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Abstract

We identify a particularly simple class of supergravity models describing superconformal cou-

pling of matter to supergravity. In these models, which we call the canonical superconformal

supergravity (CSS) models, the kinetic terms in the Jordan frame are canonical, and the scalar

potential is the same as in the global theory. The pure supergravity part of the total action has

a local Poincaré supersymmetry, whereas the chiral and vector multiplets coupled to supergravity

have a larger local superconformal symmetry.

The scale-free globally supersymmetric theories, such as the NMSSM with a scale-invariant

superpotential, can be naturally embedded into this class of theories. After the supergravity em-

bedding, the Jordan frame scalar potential of such theories remains scale free; it is quartic, it

contains no mass terms, no nonrenormalizable terms, no cosmological constant.

The local superconformal symmetry can be broken by additional terms, which, in the small

field limit, are suppressed by the gravitational coupling. This can be achieved by introducing the

nonminimal scalar-curvature coupling, and by taking into account interactions with a hidden sector.

In this approach, the smallness of the mass parameters in the NMSSM may be traced back to the

original superconformal invariance. This allows to address the µ-problem and the cosmological

domain wall problem in this model, and to implement chaotic inflation in the NMSSM. We discuss

the gravitino problem in the NMSSM inflation, as well as the possibility to obtain a broad class of

new versions of chaotic inflation in supergravity.



1 Introduction

This work is a continuation of our previous paper [1] where we studied generic supergravity in the

Jordan frame and the possibility to implement the Higgs-type inflation [2] in the context of the next-

to-minimal supersymmetric standard model (NMSSM) [1,3, 4].

These recent developments were based on a combination of long efforts of many authors in several

seemingly unrelated directions.

1) Many decades ago, one of the most popular ways to describe gravitational interactions of a

scalar field ϕ was to assume that it is conformally coupled to gravity, which means that its Lagrangian

contains a term −
√
−g ϕ

2

12R, see e.g. [5]. With the invention of inflation, which was difficult to achieve

for conformally coupled scalars, the concept of scalar fields conformally coupled to gravity gradually

lost part of its appeal. On the other hand, several authors emphasized that inflation may occur in

a very natural way if a scalar field nonminimally couples to gravity, with a sign opposite to that of

the conformal coupling, see e.g. [6]. Recently there was a revival of interest in this possibility after

it was realized that it may allow inflation in the standard model, with the Higgs field playing the

role of the inflaton [2]. However, for a while it was not clear whether one can implement this idea in

supersymmetric generalizations of the standard model. Some progress in this direction was reached

only very recently [1, 3, 4]. In this paper we will develop a more systematic approach to this issue.

2) Conformal invariance plays an important role in the formulation of supergravity. The general

formulation of supergravity starts with the superconformal theory. Then, after gauge fixing, which, in

particular, makes the conformal compensator field proportional to the Planck mass, one derives the

standard textbook formulation of supergravity [7–13]. Once this step is made, the theory is formulated

in the Einstein frame, all scalars have minimal coupling to gravity, and the superconformal origin of

supergravity becomes well hidden.

In [1] we performed an alternative gauge-fixing of the version of the superconformal theory, which

allows to derive the supergravity action in an arbitrary Jordan frame. This provides a complete locally

supersymmetric theory for scalars with a nonminimal coupling to gravity.

3) Prior to the discovery of supergravity, the development of particle physics was successfully guided

by the principle of gauge invariance and renormalizability. However, supergravity is nonrenormalizable.

In general, one can write any kind of superpotential which may lead to nonrenormalizable interactions

which become important even at low energy. It would be nice to have a formulation of supergravity
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where the low-energy renormalizability appears as a result of some general principle, similar to the

principle of spontaneously broken gauge invariance.

The extraordinary smallness of the Higgs mass, as compared to the Planck mass, can be protected

by supersymmetry, but only if the Higgs mass was extremely small to start with. The minimal su-

persymmetric standard model (MSSM) and the general next-to-minimal supersymmetric standard

model (NMSSM) include several other dimensional parameters which are required to be extraordinary

small (µ-problem, tadpole problem). These issues can be addressed in the context of the Z3-invariant

NMSSM, which requires that the superpotential describing the standard model is scale-invariant [14].

However, it would be important to find some fundamental underpinnings of this requirement. More-

over, Z3 symmetry of the scale-invariant superpotential leads to the cosmological domain wall problem.

All of these problems have been discussed extensively in the existing literature, but recent develop-

ments stimulated us to look at these issues again in [1], returning back to the superconformal origin

of supergravity. As we will see, many of these problems become much easier to address in a class of

models where the original superconformal invariance remains at least partially preserved, being broken

only by gravitational effects, or by anomalies. This symmetry may naturally explain renormalizability

and smallness of the mass parameters in the standard model. It leads to a formulation of supergravity

in the Jordan frame, where in certain cases the potentials and kinetic terms look as simple as in the

global SUSY. In this context, one can achieve inflation and simultaneously solve the domain wall

problem with the help of the terms describing scalars nonminimally coupled to gravity.

To explain our main idea, let us consider a nonsupersymmetric conformally invariant toy model

describing gravity and two real scalar fields, φ and h:

L =
√
−g
[

1
2
∂µφ∂νφ g

µν +
φ2

12
R(g)− 1

2
∂µh∂νh g

µν − h2

12
R(g)− λ

4
h4

]
. (1.1)

The field φ(x) is referred to as a conformal compensator. This theory is locally conformal invariant

under the following transformations:

g′µν = e−2σ(x)gµν , φ′ = eσ(x)φ , h′ = eσ(x)h . (1.2)

Note that the kinetic term of the conformal compensator φ has a wrong sign. This is not a problem

because there are no physical degrees of freedom associated with it; the field φ can be removed from

the theory by fixing the gauge symmetry (1.2). If we choose the gauge φ(x) =
√

6MP , the φ-terms in

(1.1) reduce to the Einstein action. The full Lagrangian in the Jordan frame is

Ltotal = LE + Lconf =
√
−g

M2
P

2
R(g)−

√
−g
[

1
2
∂µh∂νh g

µν +
h2

12
R(g) +

λ

4
h4

]
. (1.3)
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It consists of two parts, the Einstein Lagrangian
√
−g M

2
P

2 R(g), which is not conformally invariant,

and the conformally invariant theory of the canonically normalized scalar field h,

Lconf = −
√
−g
[

1
2
∂µh∂νh g

µν +
h2

12
R(g) +

λ

4
h4

]
. (1.4)

As we already mentioned, theories of this type played a very important role in the development of

particle physics and cosmology many decades ago, see e.g. [5]. One of the main reasons is that the

Friedmann universe is conformally flat. By making a conformal transformation, one could represent

equations of motion of the scalar field in the Friedmann universe in terms of equations of motion of a

conformally transformed field in Minkowski space, which is a tremendous simplification.

The theory (1.1) is unique if we require that the local conformal symmetry of the h part of the

action, which has canonical kinetic terms, should be preserved after the gauge-fixing. It is determined

by the condition that the conformal compensator φ(x) is decoupled from the field h(x).

The conformal symmetry of the matter action in Eq. (1.4) is manifest in the Jordan frame (1.3).

One can make a certain field and metric transformation and switch to the Einstein frame, where the

term −
√
−g h2

12R(g) is absorbed into the Einstein action. This allows one to use the standard Einstein

equations. However, after this transformation both the gravity part as well as the matter part of the

action have conformal symmetry broken.

Similarly, the standard formulation of supergravity interacting with matter brings us directly to

the Einstein frame, where the original superconformal symmetry is lost even in the special class of

models where matter fields are decoupled from the conformal compensator. That is why it was hard

to see any advantages of this class of models in the standard textbook formulation of supergravity.

Meanwhile, as we will see shortly, in the class of models with conformal coupling of scalars, the matter

Lagrangian in the Jordan frame looks exceptionally simple: all kinetic terms are canonical in the

simplest case, the superpotential contains only cubic terms, and the scalar potential is quartic with

respect to the scalar fields, just as in our toy model (1.3). The theories of this class provide a very

natural supergravity embedding of the Z3-invariant NMSSM with a scale-free superpotential.

Of course, in the end of the day we want to make most of the particles massive. Thus, we would

need to break superconformal invariance, but we would like to do it in a way that preserves some of

the most attractive features of the original superconformal theory.

Superconformal symmetry may be broken by anomalies, by interaction with a hidden sector, or by

gravitational interactions suppressed by inverse powers of the Planck mass. However, one should try
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to avoid introducing into the original theory any terms proportional to the compensator field. For

example, one could add to (1.1) a term c2h2φ2 without breaking the conformal invariance of the model

(1.1). However, in the gauge φ =
√

6MP , the matter part of the theory (1.3) would acquire the term

6 c2M2
Ph

2. This term strongly breaks the conformal invariance by giving the field h a mass squared

12 c2M2
P , which is enormously large unless the dimensionless constant c is extremely small. This would

lead to the hierarchy problem if one tries to use the field h for the description of the low-energy physics.

Similarly, the term c φ3h would introduce a huge tadpole ∼ M3
Ph, and the term φ4 would introduce

an enormously large cosmological constant ∼M4
P . We would like to use the original (super)conformal

symmetry to protect us against such problems.

On the other hand, the terms h4+n/φn, which are inversely proportional to φn, would lead to

nonrenormalizable interaction terms ∼ h4+n/Mn
P . While such terms are unpleasant, they usually

appear in the Einstein frame anyway, and they are not expected to affect particle physics at energies

and fields much smaller than MP .

In this paper, we will break the local superconformal symmetry of the matter coupling via the real

part of the quadratic holomorphic function in scalar-curvature coupling, by the terms in the Kähler

potential which are suppressed by the inverse Planck mass, and also by the interaction to the hidden

sector. This produces additional terms in the action. At small fields and low energies, the new terms

are suppressed by inverse powers of the Planck mass. In other words, at small fields and low energies,

the original superconformal symmetry is broken only by effects suppressed by the small gravitational

coupling. This can be very helpful in particle phenomenology. The smallness of the new terms helps to

explain the smallness of the Higgs mass and of the µ-term, which appear only because of the breaking

of the superconformal invariance. On the other hand, these terms can be large enough to address the

domain wall problem in the NMSSM. Moreover, in the large field limit, some of the new terms become

dominant and allow to implement inflation in supergravity along the lines of [2, 6] and [1, 3, 4].

The paper is organized as follows. In Sec. 2 we give a short summary of the results of Ref. [1] on

the supergravity action in an arbitrary Jordan frame defined by the function of scalars Φ(z, z̄). We

then focus on a special case of Φ (z, z̄) = −3M2
P e
−K(z,z̄)

3M2
P = −3M2

P + δαβ̄z
αz̄β̄ + J (z) + J̄ (z̄), where

J(z) is a holomorphic function quadratic in z. It has been found in [1] that in this case the kinetic

term for scalars is canonical since it is defined by Φαβ̄ = δαβ̄. We explain the role of the auxiliary

supergravity vector fields Aµ.

Sec. 3 presents the simplest possible embedding of the globally superconformal theory into su-
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pergravity. We start with the analog of (1.1), the theory with the SU(2, 2|1) local superconformal

symmetry and no dimensional parameters. It contains an extra chiral multiplet, the compensator one.

The theory is based on the results obtained in [8,9], and more recent results of Refs. [13] and [1]. We

then specify the superconformal action for the case when a) all kinetic terms are canonical and b) the

matter multiplets decouple from the compensator. We find that in these models the total supergravity

action consists of the pure supergravity part, which breaks superconformal symmetry, and the matter

part, which remains superconformal after the gauge-fixing. The scalars are conformally coupled to

gravity, kinetic terms are canonical, and the supergravity potential coincides with the global theory

potential. We call these theories Canonical Superconformal Supergravity (CSS) models.

In this sense, the embedding of the globally superconformal theory into supergravity in the Jordan

frame becomes a simple additive operation: One adds the action of the global SUSY, interacting with

gravity with conformal scalar-curvature coupling, to the action of supergravity; that is it. However,

this simple operation looks much more complicated in the Einstein frame.

We further develop a geometric way to break the superconformal coupling of matter to supergravity.

The flat Kähler geometry of the chiral multiplets, including the compensator field, is replaced by a

non-flat geometry without introducing any new dimensional parameters. Specifically, we study CSS

models with superconformal symmetry broken by the χ-term: the real part of the holomorphic function

defining the Jordan frame. This leads to useful applications both in particle physics and cosmology.

In Sec. 4 we apply the method of embedding globally supersymmetric theories into supergravity

described in Sec. 3 to the scale-invariant version of the NMSSM. Sec. 5 has a short discussion of the

issues of the NMSSM phenomenology, including the µ-problem and domain wall problem. We argue

that using the superconformal matter action with the χ-term in combination with a hidden sector

may resolve both of these problems.

Sections. 6 and 7 are devoted to inflation. We first review the Higgs type inflation in the standard

model, following [2]. We argue that this inflationary model, as well as its NMSSM generalization

proposed in [3] and developed in [1, 4], does not suffer from the problems related to the unitarity

bound discussed in [15–18]. We describe observational implications of inflation in the NMSSM and

find that these implications are invariant with respect to a certain rescaling of the parameters of this

model. We describe a mechanism of stabilization of the inflationary trajectory, which is necessary

for consistency of this scenario. It includes a requirement of special corrections which stabilize some

moduli at the origin of the moduli space. We discuss the gravitino problem, which may appear in
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this scenario, and point out the existence of a broad class of new inflationary models based on the

ideas described in our paper, where the inflaton is not necessarily related to the Higgs field and the

gravitino problem may not arise [21].

