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Abstract

In this paper we study half-BPS type IIB supergravity solutions with multiple
AdS3×S3×M4 asymptotic regions, where M4 is either T 4 or K3. These solutions were
first constructed in [1] and have geometries given by the warped product of AdS2×S2×
M4 over Σ, where Σ is a Riemann surface. We show that the holographic boundary
has the structure of a star graph, i.e. n half-lines joined at a point. The attractor
mechanism and the relation of the solutions to junctions of self-dual strings in six-
dimensional supergravity are discussed.

The solutions of [1] are constructed introducing two meromorphic and two harmonic
functions defined on Σ. We focus our analysis on solutions corresponding to junctions
of three different conformal field theories and show that the conditions for having
a solution charged only under Ramond-Ramond three-form fields reduce to relations
involving the positions of the poles and the residues of the relevant harmonic and
meromorphic functions. The degeneration limit in which some of the poles collide
is analyzed in detail. Finally, we calculate the holographic boundary entropy for a
junction of three CFTs and obtain a simple expression in terms of poles and residues.



1 Introduction

The introduction of conformal boundaries plays an important role in many developments

and applications of conformal field theory. In particular, the work of Cardy [2] initiated the

project of classifying all conformal boundary conditions for two-dimensional CFTs. Confor-

mal boundaries are also intensely studied in string theory, where they provide world-sheet

descriptions of D-branes.

Conformal interfaces and defects can be regarded as a generalization of boundary confor-

mal field theories. In an interface theory, two different conformal theories, CFT1 and CFT2,

are separated by a hypersurface of co-dimension one. The theory preserves a subgroup of

the two-dimensional conformal group which leaves the hypersurface invariant. If additional

symmetries, such as current algebras or superconformal symmetries, are present, one can

also demand that the interface preserves some subgroup of these symmetries.

The folding trick [3, 4] relates a two-dimensional conformal interface between CFT1 and

CFT2 to a boundary CFT in the tensor product CFT1 ⊗ CFT2. Using this framework,

many interesting questions can be addressed. The Cardy conditions can be used to classify

all possible conformal interfaces in rational CFTs. The entanglement entropy between CFT1

and CFT2 can be used to calculate the g-function or boundary entropy [5], which counts

the ground-state degeneracy of the interface. It is also possible to compute reflection and

transmission matrices of the excitations in the bulk CFT, as well as the Casimir energy of

two interfaces separated by a finite distance [4].

In condensed matter physics, two-dimensional conformal field theories can be employed

to study two-dimensional quantum liquids, while conformal interfaces can be used to describe

impurities at critical points, quantum wires or to study the Kondo effect. Furthermore, a

special class of defects which are totally transmissive, the so-called topological interfaces,

have been recently investigated in string theory [6].

The AdS/CFT correspondence [7, 8, 9] offers a powerful tool to study conformal field

theories at strong coupling. A particularly well studied incarnation of the correspondence

relates type IIB string theory on AdS3×S3×M4 (where M4 is either K3 or T 4) with a two-

dimensional conformal field theory. This type IIB background can be obtained by taking

the near-horizon limit of a bound state of N1 D1-branes and N5 D5-branes wrapped on M4.

The D1/D5 bound state can also be described by the Higgs-branch of the two-dimensional

U(Q1)× U(Q5) gauge theory living on the intersection of the branes. In the infrared limit,

the theory flows to a N = (4, 4) two-dimensional superconformal theory [10]. This CFT can

also be understood as a hyperkähler sigma model whose target space is (M4)n/Sn, where Sn
is the n-dimensional symmetric group [11, 12, 13]. Another interesting example is given by
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the holographic realizations of two-dimensional quantum liquids which have been discussed

in [14].

An interface or a defect can be realized in the context of the AdS/CFT correspondence

by introducing in the AdSd+1 bulk spacetime a probe brane with an AdSd worldvolume,

which is stretched all the way to the boundary [4, 15, 16, 17].

An alternative approach is to consider regular supergravity solutions which realize holo-

graphically the reduced conformal symmetry of defect. In general, these solutions are not

globally asymptotic to a single Anti-de Sitter space. Instead, they have two or more AdS

asymptotic regions where the dilaton or some other scalar assume different values. The

first example of such solutions was the Janus solution constructed in [18] which is a fat

dilatonic domain wall with AdS4 worldvolume. In recent years, examples of Janus so-

lutions which preserve superconformal symmetries have been found in gauged supergrav-

ity [19], type IIB supergravity [20, 21, 22, 23] and M-theory [24, 25, 26, 27] (see also

[28, 29, 30, 31, 32, 33, 34, 35, 36] for related work by other authors on this topic).

Probe branes associated with superconformal defects in AdS3 × S3 have been discussed

in [17, 37, 38, 39, 40, 41]. Type IIB supergravity solutions that describe defects and are

locally asymptotic to AdS3 × S3 ×M4 were recently found in [1], and in the present paper

we continue the analysis of these solutions. In particular, we focus our analysis on the so-

called multi-Janus solutions, which have more than two asymptotic AdS3 regions and are

interpreted as duals of defect theories where more than two CFTs are glued together at a

defect. Simple examples of such junctions of multiple CFTs were considered in the context

of quantum field theories on star graphs [42]. In these theories, different CFTs propagate

freely on each branch of the graph while the vertex is treated as a defect interacting with

the fields and is characterized by transmission and reflection matrices. CFTs on star graphs

have potential applications in the theory of quantum wires.

The organization of the paper is as follows: in Section 2 we review the regular solutions

obtained in [1]. In Section 3 we evaluate the Page charges for five-branes and one-branes.

In Section 4 we discuss the construction of junctions of self-dual strings in six flat dimen-

sions which preserve a quarter of the supersymmetry. The behavior of the scalars in these

configurations is analyzed using the attractor equations and it is argued, by taking a near-

horizon limit, that they are related to the half-BPS solutions of Section 2. In Section 5,

we focus on the case n = 3, i.e. a junction of three CFTs. We present the conditions on

the moduli which set the NS charges to zero in the asymptotic regions and consider various

degeneration limits of the solution. In particular, we analyze a probe limit where all NS

charges vanish and the R-R charges in one region are much smaller than the charges in the

two other regions. Another interesting class of tractable solutions can be obtained by taking
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a doubly-degenerate limit. In this case, all charges can be taken to be of order one.

As an application, we calculate the holographic boundary entropy for a junction of three

CFTs in Section 6 and compare the result to a toy model CFT calculation to illustrate some

features of the holographic result. A similar computation for a junction with two conformal

field theories was carried out in [43]. We close with a discussion of our results and directions

for future research in Section 7.

2 Review of the Half-BPS interface solutions

In this section we review the half-BPS solutions found in [1]. These solutions preserve eight

of the sixteen supersymmetries of the Anti-de Sitter vacuum and are locally asymptotic to

AdS3 × S3 ×M4. The metric is given by the warped product of AdS2 × S2 ×M4 over a

two-dimensional Riemann surface with boundary, Σ. M4 is either K3 or T 4, and we do not

consider fluxes that wrap internal cycles of M4 except its volume. The solution contains two

scalar fields, i.e. the dilaton, φ, and the axion, χ, the complex three-form, G, and the real

self-dual five-form, F(5). The complex three-form is a composite of the NS-NS field strength,

H3, and the R-R field strength, F3.

G = e−φ/2H3 + ieφ/2
(
F3 − χH3

)
(2.1)

A four-form potential can be defined for F(5). By self-duality, its two components, one along

M4 and the other along AdS2×S2 are equal up to a contraction with the Levi-Civita tensor.

In [1], it was shown that the BPS equations and Bianchi identity reduce to the re-

quirement that four combinations of fields and metric factors are meromorphic or harmonic

functions. Hence, the entire solution can be parameterized by two meromorphic functions

A(z), B(z) and two harmonic functions H(z, z̄), K(z, z̄), together with the dual harmonic

function K̃(z, z̄). All functions depend only on the coordinates z, z̄ of the two-dimensional

Riemann surface Σ.

2.1 Expression for the fields

The ten-dimensional metric is given by a fibration of AdS2×S2×M4 over Σ. M4 can be T 4

or K3,

ds2 = f 2
1ds

2
AdS2

+ f 2
2ds

2
S2 + f 2

3ds
2
M4

+ ρ2dzdz̄ (2.2)
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The metric factors associated with AdS2, S2, M4 and Σ are given by

f 2
1 =

eφ

2f 2
3

|H|
K

(
(A+ Ā)K − (B − B̄)2

)
(2.3)

f 2
2 =

eφ

2f 2
3

|H|
K

(
(A+ Ā)K − (B + B̄)2

)
(2.4)

f 4
3 = 4

e−φK

A+ Ā
(2.5)

ρ4 = e−φK
|∂zH|4

H2

A+ Ā

|B|4
(2.6)

The dilaton and axion are given by 1

e−2φ =
1

4K2

(
(A+ Ā)K − (B + B̄)2

)(
(A+ Ā)K − (B − B̄)2

)
(2.7)

χ =
i

2K

(
(A− Ā)K −B2 + B̄2

)
(2.8)

The component along M4 of the R-R four form potential, CK , is given by

CK = − i
2

B2 − B̄2

A+ Ā
− 1

2
K̃ (2.9)

The expressions for the NS-NS and R-R two-form potentials are given in Appendix A.4.

2.2 Regular solutions

The formulae presented in the previous section give the local solutions of the BPS equations

and equations of motion for arbitrary choices of the harmonic functions H and K, and

meromorphic functions A and B. However, further conditions must be imposed in order to

obtain physically sensible solutions, i.e. solutions which are regular and have real-valued

physical fields. In this paper we assume the Riemann surface Σ with no handles and a single

boundary component, so that it can be mapped to the upper half plane. The case in which

Σ has multiple boundary components has been studied in [44]. Furthermore, the solutions

only have AdS3 × S3 ×M4 asymptotics and the meromorphic and harmonic functions have

only simple poles.

It was shown in [1] that in order to have the proper boundary structure, the real harmonic

functions H, K, A + Ā and B + B̄ all go to zero on the boundary with the same rate.

1In our previous paper [1] we used Φ which is related to the standard dilaton used in this paper by
φ = −2Φ.
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Furthermore, finiteness of the metric factors requires that the harmonic functions A + Ā,

B + B̄ and K have common poles and there is a condition relating the residues of these

functions. Singular points in the bulk of Σ are forbidden, as are zeroes in the bulk of Σ for

A + Ā, K, and H. Finite curvature requires that B and ∂zH have common zeroes. These

conditions restrict the form of the harmonic and meromorphic functions as follows.

The harmonic function H has n distinct simple poles which lie on the real axis. The nth

pole is taken to be at infinity.

H = i

n−1∑
i=1

cH,i
z − xH,i

− icH,nz + c.c. (2.10)

The harmonic function A has 2n− 2 poles which lie on the real axis

A = i

2n−2∑
i=1

cA,i
z − xA,i

+ ia (2.11)

The meromorphic function B(z) is determined in terms of A and H by

B = B0

∏n−1
i=1 (z − xH,i)2∏2n−2
i=1 (z − xA,i)

∂zH (2.12)

The function K is given by

K = i
2n−2∑
i=1

cK,i
z − xA,i

− i
2n−2∑
i=1

cK,i
z̄ − xA,i

, cK,i =
c2
B,i

cA,i
(2.13)

Where the residues cB,i are given by

cB,i =
1

i
lim

z→xA,i
(z − xA,i)B(z) (2.14)

Note that the dual harmonic function K̃ which appears in (2.9) contains another parameter

K̃ =
2n−2∑
i=1

cK,i
z − xA,i

+
2n−2∑
i=1

cK,i
z̄ − xA,i

+ 2k (2.15)

The number of poles of the harmonic function H, n, also counts the number of asymptotic

AdS3 regions. Approaching a pole of H in Σ corresponds to approaching the boundary of

an asymptotic AdS3 region, while staying away from the defect. A regular solution with n

asymptotic regions depends on the following global parameters:
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Figure 1: Multi-pole solution. The poles of H and A lie on the real axis.

