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Various theories beyond the Standard Model predict new particles with masses in the sub-eV range
with very weak couplings to ordinary matter. A P -odd and T -odd interaction between polarized
and unpolarized nucleons proportional to ~s ·~r is one such possibility, where ~r is the distance between
the nucleons and ~s is the spin of the polarized nucleon. Such an interaction involving a scalar
coupling gs at one vertex and a pseudoscalar coupling gp at the other vertex can be induced by the
exchange of spin-0 bosons. We show that measurements of the transverse spin relaxation rate Γ2

for polarized gas can be used to set limits on the product gsgp for boson masses in the 10µeV to 100
meV range, corresponding to distances from centimeters to micrometers. We present limits from
both a reanalysis of previous measurements of Γ2 in 3He spin exchange cells and from data in a test
experiment searching for a change in Γ2 upon the motion of an unpolarized test mass. The outlook
for more sensitive measurements using this technique is discussed.

PACS numbers: 13.75.Cs, 13.88.+e, 14.20.Dh, 14.70.Pw, 14.80.Va

I. INTRODUCTION

The possible existence of new interactions of nature
with ranges of macroscopic scale (meters to nanometers)
and very weak couplings to matter has begun to attract
more scientific attention. Particles which might transmit
such interactions are starting to be referred to generically
as WISPs (Weakly-Interacting sub-eV Particles) [1] in re-
cent literature. Several theoretical scenarios can generate
such interactions. Many theories beyond the Standard
Model possess extended symmetries which, when broken
at a high energy scale, lead to weakly-coupled light par-
ticles with long-range interactions. Several theoretical
attempts to explain dark matter and dark energy also
produce new long-range interactions. The fact that the
dark energy density of order (1 meV)4 corresponds to
a length scale of 100 µm encourages searches for new
phenomena around this scale [2, 3].

Long ago Moody and Wilczek [4] considered the
form of interactions which could be induced by the ex-
change of a spin 0 field between fermions with scalar
or pseudoscalar couplings. In addition to possible
P and T -conserving scalar-scalar (monopole-monopole)
and pseudoscalar-pseudoscalar (dipole-dipole) interac-
tions, they highlighted an interesting P and T violating
scalar-pseudoscalar (monopole-dipole) interaction of the
form

V = ~
2gsgp

σ̂ · r̂

8πmn

(

1

rλ
+

1

r2

)

e−r/λ, (1)

where mn is the mass and ~s = ~σ̂/2 is the spin of the
polarized particle, ~ is Planck’s constant, λ is the in-
teraction range, r̂ = r/r is the unit vector between the
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particles, and gs and gp are the scalar and pseudoscalar
coupling constants. Axions [5–9] can induce such an
interaction. A general classification of interactions be-
tween nonrelativistic fermions assuming only rotational
invariance [10] uncovered 16 different operator structures
involving the spins and momenta of the particles. The
monopole-dipole form in equation 1 corresponds to the
potential V9 + V10 in the notation of Dobrescu and Mo-
cioiu. This work also summarized the existing experi-
mental constraints known at that time for some of the
interactions. Most of the experiments which have been
performed to search for such interactions [9, 11–17] are
sensitive to ranges λ > 1 cm.

Recent experimental work seeks to constrain the
monopole-dipole interaction at shorter distances.
Baeßler et al.[12] used the observation of neutron bound
states in the Earth’s gravitational potential and the
apparent absence of a spin-dependence for the bound
state energies to place an upper bound on gsgp for length
scales of order micrometers, which is the characteristic
spatial separation of the bound state wave function from
the surface. A spatially inhomogeneous monopole-dipole
interaction ~σ · ~r (Eq. 1) can also influence the time evo-
lution of a collection of polarized nuclei. Authors[18, 19]
used this effect to set limits on the monopole-dipole
interaction using the experimentally-measured longitu-
dinal relaxation rate (Γ1) of polarized ultracold neutrons
(UCN) in a material trap. A similar analysis has been
performed for other polarized species: Pokotilovski [13]
set a limit using the measured Γ1 of optically polarized
noble gas. The use of polarized gases to study the
monopole-dipole interaction can be found also in other
recent works[20, 21].