Our results are briefly summarized in the Conclusions. Appendix A presents a complete action

of superconformal matter coupled to gravity, including vector multiplets and fermions with canonical

kinetic terms. It is given in equations (A.10)-(A.14) which provide the generalization of the scalar-

gravity action in equations (3.25), (3.26), when all fermions and vectors are included. Appendix B

shows how one can derive the simple CSS potential, which is the same as in global SUSY theories,

starting from the generic Einstein frame supergravity potential. Appendix C provides the metric

of the moduli space for CSS models with superconformal symmetry broken by the real part of the

holomorphic function. Appendix D presents a detailed expression for the potential of the scalar field

s and the inflaton field h in the Jordan frame and in the Einstein frame.

Thus, the paper essentially consists of two parts. Those who are interested mainly in phenomeno-

logical and cosmological implications of our construction, may take a quick look at Sections 2-4 and

then proceed directly to Sections 5-7. However, we believe that the superconformal approach to super-

gravity and the CSS models described in Sections 2-4 deserve further investigation quite independently

of their immediate implications for inflation and the NMSSM.

2 Supergravity in the Jordan frame

The general theory of supergravity in an arbitrary Jordan frame was derived in [1] by a gauge-fixing of

the SU(2, 2|1) superconformal theory [13]. This approach is based on earlier work on superconformal

origin of the supergravity theory in [22]. The extra gauge symmetries of the superconformal theory,

including a local conformal symmetry, which rescales the metric, allow a possibility to derive the

supergravity action either in the Einstein frame or in an arbitrary Jordan frame. The Einstein frame

Lagrangian, in units MP = 1, is LE =
√
−gE 1

2 R(gE)+ ..., there is no direct scalar-curvature coupling.

The Jordan frame Lagrangian is LJ = −
√
−gJ Φ(z,z̄)

6 R(gJ) + ..., where Φ(z, z̄) is an arbitrary function

of complex scalar fields z, z̄. Therefore, in general, there is a scalar-curvature coupling in the Jordan

frame. A local conformal symmetry allows to make a choice of Φ(z, z̄) = −3 to get the Einstein

frame supergravity. Otherwise with the frame function depending on scalars we get the Jordan frame

supergravity. The relation between the space-time metrics is given by gµνE = Ω2(z, z̄)gµνJ , where
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Ω2(z, z̄) = −1
3 Φ(z, z̄).

The scalar-gravity part of the N = 1, d = 4 supergravity in a generic Jordan frame with frame

function Φ(z, z̄), a Kähler potential K(z, z̄) independent on the frame function, and superpotential

W (z) is, according to [1],

Lscalar−grav
J =

√
−gJ

[
Φ
(
−1

6
R(gJ) +A2

µ(z, z̄)
)

+
(

1
3

Φgαβ̄ −
ΦαΦβ̄

Φ

)
∂̂µz

α∂̂µz̄β̄ − VJ
]
. (2.1)

Here

Φα ≡
∂

∂zα
Φ(z, z̄) , Φβ̄ ≡

∂

∂z̄β̄
Φ(z, z̄) = Φβ̄ ,

gαβ̄ =
∂2K(z, z̄)
∂zα∂z̄β̄

≡ Kαβ̄(z, z̄) , (2.2)

and Aµ is the purely bosonic part of the on-shell value of the auxiliary field Aµ. On shell it depends

on scalar fields as follows:

Aµ(z, z̄) ≡ − i
2Φ

(
∂̂µz

α∂αΦ− ∂̂µz̄ᾱ∂ᾱΦ
)
. (2.3)

The gauge covariant derivative ∂̂µzα in Eqs. (2.1), (2.3) is

∂̂µz
α ≡ ∂µz

α −AAµ kαA , (2.4)

where AAµ is the vector gauge field and kαA is the Killing vector, defining the gauge transformations of

scalars, δzα = θAkαA. The Jordan frame potential

VJ =
Φ2

9
VE (2.5)

is defined via the Einstein frame potential

VE = V F
E + V D

E = eK
(
−3WW +∇αWgαβ̄∇β̄W

)
+ 1

2(Re f)−1ABPAPB , (2.6)

where ∇αW denotes the Kähler-covariant derivative of the superpotential and PA is a momentum

map. A special important class of the superconformal models with

Φ(z, z̄) = −3e−
1
3K(z,z̄) (2.7)

and the corresponding actions in the Jordan frame were derived in components in [7, 9], and in

superspace in [10,11]. In this case the simpler form of LJ given by (2.1) was found in [1]:

LJ =
√
−gJ

[
Φ
(
−1

6R(gJ) +A2
µ(z, z̄)

)
− Φαβ̄ ∂̂µz

α∂̂µz̄β̄ − Φ2

9
VE

]
. (2.8)
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Also an interesting observation about the Jordan frame kinetic terms for scalars was made: For

a particular choice of the frame function the kinetic scalar terms are canonical when the on-shell

auxiliary axial-vector field Aµ vanishes. This requires that

Φ(z, z̄) = −3e−
1
3K(z,z̄) = −3 + δαβ̄z

αz̄β̄ + J(z) + J̄(z̄) , (2.9)

and it follows that

Φαβ̄ ≡
∂2Φ(z, z̄)
∂zα∂z̄β̄

= δαβ̄ , (2.10)

where K(z, z̄) is the Kähler potential and J(z) is holomorphic. For the choice (2.9) the action in the

Jordan frame is

LJ√
−gJ

= Φ(z, z̄)
(
−1

6R(gJ) +A2
µ(z, z̄)

)
− δαβ̄ ∂̂µzα∂̂µz̄β̄ − VJ(z, z̄) , (2.11)

where Aµ(z, z̄) is defined in Eq. (2.3). It vanishes in many cosmological applications with either real

or imaginary scalar fields. For such configurations with Aµ = 0 the second term in Eq. (2.11) is a

canonical kinetic term for scalars. This simplification of the supergravity theory in the Jordan frame

with regard to kinetic terms of scalars is, as we will see below, a particular property of the class of

supergravity theories which have a superconformal matter-supergravity coupling.

3 Superconformal matter coupling in the Jordan frame supergravity

3.1 Locally superconformal theory

Superconformal theory is the starting point to derive supergravity. We will consider here a class of

models where the chiral and vector multiplets do not interact with the superconformal compensator

field. This will provide a simple embedding of globally supersymmetric models into supergravity in

the Jordan frame. We will further introduce a geometric mechanism of breaking of the superconformal

symmetry, which is suitable for phenomenology and cosmology. The superconformal symmetry will

also be broken by radiative corrections and by terms suppressed by inverse powers of M2
P .

To embed a given globally supersymmetric model into supergravity, a particular Kähler potential

has to be chosen, which could be any real function of all scalars (with positive definite metric of

moduli space). In the Einstein frame, where there is no direct coupling of curvature to scalars, the

kinetic term for scalars is Lkin = Kαβ̄(z, z̄)∂zα∂z̄β̄ and the F-term potential in the Einstein frame

is V F
E = eK

(
∇αWKαβ̄∇β̄W − 3WW

)
where ∇αW denotes the Kähler-covariant derivative of the
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superpotential. If one would like to preserve the property of the globally supersymmetric theory to

have canonical kinetic terms, one has to take K = δαβ̄z
αz̄β̄, up to Kähler transformation. But in such

case the F-term potential is quite different from the global supersymmetry case Vglobal = |∂W |2.

Here we would like to present a simple case of the embedding of a class of scale-invariant globally

supersymmetric models into supergravity. Embedding, in general, means that the total action of su-

pergravity and chiral and vector N=1 multiplets has a local Poincaré supersymmetry. A special class

that we will present here has the property that the part of the action describing chiral and vector

multiplets coupled to supergravity has a much larger local superconformal symmetry. This symme-

try is broken down to the local Poincaré supersymmetry only by the part of the action describing

the self-interacting supergravity multiplet. First we start with the analog of (1.1), the theory with

the SU(2, 2|1) superconformal symmetry and no dimensional parameters: it contains an extra chiral

multiplet, the compensator one. The theory is based on Refs. [8, 9] and [1, 13]. We then specify the

superconformal action for the case when the matter multiplets decouple from the compensator. As a

result, we find in this class of theories that the total supergravity action consists of the pure supergrav-

ity part, which breaks superconformal symmetry, and the matter part which remains superconformal

after the gauge-fixing.

The supergravity Weyl multiplet consists of the vierbein, gravitino and the vector gauge field of

the U(1)R symmetry: eaµ, ψµ, Aµ. The chiral multiplet has scalars and spinors, the vector multiplet

has gauge fields and gauginos.

We start here with the superconformal action described in details in [13] in eqs. (3.3)-(3.8) and

more recently 1 in [1] in Sec. 5.1. This action has a local SU(2, 2|1) superconformal symmetry and

no dimensional parameters. The symmetries include local dilatation, special conformal symmetry,

special supersymmetry and local U(1)R symmetry, in addition to all local symmetries of supergravity.

The special conformal symmetry has an independent field bµ as a gauge field, and the local U(1)R

symmetry has Aµ as a gauge field. When the local dilatation, special conformal symmetry, special

supersymmetry and local U(1)R symmetry are gauge-fixed, one finds a generic supergravity theory

without extra symmetries. In notation of [1] the action contains 3 superconformal-invariant terms

Lsc = [N (X, X̄)]D + [W(X)]F +
[
fABλ̄

APLλ
B
]
F
. (3.1)

1The action in eqs. (3.3)-(3.8) of [13] has an auxiliary vector field Aµ as an independent field, before the equations

of motion have been used. In Sec. 5.1 of [1] the superconformal action has Aµ already on-shell, with purely bosonic and

fermionic part respectively given by the first and second expression of Eq. (5.13) of [1]. Here it is important for us to

keep Aµ as an off-shell independent field.
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The first one codifies the Kähler potential for the n + 1 superconformal fields XI , X̄ J̄ , the second

introduces a superpotential, and the third involves the chiral kinetic matrix fAB(X) (where A,B are

the gauge indices), and gauginos λA, PL projects on the left-handed fermions. The superconformal

chiral multiplets contain the bosonic fields XI , fermions ΩI , and auxiliary fields F I , I = 0, 1, ..., n.

One of the multiplets, X0,Ω0, F 0, can be viewed as a compensator multiplet. Its purpose is to provide

the part of the local superconformal symmetries which are absent in supergravity.

The dilatation symmetry implies N
(
X, X̄

)
to be homogeneous of first degree in both X and X̄,

W (X) to be homogeneous of third degree in X, and fAB (X) to be homogeneous of zeroth degree

in X. Under chiral U(1)R symmetry N (X, X̄) and fAB(X) are neutral, W(X) has chiral weight 3,

W(X̄) has chiral weight -3.

The n + 1 scalars including the compensator multiplet form a Kähler manifold with metric, con-

nection and curvature given, respectively, by

GIJ̄ = ∂I∂J̄N ≡
∂N (X, X̄)
∂XI∂X̄ J̄

(3.2)

and ΓIJK = GIL̄NJKL̄, RIK̄JL̄ = NIJK̄L̄ − NIJM̄GMM̄NMK̄L̄. For example, the complete gravity-

scalar part of the SU(2, 2|1) invariant superconformal action has a gravity part, kinetic terms for

scalars and a potential:

1√
−g
Lscalar−grav

sc = −1
6N (X, X̄)R−GIJ̄DµXI DµX̄

J̄ − Vsc , (3.3)

where

Vsc = VF + VD = GIJ̄WIW J̄ + 1
2(Re f)−1ABPAPB . (3.4)

Here

WI ≡
∂W
∂XI

, W J̄ ≡
∂W
∂X̄ J̄

. (3.5)

The F-term potential originates from the solution for the auxiliary field for the chiral multiplet,

F I = GIJ̄W J̄ . The D-term potential originates from the solution for the auxiliary field for the vector

multiplet, DA = (Re f)−1ABPB, where PA is the momentum map defining the D-term potential. The

covariant derivative Dµ in Eq. (3.3) is

DµX
I = ∂µX

I − bµXI − iAµXI −AAµ kIA , (3.6)

where AAµ is the vector gauge field and kIA is the Killing vector, defining the gauge transformations of

scalars δXI = θAkIA. We have included the gauge vectors AAµ into the covariant derivatives (3.6) to

make clear the relation between gauge symmetries and D-term potential where

PA = iNIkIA = P†A . (3.7)
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3.2 Canonical superconformal supergravity (CSS) models

Here we introduce a set of canonical superconformal supergravity (CSS) models, starting from the

SU(2, 2|1) superconformal action. In these models, after the gauge-fixing of local dilatation, special

conformal symmetry, special supersymmetry and local U(1)R symmetry the resulting action for the

n chiral multiplets and all vector multiplets remains superconformal. The reason for this is that the

original superconformal theory before gauge-fixing has all n chiral multiplets and vectors multiplets

decoupled from the compensator multiplet X0,Ω0, F 0. We focus here on the simplest version of such

superconformal matter coupling models when kinetic terms are canonical. We therefore define CSS

class of models by the following conditions:

1. We choose2 flat SU(1, n) Kähler manifold for all n+ 1 chiral multiplets XI , including the compen-

sator field X0

N (X, X̄) = −|X0|2 + |Xα|2 , α = 1, ..., n . (3.8)

This means that η00̄ = −1, ηαβ̄ = δαβ̄, where

GIJ̄ = NIJ̄ = ηIJ̄ , GIJ̄ = ηIJ̄ , ΓIJK = 0 , RIK̄JL̄ = 0 . (3.9)

2. We choose a cubic, X0 independent superpotential, which breaks the SU(1, n) symmetry:

W(X) =
1
3
dαβγX

αXβXγ ⇒ W0 ≡
∂W
∂X0

= 0 . (3.10)

3. We choose a constant complex vector kinetic matrix and Re fAB is a constant positive definite

matrix.