1. n− 3 locations of poles of H, xH,i. The 3 is subtracted since SL(2, R) reparameteriza-

tions of Σ can be used to fix three locations at xH,1 = 0, xH,2 = 1 and xH,n =∞.

2. n positive values of the residues of H, cH,i.

3. 2n− 2 locations of poles of A, xA,i.

4. 2n− 2 positive values of the residues of A, cA,i.

5. two real additive constants in A and K̃, a and k.

6. a real multiplicative constant in B,B0.

The total number of parameters, or moduli, for the n-pole solution is 6n − 4. These pa-

rameters determine all physical quantities of the solution, the full metric, the charges of the

antisymmetric three-form, and the scalars, the axion and the dilaton.

3 Charges and fields in the asymptotic regions

Since type IIB supergravity is a theory with Chern-Simons terms, the Bianchi identities

for the antisymmetric tensor fields are modified and there are three different definitions of

charge associated with the branes [49]. These three charges, namely Maxwell, brane source

and Page charges, are reviewed in Appendix A.

In this section, we compute the Page charges [49, 50] which are the conserved charges

associated with the (quantized) number of branes. The dual conformal field theory is char-

acterized by the number of underlying five- and one-branes, so the Page charges are the most
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useful in the identification of the dual CFT. More details of the computation can be found

in Appendix A.

3.1 Five- and one-brane charges

In type IIB, the Page charges for NS5- and D5-branes are given by 2

QPage
NS5 =

∫
S3

H3, QPage
D5

∫
S3

(
F̃3 + χH3

)
(3.1)

The Page charges are localized and conserved and are evaluated in Equation (A.4). The

expressions for the five-brane charges in terms of the gauge potentials are given by 3

QPage
NS5 = 4π

( ∫
C
dz ∂zb

(2) + c.c
)

QPage
D5 = 4π

( ∫
C
dz ∂zc

(2) + c.c
)

(3.2)

where C is a contour in the Riemann surface Σ. The fibration of S2 over C produces the S3 in

the asymptotic region and this S3 is the integration domain in (3.1). For the solutions in this

paper, the Riemann surface Σ is the half-plane and the contours which produce homology

three-spheres are the ones which enclose a pole of the harmonic function H.

The Page charge for the D1-branes is given by

QPage
D1 = −

∫
M7

(
eφ ∗ F̃3 − 4C4 ∧H3

)
(3.3)

and the Page charge associated with the fundamental string is given by

QPage
F1 = −

∫
M7

(
e−φ ∗H3 − χeφ ∗ F̃3 + 4C4 ∧ dC2) (3.4)

where M7 is a product of M4 and the aforementioned S3.

The expressions for the one-brane charges given in (3.3) are more complicated due to the

Hodge dual and the presence of Chern-Simons terms. The seven manifold is a product of M4

and a homology three-sphere obtained from a contour C in the Riemann surface Σ together

with the fibered S2, just as in the case of the five-brane charges.

2The fields F̃3, C4, C2 are defined in Equation (A.2) in Appendix A.
3The potentials b(2), c(2) are defined in Equations (A.10, A.12) in Appendix A.4.

8



The D1-brane charge is given by

QPage
D1 = 4π

{∫
C

4K

A+ Ā

(A+ Ā)K − (B + B̄)2

(A+ Ā)K − (B − B̄)2
i(∂zc

(1) − χ∂zb(1))dz

−2

∫
C

(
i
B2 − B̄2

A+ Ā
+ K̃

)
∂zb

(2)dz
}

+ c.c. (3.5)

The fundamental string charge is given by

QPage
F1 = 4π

{∫
C

(
(A+ Ā)K − (B + B̄)2

)2

K(A+ Ā)
i∂zb

(1)dz + 2
(i(B2 − B̄2)

A+ Ā
+ K̃

)
∂zc

(2)dz

−
∫
C

4K

A+ Ā

(A+ Ā)K − (B + B̄)2

(A+ Ā)K − (B − B̄)2
iχ
(
∂zc

(1) − χ∂zb(1)
)
dz
}

+ c.c. (3.6)

The charges associated with each asymptotic AdS3 region can be evaluated by choosing

the contour C infinitesimally close to the associated pole of H. In the remaining of the paper

we will use only the Page charges, but drop the Page label for notational simplicity.

3.2 Local expansion near a pole

In this section we expand the solution near a pole z = xH,i of the harmonic function H

(2.10). For notational simplicity we perform the expansion for a pole located at z = 0. Note

any pole z = xH,i can be mapped to 0 by a translation or inversion. The harmonic and

meromorphic functions have the following expansion around z = 0, where we only keep the

leading terms on which the asymptotic fields and charges depend,

H = i
c−1

z
+ i c1z − i

c−1

z̄
− i c1z̄ + · · ·

A = i a0 + i a1z + · · ·
B = i b0 + i b1z + · · ·
K = i k1z − i k1z̄ + · · ·
K̃ = 2k0 + k1z + k1z̄ + · · · (3.7)

These local parameters, c−1, c1, a0, a1, b0, b1, k0 and k1 are real. Note that for each pole at

z = xH,i one obtains a set of constants. These constants can be expressed in terms of the

moduli of the regular solutions of Section 2.2.
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3.2.1 The fields and metric

The asymptotic values of the various scalar fields can be expressed in terms of the local

parameters. One obtains for dilaton and axion

e−2φ =
b2

0

(
a1k1 − b2

1

)
k2

1

+ o(r), χ = −a0 +
b0b1

k1

+ o(r) (3.8)

where z = reiθ, z̄ = re−iθ and we are expanding r around r = 0. The metric factor and the

R-R four form potential on M4 are given by

f 4
3 =

4b0

√
a1k1 − b2

1

a1

+ o(r), CK =
(b0b1

a1

− k0

)
+ o(r) (3.9)

The other metric factors have the following expansion around r = 0,

ρ4 =
a1c

2
−1

√
a1k1 − b2

1

b3
0

1

r4
+ o(1/r3)

f 4
1 =

1

r4

a1b0c
2
−1

(a1k1 − b2
1)3/2

+ o(1/r3)

f 4
2 = sin4(θ)

a1c
2
−1

√
a1k1 − b2

1

b3
0

+ o(r) (3.10)

Defining a new coordinate x for the AdS2 slicing,

r =
2b0√

a1k1 − b2
1

exp(−x) (3.11)

the ten-dimensional metric takes the following asymptotic form as x→∞,

ds2
10 = l2

(
dx2 +

1

4
exp(2x) ds2

AdS2

)
+ l2

(
dθ2 + sin2 θds2

S2

)
+

2b2
0

a1c−1

l2 ds2
K3 + o(e−x) (3.12)

where l is given by

l =

(
a1c

2
−1

√
a1k1 − b2

1

b3
0

) 1
4

(3.13)

In the following sections, we will also use the six-dimensional AdS3 radius, defined as

RAdS3 = lf3 =

(
4c2
−1(a1k1 − b2

1)

b2
0

) 1
4

(3.14)
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3.2.2 The charges

One can read off the central charge c of the dual CFT from the curvature radius of the

asymptotic three-dimensional AdS3 metric [51] in the limit x→∞,

ds2
AdS3

= l2
(
dx2 +

1

4
e2xds2

AdS2

)
+ o(e−2x), c =

3l

2G
(3)
N

(3.15)

where l is given by (3.13). The three dimensional Newton’s constant G
(3)
N can also be deter-

mined from the ten-dimensional metric (3.12)

1

16πG
(3)
N

=
V ol(M4)V ol(S3)

2k2
10

(3.16)

Hence, the central charge of the CFT associated with the asymptotic AdS3 region is given

by

c =
12π

k2
10

lV ol(M4)V ol(S3) =
96π3

k2
10

c2
−1

(
a1k1 − b2

1

)
b2

0

(3.17)

The D5- and NS5-brane charges given in Section A.4.1 can be expressed as

QD5 = 4π2c−1
a1b0 − a0b1

b2
0

QNS5 = 4π2c−1
b1

b2
0

(3.18)

Using the formulae for the Page charges given in Section A.4.2 and A.4.3 one obtains

QD1 = −16π2c−1

(
b1k0 − b0k1

)
b2

0

QF1 = −16π2c−1
b2

0b1 + a0b1k0 − a1b0k0 − a0b0k1

b2
0

(3.19)

Using the expressions for the charges (3.18) and (3.19), the central charge (3.17) can be

expressed as follows in terms of the Page charges,

c =
6

4πk2
10

(
QD1QD5 +QF1QNS5

)
(3.20)

11



3.3 Duality transformations

Here we look at the transformation of the charges and fields under T-duality of the four

internal directions and S-duality. T-duality exchanges A(z) with the holomorphic part of K,

T : A(z)↔ Hol(K)(z) (3.21)

Under this transformation the R-R scalar fields and charges transform as

T : χ↔ CK , f 4
3 ↔ 4e−φ, QD1 ↔ 4QD5 (3.22)

The S-duality transformations act as follows on the meromorphic functions

S : A→ 1

A
, B → i

B

A
, K → K + i

B2

A
− iB̄

2

Ā
(3.23)

Under S-duality the fields transform in the following way

S : CK → CK , f 4
3 → f 4

3 , τ → −1

τ
(3.24)

where the complexified scalar is

τ = χ+ ie−φ (3.25)

The Page charges transform as

S :

(
QD1

QF1

)
→
(

0 1
−1 0

)(
QD1

QF1

)
,

(
QD5

QNS5

)
→
(

0 1
−1 0

)(
QD5

QNS5

)
(3.26)

3.4 Holographic junctions

The special case in which the solutions presented in Section 2.2 have n = 2 asymptotic

regions corresponds to the BPS Janus solution which was discussed in detail in [1].

In this section we generalize the argument given in [1] to show that the holographic

interpretation of the solution with n > 2 regions is a junction of n 1+1-dimensional CFTs,

all of which live on a spatial half line and are joined at a 0+1-dimensional point. As shown

in Section 3.2.1, the expansion near the pole of H produces the metric (3.12). To express

the holographic boundary it is useful to change coordinates to u = e−x,

ds2
10 =

l2

u2

(
du2 +

1

4
ds2

AdS2
+ u2(dθ2 + sin2 θds2

S2) +
2b2

0

a1c−1

u2 ds2
M4

)
+ o(u2) (3.27)
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A boundary component of the bulk space away from the defect is reached by taking x→∞
which translates into u → 0. In this limit, the overall conformal factor diverges. The

boundary geometry is then obtained by removing the divergent conformal factor. Note that

the AdS2 part of the metric is the only term which does not vanish in this limit. The

standard Poincare patch AdS2 metric is given by

ds2
AdS2,P

=
−dt2 + dξ2

ξ2
(3.28)

After removing the divergent conformal factor 1/u2, the boundary geometry is R × R+

spanned by the time coordinate t ∈ R and ξ ∈ R+. For each pole of H we obtain a half-

plane as the associated boundary component. Since the poles of H are all separated along

the boundary of Σ, it may seem that the n boundary components are disconnected. This is

however not true since there is an additional boundary component, namely the boundary of

AdS2. In the limit ξ → 0 the ten-dimensional metric behaves as follows

ds2
10 ∼

1

ξ2

(
ξ2f 2

2ds
2
S2 + ξ2f 2

3ds
2
M4

+ ξ2ρ2dzd̄z̄ + f 2
1 (dξ2 − dt2)

)
(3.29)

Stripping away the divergent conformal factor shows that the holographic boundary is simply

given by a point ξ = 0 times t. Since the metric factor of Σ vanishes in this limit the distance

between different poles goes to zero. This implies that the n half spaces are glued together

at a point ξ = 0. Consequently the spatial part of the holographic boundary is a junction,

where n half lines are joined at a point. If one uses global coordinates for AdS2 instead of

the Poincare coordinates (3.28),

ds2
AdS2,G

=
1

sin2 σ

(
− dt2 + dσ2

)
(3.30)

the conformal boundary has the structure of n finite intervals σ = [0, π] which are joined

at two end points σ = 0, π. For the case of n = 2, i.e. the Janus solution, the boundary

structure can be made more precise by introducing Fefferman-Graham like coordinates [52].

