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The ratio of the cross section for pp interactions producing a Z boson and at least one b quark jet
to the inclusive Z + jet cross section is measured using 4.2 fb~! of pp collisions collected with the DO
detector at the Fermilab Tevatron collider at /s = 1.96 TeV. The Z — £7¢~ candidate events with
at least one b jet are discriminated from Z+ charm and light jet(s) events by a novel technique that
exploits the properties of the tracks associated to the jet. The measured ratio is 0.0193 + 0.0027 for
events having a jet with transverse momentum pr > 20 GeV and pseudorapidity |n| < 2.5, which is
the most precise to date and is consistent with theoretical predictions.

PACS numbers: 12.38.Qk, 13.85.Qk, 14.65.Fy, 14.70.Hp

The measurement of the production cross section for a
Z boson in association with b jets provides an important
test of perturbative quantum chromodynamics (QCD)
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predictions [1]. A good description of this process by the-
oretical calculations is essential since it is a major back-
ground to searches for the standard model (SM) Higgs
boson via ZH (H — bb) associated production [2] and for
the supersymmetric partners of b quarks [3]. This pro-
cess is also sensitive to the b quark density in the proton
needed to predict phenomena such as single top quark
production [4] and production of non-SM Higgs bosons
in association with b quarks [5]. Calculations for the Z
boson production in association with b quarks in pp colli-
sions are available at next-to-leading order (NLO) using



two different approaches [1, 6], and they agree within
their respective theoretical uncertainties.

In this Letter, we describe a measurement of the ra-
tio of the inclusive cross sections for Z boson production
with at least one b quark jet to the Z + jet(s) produc-
tion in pp interactions, where the Z boson is identified
via its Z — ee and Z — up decay modes. The Z + bjet
events are separated from Z boson production with light
(u, d, or s quarks, or gluons) and charm (c) jet(s) by
a discriminant that exploits the properties of the tracks
associated to the jet. The measurement of the ratio ben-
efits from cancellations of many systematic uncertainties
on the cross sections and therefore allows a more pre-
cise comparison with theoretical calculations. Previous
measurements by the DO [7] and CDF [8] collaborations
agree with the SM predictions. Here, we present the most
precise measurement of the ratio to date. This measure-
ment is a significant improvement over the previous D0
result [7] which utilized 0.18 fb~! of integrated luminosity
and assumed the ratio of the Z +b jet cross section to the
Z +c jet cross section from NLO calculations. This anal-
ysis uses a much larger dataset and a substantially im-
proved method to extract the different jet flavor fractions.
This measurement is done on an expanded jet kinematic
region, (|n] < 2.5) hence extending the test of QCD pre-
dictions and matching the n coverage of the Tevatron’s
efforts in the Higgs and New Phenomena searches.

We use data from pp collisions at a center-of-mass en-
ergy of 1.96 TeV collected by the DO detector [9] at the
Fermilab Tevatron between 2006 and 2009 and corre-
sponding to an integrated luminosity of 4.2 fb=!. The
selected events are required to pass at least one of the
single electron or single muon triggers. The efficiency
of the triggers, as measured from data, is close to 100%
(78%) for the Z — ee (Z — pp) final state.

This analysis relies on all components of the detector:
tracking, calorimetry, and muon system and the ability to
identify detached vertices. The DO detector consists of a
central tracking system, comprising a silicon microstrip
tracker (SMT) and a central fiber tracker, both within
a 2 T solenoidal magnet; a liquid argon and uranium
calorimeter, divided into a central calorimeter and two
endcap calorimeters; and a muon system, consisting of
three layers of tracking detectors and scintillation trig-
ger counters. The SMT allows a precise reconstruction
of the pp interaction vertex (PV) and of eventual sec-
ondary vertices (SV), and an accurate determination of
the impact parameter (IP) of a track relative to the PV,
which are the key components of the jet lifetime based
b-tagging algorithms.

Offline event selection requires a reconstructed PV that
has at least three associated tracks and is located within
60 cm of the center of the detector in the coordinate along
the beam direction. The selected events must contain a Z
boson candidate with a dilepton invariant mass 70 GeV <
mye < 110 GeV. Throughout this Letter we use Z boson
to denote any dilepton event in the above mentioned mass
range due to Z or v* production.