4. We choose an X0 independent momentum map. The conformal requirements respecting (3.8)

implies that the transformations are of the form

kαA = (mA)αβXβ , kᾱA = (mA)ᾱβ̄X
β̄ , PA = iδαβ̄X

β̄(mA)αγXγ = −iδαβ̄X
α(mA)β̄ γ̄X̄ γ̄ ,

(3.11)

where mA are anti-hermitian matrices: δαβ̄(mA)αβ = −δβᾱ(mA)ᾱβ̄. Hence the gauge group is part of

U(n). This means that the compensator X0 does not participate in Yang-Mills transformations, the

zero component of the Killing vector vanishes, k0
A = 0, and other components do not depend on X0.

For the decoupling of matter from compensator a more general class of the Kähler manifold for all

n+1 chiral multiplets is possible. However, more general choices after gauge-fixing of the local confor-
2After the compensator field is gauge-fixed, the manifold of physical n complex scalars becomes that of SU(1,n)

U(n)

non-compact space.
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mal symmetry will lead to non-canonical kinetic terms for scalars. Our choice of scalar-independent

Re fAB was made to have canonical kinetic terms for vectors. Our choice of Im fAB and of cubic

superpotentials could have included a dependence on some ratios of homogeneous scalars Xα

Xβ . We do

not consider such theories here for simplicity, and also since they would blow up at 〈Xβ〉 = 0.

We impose our 4 conditions above on the superconformal action (3.1) and find a superconformal

action of this special kind. The scalar-gravity part of the superconformal action (neglecting fermions

and gauge vector fields)3 becomes

1√
−g
L̂sc = 1

6(|X0|2 − |Xα|2)R− ηIJ̄DµXI DµX̄
J̄ − δαβ̄WαW β̄ − 1

2(Re f)−1ABPAPB . (3.12)

We may split the total superconformal action into parts depending on the compensator multiplet

X0,Ω0, F 0 and the part not depending on it. In our class of models we get

1√
−g
L̂0

sc = 1
6 |X

0|2R+DµX0DµX̄
0̄ , (3.13)

1√
−g
L̂m

sc = −1
6 |X

α|2R− δαβ̄DµXαDµX̄
β̄ − δαβ̄WαW β̄ − 1

2(Re f)−1ABPAPB . (3.14)

Each of these two actions is separately superconformal (when fermions and vectors are added). In

the absence of fermions and vectors they have local conformal and local U(1) chiral symmetry. The

matter part of the action L̂m
sc does not depend on X0 and therefore it remains superconformal after

the gauge-fixing.

3.3 Gauge-fixing

Now we proceed with the gauge-fixing of local symmetries that are absent in supergravity. We change

variables from the basis {XI} to a basis {y, zα}, where α = 1, . . . , n using XI = y ZI(z). We now fix

the special conformal symmetry:

bµ = 0 . (3.15)

The dilatational and U(1) symmetries are fixed by a choice N (X, X̄) = −|X0|2 + |Xα|2 = Φ(z, z̄) and4

X0 = X̄ 0̄ =
√

3MP , y = ȳ = 1 , Xα = zα . (3.16)
3The complete action for this class of models is presented in the Appendix A.
4Here we restore the value of MP to stress that after the gauge-fixing of the superconformal action only one dimensional

parameter, MP , appears in the supergravity action. Moreover, in the class of models described above, in the Jordan

frame, the matter part of the action does not depend on MP , since it was independent on X0.
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The special supersymmetry is fixed5 by the matching requirement on fermions that

Ω0 = 0 , Ωα = χα . (3.17)

This choice of the gauge-fixing provides a decoupling of the matter multiplets (Xα = zα,Ωα =

χα, Fα = δαβ̄ ∂W (z̄)

∂z̄β̄
) from the compensator multiplet (X0,Ω0, F 0). This leads to

Φ̂(z, z̄) = −3M2
P + δαβ̄z

αz̄β̄ , W(X) = W (z) =
1
3
dαβγz

αzβzγ . (3.18)

After the gauge fixing the scalar-gravity part of the supergravity action is

1√
−g
L̂0

sg = 1
2M

2
P (R+ 6AµAµ) , (3.19)

1√
−g
L̂m

sg = −1
6 |z

α|2R− δαβ̄DµzαDµz̄
β̄ − δαβ̄WαW β̄ − 1

2(Re f)−1ABPAPB , (3.20)

where the U(1) R covariant derivative acting on scalars is

Dµz
α = ∂µz

α − iAµzα . (3.21)

and

Wα ≡
∂W (z)
∂zα

= dαβγz
βzγ . (3.22)

When the corresponding fermion and vector fields are added to this action, one finds that the total

action has an unbroken local Poincaré supersymmetry. The crucial difference with generic case of

supergravity theory is that the matter part of action whose scalar-gravity part is given in Eq. (3.20),

remains superconformal invariant. In particular, the scalar-gravity action in Eq. (3.20) is invariant

under simultaneous local conformal transformation of the metric and scalars, the vector being inert,

g′µν = e−2σ(x)gµν , z′ = eσ(x)z , z̄′ = eσ(x)z̄ , A′µ = Aµ . (3.23)

It is also invariant under local U(1) R-symmetry, which is part of the superconformal SU(2, 2|1)

symmetry,

g′µν = gµν , z′ = eiΛ(x)z , z̄′ = e−iΛ(x)z̄ , A′µ = Aµ + ∂µΛ(x) . (3.24)

The action (3.19) is nonconformal; it describes the gravitational multiplet, including the auxiliary

field Aµ, and it is not invariant under local conformal transformations nor under local R-symmetry.

The total self-coupling of the gravitational multiplet breaks the superconformal symmetry down to

super-Poincaré.
5While the gauge fixing for dilatations agrees with the choice made in [1], we made a different gauge choice for special

supersymmetry, which is chosen here in order that the compensating multiplet does not mix with the physical multiplets.
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3.4 A simple Jordan frame supergravity action with superconformal matter

Let us summarize what we have learned in the previous couple of sections. A spectacular property

of the supergravity total action in this class of models is its local supersymmetry, whereas the kinetic

terms are canonical and the potential is that of global SUSY. The total action can be split into the

action of pure supergravity part and superconformal matter part. For example, the total scalar-gravity

part of the supergravity action is

L̂0
sg + L̂m

sc =
√
−gJ

[
1
2M

2
P (R+ 6AµAµ)− 1

6 |z
α|2R− δαβ̄gµνDµz

αDν z̄
β̄ − V̂J

]
, (3.25)

where

V̂J = δαβ̄WαW β̄ + 1
2(Re f)−1ABPAPB . (3.26)

It consists of a pure supergravity part to which one has to add the global supersymmetry action

interacting with supergravity multiplet. If we would like to cut out the supergravity multiplet and

get the global SUSY action, we would have to remove from the action the first 3 terms, remove
√
−g,

replace the curved metric by the flat one and remove the U(1) field Aµ from the covariant derivative.

We would get:

L̂m
susy = −δαβ̄ηµν∂µzα ∂ν z̄β̄ − Vsusy . (3.27)

The potential Vsusy is precisely the same as in supergravity and given in Eq. (3.26).

Vice versa, if one would like to promote any scale-free global SUSY theory into supergravity, one

starts with the action (3.27) with the potential in Eq. (3.26). First, one has to add a factor
√
−g to

the global action and replace the flat space-time metric ηµν in the kinetic term by the curved metric

gµν . The partial derivatives of the scalars have to be made R-covariant as in Eq. (3.21) to make the

chiral multiplets superconformal:

L̂m
susy = −δαβ̄ηµν∂µzα ∂ν z̄β̄ − Vsusy ⇒ L̂m

sc =
√
−gJ(−1

6 |z
α|2R− δαβ̄gµνDµz

αDν z̄
β̄ − V̂J) , (3.28)

where

V̂J = Vsusy = δαβ̄WαW β̄ + 1
2(Re f)−1ABPAPB , Dµz

α = ∂µz
α − iAµzα . (3.29)

It remains to add an action of pure supergravity
√
−gJ

[
1
2M

2
P (R+ 6AµAµ)

]
. The result is in Eq.

(3.25). The same for vector multiplets. If we include also fermions, the rules require also to introduce

the interaction with gravitino, as shown in Appendix A. The resulting action of the form (3.25), (3.26)

has a local super-Poincaré symmetry and the matter action has a superconformal symmetry. When
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fermions and vectors are included, the generalization of eqs. (3.25), (3.26) is given in Appendix A.

The principle is the same, all chiral and vector multiplets start interacting with the gravitational Weyl

supermultiplet, and the pure supergravity action is added. The total action, including fermions and

vectors, has local Poincaré supersymmetry.

If we would like to embed the scale-free global SUSY theory into supergravity in the Einstein frame,

we would have to use the Kähler potential

K̂(z, z̄) = −3M2
P log

(
− 1

3M2
P

Φ̂(z, z̄)
)

= −3M2
P log

(
1− 1

3M2
P
δαᾱz

αz̄ᾱ
)
. (3.30)

The total scalar-gravity part of action will be

L̂E
supergrav =

√
−gE

(
1
2M

2
PR− K̂αβ̄g

µν
E ∂µz

α ∂ν z̄
β̄ − VE

)
, (3.31)

where VE is

VE = e
K
M2
P

(
∇αWgαβ̄∇β̄W −

3WW

M2
P

)
+ 1

2(Re f)−1ABPAPB , (3.32)

and PA = −3 PA
Φ(z,z̄) . The action in the Einstein frame is significantly different from the global SUSY

action, the kinetic terms are not canonical, the F-term potential is complicated and no part of this

action has a conformal or R-symmetry. The dependence on MP is all over the place. Thus, for

scale-free globally supersymmetric models there is an obvious advantage to study their supergravity

embedding in the simple Jordan frame with manifest superconformal symmetry of the matter action

as shown in eqs. (3.25). Note also that for this class of models the potential in the Einstein frame can

be given in the form

VE = 9
V̂J
Φ2

=
δαβ̄WαW β̄ + 1

2(Re f)−1ABPAPB
(1− δγδ̄zγ z̄δ̄/3M2

P )2
, (3.33)

and it is positive semi-definite.

It is instructive to compare the CSS class of models with no-scale supergravity. The review of

no-scale supergravity models can be found in Sec. XII in [23]. No-scale models have a positive semi-

definite potential in the Einstein frame. This condition is also satisfied by the CSS models. However,

the second feature of no-scale models is that at the minimum Vmin = 0 they break supersymmetry

spontaneously. Meanwhile in the CSS models, the minimum of the potential is at V = 0, but su-

persymmetry is not broken there. Therefore such theories may provide a natural starting point for

investigation of the models with a low scale of SUSY breaking.

An interesting property of the no-scale supergravity is that the term −3|W |2 is absent in the

expression for the scalar potential. As we already demonstrated, the CSS models share this property,
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but, in addition, the expression for the scalar potential in the Jordan frame does not have the overall

factor eK, the Kähler connection terms, KαW , drop and Kαβ̄ is replaced by δαβ̄. This is a major

simplification, reducing the F-term potential to its global SUSY expression. We found this result

directly from the superconformal approach to supergravity, but one can also confirm it by direct

calculations presented in Appendix B.

The important property of both CSS and no-scale supergravity models is that in order to describe

physics, we have to break some of the symmetries of these models. In case of no-scale model an

important example is the KKLT stabilization of the string theory Kähler moduli [24] where the

breaking of the no-scale property of supergravity is achieved via the instanton corrections/gaugino

condensation. In case of superconformal matter coupling we will introduce in the next section a

mechanism of breaking of superconformal symmetry which is useful for inflation as well as for a

possible solution of the µ-problem in the NMSSM. This mechanism is geometric: the moduli space of

chiral fields including the compensator field is not flat anymore, but no dimensional parameters are

introduced.

3.5 Breaking of superconformal symmetry via χ-terms: the real part of the holo-

morphic function in scalar-curvature coupling

An interesting possibility to break the superconformal symmetry of the matter multiplets in the

supergravity action without introducing dimensional parameters into the underlying superconformal

action (3.1) is to modify the real function N (X, X̄) as follows

N (X, X̄) = −|X0|2 + |Xα|2 − χ

(
aαβ

XαXβX̄ 0̄

X0
+ h.c.

)
. (3.34)

Here χ is a dimensionless parameter and aαβ is a numerical matrix. The function N (X, X̄) has the

correct dilatation weight in each X and X̄ direction. This means that the new Kähler manifold

for all n + 1 chiral multiplets XI , including the compensator field X0, is not flat anymore. The

metric GIJ̄ = ∂N (X,X̄)

∂XI∂X̄ J̄ is not flat and the curvature RIK̄JL̄ is proportional to χ. We keep a cubic, X0

independent superpotential and a flat vector moduli space and an X0, X̄ 0̄ independent momentum map

PA, as above. The gauge-fixing of this class of models with N (X, X̄) = Φ(z, z̄) and X0 = X̄ 0̄ =
√

3MP

leads to a Jordan frame supergravity, described in general case in [1]. The resulting supergravity action

in which the matter multiplet is not superconformal due to χ terms is given by

1√
−gJ
LJ

sg = 1
2M

2
P (R+ 6AµAµ)− 1

6

(
|zα|2 − χ(aαβzαzβ + h.c.)

)
R− δαβ̄Dµz

αDµz̄β̄ − VJ , (3.35)
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where

VJ = Gαβ̄WαW̄β̄ + 1
2(Re f)−1ABPAPB . (3.36)

Here Gαβ̄ is the matter part of the inverse metric GIJ̄ of the enlarged space including the compensator.

