Ky, d4%k
a—4qg9g / 2 821 4z 1l 21 51—z — 21— 22) (F4)

zZ1 72 T ™

ki ko )? ki3 ko3
+ D(Zl, 2’2)(11_272;_) + E(Zl, 2’2) + F(Zl,ZQ) 2L ) [LO] (F5)
li_kZJ_ k2j_ klj_

where a; = —(1—22)/2z1 and ag = —(1—21)/22. The functions A, B, C, D are defined in [79], and their corresponding
k; | integrals are finite. We can check the intermediate step of their integration with [79]. The terms in our ¢* 6-
function have a relative sign compared to theirs, as our ¢ > 0. As a computational aside, we found it easiest to pass
to a change of variables: (v = k11 ko, , w = k11 /k21). Then the d-function just enforces:

w

U= uy =

. F
ayw? + az — 2w cos(¢p1) (F6)

Performing all but the dz; integrals in R, we get Table III, which corresponds to [79]’s Table 5.

We thus reproduce the earlier result.
The E, F functions multiply integrals that lead to single € poles after the dk;; integrals (and double poles after
integrating ¢?), and so we must be more careful in treating them. These double poles correspond to the LO contribu-

tion, which we are explicitly subtracting as it does not contribute to Pq(,} ). We discuss the subtraction in detail below
Eq. (F12). For now we concentrate on the divergent integrals multiplying £ and F. When we did our computations
for Table (IIT), we were helped by the finiteness of the expressions under the dk; integration. We could thus take ¢ —
0 for these terms, which greatly simplifies their integrals. By contrast, we will need to keep the e-dependence of the
E, F terms, which results in an intractable computation. To get around this, one can introduce subtraction functions,
which simply reproduce the € poles (these are merely a computational aid and are not related to the subtraction of
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Function of k; | Contribution to R multiplying
in integrand of equation (F4) ﬁ fdzl dzo6(1 — 21 — 22 — x)
1 A(Z17 Zz)
klli_l.lﬁ(_h_ — 1227 B(21, 22)
et —=5C0, )
% (1 + 3z [(1721)36(1%2)]) D(z1, 22)

TABLE III: Purely finite contributions to R

LO). We will need to take care that they do not remove any finite pieces. Secondly, since their full contribution to
k1%

R is o 1/€2, we will need to include for E and F any terms o e that multiply or . These arise from doing

ki?
kzi
Dirac algebra in d-dimensions.

To do the integrals in R which multiply F and F', we will change variables to u, w, and perform the u integration

as well as the trivial ¢o azimuthal one. We get for this contribution to R:

1 2 le dZQ
Rlpr=———o= [ d? 222 dp) dwd(1 —x — 21 —
|E, F (167r2)27r/ . drdwd(l —x — 21 — 22)
2+4¢ 2+¢
W Ug ug 1
( 2q2 E(Zl,ZQ) =+ 2wq2F(21,22)) —q4, (F?)

where ug is defined by equation (F6). We only need the leading poles in ¢, and so rather than performing the w

and ¢ integrals for the functions multiplying E, F', we will define subtraction functions to reproduce the poles of
2+e€ 2+e€

Wlg Yo tively:
5eT > Gurg? Tespectively:

2 —€
q w
Sp = :
P 2a (w1
2 €
Sp=ap— (F8)

3wt )
Integrating these in w gives us a pure 1/e term. Subtracting them from the functions in equation (F7):

1 :wug+é _ q2w3 wq2 €
E = g 2(ag + ajw? — 2wcos(¢1))? \ ag + ajw? — 2wcos(pr) )

A ug** ¢’ wg ‘ F9
r 2w 2y (ag + ajw? — 2w cos(¢1))? \ az + a1w? — 2w cos(¢y) (F9)

leads to finite integrals, allowing us to pass to the ¢ — 0 limit prior to integration, making the calculation tractable.
After integrating w and ¢, we want the e 9 pieces as these turn into the single and double poles upon doing the
q? integral and contribute to R xLo. The €? piece has one contribution besides that from (Ag r — Sg.F)|e=0 (SE.F
contributes a pure 1/e pole). Our w integration goes from 0 to oo, and we obtained Sg g by expanding Ag r in
the appropriate w — 0,00 limit to pick up the pole, while carefully regulating the other integration limit so as not
to contribute its own spurious divergence or any subleading terms. However, we see that in equation (F9), taking
these limits actually results in factors (a;w)~¢ and (w/az)¢. Expanding the ai° to LO in e does not affect Sg p.
Nonetheless, since the subtraction functions have 1/e poles, including the NLO part of the e-expansion will yield an
€® contribution. This O(e°) term is not in Ag p|c—o since they send u§ — 1. Thus, we have the following addition
to the contributions from the integration of R|g, p:

2 —e€
- _ 4w
BE = eln(al)za% (w+ 1) N
2 €
Br = —eln(as)—1s —2 . (F10)

1

In the end, our e 1 contributions after w and ¢, integration come from: Se,r + Ber + (Ag,r — Sg F)|e=o. For
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Function of k; Contribution to R multiplying
in integrand of equation (F4) ﬁ f dz1dz20(1 — 21 — 220 — )
klz 2z z 1—2
? [t (1 e [-152])

+ 22(12#2)2 (2122 +x (ln [%] — 1))] E(z1, 22)
k2;‘ |: 2xzo (1—6111 [_1;;1])

(1—21)%z1 €

+ Zl(lzf?n)z (2122 +x (ln [%] — 1))] F(z1,22)

TABLE IV: Contributions to R|g, r

integrating the first two terms, we leave the full ¢ dependence as this was tractable. Collecting everything, we can
obtain the counterpart to Table III for E, F, (Table IV).

Having set up this much of the integration, we can take the amplitude squared from the process of interest and
decompose it in terms of the A(z1, 22), B(z1,22), etc. basis. We then simply have to read off the results from Tables
IIT and IV, and perform the 21,2 integrals. One of these is made trivial by the remaining z-dependent J-function. As
mentioned at the beginning of this Appendix, [62] recognizes two topologically distinct contributions, which we shall
refer to as box and crossed (c¢f. Fig. 22), because of their appearance as cut two-loop diagrams. We can identify them
in our calculation by their color structures (C% and C% — %CF C'a, respectively). In fact, we can already calculate the
entire crossed contribution as it only involves terms from Table III, having no double pole contribution to R and thus
requiring no subtraction of LO. Determining the box graph, however, involves treating the LO subtraction properly.

As this subtraction is one of the more subtle points of the computation, we will present it in some detail. Its
handling is tied up with what one means precisely by a “subleading splitting function.” At LO in ay, the definition
is clear. The same splitting function that gives us the probability for a 1 — 2 radiation also determines the running
of parton densities:

1
@l 0@ = [ Z R (2.0@) 1. Q1) (F11)

where the O(as) part of Py, Pq(g) is given by Eq. (3). To determine Pq(,}), we have had to calculate a 1 — 3 splitting,
thus the probabilistic interpretation in terms of radiation is nontrivial as it involves a mix of 1 — 2 and 1 — 3
processes. At the level of Eq. (F11) though, we see that we are just correcting PDF evolution. In addition to the
real-emission calculation that we are pursuing, one can alternatively determine P, from the anomalous dimension
of certain twist-2 operators [80, 81]. Ref. [62] made a comparison to this approach and found agreement to O(a?).

Since Pq(; ) is thus a two-loop object, it has the scheme dependence one would expect at this order, and so we need
to make sure that we compute in the same one, which is why we do our LO subtraction in MS. In SCET, one could
attempt the same cross-check from a straightforward two-loop calculation after fixing to one’s renormalization scheme
of choice.

We will now show how to subtract the LO portion in the calculation of Ry 3. We get a double collinear pole
associated with the strongly-ordered emission of two gluons. We want to write this as removing the emission coming
from our LO operator, C§?£0052). As with any subtraction scheme, while the pole is unambiguous, we need to make
sure to remove the appropriate finite pieces. We note that ¢, defined by Eq. (57) contains NLO(A) pieces (in SCET3
power counting) which come from the offshellness of the intermediate quark. It is true that the LO replacement
rule, Eq. (56), gives only the splitting function times the logarithmic, collinear divergence. Nonetheless, the Wilson
coefficients given by Eq. (63) for offshell quarks have additional terms. From the point of view of amplitude matching,
this poses no problem. However, if we want to copy [62]’s scheme, then we can only subtract poles associated with

the pure LO result after integration. As an operator subtraction in SCET3, this means we need to change Cb(,?io. In
order to recover the correct splitting function with no NLO contribution, we will need to project the offshell quark
momentum to an onshell one with the same p-fraction. This alone, though, does not specify the spatial orientation
of the vector and will not necessarily kill the subleading terms. To do that, we write the replacement rule, but in the
limit that the offshell quark’s daughters are exactly collinear with it. Equivalently, if we are in the frame determined

by 7 = {1,0,0,—1}, we can project the quark momentum along n = {1,0,0,1}, i.e. ¢ — %n = ¢}. Since the
replacement rule also makes reference to the quark’s parent’s momentum, we also need to project it to what it would

be if it had emitted an onshell quark with ¢}. Thus, ¢;—1 — k; + ¢, = ¢,_,. In the end, this changes our replacement
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rule coefficient for the j** quark to:

! «

aj qj a (gj+1)nj'l7n/~ L %VL

‘o =3 (”J” + ) 1 (F12)
j g+l

where q;” = gjn}, /2. Thus ¢ has the same form as cr.o but with a different orientation for its momenta. This

changes the expression for C?E?}JOO?) to involve ¢}, instead of cro (cf. Eq. 63)