The dielectron (ee) selection requires at least two elec-
trons of transverse momentum pr > 15 GeV identified by
electromagnetic (EM) showers in the central (with pseu-
dorapidity [10] |n] < 1.1) or endcap (1.5 < |n| < 2.5)
calorimeter. The showers must have a significant frac-
tion of their energy deposited in the EM calorimeter, be
isolated from other energy depositions, and have a shape
consistent with that expected for an electron. The cen-
tral electrons, in addition, must match central tracks or
produce electron-like patterns of hits in the tracker.

The dimuon () selection requires at least two muons
with segments in the muon spectrometer matched to cen-
tral tracks with pr > 10 GeV and |n| < 2. Combined
tracking and calorimeter isolation requirements are ap-
plied to the muon candidates. Muons from cosmic rays
are rejected by applying a timing criterion to the hits in
the scintillator layers as well as restricting the position of
the muon track with respect to the PV. The two muons
must also have opposite electric charges.

A total of 411,064 (224,814) Z boson candidate events
are retained in the ee (up) channel. The Z + jet sam-
ple is then selected by requiring the presence of at least
one reconstructed jet with |n| < 2.5, with the leading
jet having pr > 20 GeV and any additional jets hav-
ing pr > 15 GeV. Jets are reconstructed from energy
deposits in the calorimeter using the iterative midpoint
cone algorithm [11] with a cone of radius 0.5. The energy
of jets is corrected for detector response, the presence of
noise and multiple pp interactions, and the energy de-
posited outside of the jet cone used for reconstruction.
Events with missing transverse energy larger than 60 GeV
are rejected to suppress the background from #f produc-
tion. These selection criteria yield a sample of 48,956
(24,450) Z+jet events in the ee (up) channel.

Jets considered for b-tagging are subject to a prese-
lection, called taggability, to decouple the intrinsic b jet
tagging algorithm performance from other effects. For
this purpose, the jet is required to have at least two as-
sociated tracks with pr > 0.5 GeV, the leading track
must have pr > 1.0 GeV, and each track must have at
least one SMT hit. This requirement has a typical effi-
ciency of 90% per jet. The jet related efficiencies men-
tioned here and later on are determined from simulations
and corrected for the difference observed in data. In or-
der to enrich a sample with heavy-flavor jets, a neural
network (NN) based b-tagging algorithm is applied that
exploits the longer lifetimes of b-flavored hadrons in com-
parison to their lighter counterparts [12]. The inputs to
the NN combine several characteristic quantities of the
jet and associated tracks to provide a continuous output
value that tends towards one for b jets and zero for non-b
jets. The important input variables are the number of re-
constructed SV in the jet, the invariant mass of charged
particles associated with the SV (Mgy), the number of
tracks used to reconstruct the SV, the two-dimensional
decay length significance of the SV in the plane transverse
to the beam, a weighted combination of the tracks trans-
verse IP significances, and the probability that the tracks
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FIG. 1: The probability densities of the D}/5y discri- minant
for b, ¢ and light jets passing the NN b tagging requirement.
Also shown is the distribution for the neg- ative tagged (NT)
jets in data, described in the text.

from the jet originate from the PV, which is referred to as
the Jet Lifetime Probability (JLIP). We require at least
one of the jets in the event to have a NN output greater
than 0.5. In about 10% of the events the leading jet is
not tagged. In this case we apply the NN selection to
sub-leading jets. A total of 2,200 (1,015) events with at
least one b tagged jet candidate are thus selected in the
ee (up) channel. The tagging efficiency for b jets and the
mistagging rate of light jets are parametrized as functions
of jet pr and n, and are about 58% and 2%, respectively,
averaged over the kinematics of jets considered in this
analysis. Jets containing b quarks have a different en-
ergy response and receive an average additional energy
correction of 6% as determined from simulations.