In this paper we show that the transverse relaxation
rate Γ2 of the nuclear polarization in optically pumped
noble gases can be used to search for the monopole-dipole
nucleon-nucleon interaction with a sensitivity that should
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greatly exceed that reached by Γ1 measurements. We set
a new limit on gsgp with this method in the range from
10 µm to about 1 cm. We also show results from a simple
test experiment performed as a proof of principle involv-
ing the motion of an unpolarized test mass near the polar-
ized gas. Future experiments using this technique which
could lead to significant improvements of the constraints
along with ideas to avoid possible systematic effects are
proposed.

II. THEORY

The transverse relaxation rate Γ2 from the monopole-
dipole interaction can be calculated in direct analogy
with the Γ2 of a magnetic moment in a longitudinal mag-
netic field gradient. We review the results of the theory
of spin relaxation of polarized gas in an external longi-
tudinal magnetic field gradient. Consider a cylindrical
cell of inside diameter a, length L, and wall thickness
d0 containing polarized gas with a large planar source
mass of thickness d and nucleon density N close to the
cell (Fig. 1). The external magnetic field, the nuclear
polarization, and the cell axis all point along z and are
normal to the plate. In the theory of nuclear magnetic
resonance (NMR) Γ1 (the longitudinal relaxation rate)
comes from external interactions in which the polariza-
tion is lost, and Γ2 (the transverse relaxation rate) comes
from the dephasing of the spins. Γ2 induced by a longi-
tudinal magnetic field gradient has been evaluated in the
literature in the limit of short mean free path for the
gas atoms (true at sufficiently high gas pressure) and for
Γ1 ≪ Γ2 to be [22–24]

Γ2 ≈
8γ2L4

175D
|∇Hz|

2
, (2)

where D is the diffusion coefficient, Hz is the magnetic
field along z, and γ is the gyromagnetic ratio of the
dipole. This expression is valid if the mean free path
l is much smaller than the size of the cell and if the rota-
tion angle of the spin over a mean free path of a diffusing
atom is negligible[23], i.e. ωl ≪ v̄, where v̄ is the average
velocity of the atom, and ω is the precession frequency
of the spin in the external magnetic field. Both of these
conditions are met in the measurements discussed below.
The thermodynamic parameters which satisfy this con-
dition can be found using the expressions for the mean
free path in a gas l = kBT√

2πd2
m

p
and the average speed

v̄ =
√

8kBT/(πm) where kB is the Boltzmann constant,
T is temperature, p is pressure, dm ≃ 0.62 × 10−10 m is
the diameter of the 3He atom, and m is the mass of the
atom.

The monopole-dipole interaction varies with distance
as shown in Eq. (1) due to its finite range and the sur-
rounding matter will contribute to Γ1 and Γ2 of the po-
larized atoms. Since both the external magnetic field and
the monopole-dipole interaction are proportional to ~s ·~r,

the expression (Eq. 2) derived for relaxation in exter-
nal magnetic field gradients can be directly applied to
calculate the contribution of the monopole-dipole inter-
action to Γ2 from interaction with the mass if the mean
free path l is much smaller than both the size of the
cell and the range of the force λ. The monopole-dipole
interaction potential seen by the polarized gas at posi-
tion r(ρ, θ, z) is the integral of Eq. (1) over the volume
of the material. In the limit in which the length of the
plate is much larger than the dimensions of the cell, the
monopole-dipole potential and its gradient are

V (r) =
gsgpN~

2λ

4mn
e−z/λ(1 − e−d/λ), (3)

∂V

∂z
= −

gsgpN~
2

4mn
e−z/λ(1 − e−d/λ), (4)

where N is the nucleon density of the matter, and the gra-
dients in the x and y directions vanish. We use Eq. (2),
Eq. (4), and V = ~γHz to calculate Γ2 as

Γ2 =
1

LS

ˆ L

0

Γ2(z)Sdz

=
8L3

175D

[

gsgpN~(1 − e−d/λ)