We compute it in Appendix C. The action corresponds to a Jordan frame supergravity with the

frame function given in Eq. (2.9) where the holomorphic function is J(z) = −χaαβzαzβ. Note that

the inverse metric Gαβ̄ in the potential (3.36) is not flat anymore, it depends on moduli. However,

the kinetic term for scalars is canonical since Φαβ̄ = δαβ̄. An additional simplification is also observed

in the potential (3.36) : it has the form rather close to the global supersymmetry potential. The

difference comes from the non-flat inverse metric Gαβ̄. In particular, certain directions may still keep

a flat metric and the corresponding part of the potential remains superconformal. As we will see later,

this property is useful for the studies of inflation in the Jordan frame.

3.6 A simple example

A simple example is the case of two scalars, the field S, which is not included in the χ-term, and the

field H, which is included in the χ-term. We start with the superconformal theory (3.34)

N (X, X̄) = −|X0|2 + |S|2 + |H|2 − 3
4
χ

(
H2X̄0

X0
+ h.c.

)
. (3.37)

After gauge-fixing X0 = X̄ 0̄ =
√

3MP we find a Jordan frame supergravity with the frame function

Φ = −3M2
P + |S|2 + |H|2 − 3

4
χ (H2 + H̄2)

= −3M2
P + |S|2 − 1

4

(
1 +

3
2
χ

)
(H − H̄)2 +

1
4

(
1− 3

2
χ

)
(H + H̄)2 . (3.38)

The action has the following curvature dependent terms:[
1
2
M2
P −

1
6
|S|2 − 1

6
|H|2 +

1
8
χ (H2 + H̄2)

]
R . (3.39)

If S = 0 and the field H is real, so that H = H̄ = h√
2
, we find the following action:

1
2

[
M2
P + (−1

6
+

1
4
χ)h2

]
R . (3.40)

This will explain a particular relation between the standard model action [2] and the NMSSM action

during inflation, as well as the relation ξ = −1
6 + 1

4χ, see (7.18) in Sect. 7.1.

We may also rewrite the curvature-dependent terms of the action (3.39) in the following form:[
1
2
M2
P −

1
6

(
|S|2 − 1

4

(
1 +

3
2
χ

)
(H − H̄)2 +

1
4

(
1− 3

2
χ

)
(H + H̄)2

)]
R . (3.41)
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3.7 Shift symmetric models

In the main part of the paper we will be interested in the regime where χ � 1. However, there are

two other special cases which may be equally interesting, χ = ±2
3 :

1) χ = −2
3 , in which case the frame function is given by

Φχ=−2/3 = −3M2
P + |S|2 +

1
2

(H + H̄)2 . (3.42)

In this case the field S remains conformally coupled, but the imaginary part of the field H, which is

given by (H − H̄)/2i, decouples from the curvature scalar in (3.41), i.e. this field becomes minimally

coupled.

2) χ = 2
3 ,

Φχ=2/3 = −3M2
P + |S|2 − 1

2
(H − H̄)2 . (3.43)

In this case S remains conformally coupled, but the real part of the field H, which is given by

(H + H̄)/2, decouples from the curvature scalar in (3.41), i.e. it becomes minimally coupled.

Consider a particular class of superconformal models with the superconformal symmetry broken

by the real part of the holomorphic function, as shown in (3.34). For superconformal models we are

interested in the relation between the frame function and the Kähler potential of the form

K = −3M2
P log

(
− 1

3M2
P

Φ(z, z̄)
)
. (3.44)

If we break the superconformal symmetry of matter preserving this relation between the frame function

and the Kähler potential, we are led to a class of models where the Kähler potential has a shift

symmetry:

1) χ = −2
3 ,

K(z, z̄)χ=−2/3 = −3M2
P log

(
1− 1

3M2
P

(
|S|2 +

1
2

(H + H̄)2

))
. (3.45)

This Kähler potential has a shift symmetry with respect to H − H̄.

2) χ = 2
3 ,

K(z, z̄)χ=2/3 = −3M2
P log

(
1− 1

3M2
P

(
|S|2 − 1

2
(H − H̄)2

))
. (3.46)

This Kähler potential has a shift symmetry with respect to H + H̄.

Thus, a new class of models with the shift symmetric Kähler potential was derived here from the

superconformal approach to supergravity. These models provide a natural basis for a broad class of
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new models of chaotic inflation in supergravity, with a functional freedom of choice of the inflaton

potential [21].

3.8 Stabilization of moduli at the origin of the moduli space

We may be interested for applications in a method of breaking superconformal symmetry which

enforces some scalars to be fixed at the origin of the moduli space. The method to achieve the moduli

stabilization at the origin of the moduli space due to quartic corrections to the Kähler potential,

K(S, S̄) = SS̄ − (SS̄)2

Λ2 , was studied in [25]. It was argued there that the quartic term originates

from the loop corrections representing the effective potential from the massive fields which have been

integrated out. The sign of the second term in the Kähler potential is negative. In such case the

supergravity potential was shown in [25] to stabilize at S = 0, at the origin of moduli space. Such

quartic terms may be generated by radiative corrections, or they may even be present in the Kähler

potential from the very beginning.

Here we will show how these terms may emerge from superconformal coupling of matter if one

introduces an additional coupling of matter to the compensator. We split the n + 1 scalars into a

group where X0 is the compensator field, Xa = {X1, ..., Xn−1} are matter scalars and Xn is the

field which we would like to stabilize at the minimum of the potential at Xn = 0. We consider a

superconformal theory where the Xn direction is not present in the aαβ-matrix:

N (X, X̄) = −|X0|2 + |Xa|2 + |Xn|2 − χ

(
aab

XaXbX̄ 0̄

X0
+ h.c.

)
− 3ζ

|XnXn|2

X0X0
. (3.47)

After gauge-fixing at X0 = X0 =
√

3MP and using notation Xa = za, Xn = S, we find the frame

function

Φ(za, z̄b;S, S̄) = −3e−
1
3
K(za,z̄b;S,S̄) = −3M2

P + |za|2 + |S|2 − χ
(
aabz

azb + h.c.
)
− ζ |SS|

2

M2
P

. (3.48)

As we will find later, in agreement with the proposal in [4] and previous work in [25], the term −ζ |SS|
2

M2
P

will allow us to stabilize the inflationary trajectory in the NMSSM at S = 0. An interesting feature

of this mechanism is that the term −ζ |SS|
2

M2
P

vanishes on the inflationary trajectory when the moduli

stabilization is achieved.
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4 Supergravity embedding of the scale-free NMSSM

4.1 Superconformal embedding of the NMSSM into supergravity

The original motivation for the NMSSM model which, in addition to two charged Higgs doublets

Hu, Hd, has a gauge singlet Higgs field S, was the hope for the elegant solution of the µ-problem.

In MSSM there is a problem to explain a small value of the µ-term in the quadratic part of the

superpotential W = µHu ·Hd. This term is required for the phenomenological reasons. In presence

of the gauge singlet S one can start with the cubic superpotential λSHu ·Hd and hope to find a way

to produce small vev of S so that µeff = λ〈S〉 will produce the effective desired value of µ-term.

From the superconformal approach we have a totally different motivation for the gauge singlet field.

The scale-free NMSSM has cubic potential. Without the gauge singlet the term λSHu ·Hd would not

be possible. So from our perspective the motivation for the gauge singlet S is the requirement of

a scale invariance of a globally supersymmetric theory, which permits a simple promotion to local

supersymmetry with the superconformal matter-supergravity coupling.

We start with the scale-free NMSSM model reviewed most recently in [14]. The Higgs field sector

of the NMSSM gauge theory has one gauge singlet and two gauge doublet chiral superfields zH =

{S,Hu, Hd}.

S , Hu =

 H+
u

H0
u

 , Hd =

 H0
d

H−d

 . (4.1)

and Hu ·Hd ≡ −H0
uH

0
d +H+

u H
−
d . The Higgs part of the model depends on five chiral superfields. The

superpotential is

WHiggs = −λSHu ·Hd +
ρ

3
S3. (4.2)

The quarks and leptons zQL = {Q,UR, DR, L,ER} are introduced via Yukawa cubic superpotential

WYukawa so that the total superpotential for all superfields zα = (zH , zQL) is cubic

Wtotal = WYukawa +WHiggs =
1
3
dαβγ z

αzβzγ . (4.3)

The D- and F-term potentials of the general form (3.26) for the NMSSM are given explicitly in eqs.

(9) and (10) of [26] where also the complete set of Feynman rules is presented. All kinetic terms are

canonical, both for chiral as well as vector superfields. Also the Yukawa and vector part of the action

as well as interaction between the chiral and vector multiplets are given explicitly. We do not add
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the soft breaking terms to the NMSSM at this point since we would like first to embed the globally

supersymmetric action into supergravity.

We have shown above that the scale-invariant version of the NMSSM has all conditions satisfied so

that the simplest possible embedding of the scale invariant version of it into supergravity is possible.

One should take the globally supersymmetric action of the form (3.27) with details in [26] and follow

the rules explained around eqs. (3.28),(3.29). This gives the promotion to supergravity of the scale-

invariant globally supersymmetric NMSSM.

The full supergravity action corresponds to the choice of the frame function

Φ̂(z, z̄) = −3M2
P + (SS̄ +HuH

†
u +HdH

†
d) , (4.4)

which corresponds to the underlying superconformal theory (3.3) with an extra compensator field X0

N (X, X̄) = −X0X̄ 0̄ + (SS̄ +HuH
†
u +HdH

†
d) . (4.5)

The supergravity potential in the Jordan frame is the same as the global one given in eqs. (9) and (10)

of [26]. For example, the Higgs-gravity part of the supergravity action consists of the supergravity

part, given in Eq. (3.19) and the matter part of supergravity action, which is superconformal, when

interacting with the Weyl multiplet:

L̂m
sc =

√
−gJ

[
−R

6

(
SS̄ +HuH

†
u +HdH

†
d

)
−DµH

uDµH†u −DµH
dDµH†d −DµS D

µS† − V̂J
]
, (4.6)

where

V̂J =
∣∣∣∣∂W∂S

∣∣∣∣2 +
∣∣∣∣ ∂W∂Hu

∣∣∣∣2 +
∣∣∣∣ ∂W∂Hd

∣∣∣∣2 +
g
′2

8
(|H0

u|2 − |H0
d |2)2 +

g2

8
(H†u~τHu +H†d~τHd)2 . (4.7)

Here Dµ acting on scalars includes the gauge field of the U(1) R symmetry Aµ, which is an auxiliary

field of supergravity, see Eq. (3.21). It can be replaced by its on shell value as the function of scalars

and fermions, see e.g. Eq. (5.13) of [1]. For example, its bosonic part Aµ(z, z̄) is given in Eq. (2.3).

4.2 Breaking superconformal symmetry of matter in the NMSSM supergravity

Here we consider a possibility to break the superconformal symmetry of the matter multiplets in

supergravity action geometrically, without introducing dimensional parameters into the underlying

superconformal action. One of the possibilities was studied in Sec. 3.5. It corresponds to the choice

of the frame function

Φχ(z, z̄) = −3M2
P + |S|2 + |Hu|2 + |Hd|2 + 3

2χ(Hu ·Hd + h.c.) . (4.8)
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This choice was proposed in [3] for the purpose of the Higgs-type inflation in the NMSSM. The

underlying superconformal action is defined by the function Nχ(X, X̄) which is homogeneous of first

degree in both X and X̄:

N (X, X̄)χ = −|X0|2 + |S|2 + |Hu|2 + |Hd|2 + 3
2χ

(
Hu ·Hd

X̄ 0̄

X0
+ h.c.

)
. (4.9)

Note that there is no superconformal symmetry breaking in S direction of the moduli space, namely,

the metric GSS̄ = 1 = GSS̄ remains flat, decoupled from the compensator sector and from the Hu

and Hd sectors. Meanwhile, the moduli space of the Higgs doublets, Hu and Hd, is mixed with the

compensator field X0, X̄ 0̄, and it is non-flat, with χ-dependent curvature.

The Kähler function of the enlarged space (4.9) after the gauge-fixing with X0 = X̄ 0̄ =
√

3MP

corresponds to the frame function (4.8). The bosonic part of the supergravity action is as before
√
−gJ

[
1
2M

2
P (R+ 6AµAµ)

]
and the matter part of supergravity action, which is superconformal (up

to terms with χ), is

√
−gJ

[
−1

6

(
|S|2 + |Hu|2 + |Hd|2)− 1

4χ(Hu ·Hd + h.c.)
)
R− |DµHu|2 − |DµHd|2 − |DµS|2 − VJ

]
.(4.10)

In this case, as shown in Sec. 3.5, the D-term potential in the Jordan frame is the same as in the

case χ = 0; however, the F -term potential, as given by (3.36) has a specific deviation from the quartic

superconformal potential, since the metric Gαβ̄ is not flat at χ 6= 0:

VJ = Gαβ̄WαW̄β̄ +
g′ 2

8
(|H0

u|2 − |H0
d |2)2 +

g2

8
(H†u~τHu +H†d~τHd)2 . (4.11)

The metric Gαβ̄ is the part of the inverse GIJ̄ to the GIJ̄ = ∂N (X,X̄)

∂XI∂X̄ J̄ metric. It is easy to compute using

Eq. (4.9 ). One may notice, using WHiggs = −λSHu ·Hd + ρ
3S

3 that at S = 0 the only contribution

to the F-term potential comes from the term

(V F
J )|S=0 =

∂W

∂S
GSS̄

∂W̄

∂S̄
= λ2GSS̄ |Hu ·Hd|2 . (4.12)

Since the field S does not enter in the χ-term, one finds that GSS̄ = 1 and therefore even after this

breaking of superconformal symmetry the specific part of the potential remains quartic. This plays

an important role for inflation where the inflationary trajectory is at S = 0.