To further separate b jets from ¢ and light jets, we con-
struct a discriminant (D%SI‘P’,) from the combination of
Mgy and JLIP, D%SI‘F’, = (Msy/10 GeV — In(JLIP)/40).
The relative weights of the variables are selected based on
studies of simulated data to maximize rejection of ¢ and
light quark jets. The mass Mgy provides good discrim-
ination between b, ¢, and light jets due to the different
masses of the quarks. Jets from b quarks usually have
large values of —In(JLIP), while light jets mostly have
small values, as their tracks originate from the PV. The
average efficiency for the b jets in data to have a well-
defined D%SI‘P’, output is about 68%, which is due to the
finite efficiency for a b jet to have a reconstructed SV.
Figure 1 shows the normalized distributions of D%SI‘F’, for
jets of different flavors after the NN b tagging require-
ment. The discriminant D%SI‘P’, separates well between b,
¢, and light jets. Figure 1 also shows the D%SI‘P’, distribu-
tion of the tagged jets derived from a light jet enriched
data sample, referred to as negatively tagged (NT) data.
NT jets have negative values for some of the inputs for

the NN algorithm [12] such as decay length significance
and IP which are caused by the detector resolution ef-
fects. We estimate the b jet contamination in the NT
data using a maximum likelihood fit and subtract its con-
tribution. The template shapes in the corrected NT data
and the light jets in Monte Carlo (MC) simulation look
similar and the small difference is taken as a systematic
uncertainty.

The dominant background to Z 4+ jet production
arises from multijet (MJ) events in which jets are mis-
reconstructed as leptons, especially in the ee channel.
This instrumental background is estimated from data.
We use MJ-enriched data samples that pass all event se-
lection requirements, but fail some of the lepton quality
criteria, to determine the kinematic shape of the back-
ground distribution. For the ee channel, the MJ sample
is obtained by inverting the shower shape requirements
and relaxing other identification criteria on the electron
candidates. For the pp channel, the MJ sample consists
of events with muon candidates that fail the isolation
criteria.

Smaller background contributions arise from top quark
pair (tt) and diboson (WW, WZ, ZZ) production,
which contain two leptons in the final state. These
backgrounds are estimated using MC simulations with
the cross sections rescaled to match theoretical calcula-
tions [13, 14]. We simulate inclusive diboson production
with PYTHIA [15]. Events from Z-+jet and ¢ processes are
generated with ALPGEN [16], interfaced with PYTHIA for
initial and final state radiation and for hadronization.
For these events, a matching procedure is used to avoid
double counting of partons produced by ALPGEN and
those subsequently added by the showering in PYTHIA.
The Z+jets samples consist of Z+light jets and a Z+
heavy-flavor component, which includes Z + bb(c€) pro-
duction. All simulations use the CTEQ6L1 [17] parton
distribution functions (PDFs). All samples are processed
using a detector simulation based on GEANT3 [18] and
the same offline reconstruction algorithms as for data.
Events from randomly chosen beam crossings are over-
laid on the simulated events to reproduce the effect of
multiple pp interactions and detector noise. The normal-
izations of the simulated and the MJ backgrounds are
adjusted by scale factors determined from a fit to the
myy distributions in the inclusive untagged sample. The
background fraction in the ee channel is about 18% for
both the inclusive untagged and tagged samples, and is
dominated by the MJ background. The pu channel has a
higher purity, with a background fraction of only about
0.8% in the untagged and tagged samples.

Corrections are applied to the simulated events to im-
prove the MC modeling. The simulated Z — pp events
are weighted with trigger efficiencies measured in data.
For the ee channel, no correction is applied as the corre-
sponding trigger is nearly 100% efficient. Lepton identi-
fication efficiencies are corrected as a function of 7, az-
imuthal angle ¢, and the z position of the PV. Jet en-
ergies are smeared to reproduce the resolution observed
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FIG. 2: (color online) The observed pr distribution of the
leading jet in the (a) pp and (b) ee channel comp- ared with
the SM prediction. The uncertainties on the data points are
statistical, and the prediction is normal- ized to the data, as
described in the text.

in data, and the efficiency for reconstructing a jet is cor-
rected to match the one in data. The simulated Z boson
events are reweighted such that the pp distribution of
the Z boson is consistent with the observed distribution.
Figures 2(a,b) show the pr distribution of the leading jet
in data compared with the expectation from simulation
for Z + jets inclusive events and the associated contribu-
tions in each channel. The dominant contribution comes
from Z+light jet production.