4mn

]2 ˆ L

0

e
−2(z+d0)

λ dz(5)

where S is the cross sectional area of the cylindrical cell.
After averaging Γ2 over the cell volume, one derives a re-
lation between the product of the monopole-dipole cou-
plings gsgp and Γ2:

gsgp =
2mn

~NL2
(175 D Γ2)

1/2f(λ), (6)

where

f(λ) =

(

L

λ

)1/2

ed0/λ(1−e−d/λ)−1(1−e−2L/λ)−1/2. (7)

We believe that measurements of Γ2 have the potential
for greater sensitivity in probing the monopole-dipole po-
tential for high pressure cells than measurements of Γ1.
The ratio Γ1/Γ2 in the short mean free path limit for po-
larized atoms in the same magnetic field gradient is[23]

Γ1

Γ2
≈

175D2

8R4Ω2
0

, (8)

where Ω0 is the precession frequency of the dipole. Tak-
ing the data in Ref. [13] as a typical example, D = 2.35
cm2s−1, R = 5 cm, and Ω0 = 105 s−1 for a ratio
Γ1/Γ2 = 1.9 × 10−11. Γ2 measurements are intrinsically
more sensitive and convenient than Γ1 measurements in
searching for the monopole-dipole interaction.
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Figure 1: Polarized 3He gas is sealed in a cylindrical cell of di-
ameter a, length L, and wall thickness d0. A plate of thickness
d and transverse dimensions much greater than a is perpen-
dicular to the z-axis. The cell was in the center of a Helmholtz
coil, which provided a magnetic field, as well as in the cen-
ter of another pair of coils with almost the same size as the
cell, which were used for free induction decay (FID) NMR
measurements.

III. EXPERIMENT AND RESULTS

We conducted a proof of principle for our proposed
technique to search for a monopole-dipole interaction by
measuring the change in Γ2 of polarized 3He gas upon
motion of a nonmagnetic unpolarized test body near and
away from the gas. The mass of the cell wall can also
make a contribution to Γ2. In this section we describe the
constraints on the monopole-dipole interaction obtained
from both sources.

The polarized 3He gas was contained in a cylindrical
cell of internal diameter 21 mm and length 34 mm made
of aluminosilicate glass (Fig. 1). The end walls are es-
timated to be 4 mm thick. It was filled with 3He gas
at an atomic density of 4.4 × 1019 cm−3, nitrogen about
1.6 × 1018 cm−3, and a small amount of Rb (¡0.1 g) for
spin exchange optical pumping [26]. There is a small
volume about π× (0.25 cm)2 × 1 cm attached to the cen-
ter of the cell which is the glass pull-off when the cell
was sealed: otherwise the cell is cylindrically symmetric.
The 3He was polarized by spin exchange optical pump-
ing in an oven to a maximum polarization of ≃ 40% with
Γ1 = 7.9× 10−6 s−1. After the cell was fully polarized it
was cooled to room temperature and a 200 turn pickup
coil was employed to measure Γ2 by the standard NMR
method of free induction decay (FID). The cell axis was
parallel to the main magnetic field of 1.4 mT provided
by a Helmholtz coil.

We moved a 8 cm×8 cm×2 cm polytetrafluoroethylene
(PTFE) block back and forth into the position shown in

Fig. 1. We measured Γ
(in)
2 5 times when the PTFE block

was near the cell and Γ
(out)
2 5 times when the PTFE was

moved out. The average values for the 5-times-in and 5-

Figure 2: The change in Γ2 when the PTFE block was moved
in and out, denoted by ∆Γ2. The error bars show the standard
deviation of the mean for each group of 5 measurements of
∆Γ2.

times-out data are given by Γ
(in)
2,n and Γ

(out)
2,n , respectively.