The construction of Fefferman-Graham coordinates for case n > 3 is mathematically more

involved and will not be pursued here.

4 Supersymmetry and attractor mechanism

In this section we analyze the conditions for junctions of strings to preserve a fraction of

the original supersymmetries. First we review the case of (p, q) string junctions in flat
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space for ten-dimensional type IIB string theory. This analysis is then generalized for string

junctions in six-dimensionalN = (2, 0) supergravity. We find supersymmetric junctions with

an arbitrary number of stings and conjecture that our solutions describe their near-horizon

limit. Furthermore we discuss the attractor mechanism in six dimensions.

4.1 String junction of (p, q)-strings

In this section we review the conditions which need to be satisfied so that a junction of (p, q)

strings in type IIB preserves a quarter of the original supersymmetry [45]. The type IIB

supersymmetric algebra is given by

{Qi
α, Q

j
β} = (P+CΓµ)αβ

(
δijPµ + σij3 Zµ + σij1 Z̃µ

)
(4.1)

Here Qi
α, i = 1, 2 are two Majorana-Weyl supercharges. We have only kept the central

charges Zµ, Z̃µ associated with fundamental strings and D1-branes respectively. For static

configurations, P0 gives the tension of the string. A single static (p, q) string has tension

P0 = T =
√
Z2 + Z̃2 =

√
(p+ χq)2 + e−2φq2 (4.2)

It was shown in [45] that in order for a junction to be 1/4 supersymmetric, all the strings

lie in a plane - say the 1-2 plane - and the orientation of the i-th string must be determined

by the central charges

Z1 + iZ2 = |pi + qiχ|eiθi , Z̃1 + iZ̃2 = |qie−φ|eiθi (4.3)

where the angle θi is determined by

pi + qiτ = |pi + qiτ |eiθi (4.4)

Three (p, q) strings which meet at a point are oriented in the plane such that the tensions of

the strings in the three string junction balance. In particular we have charge conservation∑
i

qi = 0,
∑
i

pi = 0 (4.5)

and tension balance ∑
eiθiTi (4.6)
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Figure 2: (a) Three string junction (b) multi-string junction.

4.2 String junctions in six dimensions

Type IIB supergravity compactified on K3 gives the six-dimensional N = (2, 0) supergravity

[46] which has sixteen real supersymmetry generators. The scalars live in the coset

M =
SO(5, 21)

SO(5)× SO(21)
(4.7)

which can be parameterized by a coset vielbein

(V i
A, V

r
A) (4.8)

with i = 1, 2, · · · 5 and r = 1, 2, · · · 21. The field strengths H i and Hr are self dual and anti

self dual respectively

H i =
∑
A

V i
AG

A, H i = ∗H i, i = 1, 2 · · · , 5

Hr =
∑
A

V r
AG

A, Hr = − ∗Hr, r = 1, 2 · · · , 21 (4.9)

The third rank antisymmetric tensor fields GA with A = 1, 2, · · · , 26 satisfy simple Bianchi

identities and the charges

QA =

∫
S3

GA, A = 1, 2, · · · , 26 (4.10)
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are quantized and lie in a lattice Γ5,21. The supergravity theory has a multitude of BPS

dyonic string solutions which carry charges in the charge lattice Γ5,21. The ten-dimensional

interpretation of these strings is that they come from D1-branes and fundamental strings in

six dimensions, D5- and NS5-branes wrapping the M4 and D3-branes wrapping two-cycles

on M4. The six-dimensional supersymmetry algebra is given by

{Qa
α, Q

b
β} = (P+C(6)γ

µ
(6))αβ

(
Cab

(4)Pµ + (C(4)Γi)
abZi

µ

)
(4.11)

Where C(6) and C(4) denote the six-dimensional and four-dimensional charge conjugation

matrices. The supercharges Qa
α are six-dimensional simplectic Majorana spinors, where

a = 1, · · · 4 is an SO(5) spinor index. Zi, i = 1, 2, · · · 5 are central charges which transform

as a vector of SO(5). The central charge which appears in the supersymmetry algebra is

related to the charges (4.10) via the vielbein (4.8). A static string has a worldvolume which

is spanned by the time direction and a unit norm vector n̂ in R5 which indicates the spatial

orientation of the worldvolume. For this static string the time component of the central

charges Zi
0 vanishes and the spatial components Zi

m,m = 1, 2, · · · , 5 are given by

Zi
m = (n̂)m

∑
A

∫
S3
n̂

V i
AG

A (4.12)

Where S3
n̂ is the three-sphere at infinity in the four directions transverse to n̂. A single string

preserves half the supersymmetry if the following condition(
P0 + γ0γ

mΓiZ
i
m

)
ε = 0 (4.13)

has eight linearly independent solutions. The condition above translates into the following

condition for the tension P0,

T = P0 =

√∑
i

∑
m

(Zi
m)2 (4.14)

For each string we can choose an unit-norm vector n̂(k) in R5. In order for the string

junction to preserve a quarter of the supersymmetry, we need the central charge of the k-th

string to to have only spatial components given by(
Z(k)

)i
m

= (n̂(k))m
(
R · n̂(k)

)i |T(k)| (4.15)

R is a SO(5) rotation matrix, which is the same for all strings. It is possible to perform a

global R-symmetry rotation which sets R = 1. The condition for two strings with directions

n̂(k1) and n̂(k2) to possess compatible supersymmetries is given by(
[γmn̂

m
(k1), γnn̂

n
(k2)] + [Γin̂i(k1),Γ

jn̂j(k2)]
)
ε = 0 (4.16)
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If we choose without loss of generality that the unit vectors n̂k1 and n̂k2 lie in the 1-2 plane

then (4.16) is equivalent to

sin(θ12)
(

1 + γ12Γ12
)
ε = 0 (4.17)

Where θ12 is the angle between n̂k1 and n̂k2 . The condition (4.17) is the same for all strings

in the 1-2 plane whose spatial and central charge orientations are both given by n̂k. Hence,

an arbitrary number of such strings meeting at a junction preserve the same four supersym-

metries. Charge conservation then implies that the tension balance condition holds∑
k

T(k)~n(k) = 0 (4.18)

A single half-BPS dyonic string solution in six-dimensional supergravity which carries the

D1-, F1-, NS5- and D5-charges the near-horizon limit produces an AdS3 × S3 maximally

supersymmetric vacuum. The fact that we can obtain supersymmetric junctions with an

arbitrary number of strings leads to the conjecture that our half-BPS supergravity solution

give the near-horizon limit of a junction of self-dual BPS strings in six flat dimensions. Note

that the decoupling limit is expected to enhance the supersymmetries from four to eight,

which is the number of preserved supersymmetries of the half-BPS interface solutions.

4.3 The SO(2, 2) truncation and the attractor mechanism

The supergravity solution presented in Section 2 has four nontrivial scalars and four non

vanishing antisymmetric tensor fields. In particular all internal moduli of the M4 surface

and all antisymmetric tensor fields associated with the two-cycles of M4 are trivial.

Consequently the solution can be expressed as a consistent truncation of the full N =

(2, 0) supergravity. The full scalar coset (4.7) can be truncated to scalars living in the coset

SO(2, 2)/SO(2)×SO(2). The Γ5,21 charge lattice is truncated to a Γ2,2 charge lattice. More

details on the reduction can be found in Appendix B.

We know that the string tension must be invariant with respect to the global SO(2, 2)

transformations. The reduced central charge Zi is given by

Zi = V i
AQ

A, i = 1, 2 (4.19)

Zi transforms only under the SO(2) subgroup of the SO(5) R-symmetry and can be identified

with the central charge appearing in the supersymmetry algebra (4.11). The SO(2) invariant

T = |Z| =
√

(V 1
AQ

A)2 + (V 2
AQ

A)2 (4.20)
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reproduces the correct tension formulae for the D1/D5 and (p, q) systems. Plugging in our

expressions for vielbein and charges we obtain,

|Z| = e
φ
2

f 2
3

√(
e−φQD1 + f 4

3 Q̃D5 − 4e−φCKQNS5

)2

+
(
QF1 + χQD1 + e−φf 4

3QNS5 + 4CKQ̃D5

)2

(4.21)

with Q̃D5 = QD5 − χQNS5. All the charges in the expression above are Page charges.

Note that this expression is T and S-duality invariant and reproduces the expressions in the

literature for the particular cases of the D1/D5 and (p, q) systems.

The six-dimensional perspective can also help understand which scalars have their asymp-

totic values fixed by the Page charges. In particular, the six-dimensional equation of motion

for the scalars is

DµP ir
µ =

√
2

3
H i
µνρH

rµνρ (4.22)

where P ir
µ is the coset one-form field strength and i,r are indices corresponding to the two

different SO(2) groups. If we consider a six-dimensional dyonic string solution, the scalars

must be constant in the near-horizon region. This leads to the condition,

DµP ir
µ = 0 → H i

µνρH
rµνρ = 0 → V i

AV
r
BQ

AQB = 0, i = 1, 2, r = 1̇, 2̇ (4.23)

There are two possible solutions:

V i
AQ

A = 0 i = 1, 2 or V r
BQ

B = 0 r = 1, 2 (4.24)

The first solution corresponds to a non-BPS extremal attractor and is not interesting to us.

The second solution can be rewritten in terms of the asymptotic fields and charges as

4CK
e−

φ
2

f 2
3

+ χe
φ
2 f 2

3 = −QF1

QD1

e
φ
2 f 2

3 +
(
f 8

3 + 16C2
K

)e−φ2
f 2

3

QNS5

QD1

e−
φ
2

f 2
3

=
QD5

QD1

e
φ
2 f 2

3 +
(
4CK

e−
φ
2

f 2
3

− χe
φ
2 f 2

3

)QNS5

QD1

(4.25)

We see that in general the particular combination of scalars fixed by the attractor mech-

anism depends on the charges.

4.4 Expressing the moduli in terms of physical parameters

In Section 2.2 it was shown that the solution with n poles of H depends on 6n− 4 moduli.

The analysis of Section 3.2 showed that in general each asymptotic region associated with
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a pole of H carries four charges, namely D1, F1-branes as well as wrapped D5- and NS5-

branes. Taking charge conservation into account, this means that the solution carries 4n− 4

independent charges. From the attractor mechanism discussed in the previous section, it

follows that at each pole there are two combinations of the four scalars which are attracted

and fixed by the charges and two combinations which are not attracted and can take any

value. Consequently for each pole there are two asymptotic values for the unattracted scalars,

which are dual to sources for marginal deformations of the associated CFT. In summary there

are 2n physical parameters in addition to the 4n− 4 charges, in agreement with the number

of moduli of the solution, 6n− 4.

The requirement that the junction only has Ramond-Ramond charges leads to simple con-

ditions involving poles and residues of the relevant harmonic and meromorphic functions.