After the dg® integration, the 1/e term in R ’d will allow us to read off Pq(;). As a reminder, we need this

subtraction operator because our NLO()\) term, Cé?l)\ljﬁ(lj(ng, nf, n’2)(9§2) is supported over all of phase space, and thus

contains LO portions. We therefore have
- 2)J,1 2 _
RIS = [ 1o 0o PP{ICEXL 2.t 1) 01O agg)

- (IC’Loal Lo’ <0l0§2)F“|qggci>|2)MJ : (F13)

The MS indicates that we are only subtracting pole parts of the LO contribution with no finite pieces. However,
there is still an ambiguity over which pole parts we subtract, since the LO contribution has a double pole from its two
collinear divergences, but we are at some liberty to decide which single pole parts we remove as well. As we expect,
this subtraction operator squared takes the form of a convolution of two splitting functions:

2
/dﬂ (|C£Oa1 Lo <0|(9§,2)1““Iqqgg>IQ)M_S = 2/d4qz 8(q3) dg* dyxp (1 —y)* (q2)‘1+6/22%
PO (x

x iPé?Jq(y)74’qq€( [9) g, {qz%ﬂﬂq , (F14)

where the trace contains those terms that get passed to the hard function, H, along with the ¢, phase space by the

projector PP. This includes the final quark spin-sum and phase space, the current I" which is a spectator for both

LO and jet-structure corrections, and quantities related to the antiquark (¢f. Eq. 27). What may seem surprising

is that the two splitting functions live in different dimensions. The reason for this particular scheme for regulating

phase space has to do with the alternate, two-loop method for calculating Pq(; ), which was the original approach. For

that result, in MS we would subtract a pure pole counterterm, regulate the loop integral in d-dimensions, and leave

external particles in 4d. Since the phase space integrals are related to loops by cuts, we see above that our y-integral
is, in fact, in d-dimensions, but the splitting involving two external particles is left simply in four.

a1y

Looking at the SCET; diagrams for the process (Fig. 20), the amplitude ¢} " ¢} 5" <O|Oéi)1““|qggq_> comes from
a subset of diagrams A? and B2. The expression for subtraction is thus:

« « _ z 3
PP[/dH (IC’Lo " Lo 2<0l0§i)F“qugg>|2)M7J = /dq2 dzzp < - )

x4+ 21
2\—1+e€/2 2 1+( x )2 2
X(Q) o 1 T+2z1 +E 1— z 1+ (2 +21) }
€ 22 z+ 21 ﬁn—l 2 T+ r+2z—1
+ 21 > 22, (F15)

where we now act with PP, dropping the trace from Eq. (F14) and keeping only those terms needed for the computation

of R and Pq(; ). We can note several things about this expression. For concreteness, we discuss the z;-dependent term

corresponding to graph A2, Fig. 20. The p fraction of gy relative to q; is #/(x + 21), and that of ¢; to ¢z is = + 21,
in terms of the variables in Eq. (F14), y' = z/(x 4 z1). Performing the integrals leads to double and single poles.
For later use, we write down the result of doing the dg?, dz; integrals, where one of latter is trivial since we have
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d(1 —x — z1 — 29) sitting inside II (¢f. Eq. F4).

/dHPP [(|C’LO‘“ ¢ o <o|(9§2>r“|qtigg>|2)m} =
2

2:cp2a? <6l2% [(=2 (2 (2* 4+ 1) log(A) + (z — 1)?)

+4 (22 + 1) log(x — 1)— (2% — 1) log(x))]
%ﬁ {Qx(x_l) (2 (z* +1) (le(l — z) — Liy (i)

) +(2* -1 le( ;1»
+x (—2(x2+1) (x—l)logQ()\)+4((x2+1 (10g (I_1>

— (z—1)*)1og(\) — (32 +5) (z — 1) log*(z) + 2(z — 1)*log(x
+62 (2% + 1) (v — 1) log*(z — 1) — 2z(z — 1

—2x(z + 1)(z — 1)*log(x — 1) log(z)((z — 1)23:)}) (F16)

)
)?

where we have done the dz; integrals between 1 — x4+ X\ and —\ to regulate soft divergences. All A-dependence cancels
out of the final answer, which gives us a consistency check on the scheme.