Γ2 decreased from 25.0 s−1 to 24.4 s−1 during the exper-
iment, which is most likely due to radiation damping[27].
To cancel the Γ2 dependence on the polarization of the
gas, measurements were conducted with the PTFE block
moved in a time sequence (in, out, out, in). We show the

difference ∆Γ2,n = Γ
(out)
2,n − Γ

(in)
2,n in Fig. 2 as one point

with an uncertainty

√

(

∆Γ
(in)
2,n

)2

+
(

∆Γ
(out)
2,n

)2

. This

difference measurement was repeated 50 times. The fi-
nal Γ2 difference and its standard uncertainty (the stan-
dard deviation of the mean of the 50 measurements),
∆Γ2 = (0.0014 ± 0.0012) s−1, are shown as the three
red lines.

This result is consistent with the absence of a
monopole-dipole interaction between the mass and the
polarized 3He. The nucleon density of the PTFE is
N = 1.32 × 1024 cm−3. Using Eq. (6), we obtain a
limit on the monopole-dipole coupling strength between
the polarized 3He nucleus and the nuclei in the mass as
a function of the range λ which excludes an area in the
(gsgp, λ) plane above the line defined by

g(n)
s g(n)

p = 2.8 × 10−21∆Γ
1/2
2 f(λ). (9)

The constraint obtained from this method is shown in
Fig. 3, curve 7.

The material of the cell itself can also cause polarized
gas relaxation if the monopole-dipole potential exists. If
the dimension of the polarized gas holder is much larger
than the coupling range (L ≫ λ and a ≫ λ), only the
two ends have nonzero contribution to the total potential
along z-axis. Following the same procedure from Eq. (3)
to (7), we exclude an area in the (gsgp, λ) plane above
the line defined by

g(n)
s g(n)

p =
mn(350 D Γ2)

1/2

~NL2

(L/λ)
1/2

(1 − e−d0/λ)
. (10)
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Various experiments have observed very small relax-
ation rates of polarized high density noble gases. For
example, in Refs. [28] and [29] 3.4 × 1019 3He atoms,
8.1 × 1018 129Xe atoms, and 1.8 × 1019 N2 molecules
were sealed in glass cell of internal height 0.75 cm and
internal diameter 0.75 cm. A 3He transverse relax-
ation rate of 4 × 10−4 s−1 was observed in the exper-
iment. Taking D = 1.71 cm2s−1, d0 = 0.3 cm, and
N = 1.31 × 1024 cm−3, we obtain a line of constraint

g(n)
s g(n)

p = 4.2 × 10−20Γ
1/2
2

(L/λ)
1/2

(1 − e−d0/λ)
. (11)

The result is shown in Fig. 3, curve 8.
From measurements and theoretical calculations[30],

it is known that the polarization of the 3He nucleus is
dominated by the neutron polarization, with only a small
contribution from orbital motion and other effects. The
composition of both the PTFE used in our measurements
and the glass used to set the other limits is dominated
by low-mass elements. Therefore the limits shown in Fig.
3 involve the pseudoscalar coupling gp of the neutron
and the scalar coupling gs of an ensemble of unpolarized
matter made of a roughly equal proportion of neutrons
and protons.

IV. SYSTEMATIC EFFECTS

In this section we consider some systematic effects
which would need to be addressed to perform a more
sensitive experiment using this technique. In addition to

Figure 3: Constraints on the monopole-dipole coupling

strength g
(n)
s g

(n)
p : 1. Blue, from Ref.[18]; 2. Purple, from

Ref.[13]; 3. Red, by using low density 3He gas, from Ref.
[20]; 4. Black, by using low density 3He gas, from Ref. [20];
5. Pink, from Ref.[9]; 6. Black, from Ref.[12]; 7. Green, this
work; 8. Black, this work, by reanalyzing the high density
3He relaxation data in Ref. [28] and [29]; 9. Blue, from Ref.
[21], by using low density 3He gas.

the contributions to Γ2 from external magnetic field gra-
dients and the gradient in the monopole-dipole field from
nearby unpolarized objects including the test mass dis-
cussed above, we can identify several other contributions
to Γ2 [22, 25] which we list here along with a qualitative
discussion of their possible effect on our proposed search.