To embed the NMSSM gauge theory into the Einstein frame supergravity with the superconformal

symmetry breaking explained above, we have to use the Kähler potential

Kχ(z, z̄) = −3 log
[
1− 1

3

(
SS̄ +HuH

†
u +HdH

†
d

)
− 1

2χ
(
Hu ·Hd + h.c.

)]
. (4.13)
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5 Phenomenological aspects of the NMSSM

Here we start with the current point of view on the NMSSM, and its problems, following [14], where

the globally supersymmetric model is studied in presence of the terms breaking supersymmetry softly,

which originate from a hidden sector of the theory. We afterwards discuss the issues of the NMSSM

from the superconformal symmetry approach that we find useful both for the particle physics phe-

nomenology as well as for cosmology.

One of the reasons to augment the MSSM by the gauge singlet Higgs field S and study the NMSSM

was that the superpotential of the MSSM contained the term µHu ·Hd. It is difficult to explain the

required smallness of this term. In the NMSSM, one may generate the µ-term as −λ 〈S〉Hu ·Hd from

the superpotential Wλ = −λS Hu ·Hd. The problem, however, is to explain why one cannot add the

term µHu ·Hd to the NMSSM. To address this problem, one may assume that the superpotential of the

NMSSM must be scale invariant. This requirement forbids term such as µHu ·Hd, as well as the tadpole

term ∼ S and the term ∼ S2, and allows only the cubic superpotential WHiggs = λSHu ·Hd + ρ
3S

3.

Scale-invariance of the NMSSM superpotential allows its consistent embedding into the CSS. From

the top-down perspective, this scale invariance can be interpreted as a consequence of the original

superconformal symmetry, protected by the decoupling of the light fields from the conformal compen-

sator. However, scale-invariance of the of the NMSSM superpotential may result in the cosmological

domain problem, which we are going to analyze now.

At low energies one usually considers adding to the global SUSY potential the soft SUSY breaking

terms. The soft terms are of two types. There are mass terms for each Higgs,

V m
soft = m2

Hu |Hu|2 +m2
Hd
|Hd|2 +m2

S |S|2 . (5.1)

There are also terms related to a superpotential contribution to the potential: i.e. there is a coupling

Aλ, Aρ for each cubic term in the superpotential, times the real part of the superpotential. In case of

the NMSSM with the cubic superpotential they are

V W
soft(NMSSM) = Aλ λS Hu ·Hd +Aρ

1
3
ρS3 + h.c. (5.2)

A continuous global R-symmetry of the total potential, when each scalar transforms as z′ = ziΛ, z̄ =

e−iΛz̄, is broken down to a discrete one due to the V W
soft(NMSSM) term. Namely, (5.2) is invariant

under Z3 symmetry:

S′ = e
2πin

3 S , H ′u = e
2πin

3 Hu , H ′d = e
2πin

3 Hd , (5.3)
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where n ∈ Z and we assume that Aλ and Aρ are real. In such case, the theory has domain walls created

once the Z3 symmetry is spontaneously broken after a restoration of a symmetric phase in the hot early

universe. This creates large anisotropies of the CMB and contradicts a successful nucleosynthesis.

An interesting role is played here by the local U(1)R-symmetry, which is part of the superconformal

SU(2, 2|1) symmetry (and it is not included into the super-Poincaré symmetry). As explained in [1],

the χ-term required for inflation in the NMSSM must be a sum of holomorphic and anti-holomorphic

terms to keep the Jordan frame kinetic terms canonical, Φ(z, z̄) = −3M2
P + δαβ̄z

αz̄β̄ + J(z) + J̄(z̄).

These J (z) + J (z) terms in the frame function and in the Kähler potential not only break the

continuous R-symmetry, but also break the discrete Z3 symmetry (5.3). A study of the Z3 symmetry

breaking terms in the supergravity Einstein frame potential shows that the symmetry breaking term

is an order six operator ∼ χ λ2h6

M2
P
. According to [27], this amount of Z3 symmetry breaking may not be

sufficient to make the domain walls disappear before the nucleosynthesis. However, we have to take

into account that the J(z) + J̄(z̄) terms in the Kähler potential may change the soft breaking SUSY

terms in the potential, in presence of a hidden sector [28–30]. This possibility was proposed in [4].

Here we will present a more detailed investigation of this scenario.

Suppose that chiral superfields zα = {φa, ϕi} are split into an observable sector φa and the hidden

sector ϕi. Whereas the observable fields have weak scale vev’s ∼ 10−16MP , the hidden sector scalars

have a much larger scale, but they are still much smaller than MP . Therefore one may expect that at

present W = Wobs +Whid ≈Whid, and e
K

2M2
P ≈ 1. In what follows, we will assume that Wobs is cubic

in φa, but we will not specify the superpotential of the hidden sector. Up to an irrelevant complex

phase, the gravitino mass is given by

m3/2 = e
K

2M2
P
〈W 〉
M2
P

≈ 〈Whid〉
M2
P

. (5.4)

In what follows, the discussion will proceed in the Jordan frame supergravity since it makes the

conceptual points very clear. We will write the χ-term, which we added to the Kähler potential,

as the real part of the holomorphic function J(φ), quadratic in fields from the observable sector,

J(φ) = −χCabφaφb. This allows us to keep the Jordan frame kinetic terms for the observable sector

canonical and to have only a dimensionless superconformal symmetry breaking parameter χ:

K(z, z̄) = −3M2
P log

[
1− φaφ̄a

3M2
P

− J(φ)
3M2

P

− J̄(φ̄)
3M2

P

− . . .
]
. (5.5)

Here . . . stands for the terms depending on the hidden sector superfields. For the values of the fields
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much smaller than the Planck scale we may expand the logarithm in Eq. (5.5):

K(z, z̄) = φaφ̄a + J(φ) + J̄(φ̄) + . . . . (5.6)

Now we can use the Kähler invariance to switch to a different Kähler potential and superpotential,

Keff(z, z̄) = K(z, z̄)− J(φ)− J̄(φ̄) + . . . , Weff = W e
J(φ)

M2
P . (5.7)

The new Kähler potential is canonical, but the superpotential has a correction,

Keff

(
φ, φ̄

)
= φaφ̄a , Weff →W e

J(φ)

M2
P ≈W +

〈Whid〉
M2
P

J (φ) ≈W +m3/2J (φ) . (5.8)

Here we took into account (5.4). In the specific case of the NMSSM, where J = 3
2χHu · Hd, one

finds [4]

Weff = −λS Hu ·Hd +
ρ

3
S3 +

3
2
χm3/2Hu ·Hd . (5.9)

Thus, the mere existence of the real part of the holomorphic quadratic correction to the frame

function for observable Higgs fields, breaking the superconformal symmetry in a way required for

inflation, is responsible also for the specific contribution 3
2 χm3/2Hu ·Hd to the µ-term in the effective

superpotential for small fields,

µeff =
3
2
χm3/2 − λ 〈S〉 . (5.10)

This is a specific realization of the Giudice-Masiero mechanism [29]. Note that the term 3
2 χm3/2Hu·Hd

breaks Z3 symmetry of the real part of the scale-invariant superpotential. To evaluate the significance

of this effect, one may estimate the correction to the soft breaking part of the potential originating

from the term 3
2 χm3/2Hu ·Hd:

V Weff
soft = Aλ λSHu ·Hd +Aρ

ρ

3
S3 +Bµ µeff Hu ·Hd + h.c. . (5.11)

This term contains the Z3-noninvariant term

∆V =
3
2
Bµ χm3/2 (Hu ·Hd + h.c.) . (5.12)

According to [27], Z3 symmetry does not lead to the cosmological domain wall problem if the dif-

ference in vacuum energy between the different vacua separated by the domain walls is greater than

10−7 v
Mp
v4 ∼ 10−25v4. We may now compare the potential energy for two vacua, which are degenerate

for χ = 0. Consider z
|z| = e

2πi
3
n and take one vacuum with n = 0 and another one with n = 1. For

Bµ ∼ χm3/2 ∼ v, the energy difference is ∼ 3
2Bµ χm3/2 v

2 ∼ v4, which is many orders of magnitude

greater than the energy separation required for the absence of domain walls.
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One may wonder, whether all of these nice properties will be spoiled by the tadpole problem?

Indeed, in generic models interactions with heavy particles may induce large terms linear in S in the

superpotential, see e.g. [27, 31–33]. Fortunately, this problem can be solved under certain conditions,

as explained in [14]. In particular, in the theories with R symmetry [34] a solution to the tadpole

problem was suggested. We believe that this solution applies to our model. Some other proposals how

to stabilize the singlets in supergravity and avoid domain walls can be found in [35].

Let us summarize our approach to the NMSSM phenomenology.

1) There are several different versions of the NMSSM, and many inequivalent ways to incorporate

each of these versions into supergravity. We propose to incorporate the NMSSM into a canonical

superconformal supergravity (CSS). This singles out the scale-invariant version of the NMSSM. In

general, the embedding of a global SUSY model can be quite complicated, but the embedding of the

NMSSM into the CSS is a trivial exercise in the Jordan frame: one simply replaces usual derivatives

by covariant derivatives. The resulting theory has superconformal symmetry, and all kinetic terms are

canonical. This is a unique property of the CSS approach, not shared by other methods of embedding

of the NMSSM into supergravity.

2) After the embedding, all fields in the NMSSM are massless. Then one introduces masses due to

gravitational effects and interaction with hidden sector. This explains the smallness of all masses in

the NMSSM as a consequence of the underlying superconformal symmetry.

3) Adding the χ-term to the Kähler potential is equivalent to adding a nonminimal coupling of the

Higgs field to gravity, which is consistent with our ideology of breaking the superconformal symmetry

by gravitational effects. Whereas the χ-term was added in order to realize Higgs inflation, it plays

an additional role: it leads to a specific realization of the Giudice-Masiero mechanism of generation

of the µ-term in the NMSSM [29]. This mechanism breaks Z3 symmetry and resolves the domain

wall problem in the NMSSM, whereas the tadpole problem may be solved due to R symmetry of our

construction.
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6 On Higgs-type inflation with nonminimal coupling in standard

model

6.1 Basic model

Here we review the Higgs-type inflation with nonminimal scalar-curvature ξ-coupling studied in [2].

We will focus on three different ranges of the Higgs field vev’s, at the beginning of the last 60 e-foldings,

at the exit from inflation, and at the present values of the SM Higgs. In [2] the SM potential with

canonical kinetic term for the Higgs field h is coupled to a gravitational field in the Jordan frame:

LJ =
√
−gJ

[
M2 + ξh2

2
R (gJ)− 1

2∂µh∂νhg
µν
J −

λ

4
(h2 − v2)2

]
. (6.1)

At present, h = v ∼ 10−16MP , and M2
P = M2 +ξv2. Since v is extremely small, we will ignore it in our

investigation, and take M = MP = 1. The frame function for the action (6.1) in this approximation is

Φ = −3(1+ξh2) and the rescaling of the metric function Ω2 = 1 + ξh2 and the action can be rewritten

as

LJ =
√
−gJ

[
1 + ξh2

2
R (gJ)− 1

2∂µh∂νhg
µν
J −

λ

4
h4

]
. (6.2)

In the Einstein frame the action is

LE =
√
−gE

(
1
2R(gE)− 1

2∂µψ∂νψ g
µν
E − U(ψ)

)
, (6.3)

where

U(ψ) =
λ

4

(
h2(ψ)− v2

1 + ξh(ψ)2

)2

, (6.4)

and ψ is a canonically normalized scalar in the Einstein frame, defined by

dψ ≡ dh

√
Ω2 + 6ξ2h2

Ω4
. (6.5)

A solution of this equation is

ψ =
√

1 + 6ξ−1 ArcSinh
(√

ξ + 6ξ2 h
)
−
√

6 ArcTanh

( √
6 ξh√

1 + ξh2 + 6ξ2h2

)
. (6.6)

It is useful to present this solution in a simpler, asymptotic form for three different ranges of h.

1) In the interval 0 < h� 1
ξ one has

ψ ≈ h , U(ψ) ≈ λ

4
ψ4 . (6.7)
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2) In the interval 1
ξ � h� 1√

ξ
one has

ψ ≈
√

3
2
ξh2 , U(ψ) ≈ λ

6ξ2

 ψ

1 +
√

2
3ψ

2

. (6.8)

At the upper part of this interval one has ψ = O(1). The existence of this intermediate range was

not taken into account in many recent papers on Higgs inflation. It will play an important role in our

discussion of the unitarity bound in the next subsection.

3) Finally, for h� 1√
ξ

(or, equivalently, ψ � 1) one has

ψ ≈
√

3
2

ln (ξh2) , U(ψ) ≈ λ

4ξ2

(
1 + e−

2ψ√
6

)−2

. (6.9)

In this regime, the potential in the Einstein frame is very flat, which leads to inflation. As one can see

from (6.9), the constant (ψ-independent) term in the potential U (ψ) is λ
4ξ2 , so nothing would work

without the nonminimal scalar-curvature coupling proportional to ξ.

The slow-roll parameters, for ξh2 � 1, are,

ε ' 4
3ξ2h4

, (6.10)

η ' − 4
3ξh2

. (6.11)

Slow roll ends when ε ' 1, so the field value at the end of inflation is hend ' (4/3)1/4/
√
ξ ' 1/

√
ξ.

The number of e-foldings N � 1 during the slow roll of the field h from its initial value h0 is given by

N ' 3
4
ξh2

0 . (6.12)

For a particular case N ∼ 60, the amplitude of scalar perturbations of metric corresponds to the

COBE normalization for
ξ√
λ
' 5× 104 . (6.13)

The Hubble constant during inflation in this model is H ≈
√

λ
3

1
2ξ .