However, it is a mathematical challenge to express all the global moduli of the solution in

terms of the physical parameters. This problem can be solved only numerically or perturba-

tively in special cases.

5 The three-string junction

In this section we present the special case in which the regular solutions given in Section 2.2

have three asymptotic regions. The Riemann surface Σ is then given by the upper half-plane

with three poles of H located at z = 0, 1,∞. The other relevant functions A,B and K have

four poles on the real axis, in positions p1, p2, p3, p4. These solutions are dual to junctions of

three two-dimensional CFTs defined on half-spaces joined at a 0 + 1-dimensional interface,

as illustrated in Figure 4.

We have the following expressions for the harmonic function H,

H =
2ycH,0
x2 + y2

+
2ycH,1

(x− 1)2 + y2
+ 2ycH,∞ (5.1)

where z = x+ iy. Similarly, Equation (2.11) reduces to

A+ Ā = 2y
4∑
i=1

cA,i
(x− pi)2 + y2

, −i(A− Ā) = 2
4∑
i=1

cA,i(x− pi)
(x− pi)2 + y2

+ 2a (5.2)

The other functions have similar expressions. As explained in Section 2.2, the residues of B

and K are not independent. Given the definition of B in (2.12), we can express the residues

cB,i in terms of the residues of H and the positions of the poles of A,

cB,i = −B0
cH,∞p

2
i (pi − 1)2 + cH,1p

2
i + cH,0(pi − 1)2∏

j 6=i(pi − pj)
, i = 1 . . . 4 (5.3)
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The harmonic and meromorphic functions depend on a total of fourteen parameters,

namely the positions of the poles of A, p1 . . . p4, the residues of H, cH,0, cH,1, cH,∞, the

residues of A, cA,1 . . . cA,4, two additive constants in the definition of A and K̃, a, k, and a

multiplicative constant in the definition of B, B0.

The main advantage of parameterizing our solutions with poles and residues of the various

functions is that global regularity is guaranteed provided that all the residues are positive and

that the poles are on the real axis. On the other hand, it is difficult to obtain examples with

particular asymptotic values of physical fields and charges and, consequently, to study the

dual CFT. It would be desirable to express the solutions using the physical fields and charges

as independent parameters. However, the relation between global and physical parameters

is non-linear and the change of parameters can be performed analytically only in particular

cases, such as the degeneration limits studied in Section 5.2.

5.1 Pure Ramond-Ramond junctions

In order to have junctions with simple dual conformal field theories, it is helpful to set to

zero the Neveu-Schwarz charges in all asymptotic regions.

In this case, each of the three asymptotic regions will be dual to a conformal field the-

ory given by the IR fixed point of a two-dimensional N = (4, 4) theory defined on the

worldvolume of a D1-D5 systems.

The requirement that the NS5-charge is zero is equivalent to demanding that the expan-

sion coefficient b1 vanishes in all asymptotic regions. Using (5.3) we can explicitly evaluate

the coefficient b1 for the region at z = 0,

b1

∣∣
z=0

= cH,0

∑
i

1
pi
− 2∏

i pi
(5.4)

The vanishing of the NS5 charge then leads to∑
i

1

pi
= 2 (5.5)

Similarly, the same condition for the pole at z =∞ is∑
i

pi = 2 (5.6)

The vanishing of the NS5-charge in the third region is automatic due to charge conservation.

Furthermore, we need to set the fundamental string charge to zero as well. This leads to the

conditions

a1k0 + a0k1 = 0 (5.7)
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in two asymptotic regions. More explicitly, the above conditions can be rewritten as follows(∑
i

cA,i
p2
i

)(∑
i

c2
B,i

cA,ipi
− k
)

+
(∑

i

c2
B,i

cA,ip2
i

)(∑
i

cA,i
pi
− a
)

= 0 (5.8)

(∑
i

cA,i
)
k +

(∑
i

c2
B,i

cA,i

)
a = 0 (5.9)

These equations are linear in a and k and admit a simple solution. Finally, we note that the

resulting six-dimensional dilaton ra has a simple expression in terms of the local parameter

b0,

r4
a = e−φf 4

3

∣∣∣
z=a

= 4b2
0

∣∣∣
z=a

, a = 0,∞ (5.10)

5.2 Degeneration limits

A punctured Riemann surface admits interesting degeneration limits in which some of the

punctures become very close to each other. In string perturbation theory, this degeneration

limit corresponds to an amplitude factorizing into lower order amplitudes. Another recent

example arises in the context of Gaiotto dualities [53], where in the degeneration limit a

quiver gauge theory becomes weekly coupled.

More specifically, we can consider the limit of our solutions in which two poles of A

collide with a pole of H, i.e. approach one of the asymptotic AdS3×S3×M4 regions. If the

corresponding residues of A and H go to zero in the appropriate way, we obtain a solution

where the charges in one of the regions are very small compared to the ones in the other

regions. In this limit, the three-pole solution reduces to a probe brane in a background given

by the two-pole Janus solution studied in [1] and [43]. This limit will be studied in the next

subsection and is depicted in Figure 3 (b).

Another example is the (doubly-degenerate) limit in which two poles of A become very

close to the asymptotic region at z = 0 and the other two poles of A become very close to

z =∞. This limit is illustrated graphically in Figure 3 (c). Part of the reason why the limit

is interesting is that the Neveu-Schwarz charges of the solution can be set to zero giving a

solution with a clear CFT interpretation; a solution where only one pole of A collides with

an asymptotic region would have non-vanishing NS5-charge. Moreover, we will see that, in

contrast to the probe limit, this degeneration limit allows for finite charges and vanishing

jump in the unattracted axion.

In Section 6, the entanglement entropy is calculated in these two degeneration limits and

expressed in terms of the physical data.
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Figure 3: Degeneration limit of a three-junction . The junction is non-degenerate in (a). (b)
depicts the probe limit while (c) is the degeneration limit studied in Section 5.2.2.

5.2.1 The probe limit

Without any loss of generality, we will assume the probe to be located at z = 1. In the

following analysis we will denote the charges in the asymptotic region at z = 0 by QD1, QD5

and the probe charges by εqD1, εqD5 with ε � 1. The charges in the third region at z = ∞
are determined by charge conservation. We will take the meromorphic function A in the

form

A(z) = i

(
cA,1
z − p1

+
cA,2
z − p2

+

√
γ/λε

z − 1− αε
+

√
γλε

z − 1 + βε
+ a

)
(5.11)

and the harmonic function H in the form

H(z, z̄) = i

(
cH,0
z

+
ω2ε2

z − 1
− zcH,∞

)
+ c.c. (5.12)

With these definitions, the probe parameters α, β, γ, λ and ω are all of order one. Note that

the residues of the functions A,B and K which correspond to the poles colliding with the

z = 1 asymptotic regions all vanish as

cB,i, cK,i = O(ε), i = 3, 4 (5.13)

so that we can recover the two-pole solution for ε = 0.

We start by studying the solution to order ε0, i.e. expressing the moduli in terms of the

background physical parameters. For simplicity, we can set to zero the additive constants in

the definition of A and K,

a = k = 0 (5.14)
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Note that with this choice the fundamental string charge of the background geometry is

automatically zero. As seen before, it is particularly convenient to study a pure Ramond-

Ramond solution, and the condition for the vanishing of the NS5-brane charge reduces to a

simple relation between the positions of the first two poles of A,

p1 = −p2 = p (5.15)

The other global parameters of the solution can be expressed in terms of the physical fields

of the background geometry. The residues of A are given by

cA,1 + cA,2 = −QD5B0

4π2
, cA,1 − cA,2 = p∆χ0 (5.16)

The residues of H are

cH,0 = −p2 r2
0

2B0

, cH,∞ = − r2
∞

2B0

(5.17)

and the constant B0 has the expression

B0 = −4π2p

√
(r2

0 + r2
∞)2

QD1QD5

+
∆χ2

0

Q2
D5

(5.18)

In the above expressions, r0 and r∞ are defined as in (5.10).

Similarly, ∆χ0 = χ0−χ∞ = χ0 denotes the jump in the axion in the background geometry.

We can assume without any loss of generality that QD1, QD5 > 0. This leads to a negative

value for the constant B0. We will also assume that the probe charges have the same sign,

since we know that a brane with charges of opposite sign breaks all supersymmetries.

The position of the first two poles of A, denoted by p, has not been fixed yet. Note that

the scaling p → const p rescales all the residues, but leaves the physical fields unchanged.

This symmetry correspond to a rescaling of the complex coordinate z and could be used to

set p = 1 if the probe brane was not present.

So far the probe brane has not been included in the analysis. Next, we consider the order

ε terms in our solution. As in the analysis of the background geometry, we will consider a

probe brane with vanishing Neveu-Schwarz charges. The vanishing of the NS5-brane charge

leads to

α = β (5.19)

In other words, to have vanishing NS5-charge we need the extra two poles of A to approach

the z = 1 region symmetrically. Moreover, the vanishing of the fundamental string charge

can be used to find an expression for the parameter γ,

γ =
cA,1cA,2p

2

α2(p2 − 1)2

((cH,0 + cH,∞)α2 + ω2

cH,0 + p2cH,∞

)2 (p+ 1)cA,1 − (p− 1)cA,2
(p− 1)cA,1 − (p+ 1)cA,2

(5.20)
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Global regularity demands that all the residues of A are real and positive. To avoid producing

two imaginary residues, we need γ to be positive. It is immediate to see that this requirement

can be satisfied only if

cA,1 ≥
p+ 1

p− 1
cA,2, p > 1 or cA,2 ≥

p+ 1

p− 1
cA,1, p > 1 (5.21)

These conditions are quite interesting: in order to have a regular solution, the residues of A

cannot be equal to each other. In other words, a symmetric pure Ramond-Ramond junction

must be singular in the probe limit. In particular, we cannot have a regular solution for

a back reacted Ramond-Ramond brane in the AdS3 Ramond-Ramond vacuum. Moreover,

because of (5.16), a regular solution needs to have a jump in the unattracted axionic fields

at least in the probe limit.

The next step is to set the value of the six-dimensional dilaton in the probe region, which

will be denoted with r1. This can be done by fixing the parameter ω to

ω2 = −α2p
2 − 1

2B0

r2
1 (5.22)

Moreover, one can find an expression for the ratio of charges of the probe brane,

qD1

qD5

=
QD1

QD5

p∆χ0 −
√

(r2
0 + r2

∞)2QD5

QD1
+ ∆χ2

0

p∆χ0 +

√
(r2

0 + r2
∞)2QD5

QD1
+ ∆χ2

0

(5.23)

Since the parameters α and λ do not appear explicitly, this formula provides an expression

for p in terms of the physical fields only,

p = sign(∆χ0)
qD1QD5 +QD1qD5

QD1qD5 − qD1QD5

√
QD5(r2

0 + r2
∞)2

QD1∆χ2
0

+ 1 (5.24)

From the expression (5.24), we see once more that we need a non-vanishing jump in the axion.