In order to measure the fraction of events with differ-
ent jet flavors in the final selected sample, we perform
a binned maximum likelihood fit to the D%j‘lé distribu-
tion in data using a combination of the light, ¢, and b
flavor jet templates. Before the fit, we subtract the non-
(Z + jet) background contributions. A total of 970 (630)
events remains in the ee (pu) channel passing all selec-
tion requirements and after the background subtraction.
The b and c jet D%Sﬁé templates are taken from MC sim-
ulations with correction factors applied to account for
the differences in data and MC efficiencies. The light jet
template is obtained from the higher statistics NT data
described earlier. The jet flavor fractions obtained in the
ee and pp channels are shown in Table I, where the un-
certainties are from the fit due to the data and template
statistics. The relative light and ¢ quark fractions are
not tightly constrained by the data. The b jet fraction is,
however, largely insensitive to variations in the relative
amount of light and ¢ jets. Since the individual samples
yield consistent results, we combine the ee and pup sam-
ples and remeasure the fractions using an independent fit.
The Dj\ﬁg distributions in the two data samples used for
fitting agree after background subtraction. The last col-
umn of Table I gives the results of the jet flavor fractions
from the combined sample. Figure 3 shows the combined
Dﬁ% distribution of b-tagged jets for data along with
the fitted contributions from the light (NT data), ¢ and

TABLE I: Jet flavor fractions obtained from template fitting
in the dielectron, dimuon and combined channels, along with
statistical uncertainties.

Channel L ee Combined
Events 630 970 1600
Z+b 0.248 + 0.042 0.267 £+ 0.036 0.259 + 0.028

Z+c 0.253 £ 0.073 0.364 £ 0.064 0.359 £ 0.049
Z + light 0.499 £ 0.058 0.369 £ 0.049 0.382 £ 0.038
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FIG. 3: (color online) The D%j}{ discriminant distribut- ion
of events in the combined sample. The distributions of the b,
¢, and light jets are weighted by the fractions found from the
fit. Uncertainties are statistical only.

b jets.
The extracted jet flavor fractions are used to deter-
mine the ratio o(Z + bjet)/o(Z + jet) as follows:

o(Z +bjet) Ny "
o(Z+jet)  Nipae® € inel ’

where Niy is the total number of Z + jet events before
any tagging requirement, Np is the number of Z + bjet

events obtained from the D}y fit, €% is the overall

D%SI% efficiency for b jets, which combines the efficiencies

for taggability, NN tagger and D%SI‘E, selection, and ezj‘fgcl
accounts for the difference between b and inclusive jet
reconstruction efficiencies.

Several experimental uncertainties cancel out in the
measurement of o(Z + bjet)/o(Z + jet), including the
uncertainties on the luminosity, and trigger, lepton, and
some jet identification efficiencies. The two largest re-
maining sources of systematic uncertainty are uncertain-
ties in the D%SI‘E, efficiency and in the shape of the D%SI‘P’,
templates used for the extraction of the b jet fraction.
Variation in D%SI% efficiency by one standard deviation

results in an uncertainty of 3.7% on the final result. The



uncertainty due to the shape of the templates (4.2%) is
estimated by using an alternate light jet template from
MC, by changing the b quark fragmentation function [15],
and by varying the fraction of merged heavy quarks (bb,
cc) inside the jet. An additional uncertainty on the ¢
jet template shape has been evaluated by varying the
DT /DO ratio by 20% which yields a negligible contribu-
tion of less than 1% to the systematic uncertainty. Other
important sources of uncertainty are the b tagging effi-
ciency (2.4%), the b jet energy scale (2%), and recon-
struction efficiency (3.2%). The total systematic uncer-
tainty on the measurement of the ratio is 7.7%. The final
result is

o(Z + bjet

U((%jit)) = 0.0193+0.0022(stat) £ 0.0015(syst), (2)
which is consistent with the ratios obtained separately
for the two channels. This measurement is the most pre-
cise to date. For the kinematic region considered in the
analysis, an NLO MCFM [1] prediction for the ratio yields
0.0192 + 0.0022; this is obtained for the renormalization
and factorization scales Q% = Q% = m% (mz being the
Z boson mass), and with the MSTW2008 PDFs [19]. The
prediction decreases by 3.6% when the effects from de-
tector response, resolution as well as hadronization and

underlying event are taken into account.

In summary, we have performed the most precise mea-
surement to date of the ratio of the cross section for Z
boson production in association with at least one b jet to
the inclusive Z +jet cross section, considering final states
with Z — ee and Z — pp and jets with ppr > 20 GeV
and |n| < 2.5. The combined measurement of the ratio
yields 0.01934-0.0027, which is consistent with NLO QCD
calculations. This measurement allows precision tests of
QCD in much larger rapidity region that matches, e.g.,
the Tevatron’s efforts in Higgs particle searches.
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