6.2 The unitarity bound?

Recently several authors argued that one cannot rely on the description of various processes in the

Higgs inflation model on energy scale exceeding the unitarity bound Λ ∼ 1/ξ [15–18]. For the non-

supersymmetric standard model described above, with λ = O(1), this bound is dangerously close to

28



the Hubble constant during inflation H ≈
√

λ
3

1
2ξ . In the NMSSM one may consider the regime with

λ� 1, where the concerns about the unitarity bound do not seem to appear [4]. This can be done by

using the rescaling of several parameters of the model.

Indeed, one can easily check that all observational consequences of the inflationary model described

above, including the value of the potential, the Hubble constant, the slow-roll parameters, the number

of e-folds of inflation, the amplitude of scalar perturbations of metric, the spectral index ns, and the

ratio of tensor perturbations to scalar perturbations r, depend only on two combinations of parameters:

ξh2 and λ
ξ2 . Therefore all observational consequences of this model are invariant with respect to the

simultaneous rescaling λ → c2λ, ξ → c ξ and h → h/
√
c. This means that one can study the

inflationary regime for λ = 1, ξ ' 5 × 104, and then rescale it to smaller values of λ to avoid the

problems with the unitarity bound.

It is good to know that we have this possibility. However, whereas it is possible to use small λ in

the NMSSM, one cannot do it in the original nonsupersymmetric model of [2]. Therefore it would be

interesting to double-check whether one should worry about the unitarity bound in general.

Most of the arguments suggesting the existence of this bound are based on the investigation of the

theory in the small field approximation ψ ≈ h, where one can use an expansion ψ = h(1 + ξ2h2 + ...).

For example, Ref. [16] considers the potential (6.4) at small values of the field ψ where the potential

can be expanded in powers of ψ as

U(ψ)ψ→0 ⇒
λ

4
ψ4(1− 4ξ2ψ2 +O((ξ2ψ2)2) + ... (6.14)

One may consider the term −λξ2ψ6, take two of the fields ψ, form a loop and integrate. This will

produce a term proportional to λξ2Λ2ψ4, where Λ is a cutoff. Repeating this step for all higher

order terms, one may come to a conclusion that quantum corrections to λ
4ψ

4 become uncontrollable

if Λ > 1/ξ.

However, it was suggested in [36] that “the apparent generation of the new physics is an artifact

of considering only two terms of the expansion when all terms are important”. For example, one-loop

quantum corrections to the scalar potential involve knowledge of the scalar propagator in an external

classical field ψ, which is equivalent to a resummation of diagrams with arbitrary number of external

lines of the scalar field. One-loop corrections to the potential are proportional to (U ′′(ψ))2 ln |U ′′(ψ)|.

Therefore these corrections during inflation are suppressed by an extra power of λ
ξ2 , as well as by the

asymptotic flatness of the potential (6.9). Here we would like to take another look at this issue, and
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give an independent argument, which can be applied not only to the scalar potential, but also for

kinetic terms and scattering amplitudes.

The key observation used in the derivation of the unitarity bound was that for h � 1/ξ, the

expansion of the potential contains powers of (ξ2ψ2)2n. Replacing the operators ψ2 by Λ2 results

in quantum corrections containing powers of ξ2Λ2, and, consequently, to the estimate for the energy

cutoff Λ ∼ 1/ξ. However, this is true only if one is interested in quantum effects at very small values

of the Higgs field, h� 1/ξ, which is very far from the inflationary region h & 1/
√
ξ.

As we already mentioned, for h� 1/ξ the expansion of the potential in powers of ψ is dramatically

different. Indeed, expansion of the potential U(ψ) (6.8) in powers of ψ in the intermediate range
1
ξ � h� 1√

ξ
does not contain the dangerous factors (ξ2ψ2)2n :

U(ψ) ≈ λ

6ξ2

 ψ

1 +
√

2
3ψ

2

=
λ

6ξ2

[
ψ2 − 2

√
2
3
ψ3 + ...

]
. (6.15)

The dependence on ξ in this expression is extracted into a single overall coefficient λ
6ξ2 , and all terms

in the expansion are proportional to ψn. This is very much different from the small field regime,

where the higher order terms were proportional to (ξ2ψ2)2n. To estimate how vulnerable Eq. (6.15)

could be with respect to quantum corrections, one may again replace some of the operators ψ2 in this

expansion by Λ2. One can easily see that the higher order corrections will remain small for Λ � ψ.

At the lower boundary of the range 1
ξ � h � 1√

ξ
, this leads to the same bound as before: Λ ∼ 1/ξ.

However, at the upper boundary one has ψ = O(1), which means that quantum corrections are not

expected to be important until one reaches super-Planckian energies, which are well above the energy

scale of inflation.

One can reach similar conclusions for quantum corrections during inflation, when ψ > 1 and the

potential is given by Eq. (6.9). This means that the typical energy scale of inflation, H ∼
√
λ/ξ,

is many orders of magnitude below the UV cutoff during this process. Of course, for the processes

which occur long after inflation, when h ≈ ψ < 1/ξ, the unitarity bound will be much smaller,

Λ ∼ 1/ξ [15–17], but this does not affect our ability to describe physical processes during inflation.

An attempt to derive the unitarity bound without using the small field approximation was made

in [18]. The authors considered interaction of the inflaton field with gravity in the Jordan frame

and argued that the scattering amplitude 2h → 2h exceeds the unitarity bound at energy E > 1/ξ.

However, the estimates made in [18] ignored the non-diagonal kinetic terms mixing the scalar field
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with gravity in the Jordan frame. These terms disappear in the Einstein frame, and the estimate of

the corresponding 2h → 2h scattering amplitude shows that it does not violate the unitarity bound

at sub-Planckian energies.

In [15,17] it was argued that investigation of scattering of scalar particles on other scalar and vector

particles also gives rise to the unitarity bound Λ ∼ 1/ξ. Once again, the calculations in [15, 17] are

based on the expansion ψ = h(1 + ξ2h2 + ...), which is valid only for h < 1/ξ. In the most interesting

interval of the values of the Higgs field h� 1/ξ, one can repeat the arguments given above and again

come to the conclusion that the higher order corrections are suppressed for Λ < ψ. The authors of

Ref. [19] mentioned a possibility of the unitarity cutoff Λ ∼ 1/
√
ξ, but for ξ ∼ 104 this cutoff is two

orders of magnitude higher than the Hubble constant during inflation, so it is harmless.

In conclusion, we do not think that one should worry too much about the unitarity bound during

inflation in the Higgs inflation model of Ref. [2]. However, those who want to feel even better protected

against this problem may either try to find a consistent UV completion of this model [20], or switch

to the NMSSM and study the model with λ� 1, where the presumed unitarity bound Λ ∼ 1/ξ is well

above the typical energy scale of inflation H ≈
√

λ
3

1
2ξ [4]. That is what we are going to do now.

7 Inflation in the NMSSM

Here we will start with the Jordan frame supergravity (we set MP = 1 throughout this section) with

the following frame function, as outlined in Secs. 3.5, 3.8 :

Φ(z, z̄) = −3 + (SS̄ +HuH
†
u +HdH

†
d) + 3

2χ(Hu ·Hd + h.c.)− ζ(SS̄)2 . (7.1)

Here the term (SS̄+HuH
†
u+HdH

†
d) corresponds to the superconformal coupling of the chiral multiplets.

The term +3
2χ(Hu ·Hd + h.c.) is the real part of the holomorphic quadratic function in the curvature-

scalar coupling, it breaks the superconformal symmetry of the chiral multiplet coupling. This term

reflects the need of the superconformal symmetry breaking to provide a realistic Higgs-type inflationary

model proposed in [3] and developed in [1,4]. Finally, the term ζ(SS̄)2 is added to provide the stability

of the origin of the moduli space, S = 0, as proposed in [4] and used in earlier models in [25].

To embed the NMSSM gauge theory into the Einstein frame supergravity we will use the Kähler
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potential and the superpotential

K(z, z̄) = −3 log(−1
3

Φ) = −3 log
[
1− 1

3

(
(SS̄ +HuH

†
u +HdH

†
d)
)
− χ

2
(Hu ·Hd + h.c.) +

ζ

3
(SS̄)2

]
.

(7.2)

W = −λSHu ·Hd +
ρ

3
S3 (7.3)

where the Higgs doublets are defined in (4.1). Note that

Hu ·Hd ≡ −H0
uH

0
d +H+

u H
−
d . (7.4)

HuH
†
u +HdH

†
d = H0

u(H0
u)† +H0

d(H0
d)† +H+

u (H+
u )† +H−d (H−d )† (7.5)

As in [1], we use a consistent truncation in which the charged superfields H+
u and H−d are absent.

We will present later in Appendix E the condition for the stability of the inflationary trajectory with

regard to the vanishing charged fields. We will use the fact that the dependence on the neutral and

charged Higgs fields in HuH
†
u +HdH

†
d is symmetric, whereas the one in Hu ·Hd is anti-symmetric.

Below we use a simplified action of the NMSSM, containing only three superfields: S, H0
u and H0

d ,

such that:

H1 =

 0

H0
u

 , H2 =

 H0
d

0

 . (7.6)

With this truncation, the frame function, the Kähler potential and the superpotential are:

Φ(z, z̄) = −3 +
(
|S|2 + |H0

u|2 + |H0
d |2
)
− 3

2χ(H0
uH

0
d +H0

uH
0
d)− ζ |S|4 , (7.7)

K(z, z̄) = −3 log
[
1− 1

3

(
|S|2 +

∣∣H0
u

∣∣2 +
∣∣H0

d

∣∣2)+
1
2
χ
(
H0
uH

0
d +H0

uH
0
d

)
+

1
3
ζ |S|4

]
, (7.8)

W = λSH0
uH

0
d +

ρ

3
S3 . (7.9)

The D-term potential in the Jordan frame remains simple

V D
J =

g
′2

8
(|H0

u|2 − |H0
d |2)2 +

g2

8
(H†u~τHu +H†d~τHd)2 . (7.10)

The S-dependent terms in the F-term potential even in the Jordan frame are complicated due to

ζ-corrections. However, we will establish that the stabilization of some scalars takes place and only

one real scalar remains light during inflation. We will find out that during inflation all complicated

corrections to the potential drop and we can explain the inflationary dynamics regime using the simple

features of the superconformal matter coupling and its particular breaking.
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7.1 Basic features of inflation in the NMSSM

For a numerical investigation of inflation in the NMSSM model with three chiral multiplets and

truncated charged Higgs fields we use the Mathematica code [37] designed to compute the Einstein

frame potentials and scalar kinetic terms for any number of moduli with generic Kähler potential

K(z, z̄) and generic superpotential W (z).

The potential in the NMSSM depends on three complex superfields:

S = seiα/
√

2 , H0
u = h1eiα1/

√
2 , H0

d = h2eiα2/
√

2 . (7.11)

Note that here we slightly deviate from notation of our previous paper [1]: We divided all fields by
√

2.

The main reason to do it is to keep the fields h canonically normalized in the Jordan frame. It will

simplify the comparison of inflation in the NMSSM with inflation in the nonsupersymmetric standard

model [2].

The standard mixing of the Higgs fields is defined as:

h1 ≡ h cosβ , h2 ≡ h sinβ , (7.12)

which leaves us with two real fields, h and β, instead of h1 and h2. The D-flat direction, defined by

V D
J = 0 requires that

β = π/4; h2
1 = h2

2 = h2/2. (7.13)

In this subsection we will consider the simplest inflationary solution with β = π/4, αi = 0 and

s = 0. In the next subsections we will investigate the conditions required for stability of this solution

with respect to the β, αi and s.

We find that in the Jordan frame the total supergravity action for the field h, under the condition

that β = π/4, αi = 0 and s = 0, is reduced to

LJ(h, gJ ;λ) =
√
−gJ

[
1
2
(
1− 1

6h
2 + 1

4χh
2
)
R(gJ)− 1

2(∂µh)2 − λ2

16
h4

]
. (7.14)

An interesting question to ask here is: why the complete supergravity action of the NMSSM model

with the frame function in (7.7) and superpotential in (7.9) at the inflationary trajectory with all fields

real and s = 0 is so simple in the Jordan frame?

The answer to this question consists of several parts. 1) The first term appears directly from our

expression for the frame function (7.7). 2) The kinetic term for scalars at S = 0 is canonical due to
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our choice of geometric breaking of superconformal symmetry, which does not affect this important

property. 3) The value of the auxiliary field Aµ(z, z̄) vanishes for real scalars. 4) The potential in the

Jordan frame (3.36) in the D-flat direction with cubic superpotential is

VJ = Gαβ̄WαW̄β̄ . (7.15)

The term χ(H0
uH

0
d + H0

uH
0
d) in the frame function signals the deviation from the superconformal

theory. This deviation, however, is controllable. Namely, with WHiggs = −λSHu · Hd + ρ
3S

3 if we

succeed to stabilize the theory at S = 0, the only contribution to the potential at S = 0 comes from

the term

VJ |S=0 =
∂W

∂S
GSS̄

∂W̄

∂S̄
= λ2GSS̄ |Hu ·Hd|2 = λ2|Hu ·Hd|2 =

λ2

16
h4 . (7.16)

The metric GSS̄ = 1 since the field S does not enter in the superconformal symmetry breaking χ-

term, and therefore even after this breaking of superconformal symmetry the h-dependent part of the

potential remains quartic: in the D-flat direction for real fields it is equal to λ2

16h
4.