Since p needs to stay finite, we need qD1

qD5
6= QD1

QD5
. This requirement is also expected from the

analysis in Section 4.2, where we need different charge vectors n̂k to avoid a vanishing angle

between two strings. Moreover, we know that p needs to be positive to have a regular

solution. This leads to the simple regularity requirement

Q2
D1q

2
D5 − q2

D1Q
2
D5

∆χ0

> 0 (5.25)
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which only involves the physical fields. We are left with two parameters to fix, α and λ. It

is convenient to write an expression for the ratio of the central charges

qD1qD5

QD1QD5

=
α2

4

(
λ+

1

λ

)(p(r2
0 + r2

1) +
r2
∞ − r2

1
p

)2

(r2
0 + r2

∞)2 +
QD1

QD5
∆χ2

0

(5.26)

It is immediate to solve this expression for α. Finally, we can write the jump in the axion

of the probe region, ∆χ1 = χ1 − χ∞, as follows,

∆χ1 =
qD5

p2 − 1

{
(r2

0 + r2
1)p2 + r2

∞ − r2
1

2
√
qD1qD5

(
λ− 1

λ

)
+

2p2QD1∆χ0

qD1QD5 +QD1qD5

}
(5.27)

This is a simple quadratic equation and can be solved exactly,

λ = Ω+
√

Ω2 + 1, Ω =

√
qD1

qD5

(qD1QD5 +QD1qD5)(p2 − 1)∆χ1 − 2p2QD1qD5∆χ0

(qD1QD5 +QD1qD5)
(
(r2

0 + r2
1)p2 + r2

∞ − r2
1

) (5.28)

If we use Equation (5.24), the parameter λ can be expressed only in terms of physical fields.

Similarly, the expression (5.28) can be used with (5.26), (5.19), (5.20) and (5.22) to express

all the probe parameters in terms of the physical fields alone.

The expression for λ (5.28) is manifestly real and positive for all values of the physical

parameters. Moreover, according to (5.26), if λ is positive, then α will be real and A will

have its singularities on the real axis. It follows that the relation (5.25) is the only constraint

on the physical fields coming from regularity.

The final step is to consider the order ε corrections to the background global parameters.

After some algebra, one can see that the residues of H get order ε corrections only through

the constant B0,

cH,0 = −p2 r2
0

2B0

, cH,∞ = − r2
∞

2B0

(5.29)

The residues of A become

cA,1 + cA,2 = −B0QD5

4π2
− p2√γ

(
λ+

1

λ

)
ε, cA,1 − cA,2 = p∆χ0 − p

√
γ
(
λ+

1

λ

)
ε (5.30)

The multiplicative constant B0 has simple corrections as well

B0 = −4π2p

√
(r2

0 + r2
∞)2

QD1QD5

+
∆χ2

0

Q2
D5

(
1 +

ε

2
sign (QD1qD5 − qD1QD5)

( qD1

QD1

+
qD5

QD5

))
(5.31)

With these expressions for the parameters the Neveu-Schwarz charges in all regions vanish

up to order ε2.
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5.2.2 The doubly-degenerate limit

The probe limit studied in the previous subsection allowed us to compute the global pa-

rameters of our solution in terms of the physical data in the asymptotic regions order by

order in ε. However, in that limit, the charges in one of the asymptotic regions need to be

small and the jump in the unattracted axion cannot be set to zero. It is desirable to find

a tractable class of solutions which have charges of order one in all asymptotic regions and

display jumps only in the six-dimensional dilaton. In this subsection, we examine another

limit in which four poles of A pairwise become very close to two asymptotic region. We show

that it leads to solutions with the above properties. However, there is a price to pay since

the expansion parameter ε can not be taken all the way to zero without getting a solution

with some singularity.

If we want to keep the asymptotic regions at z = 0, 1,∞, the harmonic function H can

be taken in the form

H = i
(
ε
cH,0
z

+ ε
cH,1
z − 1

− z cH,∞
ε

)
+ c.c. (5.32)

and A is equal to

A = i
(
ε
cA,1
z − αε

+ ε
cA,2
z + αε

+ ε
cA,3

z − 1− βε
+ ε

cA,4
z − 1 + βε

+ a
)

(5.33)

Here ε is taken to be small but finite. The reasons why some of the residues have a factor of

ε will be clear in the following analysis. Also note that this is not the most general ansatz

since the poles of A approach the poles of H at the same rate. The function B is taken to

be equal to

B = i

(
cH,0(z − 1)2 + cH,1z

2
)
ε2 + cH,∞z

2(z − 1)2

(z2 − α2ε2)
(
(z − 1)2 − β2ε2

) (5.34)

To obtain the above expression, the constant B0 in the definition (2.12) of B has been set

to −ε. We can focus our analysis to the region of Σ close to the pole of H at z = 0 and

introduce the coordinates

z → εu (5.35)

The functions H and A can be written in the new coordinates as

H = i
(cH,0
u

+
cH,1
u− 1

ε

− cH,∞u
)

+ c.c.

A = i
( cA,1
u− α

+
cA,2
u+ α

+
cA,3

u− 1
ε
− β

+
cA,4

u− 1
ε

+ β
+ a
)

(5.36)

This change of coordinates has moved one of the asymptotic regions from z = 1 to u =

1/ε� 1.
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In the limit ε → 0, A, B and H become equal to the functions corresponding to a strip

solution with only two asymptotic regions at u = 0, u = ∞. In analogy with the analysis

of the strip solution carried out in [1], it is possible to set the axion to zero in the two

asymptotic regions. Interestingly, the dependence from the asymptotic region at z = 1 has

completely dropped. In other words, the regions at z = 0 and z = 1 lost communication

and, as far as the region close to z = 0 is concerned, there is only another asymptotic region

for z =∞. Note that we cannot take the limit u→∞ in the above expressions if ε is small

but finite: at some point, order ε terms would become relevant and we would start getting

to the other two asymptotic regions.

The analysis for the region close to z = 1 is completely analogous. On the other side, the

portion of Σ where z is of order one can become singular, with the metric factor f1 blowing

up like 1
ε
. This makes intuitive sense since, if we get the degeneration limit all the way, the

two regions at z = 0, 1 are stretched infinitely far from the region at z = ∞. Since all the

poles of A are located in those two regions, the pole of H at z = ∞ is left alone and the

solution is expected to become singular. However, the singular region is stretched infinitely

apart from the regions at z = 0, 1 in the degenerate limit.

In the following analysis, we will keep ε small but finite so that the solution is everywhere

regular. It is possible to express the global parameters in terms of the physical fields order

by order in ε. We can focus on solutions with no jump in the unattracted axions and with

vanishing Neveu-Schwarz charges. With some algebra, one can express the residues of the

harmonic function H as

cH,0 =
QD1QD5

32π4

r2
0

(r2
0 + r2

∞)2
+O(ε2)

cH,1 =
qD1qD5

32π4

r2
1

(r2
1 + r2

∞)2
+O(ε2)

cH,∞ =
r2
∞
2

+O(ε2) (5.37)

Note that there are no order ε corrections. The positions of the poles of A are now given by

α =
1

4π2

√
QD1QD5

r2
0 + r2

∞
+O(ε2), β =

1

4π2

√
qD1qD5

r2
1 + r2

∞
+O(ε2) (5.38)

The shift constants in the definition of A and K are of order ε, while the expressions for the

residues of A to the leading order are,

cA,1 = cA,2 =
QD5

8π2
+O(ε), cA,3 = cA,4 =

qD5

8π2
+O(ε) (5.39)
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To have regular solutions with positive residues, all charges need to have the same sign. It

is also interesting to note that the solution is singular if the ratios of the charges in the two

regions are equal to each other, qD1/QD1 = qD5/QD5. Solutions of this sort are expected to

be singular from the analysis in Section 4.2 since two branches of a string junction collapse

when the corresponding unit norm vectors n̂k become parallel.

6 Boundary entropy

A proposal to calculate the entanglement entropy of a CFTd with a dual description as a

gravitational theory in AdSd+1 was discussed in [47, 48].

In Poincaré coordinates, the CFT is defined on the Minkowski space R1,d−1. This space

can be thought of as the boundary of AdSd+1. A subsystem A is a d-dimensional spatial

region in a constant-time slice. One can find a static minimal surface γA which extends into

the AdSd+1 bulk and ends on the boundary of A as one approaches the boundary of AdSd+1.

The holographic entanglement entropy is then given by the following formula [47, 48],

SA =
Area(γA)

4G
(d+1)
N

(6.1)

where Area(γA) denotes the area of the minimal surface γA and G
(d+1)
N is the Newton

constant for AdSd+1 gravity. In the case of AdS3, the area A is an interval and the boundary

∂A is a collection of points. The minimal surface is a spacelike geodesic connecting these

points in the AdS3 bulk.

It was argued in [54, 55] that the boundary entropy of an interface conformal field theory

can be related to the entanglement entropy in case A is a symmetric interval enclosing the

interface. The holographic prescription was used in [55] to calculate boundary entropy for

the non-supersymmetric Janus solution with AdS3 asymptotics, finding agreement to leading

order in the deformation parameter with a boundary conformal field theory calculation.

In [43] the holographic calculation of the boundary entropy was generalized for the BPS

Janus solution with AdS3 × S3 asymptotics found in [1]. The prescription for the minimal

area surface has to be generalized. The minimal area surface is integrated over all of Σ as

well as S2 ×M4.

SA =
1

4GN

∫
S2

dΩ2

∫
M4

dΩ4

∫
Σ

ρ2f 2
2 f

4
3 (6.2)

Using this prescription it was shown in [43] that the holographic boundary entropy exactly

agrees with the BCFT calculation in the case where the six-dimensional dilaton jumps across
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Figure 4: (a) The static minimal surface for entanglement entropy covers two-sphere S2

and Riemann surface Σ and located at z = z0 in AdS2. The UV cutoff is taken around the
three poles of H. (b) On the CFT side the area A is the star shaped region with interval
xi ∈ [0, z0] in the three leads i = 1, 2, 3.

the interface. It must be noted that the integration over the fibered three-sphere and the

M4 can be interpreted as tracing over all KK-states.

6.1 Holographic boundary entropy for three-junctions

We now calculate the entanglement entropy for the star-shaped region depicted in Figure 4.

Our starting point is a relatively simple expression for the integrand in (6.2),

f 2
2 f

4
3ρ

2 =
(A+ Ā)K − (B + B̄)2

|B|2
|∂H|2 =

4

B2
0

(∑
i,j

Lij
|z − pi|2|z − pj|2

) y2

4∏
i=1

|z − pi|2

|z|4|z − 1|4

(6.3)

where the matrix Lij is defined as

Lij =
cA,ic

2
B,j

cA,j
− cB,icB,j (6.4)

The entanglement entropy is then given by the integral of a rational function. It is convenient

to expand this integral using a basis of suitable integrals,

SA =
VS2

4GNB2
0

(
l1I1 + l2I2 + l3I3 + l4I4 + l5I5 + l6I6

)
(6.5)
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The integrals are

I1 =

∫
(x− 1)(|z|2 − x)y2dxdy

|z|4|z − 1|4
I2 = −

∫
x(|z|2 − x)y2dxdy

|z|4|z − 1|4

I3 =

∫
x(x− 1)y2dxdy

|z|4|z − 1|4
I4 = −

∫
(x− 1)y2dxdy

|z|4|z − 1|4

I5 =

∫
xy2dxdy

|z|4|z − 1|4
I6 =

∫
(|z|2 − x)y2dxdy

|z|2|z − 1|4
(6.6)

The six integrals above have been chosen so that they are not independent. First of all, the

first three integrals, I1, I2 and I3, can be related by a change of coordinates and have the

same value which can be computed exactly,

I1 = I2 = I3 = −π
8

(6.7)

Moreover, the last three integrals, I4, I5 and I6, are divergent, and each of them can be

regularized introducing a single cutoff. In particular, the divergent contribution to I6 comes

only from the pole at z = ∞ while I4 and I5 diverge due to the poles at z = 0 and z = 1

respectively. These integrals are related by a change of coordinates as well, and are equal to

each other as functions of the respective cutoffs,

I4(λ) = I5(λ) = I6(λ) =
π

2
log

1

λ
+O(λ2) (6.8)