Before comparing Pq(q), we can check our setup with Pq( ) by looking at the O(as) contribution to Rio We see
that [62] gets the following contribution:

pO) _ (;_W) 214 (F17)

9 el—z

Calculating in SCET;, we get the following amplitude squared:

o (2n-k1  2k11 -quy Q%L> _ 1y
Agrgy = o (222 4 2L 3L B ) Tyfg, 20 Q0T F18
q—qg qg ( k Chkl q% [ 0 2 ] ( )

With our definition of Ry in Eq. (F4), we get:

2
PO — (%)214—‘% F1
Faq 27/ e x—1° (F19)

The overall minus sign between Eqs. (F17) and (F19) is due to the difference between the spacelike and timelike
processes. It arises in the dz; integral. Even though the z; dependence is the same in the two calculations, and the
integration limits are the same, 0 and 1 — z. For us, 1 —z < 0, but in [62], it is positive.

We will compare the different contributions to double emission separately. In SCET, the C graph in Fig. 20 will
give box and crossed terms when interfered with itself and the A and B ones. We identify the crossed contribution
by inserting the color structure and taking those terms proportional to C% — %CF C4. As mentioned above, it only
contains the integrals in Table III. In terms of its notation, we have:

Function defined in Eq. (F4)|Value in crossed diagram
162 (22 +az1+(21—1)21+1)
A(Zl’ 22) — z1(z+z1—1)
2o 9 —2s =
B(z1,22) GE zi)Zl‘?ill‘l’Zl D)
2 —
C(z1,22) 8(z(e7+ (= Z11)21+2)+21)
D(z1, 22) 16 (12 + 1)

TABLE V: Contributions to crossed amplitude squared diagram

The box contribution additionally contains the functions in Table IV, though we are only interested in the finite parts.
Their z; dependence is:
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Function defined in Eq. (F4)|Value in box diagram
A(z1, 22) 1222 + 8x21 + 8(z1 —1)z1 + 12
B(z1, 22) 8(2171)(zi+z](?172)ﬂ+2)
Oz, 22) 8(x+zl)(2x2z+12le+zf+1)
D(z1, 22) 0
B(21, ) 4 (2z4+613z1+z2(7z%+2+2z(2z§+zl)+z‘f+zf)J
—|—4-e -(12(304»211)2+z%((;+z121%)2+x+21)+xz1(x+211)2)“
F(z1,22) 4 (Zfizzl(ﬁ)z(flt;zﬁl)z)
+4le -(xz((zl71)21+1)+x(z171)E5:+1;127)z1§2+2)+(2171)2((2171)21+1))“

TABLE VI: Contributions to box amplitude squared diagram

For the crossed contribution, we perform the multiplication in Table IIT with the functions defined in Table V and
integrate dz1, having already done the trivial dz; integral. We again use a cutoff to avoid soft divergences, thus its
range is between 1 —x + A and —A\. In the end, we obtain:

g\ 2 1+ a2
P;;)Crosscd = (%) [( :1:+— I ) (4In(z — 1) — In*(z) — In(\)) — 2(z + 1) In(z)| . (F20)
The A-dependent pieces will cancel against those from the box contribution. The other terms agree with [62] up to
the previously discussed minus sign, and wherever In(1 — z) appears in the spacelike calculation, we get In(z — 1).
Since our integrand and integration region are real, the imaginary pieces generated by In(1 — ) when making z > 1
all must cancel.

The box calculation proceeds similarly except that we also include the terms proportional to E(z1, z2) and F(z1, 22)

and we have subtracted the appropriate contribution, Eq. (F16) from that given by C?E,Ql)\IJﬁlc)' Doing all this, we get:

Pigbox = (;—F)z Kl * xf) (In(A) — In(z — 1)) + 2(2z — 1) In(x) | . (F21)

T —
The soft divergent pieces cancel against the crossed contribution, and once again we agree with [62] up to an overall
sign, and the continuation In(1 —z) — In(zx — 1).

In addition to these real emission contributions to the C% portion of Pq(;), there are also single-emission, one-loop
diagrams, shown in Fig. 24. We can account for their contributions in SCET easily. We have already derived the tree-

q2

q2

FIG. 24: Single emission, one-loop contributions to Pq(;).

level expression for single emission (Egs. F17 and F19). Furthermore, both the quark wavefunction renormalization
and the vertex renormalization are the same in SCET as in QCD [21]. Thus, we recover the entire, gauge-invariant,
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o a2 C% contribution to the splitting function, in agreement with Ref. [62],

Here we have written FPyq

N —

POL.RX0 N %A WN H OO 00 N® OGN F OO ®NSOLEWNHO© 003N WN OO 00N MDI W -

O R R R R R N R R R RN W W e W e e N I N N O VO N N S R, e EF E e e e e e

C R OHONNNZR AR IR ErOSRERE000000E0SSNRErNOBAFrARE0SE

2 2 2
(1) o2 % 3l+x 1+2x
quabehdn - YF % (1 - I) hl('r) - 5 1—=x 111(17) -2 1_2

In(z) In(1 — z)
- %(1 +z)In’(z) — 5(1 — z) — g(l +z)In(x)| . (F22)

1) with its usual sign conventions for spacelike evolution.
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