It is easy to compare the supergravity action on inflationary trajectory (7.14) with the nonsuper-

symmetric Jordan frame action (6.2), which we reproduce here again to simplify the comparison:

LSM
J =

√
−gJ

[
1 + ξh2

2
R (gJ)− 1

2(∂µh)2 − λ

4
h4

]
. (7.17)

These two actions coincide after the following identification of the parameters:

ξ ←→ − 1
6

+
1
4
χ , λ ←→ λ2

4
. (7.18)

On the left hand side of each equation in (7.18) we have parameters of the standard model as in Eq.

(7.17). On the right hand side of each equation above we have parameters of the NMSSM inflation

model as in Eq. (7.14).

After the identification (7.18), all features of inflation in the NMSSM can be deduced from the

results of Ref. [2] presented in Sec. 3. In particular, the slow-roll parameters are

ε ' 64
3χ2h4

, (7.19)

η ' − 16
3χh2

. (7.20)

Slow roll ends when ε, η ' 1, so the field value at the end of inflation is hend ' 2.2/
√
χ. The number

of e-foldings during the slow roll of the field h from its initial value h0, for h0 � hend, is given by

N ' 3
16
ξh2

0 . (7.21)
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For N ∼ 60, the amplitude of scalar perturbations of metric corresponds to the COBE normalization

for

χ ' 105λ . (7.22)

The asymptotic value of the Einstein frame potential VE at large h is λ2

χ2 , and the Hubble constant

during inflation in this model is H ≈ 1√
3
λ
χ .

To give a particular example, let us take λ = 10−2. In this case one should have χ = 103. Inflation

ends at hend ∼ 0.07. The last 60 e-folds of inflation begin at h0 ' 0.37. All observational consequences

are the same as in the nonsupersymmetric model [2]. In particular, the spectral index is ns ∼ 0.97,

and the tensor to scalar ratio is r ≈ 0.0033. These results are valid for χ� 1. They are invariant with

respect to the simultaneous rescaling λ→ c λ, χ→ c χ and h0 → h0/
√
c. For a complete investigation

of inflation in this model one would also need to study quantum corrections in supersymmetric theory

as it was done for the standard model case in [2].

7.2 Stabilization of the non-inflaton directions in the moduli space

We would like to split all 6 components of the 3 complex scalars S,H0
u, H

0
d in (7.11) into heavy and

light ones. First of all, we impose a unitary gauge, when one combination of the neutral components

of H0
u and H0

d is the Goldstone boson and is absent in the unitary gauge. We take a condition α1 = α2.

We study stabilization of angles α, β, γ ≡ α1 +α2 and of the field s using the complete and explicit

expressions for the kinetic terms and the potential in the Einstein frame derived using the Mathematica

code [37] for the Kähler potential in (7.8) and superpotential in (7.9). We present some details of the

action in the Jordan frame and the Einstein frame for the real fields h and s in Appendix B.

7.2.1 Stabilization of angles

Now we must check the stability of the inflationary solution with respect to the fields β = π/4, α = 0,

γ ≡ α1+α2 = 0 and s = 0. We already checked in [1] that during inflation the CP -invariant solution in

which S, H0
u and H0

d are real, is stable with respect to the field β. The degree of stability is described

by the mass squared of the field β. During inflation, in the limit χh2 � 1, one has the kinetic term
2
χ(∂β)2 and the second derivative of the potential over β is Vβ,β(β = π/4) = 4(g2+g′2)

χ2 . This means

that the effective mass

m2
β =

g2 + g′2

χ
=
g2 + g′2

λ2
3χH2 , (7.23)
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is greater than H2 = 1
3
λ2

χ2 in the most natural case λ2 < 3χ (g2 + g′2), one has m2
β � H2. Thus, there

is no slow-roll regime with respect to the change of β during inflation, because the mass squared of

perturbations of the angle β is much greater than H2 = 1
3
λ2

χ2 . During inflation the field β rapidly

approaches π/4 and stays there. For λ2 � g2, g′2, the regime with β = π/4, h2
1 = h2

2 = h2/2 remains

stable even long after inflation, until the soft supersymmetry breaking terms become important and

change the final value of β [1].

Now we should study the dependence of the potential on angles α and α1 = α2 near the inflationary

trajectory s = 0, β = π/4. The potential at s = 0 does not depend on α. Therefore instead of

investigation of excitations of α one should study stability of the potential with respect to the field

s for different α. For small s and λρ < 0, the minimum of the potential with respect to α occurs at

α = 0 [1]. As we see later, stability in this direction is achieved by adding the term ζ
3(SS̄)2 in the

Kähler potential, following the suggestion made in [4] and ideas developed in [25].

Figure 1: Stabilization of the angle γ = α1 + α2 = 0 near the inflationary trajectory. The infinitely

high horseshoe barriers correspond to the singularity of the Kähler geometry. These barriers separate

the admissible range of variables from the forbidden part of the landscape (inside the horseshoes),

where the argument of the logarithm in the expression for the Kähler potential becomes negative.

As explained above, the combination α1 − α2 describes a Goldstone boson, which is replaced by

a longitudinal component of the vector field. In the unitary gauge α1 − α2 = 0. The remaining

combination γ = α1 + α2 corresponds to a scalar field with mass which during inflation is

m2
γ ≈ 4H2 . (7.24)
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To see it we should analyze the potential along the inflationary direction s = 0, β = π/4.

V (h, γ) =
9λ2h4

(12− 2h2 + 3χh2 cos γ)2
, (7.25)

where γ = α1 + α2. At χh2 � 1 V (h, γ) = λ2

χ2 cos2 γ
. Therefore its second derivative at γ = 0 is given

by Vγ,γ(γ = 0) = 2λ2

χ2 . The matrix of kinetic terms for the fields Hi in the limit χh2 � 1 at S = 0 in

the unitary gauge at β = π/4 simplifies to

Lkin ⇒ 3
h2

(∂h)2 +
3
4

(∂γ)2 . (7.26)

Therefore the mass of the canonical field

m2
γ =

2
3
Vγ,γ(γ = 0) =

4λ2

3χ2
= 4V/3 = 4H2 . (7.27)

Since m2
γ is of the same order as H2, during inflation the field γ rapidly rolls towards γ = 0 and stays

there. Therefore during inflation we have γ = 0, or, equivalently, α1 = α2 = 0. During inflation,

Z3 symmetry is broken by the term 3
2χ(Hu ·Hd + h.c.) in the Kähler potential. The potential has a

minimum with respect to γ only at γ = 0 (or, more exactly, at γ = 2πn), see Fig. 1. Therefore inflation

naturally singles out only one of the three possible minima related to each other by Z3 symmetry.

However, long after inflation, when soft supersymmetry breaking terms become important at small h a

new strong mechanism of breaking Z3 symmetry takes place as we have shown in Sec. 5. It originates

from the real part of the quadratic holomorphic term 3
2χ(Hu · Hd + h.c.) in the Kähler potential,

however, it removes domain walls via the induced soft term in the potential, Vsoft ∼ χ(Hu ·Hd + h.c.).

7.2.2 Stabilization of the field S

As we have shown in [1], the original version of inflation in the NMSSM model [3] suffered from the

tachyonic instability with respect to the field S. However, one may circumvent this problem by taking

into account interactions of the filed S with superheavy fields that one may add to the model, or

simply by adding a term −1
3ζ(SS̄)2 to the frame function and Kähler potential [4, 25]. This term

helps to stabilize the inflationary trajectory in the toy model considered in [4]. Here we will check

what happens in the NMSSM model. An investigation required an extensive use of the Mathematica

program [37]; we will present here only the main results, some details are given in the Appendix B.

During the inflationary regime, the leading behavior of the F-term potential in this model for

ξh2 � 1 is given by

VE ∼
λ2

χ2
−
(
|λρ|+ λ2

6χ
(2− 3ζχh2)

)
4s2

χ2h2
+O(s4) . (7.28)
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Figure 2: Stabilization of the field s near the inflationary trajectory s = 0 for ζ > 2|λρ|
λ2h2 + 0.0327.

To find the effective mass of the s field, attention must be paid to the nonminimal normalization of

the field S = seiα/
√

2. At constant α, the kinetic term of field S is given by

gSS∂S∂S̄ =
4
χh2

∂S∂S̄ =
2
χh2

(∂s)2 . (7.29)

Here, as we already explained before, the ζ-correction to the kinetic term of the s-field is always small

comparative to other terms, we neglected it. For small s, in the vicinity of the inflationary trajectory,

the Lagrangian of the field s for χh2 � 1 is

LE ≈ −
2
χh2

(∂s)2 − λ2

χ2
+
(
|λρ|+ λ2

6χ
(2− 3ζχh2)

)
4s2

χ2h2
. (7.30)

Therefore the mass of the canonical field s is:

m2
s ∼ 2

(
λ2

6χ2
(3ζχh2 − 2)− |λρ|

χ

)
. (7.31)

Thus the condition of stability of the inflationary trajectory at s = 0 is

ζ >
2|λρ|
λ2h2

+
2

3χh2
. (7.32)

However, this simple analytic form of the bound can be used only at
√
χh� 1, i.e. well before the

end of inflation. Meanwhile, the greatest danger of instability occurs at the very end of inflation. A

more accurate condition, which is valid even for χh2 < 1, is

ζ >
2|λρ|
λ2h2

+
2(y2 − 32)
3y2(y + 4)

, (7.33)
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where y = χh2. The function 2(y2−32)
3y2(y+4)

takes its maximal value 0.0327 at y = χh2 ≈ 10.9. This

point corresponds to the moment of maximal vulnerability with respect to the tachyonic instability.

Therefore the trajectory s = 0 remains stable for all h if

ζ >
2|λρ|
λ2h2

+ 0.0327 . (7.34)

This result is illustrated by Fig. 2, which shows the potential for ρ = 0 and ζ = 0.04.

Figure 3: Contour plots of the potential for the fields s and h during the last 60 e-folds of inflation for

ρ = 0, λ = 10−2 and ξ = 5 × 102, for three different values of ζ. Darker parts correspond to smaller

positive density, white ovals on the right panel correspond to negative values of the potential. Red

arrows show the evolution of the fields during inflation.

To illustrate the general situation in a more complete way, we show the contour plot of the potential

of the fields h and s for ρ = 0 and various values of the coupling constant ζ in Fig. 3. The first panel

corresponds to the potential shown in Fig. 2, with ζ = 0.04. The field s is stabilized during inflation

and after it. For ζ slightly smaller than 0.0327, the tachyonic instability of the field s at the very end

of inflation may force the field to deviate form the straight path, which results in tachyonic preheating.

This possibility is exotic but not dangerous. Further decrease of ζ may result in formation of two local

minima of the potential, as shown at the second panel for ζ = 0.01. The field may roll to one of the

two metastable minima and stuck there until it tunnels to the global minimum at h, s = 0. This leads

to large inhomogeneities, as in the old inflation scenario. Finally, the third panel shows the potential
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for ζ = 0.003. The field rolls down to one of the two minima with negative values of the potential,

looking like two white eyes of an alien, and the universe collapses.

Thus, for ζ significantly below 2|λρ|
λ2h2 +0.0327 one may encounter production of gross inhomogeneities

and even a collapse of the universe. Fortunately, however, one can have a successful inflationary

scenario if ζ is greater than 2|λρ|
λ2h2 + 0.0327, and even if ζ is slightly below this limit.

7.3 Higher order corrections

In Sect. 6.2 we argued that the unitarity bound discussed in [15–17] is not expected to pose any

problems for the description of inflation in this class of models. However, for the full investigation of

these models one should also investigate running of the coupling constants, along the lines of Ref. [2]

where it was done for the standard model case. For our models the quantum corrections have to be

studied with account of supersymmetry.

Independently of the issue of quantum field theory type corrections, one may wonder how stable

are our conclusions with respect to modifications of various ingredients of these models. According

to (7.22), our model does require small λ and large χ, so that λ/χ ∼ 10−5. This, by itself, does not

look much better than the standard requirement λ ∼ 10−6 in the theory λ2φ4/16, as in Eq. (7.14).

However, the choice of the large χ may provide an additional robustness of the model with respect to

higher terms in the expression for the Kähler potential.

Indeed, inflation in our model occurs at h ∼ 1/
√
χ. Suppose that, in addition to the term breaking

superconformal symmetry, −1
2χ(Hu ·Hd + h.c.), there is also a higher order term c (Hu ·Hd + h.c.)2

in the Kähler potential. For c = O(1), this term remains smaller than the first one for h <
√
χ.

Therefore if one takes χ� 1, then for h .
√
χ one should not be concerned about higher order terms

described above. According to (7.21), the total number of e-folds in this regime is N ∼ χ2, which

is incredibly large for the values of χ considered in our paper. The total number of e-folds may be

even greater if there is some symmetry which protects the original structure of the Kähler potential

at large values of the inflaton field.
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7.4 Gravitino problem and inflation beyond the NMSSM

The possibility to have an inflationary regime in the NMSSM does not necessarily mean that the cos-

mological theory based on this scenario is fully consistent. Supergravity is plagued by the cosmological

moduli problem and by the gravitino problem. Inflation helps to solve the gravitino problem, but only

if the reheating temperature Tr after inflation is sufficiently small. The bounds on Tr depend on the

gravitino mass and other parameters, but typically it should be smaller than 108 GeV, see [38–43] for

a more detailed discussion of this issue.

One way to avoid this problem is to assume that the energy scale of inflation is very low, which

leads to a small reheating temperature. However, inflation in the NMSSM occurs at the energy density
λ2

χ2 ∼ 10−10, in Planck units. If reheating happens instantly, this energy is converted to thermal energy

T 4
r ∼ 10−10. This gives an estimate Tr ∼ 1015 GeV.