The entanglement entropy depends on the parameters of the solution only through the

expansion coefficients, which are given as follows,

l1 = −4
∑

i 6=j 6=k 6=l

Lijp
2
k

l2 = −4
∑

i 6=j 6=k 6=l

Lij(1− pk)2 + l6

l3 = 2
∑

i 6=j 6=k 6=l

Lij(4pkpl − 2pk − 2pl + 1)

l4 = 2
∑

i 6=j 6=k 6=l

Lijp
2
kp

2
l

l5 = 2
∑

i 6=j 6=k 6=l

Lij(1− pk)2(1− pl)2

l6 = 2
∑

i 6=j 6=k 6=l

Lij

(6.9)

It is useful to note that three of these coefficients are related to the AdS3 radii in the three

asymptotic regions given by

l4 = B2
0R

4
AdS3,0

, l5 = B2
0R

4
AdS3,1

, l6 = B2
0R

4
AdS3,∞ (6.10)

In conclusion, we can express the entanglement entropy as

SA =
VS3

4GNB2
0

(
l4 log

1

λ1

+ l5 log
1

λ2

+ l6 log
1

λ3

+
l1 + l2 + l3

4

)
(6.11)
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Following the analysis of [43], we consider separately each asymptotic region, introduce a

Fefferman-Graham coordinate system

ds2 = R2
AdS3

dξ2 − dt2 + dη2

ξ2
+ . . . (6.12)

and set the cutoff at ξ = ε. Using the notation in Equation 6.11, the cutoff becomes

λ = |z − pH | =
ε

z0

2|b0|√
a1k1 − b2

1

(6.13)

The entanglement entropy can then be written as [54]

SA =
cF
6

log
z0

ε
+ Sbdy (6.14)

where cF is the central charge of the BCFT obtained by folding the conformal field theories

on the three branches of the junction. The boundary entropy is the finite part of the

entanglement entropy,

Sbdy =
VS3

4GN

( ∑
a=0,1,∞

R4
AdS3,a

log
R2
AdS3,a

4 cH,a
+

1

B2
0

∑
i 6=j 6=k 6=l

Lij
(
pk − pl

)2

)
(6.15)

As explained in [54], the boundary entropy is identified up to a non-universal constant which

does not depend on the presence of the boundary. The contribution to the boundary entropy

from the divergent integrals I4, I5 and I6 has a simple expression in terms of the AdS3 radii

in the various regions. These terms are analogous to the ones arising in the solution with

two asymptotic regions discussed in [43]. The last term in Equation (6.15) is the result of

the finite integrals I1, I2 and I3, and has a less immediate physical interpretation.

Given the complexity to express the parameters in terms of physical ones, it is perhaps

more illuminating to consider the degeneration limits as discussed in the previous section.

To study the boundary entropy in the probe limit, it is useful to introduce the quantities

NB =
QD1QD5

4GNVS3

, ∆NB =
(QD1qD5 + qD1QD5)

4GNVS3

ε (6.16)

With this notation, the central charges of the regions at z = 0 and z =∞ are equal to 2
3
NB

and 2
3
(NB + ∆NB) respectively, while the numbers of bosons in the corresponding conformal

field theories are NB and NB + ∆NB. In the case of the probe limit, the total boundary

entropy can be written as

Sbdy =
NB + ∆NB

4
log

(r2
0 + r2

∞)2 +
QD1

QD5
∆χ2

0

4r2
0r

2
∞

− ∆NB

4
log

√
QD1

QD5

∆χ0

2r2
0

+ c̃ (6.17)
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c̃ is a constant which does not depend on the unattracted scalars,

c̃ =
∆NB

4

(
log

QD1qD5 + qD1QD5

QD1qD5 − qD1QD5

+ sign(QD1qD5 − qD1QD5) +
1 + sign qD5

2

)
(6.18)

The order one terms in the above expressions give exactly the result for the two-pole solutions

studied in [43]. It is interesting to note that the scalars related to the probe asymptotic

region, r2
1 and ∆χ1, do not appear in any order ε correction. This occurs because the

radius of the probe region is of order ε2. Instead, the leading correction to the boundary

entropy comes from the change of central charge between the two asymptotic regions at

z = 0,∞ which is produced by the probe. Moreover, the combination
√

QD1

QD5
∆χ0 is exactly

the unattracted axion in the region at z = 0. Hence, the above expression depends on the

D1- and D5-charges only through NB and ∆NB while the ratios of charges contribute only

to an additive constant that, in principle, can be set to zero with a redefinition of the cutoff.

As expected, the boundary entropy depends on the unattracted scalars logarithmically. The

order ε correction involving the unattracted axion has the same form as the one involving

r0.

On the other hand, the boundary entropy in the doubly-degenerate limit evaluates to

Sbdy =
NB,0

4
log

(r2
∞ + r2

0)2

4r2
0r

2
∞

+
NB,1

4
log

(r2
∞ + r2

1)2

4r2
1r

2
∞

+
NB,1 +NB,0 −NB,∞

4
log 2r2

∞+ c̃ (6.19)

where we denote here the number of compact bosons in each asymptotic region respectively

by NB,0, NB,1 and NB,∞. Again c̃ depends only on the charges and is equal to

c̃ =
NB,∞

8

(
log

(qD1+QD1)(qD5+QD5)

16π4
+ 1
)
− NB,0

8

(
log

QD1QD5

16π4
+ 1
)
− NB,1

8

(
log

qD1qD5

16π4
+ 1
)

(6.20)

The logarithmic term in the boundary entropy (6.19) allows for a simple interpretation

as the first two terms are the the same as the boundary entropy of two decoupled Janus

interfaces with NB,0 and NB,1 bosons respectively. The third term in(6.19) can be interpreted

as coming from NB,∞ −NB,0 −NB,1 bosons which satisfy Neumann boundary conditions.

Lastly, the non-logarithmic terms c̃ in both degeneration limits (6.18) and (6.20) only

depend on the charges but not the unattracted scalars. If one considers the difference of

the boundary entropy of two configuration with the same charges but different jumps in the

unattracted scalars, then c̃ will drop out of the expression. This may suggest that the term

could be identified with the non-universal constant in [54]. We have however been unable to

prove this statement away from the degeneration limit.
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6.2 Perspectives from a CFT toy model

The CFT theory dual to the AdS3×S3 type IIB Supergravity solutions is a N = (4, 4) CFT.

For generic values of the D1-,F1-,D5- and NS5-charges, this CFT is a U-dual of the D1/D5

CFT. In this section we will focus on a much simpler toy model CFT, where the conformal

boundary conditions for junctions and the boundary entropy can be calculated. The aim is

to compare general features of the CFT and holographic boundary entropy.

Under the folding trick, one could fold the branches to the same side of the interface, and

treat the theory as a boundary CFT whose central charge is the sum of the central charges of

all the branches. Different interface CFT’s then correspond to different conformal boundary

conditions in the folded theory. The toy model theory we consider is the action of n free

scalar fields defined on the half-line which is given by

S =

∫
σ>0

dτdσ
∑
i,j

gij

(
∂τφi∂τφj − ∂σφi∂σφj

)
(6.21)

and we take gij = δij. In the context of quantum wires which are usually systems of fermions,

the bosonic description of interest here is obtained via bosonization. The currents ∂±φi,

where σ± = σ ± τ , are related to the chiral fermion numbers which are usually taken as

discrete [5]. It is therefore most natural for us to consider compact scalars, each having

radius Ri

φi ∼ φi + 2πRi, i = 1, 2, · · ·n (6.22)

Note that the metric we have taken is not the most general. If one imposes that all the

scalars have the same periodicity, one rescales the scalars so that the metric would become

gij = diag(R2
1, · · ·R2

n). The stress energy tensor of the theory is given by

Tστ =
n∑
i=1

∂τφi∂σφi (6.23)

The variation of the action picks up a boundary term

δSbound =

∫
dτ

n∑
i=1

∂σφiδφi|σ=0 (6.24)

Energy momentum conservation enforces that

Tστ |σ=0 =
n∑
i=1

∂τφi∂σφi|σ=0 = 0 (6.25)
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The variational principle demands that the boundary term in (6.24) vanishes at σ = 0.

A simple solution of this problem preserving time reversal and parity is given by imposing

Neumann or Dirichlet boundary conditions on the φi. More generally we can have

φ̂i(σ, τ) = O i
j φj(σ, τ) (6.26)

with O ∈ SO(n). We impose

∂σφ̂i|σ=0 = 0, i = 1, 2, · · · p
∂τ φ̂i|σ=0 = 0, i = p+ 1, · · ·n (6.27)

Since the conditions (6.24) and (6.25) are invariant under SO(n) rotations they are indeed

solved by the above conditions. In terms of the original fields, (6.27) translates to

n∑
j=1

O j
i ∂σφj = 0, i = 1, 2, · · · p

n∑
j=1

O j
i ∂τφj = 0, i = p+ 1, · · ·n (6.28)

It is also convenient to define the matrix

S = OT

(
Ip
−In−p

)
O (6.29)

such that the boundary conditions can be re-written as

∂+φ̂i|σ=0 =
n∑
j=1

Sji ∂−φ̂j|σ=0 (6.30)

as in [42, 56], which have discussed them in detail. We notice that these boundary conditions

are well-known in the context of open-string theory. They describe precisely Dp-branes

wrapping p-cycles in an n-torus. It is interesting to note that in [42, 56], the scalars considered

are generally non-compact. However, for compact scalars of given radii, these boundary

conditions only preserve non-trivial zero-modes at discrete sets of {O j
i }, corresponding to

Dp-branes wrapping the torus only a finite number of times.

In the case of n = 2, i.e. 2 branches joined at the interface, each with a free boson,

the most general boundary conditions preserving non-trivial zero-modes correspond to a

D1-brane with winding numbers q1 and q2, which are relatively prime integers, around the

respective sides of the torus. An example is shown in Figure (5).
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Figure 5: wrapping of a D1-brane with q1 = 3, q2 = 2.

The boundary condition is given by

O =

(
cosα sinα
− sinα cosα

)
(6.31)

with

cosα =
q1R1√

(q1R1)2 + (q2R2)2
, sinα =

q2R2√
(q1R1)2 + (q2R2)2

(6.32)

The corresponding boundary entropy is Sbdy = log gB, where

gB =

√
q2

1R
2
1 + q2

2R
2
2

2R1R2

(6.33)

The holographic calculation of the boundary entropy matches exactly the above free field

BCFT calculation [43], with winding q1 = q2 = 1. It is remarkable that the supergravity

solution picks out the precise boundary condition corresponding to a D1-brane wrapping the

diagonal of the torus exactly once.

In the case of n = 3, non-trivial boundary conditions could be obtained by considering

either D1- or D2-branes. It is not clear if there are simple expressions for the most general

windings that allow non-trivial zero-modes. However, guided by the geometric picture it is

not difficult to find explicit examples. The most immediate generalization of the n = 2 case

would be for a D1-brane to wrap q1 and q2 times around two of the three-cycles, with the

third cycle satisfying simple Dirichlet boundary condition. The gB factor is then given by

gB =

√
q2

1R
2
1 + q2

2R
2
2

2R1R2R3

(6.34)
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One could also consider a D1-brane wrapping the diagonal of the 3-torus. i.e. wrapping

once around each cycle. The boundary condition is given by the S-matrix

S =
1

R2
1 +R2

2 +R2
3

 R2
1 −R2

2 −R2
3 2R1R2 2R1R3

2R1R2 −R2
1 +R2

2 −R2
3 2R2R3

2R1R3 2R2R3 −R2
1 −R2

2 +R2
3

 (6.35)

and the corresponding gB factor is given by

gB =

√
R2

1 +R2
2 +R2

3

2R1R2R3

(6.36)

In all of these examples with non-trivial boundary entropy corresponding to the brane

wrapping a finite number of times in the n-torus, the value of the boundary entropy is always

given by

g =
Vp√

2pVTn
(6.37)

where Vp is the volume of the Dp-brane and VTn is the volume of the n-torus.