(1) Radiation damping, i.e., the action of the currents
induced in the pickup coils on the 3He magnetization[31],
can perturb Γ2 [27, 32]. This effect can be reduced by
decreasing the quality factor Q of the pickup coil, the
filling factor, and/or the size of the 3He magnetization.
We expect that the dependence of Γ2 on 3He magne-
tization that we observed in this test experiment could
be decreased substantially without greatly reducing the
signal to noise ratio. Since Γ2 decreases with increasing
magnetization if the 3He is polarized in the higher energy
state, measurements with the 3He polarization reversed
can reveal this effect if present.

(2) The magnetic moments of the polarized 3He nu-
clei produce a magnetic field proportional to polarization
of the gas which depends on the shape of the cell and
the spatial distribution of the magnetization. This field
can possess gradients even if the external magnetic field
is uniform. This gradient can be minimized by proper
choice of cell geometry: for example, a sphere of spa-
tially uniform magnetization produces no field gradient.
The motion of the test mass must not influence, directly
or indirectly, the 3He magnetization distribution in the
cell.

(3) A finite magnetic susceptibility of the test mass
may produce magnetic field gradients and therefore
change Γ2. A finite electrical conductivity of the test
mass can support eddy currents which produce electro-
magnetic fields that change Γ2. Test masses with low
magnetic susceptibility and electrical conductivity can
be chosen, and materials with different densities but
matched magnetic and/or electrical properties can be
employed.

(4) Γ2, which is ultimately limited by Γ1, can be af-
fected by collisions with the wall of the cell. Although the
surface physics involved is not completely understood,
glass surfaces with negligible effects on Γ1 [22, 33] and
Γ2 [24] have been prepared. The motion of the test mass
must be performed in such a way as not to modify the
spin dependence of the interaction of the polarized 3He
atoms with the internal surfaces of the glass. This seems
achievable.

(5) The magnitude of the 3He polarization decreases
at a rate determined by Γ1 in addition to the losses from
tipping the polarization for Γ2 measurements, and the
Γ2 measurements themselves are performed at different
times corresponding to different test mass positions. The
timescale for residual contributions to Γ2 proportional to
3He polarization are determined by the tip losses and Γ1.
If Γ1 ≪ Γ2, the systematic effect induced by this change
can be eliminated by optimizing the time sequence of
the test mass motion and/or the data analysis. The (in-
out),(out-in) analysis sequence employed in our test mea-
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surement, for example, cancels a systematic from a linear
time-dependent drift in Γ2. More complicated sequences
can remove time dependent drifts of arbitrary polynomial
order in time.

There is also great room for improvement of the mea-
surement sensitivity. Magnetic shielding can reduce the
ambient magnetic field gradients and their fluctuations.
The gas density N may be chosen to optimize the dif-
fusion coefficient D for better sensitivity to a particular
range of λ (Eq. 6), although with decreasing gas density
the mean free path l of the atom increases, and the high-
pressure requirement (λ ≫ l) may not be fulfilled any
longer. Since the monopole-dipole potential vanishes ex-
ponentially, a thin windowed cell can be used to allow the
test mass to approach the polarized gas closely. It is easy
to reverse the magnetic field direction and the direction
of the 3He polarization relative to the magnetic field to
confirm the ~s ·~r dependence of any signal and reveal any
effects due to hysteresis from magnetic impurities in the
apparatus. We conclude that the constraints on both the
coupling and the range of a possible monopole-dipole in-
teraction using this method can be significantly improved
in dedicated experiments.

V. CONCLUSIONS

We propose a method using the dependence of the
transverse relaxation rate Γ2 of polarized 3He gas on

the position of an unpolarized, nonmagnetic test mass
to set more stringent limits on possible monopole-dipole
interactions. This method should be much more sensitive
than the constraints already obtained from the analysis of
longitudinal spin relaxation Γ1 measurements. We have
performed a simple proof-of-principle measurement us-
ing the technique. This method can be applied to search
for monopole-dipole interactions with ranges below 1cm.
We discussed the possibility of future sensitivity improve-
ments using this method along with strategies to mini-
mize systematic effects.
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