Comparing the result of the toy model three CFT junction (6.35) with the supergravity

calculation (6.15), it is interesting to note that for the supergravity result there is a constant

term appearing in addition to logarithm.

However, the log terms in the supergravity result does share many features with the toy

model. To begin with, let us revisit the probe limit. We can read off the gB factor there

gB =

(
(r2

0 + r2
∞)2 + QD1

QD5
∆χ2

0

)NB+∆NB
4√

2NBrNB0 rNB+∆NB∞
(
2
√

QD1

QD5
∆χ0

)∆NB
2

(6.38)

If we consider only the dependence of (6.38) from the six-dimensional dilaton, we see that the

numerator of the gB factor can be interpreted again as the volume of a NB+∆NB-dimensional

brane, while the denominator gives the square root of the volume of a 2NB+∆NB dimensional

torus4. In fact, to zeroth order in ∆NB, the contribution including the axion matches with

the CFT toy model in the presence of world-volume B-fields, as already noted in [43], where

the axion plays the role of B-fields.

We have also noted that for each given set of physical charges and moduli, the supergrav-

ity solution can be realized by more than a set of parameters, due to the non-linear relation

4There is a small mismatch in factors of 2 but that is only of order ∆NB .
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between them. It suggests that the supergravity solution might be realizing different bound-

ary conditions across the jumps, i.e. different winding numbers.

Note however that due to the complexity of the CFTs at this point it seems impossible

to construct a precise map between the supergravity solutions and the exact conformal

boundary conditions on the junction. The interpretation of the non-logarithmic terms in

(6.15) is not clear. It is interesting to note however, that the term, at least in the degenerate

limits, depends purely on the central charges. It is reminiscent of the non-universal terms as

briefly discussed in [54], which does not vary with boundary conditions for a given theory.

7 Discussion

In this paper we have continued the analysis of the half-BPS solutions found in [1] which

are locally asymptotic to AdS3 × S3 ×M4. In particular, we have derived formulae for all

Page charges associated with the solution, discussed the relevance of supersymmetry and the

attractor mechanism and clarified the relation of the moduli of the solution and the physical

parameters, i.e. the Page charges and asymptotic values of unattracted scalars.

The discussion of the attractor mechanism also leads to a conjectured relation between

the half-BPS supergravity solution and a junction of self-dual BPS strings in six flat dimen-

sions. A single half-BPS dyonic string solution in six-dimensional supergravity with D1, F1,

NS5 and D5 charges produces an AdS3×S3 supersymmetric vacuum the near-horizon limit.

The decoupling limit of the worldvolume theory produces a N = (4, 4) two-dimensional su-

perconformal field theory and the two theories are dual via the AdS/CFT correspondence.

One would expect that away from the string junction the decoupling limit is still at work.

As argued in Section 4.2 the string junction in flat space preserves four of the sixteen su-

persymmetries of N = (2, 0) supergravity. The decoupling limit is expected to enhance the

supersymmetries from four to eight, which is the number of preserved supersymmetries of

the half-BPS interface solutions. Moreover, the solutions we have found become singular

when the charge vectors in two asymptotic regions are taken to be parallel. Correspond-

ingly, in case of parallel charges, the angle between two strings in a six-dimensional junction

goes to zero and the two branches collapse. In this paper, we have discussed the half-BPS

interface solution with three asymptotic regions in detail. It is straightforward to generalize

the construction to solutions with n asymptotic regions and to relate them to junctions of n

dyonic strings in six dimensions.

We have explored the holographic dual of the supergravity solutions which is given by a

junction of n CFTs. The CFT is determined both by the four brane charges and the two

unattracted scalars of a given asymptotic region. The charges determine which particular
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U- duality transformation of the well known D1/D5 CFT one considers in each boundary

component. The values of the unattracted scalars determine at which point of the moduli

space, with respect to the two marginal deformations, the CFT lies. Additional evidence for

the identification between supergravity solutions and interface CFTs is provided by the exact

agreement of some calculations in the two theories. In [43] it was shown that the holographic

interface entropy of the half-BPS Janus solution constructed in [1] exactly agrees with the

boundary entropy of the corresponding interface CFT. In the present paper we have gener-

alized the calculation of the holographic boundary entropy to the case of a junction of three

CFTs. While the result (6.15) shares some features of the boundary entropy of a toy model

CFT introduced in Section 6.2, there are important differences. In particular the appearance

of a non-logarithmic term in the holographic boundary entropy has no counterpart in the

toy model calculation. The CFTs of the BPS junction are however much more complicated

than the single compact bosons considered in the toy model. First, for generic values of the

parameters the CFTs are not D1/D5 CFTs, which are relatively well understood. Second,

since the central charges are expressed in terms of conserved charges, the toy model for the

junction where all three central charges are equal seems impossible to realize. It would be

very interesting to find an interpretation for these terms on the CFT side. One suggestion

is that they are related to the tripartite entanglement (see e.g. [57]) of the CFT junctions.

One should note however, that the degenerate limits suggest that these non-log terms depend

only on the charges, and not on the unattracted scalars, which, in this respect, bears some

resemblance to non-universal terms in the boundary entropy as in [54].

Due to the highly nonlinear nature of the expressions for the charges and non attracted

scalars, it is most likely impossible to invert these relations in closed form, i.e. express the

moduli of the solution in terms of the charges and the values of non attracted scalars in the

asymptotic region. In order to simplify the discussion we considered several degeneration

limits where poles of the meromorphic functions approach each other and residues scale in

a prescribed fashion5.

These limits have provided us with tractable classes of solutions where the global moduli

have simple expressions in terms of the physical parameters. It would be very interesting to

use these solutions to calculate quantities - such as reflection and transmission coefficients

and bulk-boundary correlation functions - in the dual interface theories.

The junctions we have constructed have the form of a so-called star-graph, i.e. n semi

infinite lines joined at a single point. For 1+1-dimensional CFTs, more general configurations

are possible. For example instead of a triple junction one could consider two neighboring

5See also [44] for a similar discussion involving higher genus Riemann surfaces.
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interfaces on the real line, where the CFT in the middle only lives in a finite interval. Such

configurations are important for considering the fusion of interfaces on the CFT side (see e.g

[6, 37]). Further investigation is required to determine whether such configurations can be

realized holographically, possibly by considering more general metrics than AdS2.

A promising possible application of the duality between our supergravity solutions and

CFTs on star graphs is given by the study of quantum wires. Electrons in one-dimensional

conductors are not described by a Fermi liquid but instead by a Tomonaga-Luttinger (TL)

liquid. The spinless TL liquid has a bosonized formulation which corresponds to free com-

pactified bosons. The junction of two quantum wires has been analyzed utilizing conformal

field theory techniques (see for example [58]). While the field theories associated with dy-

onic strings are more complicated than the TL liquids, which are also non supersymmetric,

one might hope that the qualitative features of the theories are similar. For example the

discussion of multiple (p, q) string junctions given in [59] is very similar to the analysis of the

junctions of quantum wires in [42, 56, 60]. It is reasonable to expect that some of the prop-

erties of the strongly-coupled wires are modeled by the dual holographic interface solution in

supergravity, which has been the case in other applications of the AdS/CFT correspondence

to the quark-gluon plasma and to higher-dimensional condensed matter systems.
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A Details on the charges

In this appendix we define the three kind of charges which can be associated with branes,

namely the brane source charge, the Maxwell charge and the Page charge. For a detailed

discussion of these charges see [49]. The Bianchi identities for the AST are given by 6

dF̃3 + dχ ∧H3 = 0

dH3 = 0 (A.1)

Where

F̃3 = dC2 − χH3, F̃5 = dC4 −
1

4
C2 ∧H3 (A.2)

The equations of motion for the AST fields are

d(eφ ∗ F̃3)− 4F5 ∧H3 = 0

d(e−φ ∗H3)− eφdχ ∧ ∗F̃3 + 4F5 ∧ F̃3 = 0 (A.3)

In the following analysis we will only be interested in the five-brane and one-brane charge

and do not display the expressions for the three brane charge.

A.1 Brane source charges

The brane source charge is defined by writing the Bianchi identity and equations of motion

for the AST with all the terms on the left hand side. In the absence of brane sources the

6Note that we use ”supergravity” normalization of the C4 instead of ”string” normalization, which differ
by a factor of 4.
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right hand side is zero, whereas if brane sources are present there are delta function sources

on the right hand side. These sources arise from the variation of the worldvolume action of

the branes with respect to the antisymmetric tensor potential. Hence integrating the the left

hand side defines the brane source charge. The brane charge is localized and gauge invariant

but neither quantized nor conserved. The brane source charges for the five branes and one

branes are given by

Qbs
D5 =

∫
V4

(
dF̃3 + dχ ∧H3

)
Qbs
NS5 =

∫
V4

dH3

Qbs
D1 = −

∫
V8

(
d ∗ F̃3 +H3 ∧ F5

)
Qbs
F1 = −

∫
V8

(
de−φ ∗ H̃3 − eφdχ ∧ ∗F̃3 + 4F5 ∧ F̃3

)
(A.4)

A.2 Maxwell charges:

The Maxwell charges are given by the Integrals of the gauge invariant field strengths for the

fivebrane charge or their duals for the one brane charge

Qmax
D5 =

∫
S3

F̃3, Qmax
NS5 =

∫
S3

H3,

Qmax
D1 = −

∫
S7

∗F̃3, Qmax
F1 = −

∫
S7

e−φ ∗H3 (A.5)

The Maxwell charges are gauge invariant and conserved but neither localized nor quantized.

A.3 Page charges

The page charges can be obtained by writing the Bianchi identities as well as the equations

of motion as dj = 0 and integrating j over the appropriate surface. The Page charges are

localized, quantized and conserved but are not gauge invariant. The Page charges for the
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five branes and one branes are given by

QPage
D5 =

∫
S3

(
F̃3 + χH3

)
QPage
NS5 =

∫
S3

H3

QPage
D1 = −

∫
S7

(
eφ ∗ F̃3 − 4C4 ∧H3

)
QPage
F1 = −

∫
S7

(
e−φ ∗H3 − χeφ ∗ F̃3 + 4C4 ∧ dC2

)
(A.6)

The formula for QPage
F1 follows from the fact that the equation of motion for H3 (A.3) can be

rewritten in the following way:

d
(
e−φ ∗H3 − χeφ ∗ F̃ + 4C4 ∧ dC2

)
= 0 (A.7)

A.4 Evaluation of the page charges

The ansatz for the complex rank three anti-symmetric tensor field is given by

G = g(1)
a f 2

1 e
a ∧ ωAdS2 + g(2)

a f 2
2 e

a ∧ ωS2 (A.8)

It can be expressed in terms of potentials

f 2
1ρe

φ/2Re(g(1))z = ∂wb
(1) (A.9)

f 2
2ρe

φ/2Re(g(2))z = ∂wb
(2) (A.10)

f 2
1ρe

−φ/2Im(g(1))z + χf 2
1ρe

φ/2Re(g(1))z = ∂wc
(1) (A.11)

f 2
2ρe

−φ/2Im(g(2))z + χf 2
2ρe

φ/2Re(g(2))z = ∂wc
(2) (A.12)

The potentials c(1,2) and b(1,2) are expressed in terms of the meromorphic and harmonic

functions as follows

b(1) = − H(B + B̄)

(A+ Ā)K − (B + B̄)2
− h1, h1 =

1

2

∫
∂wH

B
+ c.c. (A.13)

b(2) = −i H(B − B̄)

(A+ Ā)K − (B − B̄)2
+ h̃1, h̃1 =

1

2i

∫
∂wH

B
+ c.c. (A.14)

c(1) = −i H(AB̄ − ĀB)

(A+ Ā)K − (B + B̄)2
+ h̃2, h̃2 =

1

2i

∫
A

B
∂wH + c.c. (A.15)

c(2) = − H(AB̄ + ĀB)

(A+ Ā)K − (B − B̄)2
+ h2, h2 =

1

2

∫
A

B
∂wH + c.c. (A.16)
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Using the expressions for the AST fields and the metric fields the expressions for the charges

can be reduced to line integrals over a curve C which together with the S2 forms a homology

three-sphere.

A.4.1 Five brane charges

In terms of the fields in the paper we have

H3 = eφ/2Re(G), F̃3 = e−φ/2Im(G) (A.17)

and for the relevant charges one has for the NS5-brane

QPage
NS5 =

∫
S3

H3 =

∫
S3

eφ/2Re(G)

=

∫
S2

f 2
2ρe

φ/2
(
Re(g2)zdz +Re(g2)z̄dz̄

)
= V ol(S2)

(∫
dz ∂zb

(2) +

∫
dz̄ ∂z̄b

(2)
)

(A.18)

and the Page charge for the D5-brane is

QPage
D5 =

∫
S3

(
F̃3 + χH3

)
=

∫
S3

(
e−φ/2Im(G) + χeφ/2Re(G)

)
=

∫
S3

f 2
2ρ
(
e−φ/2

(
Im(g2)zdz + Im(g2)z̄dz̄

)
+ χeφ/2

(
Re(g2)zdz +Re(g2)z̄dz̄

))
= V ol(S2)

(∫
dz ∂zc

(2) +

∫
dz̄ ∂z̄c

(2)
)

(A.19)

A.4.2 D1-brane charge

In this section we evaluate the D1 brane charge as well as the fundamental string charge.

For the D1-brane Page charge one has

Q
Page,(b)
D1 = −

∫
S7

(
eφ ∗ F̃3 − 4C4 ∧H3

)
(A.20)
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Where the first term in (A.20) can be expressed as∫
S7

eφ ∗ F̃3 =

∫
M4×S3

eφ/2 ∗ Im(G)

=

∫
M4×S3

eφ/2
(
− i Im(g(1))ze

z234567 + i Im(g(1))z̄e
z̄234567

)
=

∫
M4×S3

eφ/2f 4
3 f

2
2ρ
(
− i Im(g(1))zdz + i Im(g(1))z̄dz̄

)
ê234567

= V ol(S2)

∫
eφ/2f 4

3 f
2
2ρ
(
− i Im(g(1))zdz + i Im(g(1))z̄dz̄

)
= V ol(S2)

∫
eφ
f 4

3 f
2
2

f 2
1

(
− i
(
∂zc

(1) − χ∂zb(1)
)
dz + i

(
∂z̄c

(1) − χ∂z̄b(1)
)
dz̄
)

= V ol(S2)

∫
4K

A+ Ā

(A+ Ā)K − (B + B̄)2

(A+ Ā)K − (B − B̄)2

(
− i
(
∂zc

(1) − χ∂zb(1)
)
dz

+i
(
∂z̄c

(1) − χ∂z̄b(1)
)
dz̄
)

(A.21)

In the fifth line we used

Im(g(1))z =
eφ/2

f 2
1ρ
∂wc

(1) − eφ/2

f 2
1ρ
χ∂wb

(1) (A.22)

The second term in (A.20) can be expressed as∫
M4×S3

4C4 ∧H3 =

∫
M4×S3

4C4 ∧ eφ/2Re(G)

=

∫
M4×S3

eφ/24CK ê
4567 ∧

(
Re(g2)ze

z23 +Re(g2)z̄e
z̄23
)

=

∫
M4×S3

4eφ/2f 2
2ρCK

(
Re(g2)zdz +Re(g2)z̄dz̄

)
ê234567

= V ol(S2)

∫
4eφ/2f 2

2ρCK
(
Re(g2)zdz +Re(g2)z̄dz̄

)
= V ol(S2)

∫
4CK

(
∂zb

(2)dz + ∂z̄b
(2)dz̄

)
= V ol(S2)

∫ (
− 2i

B2 − B̄2

A+ Ā
− 2K̃

)(
∂zb

(2)dz + ∂z̄b
(2)dz̄

)
(A.23)
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A.4.3 Fundamental string charge

The relevant terms in the F1 brane charge are given by

QPage
F1 = −

∫
S7

(
e−φ ∗H3 − χeφ ∗ F̃3 + 4C4 ∧ dC2)

= −
∫
M4×S3

(
e−φ ∗H3 − χeφ ∗ F̃3 + 4C4 ∧ (F̃3 + χH3)

)
(A.24)

The three parts making up this charge are given by∫
S7

e−φ ∗H3 = V ol(S2)

∫
e−φ/2f 4

3 f
2
2ρ
(
− iRe(g1)zdz + iRe(g1)z̄dz̄

)
= V ol(S2)

∫
e−φ

f 4
3 f

2
2

f 2
1

(
− i∂zb(1)dz + i∂z̄b

(1)dz̄
)

= V ol(S2)

∫ (
(A+ Ā)K − (B + B̄)2

)2

K(A+ Ā)

(
− i∂zb(1)dz + i∂z̄b

(1)dz̄
)
(A.25)

The second part is given by

−
∫
S7

χeφ ∗ F̃3 = −V ol(S2)

∫
eφ/2χf 4

3 f
2
2ρ
(
− iIm(g1)zdz + iIm(g1)z̄dz̄

)
= V ol(S2)

∫
eφχ

f 4
3 f

2
2

f 2
1

(
i(∂zc

(1) − χ∂zb(1))dz − i(∂z̄c(1) − χ∂z̄b(1))dz̄
)

= V ol(S2)

∫
4K

A+ Ā

(A+ Ā)K − (B + B̄)2

(A+ Ā)K − (B − B̄)2

× χ
(
i(∂zc

(1) − χ∂zb(1))dz − i(∂z̄c(1) − χ∂z̄b(1))dz̄
)

(A.26)

The third term is given by∫
4C4 ∧ dC2 =

∫
4C4 ∧ (F̃3 + χH3)

=

∫
4C4 ∧

(
e−φ/2Im(G) + χeφ/2Re(G)

)
= V ol(S2)

∫
4CK

(
∂zc

(2)dz + ∂z̄c
(2)dz̄

)
= −V ol(S2)

∫ (
2i
B2 − B̄2

A+ Ā
+ 2K̃

)(
∂zc

(2)dz + ∂z̄c
(2)dz̄

)
(A.27)
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B Six Dimensional perspective

Type IIB supergravity on a M4 manifold gives a six-dimensionalN = (2, 0) chiral theory with

105 scalar and 26 tensor fields. For M4 = K3, the scalar fields live in a SO(5, 21)/SO(5)×
SO(21) coset, while the three-from anti-symmetric tensor fields transform as a vector under

the action of the SO(5, 21) global symmetry. The theory has a SO(5) R-symmetry. The

coset can be parameterized using a vielbein [46] V a
A . The vielbein is a SO(5, 21) matrix and

satisfies

η = V TηV (B.1)

where η = diag(15,−121) is the SO(5, 21) invariant metric. The field strength H i and Hr

are self dual and anti self dual respectively

H i
µνρ =

√
−g
3!

εµνρλστH
i λστ , i = 1, 2 · · · , 5

Hr
µνρ = −

√
−g
3!

εµνρλστH
r λστ , r = 1, 2 · · · , 21 (B.2)

where g is the determinant of gµν and ε is the six-dimensional completely antisymmetric

tensor which satisfies ε012345 = +1. The field strength H does not satisfy a simple Bianchi

identity. They can be expressed using the vielbein as

H i
µνρ = V i

AG
A
µνρ

Hr
µνρ = V r

AG
A
µνρ (B.3)

Where GA satisfies a simple Bianchi identity, i.e. dGA = 0, for all A = 1, 2, · · · , 26.

In the solutions constructed in [1], the internal moduli of the M4 have constant profiles.

From a six-dimensional perspective, four scalars (φ, χ, the four-form potential in the compact

directions CK and the metric factor f3) and two tensor fields (H3 and F3) have non-trivial

profiles These non-trivial fields give a SO(2, 2)/SO(2)× SO(2) coset with the self-dual and

anti self-dual parts of H3 and F3 transforming as a 4 with respect to the global SO(2, 2)

symmetry.

We can reduce the equations of motion (A.3) to six-dimensions obtaining,

d ∗
(
e−φf 4

3 F̃3

)
= 4dCK ∧H3 (B.4)

d ∗
(
e−φf 4

3H3 − eφf 4
3χF̃3

)
= −4dCK ∧ F3 (B.5)

The Bianchi identities for the three-form fields are unchanged,

dH3 = 0, dF̃3 = −dχ ∧H3 (B.6)
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In order to obtain an explicit expression for the SO(2, 2) vielbein, we note that the following

combinations of three-form tensor fields obey to standard Bianchi identities,

G(3) = e−φf 4
3 ∗H(3) − eφf 4

3χ ∗ F̃(3) + 4CKF(3) (B.7)

E(3) = eφf 4
3 ∗ F̃(3) − 4CKH(3) (B.8)

F(3) = F̃(3) + χH(3) (B.9)

H(3) (B.10)

We can then show that 
∗6G(3)

∗6E(3)

∗6H(3)

∗6F(3)

 = η1 M


G(3)

E(3)

H(3)

F(3)

 (B.11)

The matrix M is an element of SO(2, 2): MTη1M = Mη1M
T = η1. The choice for η1 is

non-standard,

η1 =

(
0 I2

I2 0

)
(B.12)

It is possible to show that the matrix M can be written as Ṽ T Ṽ with

Ṽ a
A =


e
φ
2 f−2

3 e
φ
2 f−2

3 χ 4e
φ
2 f−2

3 χCK −4e
φ
2 f−2

3 CK
0 e−

φ
2 f−2

3 4e−
φ
2 f−2

3 CK 0

0 0 e−
φ
2 f 2

3 0

0 0 −eφ2 f 2
3χ e

φ
2 f 2

3

 (B.13)

Ṽ is an SO(2, 2) vielbein as expected,

Ṽ Tη1Ṽ = η1, Ṽ η1Ṽ
T = η1 (B.14)

We can use an orthogonal transformation to bring the SO(2, 2) invariant matrix in the

standard form. If we define

V = R−1Ṽ R, R =
1√
2

(
I2 −I2

I2 I2

)
(B.15)

With this definition, the vielbein obeys to

V TηV = η, V ηV T = η (B.16)
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where the SO(2, 2) invariant metric is η = diag(+1,+1,−1,−1) Global SO(2, 2) transfor-

mations act on the right of V as V → HVG. Local SO(2) × SO(2) transformation act on

the left as,

V → HV, H =

(
S1 0
0 S2

)
(B.17)

where S1 and S2 are 2×2 orthogonal matrices corresponding to the two SO(2). The vielbein

V can be used to construct self-dual and anti self-dual tensor combinations starting from

three-form tensor fields obeying to standard Bianchi identities,

HI
(3) = V I

AG
A
(3), ∗6H

I
(3) = ηIJHJ

(3), dGA
(3) = 0 (B.18)

The charges associated to the tensor fields GA
(3) are exactly the Page charges:

QA = R−1(−QPage
F1 , −QPage

D1 , QPage
NS5 , Q

Page
D5 )T (B.19)
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