One may have a much smaller reheating temperature if the inflaton field extremely weakly couples

to matter, which leads to a delay in thermalization. During this delay, the energy of the inflaton field

decreases, and the reheating temperature becomes smaller. For example, one may consider inflationary

models where the inflaton belongs to hidden sector, and its decay to observable particles is suppressed

by the small gravitational coupling. But the Higgs fields belong to the observable sector and they

couple to matter quite strongly. An investigation of reheating in the Higgs inflation [44] suggested

that the reheating temperature is about 1013 GeV. A more detailed investigation performed in [45]

demonstrated that the process of reheating in this theory is quite complex, being a combination

of the perturbative reheating [46], parametric resonance [47], instant preheating [48] and tachyonic

preheating [49]. The authors argued that the full investigation of this complicated process should be

done by lattice simulations [50]. However, there is no obvious reason to expect that this investigation

will yield the reheating temperature 5 orders of magnitude smaller than the estimate Tr ∼ 1013 GeV

made in [44].

There are several possible ways to address this problem, even if the future investigation confirms

that Tr � 108 GeV. First of all, the gravitino problem disappears if the gravitino mass is below keV,

or if it is several orders of magnitude above the TeV scale, see e.g. [41–43] for a recent discussion and

more precise bounds on the gravitino mass. Both of these possibilities are realistic. For example, in the

model of conformal gauge mediation one can have gravitino with mass below 10 eV [51]. Superheavy

gravitino have been discussed in [52–54].
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Another solution is to have a second stage of inflation after the NMSSM inflation. This is a realistic

possibility since the energy scale of the NMSSM inflation is very high, so it is quite possible to have

a second stage of inflation at a much smaller energy scale after the NMSSM inflation. If this stage

is short, as in the thermal inflation scenario [55], then it may solve the gravitino problem, and all

observational predictions on the NMSSM inflation will remain intact. On the other hand, if the

second stage of inflation is sufficiently long, then it will determine all properties of the observable part

of the universe. In this respect, it is quite encouraging that one can develop a large class of new models

of chaotic inflation based on the ideas discussed in this paper, but without necessarily identifying the

inflaton field with the Higgs field of the standard model [21].

8 Conclusion

Supergravity phenomenology was mostly developed in the Einstein frame where there is no scalar-

curvature coupling. In this paper we propose a superconformal approach to supergravity phenomenol-

ogy and cosmology. One can start with the SU(2, 2|1) superconformal theory of chiral and vector

multiplets interacting with supergravity Weyl multiplet. This theory contains a conformal compen-

sator, which can be gauged away, giving rise to the Planck mass. In this paper we identified a special

class of supergravity models: If chiral and vector multiplets of the superconformal theory are decou-

pled from the conformal compensator, the part of the action describing matter fields in the Jordan

frame remains superconformal invariant. This action is unusually simple: kinetic terms are canoni-

cal, supergravity potential coincides with the global theory potential, scalars are conformally coupled

to gravity. The potential is quartic, the theory has no mass terms, no nonrenormalizable terms, no

cosmological constant.

Theories of this type may form a convenient starting point for constructing phenomenological mod-

els. In such models, one may attribute smallness of all mass parameters to the effects of breaking of the

superconformal symmetry, which can be achieved e.g. due to gravitational effects. In particular, these

theories may provide a natural supergravity embedding for the NMSSM. Superconformal symmetry

breaking is introduced by the real part of the holomorphic quadratic nonminimal scalar-curvature cou-

pling, by terms designed to stabilize some fields at the origin of moduli space, and by interactions with

a hidden sector. This approach to supergravity phenomenology from the underlying superconformal

theory allows to address the µ-problem and the domain wall problem, and to obtain an inflationary

regime in the NMSSM. Efficient reheating after inflation in the NMSSM may lead to the cosmological
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gravitino problem. This problem can be solved if one considers models with superlight or superheavy

gravitino, or if one postulates a secondary stage of inflation after the NMSSM inflation. Fortunately,

the general methods developed during the investigation of the canonical superconformal supergravity

and inflation in the NMSSM can be used for construction of a new broad class of models of chaotic

inflation in supergravity with a functional freedom of choice of the inflaton potential [21].
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A Complete CSS action

We present here the full action corresponding to the 4 assumptions given in Sec. 3.2. We will eliminate

the scalar auxiliary fields of supergravity, but leave the auxiliary vector Aµ as an independent field.

We will make use of the gauge conditions mentioned in Sec. 3.3.

Due to the separation of X0 from the other fields, the action can be split and we can write

S =
∫

d4x
{

[−|X0|2 + |Xα|2]D + [1
3dαβγX

αXβXγ ]F +
[
fABλ̄

APLλ
B
]
F

}
=

∫
d4x [LSG + Lconf ] , (A.1)

where SSG is the action of pure supergravity, which is produced from the |X0|2-term, and Sconf is the

conformal action of all the other physical fields. The former is given by

LSG = e 1
2M

2
P

[
R(ω(e, ψ))− ψ̄µγµνρ

(
∂ν + 1

4ων
ab(e, ψ)γab

)
ψρ + 6AµAµ

]
, (A.2)
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where we already replaced X0 by its gauge-fixed value
√

3MP . The conformal D-terms are

[|Xα|2]D = e δαβ̄

{
−DµXαDµX̄ β̄ − 1

2
Ω̄α /DΩβ̄ − 1

2
Ω̄β̄ /DΩα + FαF̄ β̄

−iX̄ β̄kA
αDA −

√
2λ̄A

(
ΩαkA

β̄ + Ωβ̄kA
α
)

+
[

1
2
√

2
ψ̄ · γ

(
FαΩβ̄ − /DX̄ β̄Ωα +X β̄PRλ

AkA
α
)
− 1

6
√

2
X̄ β̄Ω̄αγµνR′µν(Q)

+
1
8

iεµνρσψ̄µγνψρ

(
X̄ β̄DσXα +

1
2

Ω̄αγσΩβ̄ +
1√
2
X̄ β̄ψ̄σΩα

)
+ h.c.

]
+

1
6
XαX̄ β̄

(
−R(ω(e, ψ)) + 1

2 ψ̄µγ
µνρR′νρ(Q)

)}
. (A.3)

The fermions are chiral:

PLΩα = Ωα , PRΩβ̄ = Ωβ̄ . (A.4)

The covariant curvature and covariant derivatives in this equation are

DµXα = (∂µ − iAµ)Xα − 1√
2
ψ̄µΩα −AAµ kAα ,

DµΩα =
(
∂µ +

1
4
ωµ

ab(e, ψ)γab +
1
2

iAµ

)
Ωα − 1√

2

(
/DXα + Fα

)
ψµ −

√
2Xαφµ −AAµ (mA)αβΩβ ,

R′µν(Q) = 2
(
∂[µ − 3

2 iA[µγ∗ + 1
4ω[µ

ab(e, ψ)γab
)
ψν] . (A.5)

The spin connection ωµ
ab in this equation contains ψ-torsion. The field φµ is the composite gauge

field of special supersymmetry:

φµ = −1
2γ

νR′µν(Q) + 1
12γµγ

abR′ab(Q) . (A.6)

The superpotential term is

[1
3dαβγX

αXβXγ ]F e−1 = dαβγX
αXβF γ − dαβγXαΩ̄βΩγ + dαβγX

αXβψ̄ · γΩγ

+1
6dαβγX

αXβXγψ̄µPRγ
µνψν + h.c. . (A.7)

The superconformal-invariant kinetic terms for the gauge multiplets are

[
fABλ̄

APLλ
B
]
F
e−1 = −1

4
fAB

[
2λ̄APL /DλB + F̂−Aµν F̂

µν−B −DADB

+
1
4
ψ̄ · γPL

(
1
2
γµνF̂−Aµν − iDA

)
λB − 1

8
ψ̄µγ

µνPRψν λ̄
APLλ

B

]
+ h.c. . (A.8)

Here

F̂µν
A = 2∂[µAν]

A + gfBC
AAµ

BAν
C + ψ̄[µγν]λ

A ,

DµλA ≡
(
∂µ + 1

4ωµ
ab(e, ψ)γab − 3

2 iγ∗Aµ
)
λA + λCAµ

BfBC
A −

[
1
4γ

abF̂ab
A + 1

2 iγ∗DA
]
ψµ .(A.9)
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Many cancelations occur in terms with gravitinos when the various covariantizations are written in

detail, and the torsion terms are extracted from the spin connection. The supergravity action is then

LSG = e 1
2M

2
P

[
R(ω(e))− ψ̄µγµνρ

(
∂ν + 1

4ων
ab(e)γab

)
ψρ + 6AµAµ + LSG,torsion

]
,

LSG,torsion = − 1
16

[
(ψ̄ργµψν)(ψ̄ργµψν + 2ψ̄ργνψµ)− 4(ψ̄µγ · ψ)(ψ̄µγ · ψ)

]
. (A.10)

We now choose the physical scalars and fermions

zα = Xα , χα = Ωα . (A.11)

After elimination of the auxiliary fields Fα and DA, the conformal part of the action becomes

e−1Lconf = δαβ̄

{
−Dµz

αDµz̄β̄ − 1
2 χ̄

α /Dχβ̄ − 1
2 χ̄

β̄ /Dχα − FαF̄ β̄

+1
6z
αz̄β̄

[
−R(ω(e)) + ψ̄µR

µ + e−1∂µ(e ψ̄ · γψµ)− LSG,torsion

]
+
[

1
8 iεµνρσψ̄µγνψρz̄β̄Dσz

α

+
1√
2
ψ̄µ /Dz

β̄γµχα − 2
3
√

2
z̄β̄χ̄αγµν

(
∂µ + 1

4ωµ
ab(e, ψ)γab − 3

2 iAµγ∗
)
ψν

+
(
−
√

2χ̄β̄ − 1
2 ψ̄ · γPLz

β̄
)
λA(mA)αγzγ + h.c.

]
+ 1

16 i e−1εµνρσψ̄µγνψρ χ̄
β̄γσχ

α − 1
2 ψ̄µχ

β̄ ψ̄µχ
α
}

+(Re fAB)
{
−1

4F
A
µνF

µν B − 1
2 λ̄

A /DλB − 1
2D

ADB

+1
8 ψ̄µγ

ab
(
FAab + F̂Aab

)
γµλB + 1

32 i e−1εµνρσψ̄µγνψρλ̄
Aγ∗γσλ

B
}

+ { dαβγ
[
−zαχ̄βχγ + zαzβψ̄ · γχγ + 1

6z
αzβzγψ̄µPRγ

µνψν

]
+ h.c.

}
. (A.12)

The covariant derivatives Dµ have no torsion in the spin-connection, neither supersymmetric covari-

antization. The same is true for Fab and Rµ:

Dµz
α = (∂µ − iAµ) zα −AAµmA

α
βz

β ,

Dµχ
α =

(
∂µ + 1

4ωµ
ab(e)γab + 1

2 iAµ
)
χα −AAµmA

α
β χ

β ,

Dµλ
A =

(
∂µ + 1

4ωµ
ab(e)γab − 3

2 iAµγ∗
)
λA −ACµ λBfBCA ,

Fµν
A = 2∂[µAν]

A + gfBC
AAµ

BAν
C ,

Rµ ≡ γµρσ
(
∂ρ + 1

4ωρ
ab(e)γab − 3

2 iAργ∗
)
ψσ . (A.13)

The auxiliary fields Aµ in (A.12) are to be considered as independent fields, which should still be

solved for by their field equations. The latter will mix the supergravity part and the superconformal

part of the action. The fields Fα and DA on the other hand are to be considered as their expressions
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in terms of the other fields:

F̄ β̄ = −δαβ̄dαβγzβzγ ,

DA = (Re f)−1ABPA = (Re f)−1ABiδαβ̄z
β̄(mA)αγzγ . (A.14)

This does not mix the supergravity and the superconformal part. Thus, equations (A.10)-(A.14)

provide the generalization of eqs. (3.25), (3.26) when all fermions and vectors are included.

B Why is the supergravity potential in CSS Jordan frame the same

as in global SUSY?

Starting from the superconformal theory potential in (3.4) we have already derived the potential of

the CSS in (3.26). The main reason from that point of view is that the modifications to the global

SUSY potential originate from the compensating multiplet, containing the scalar (yȳ)3 = eK, and

the auxiliary field F 0 producing the term −3|W |2. This compensating multiplet has been decoupled

in CSS. The fact that for the CSS models the supergravity potential is the same as in globally

supersymmetric models with canonical kinetic terms is somewhat surprising, from the point of view

of the complicated Einstein frame F-term potential in generic supergravity theory

VE = eK
(
∇αWgαβ̄∇β̄W − 3WW

)
, (B.1)

where

∇αW ≡Wα +KαW . (B.2)

It is therefore instructive to see directly how the cancelation of various terms in the F-term potential

takes place, leading to a simple CSS Jordan frame potential.

We define the Jordan frame for the CSS via the frame function Φ (z, z) = −3 Ω2 related to the

Kähler potential K (z, z) = −3 log Ω2. The metric in the Einstein frame is related to the metric in

the Jordan frame as gEµν = Ω2gJµν and
√
gE = Ω4

√
gJ . The F -term potential in the Jordan frame

specified by the frame function (B.4) is related to the Einstein frame potential as

VJ = Ω4VE = Ω4eK
(
∇αWgαβ̄∇β̄W − 3WW

)
. (B.3)

We take into account that in CSS

Ω4eK = Ω−2 , (B.4)
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which means that

VJ = Ω−2
(
∇αWgαβ̄∇β̄W − 3WW

)
. (B.5)

In these models we have the following Kähler potential and generic cubic superpotential:

K (z, z) = −3 log
(

1− 1
3
δαβz

αzβ
)
, W (z) =

1
3
dαβγz

αzβzγ , (B.6)

and

Ω2 = 1− 1
3
δαβz

αzβ . (B.7)

It follows that the Kähler geometry with gαβg
αγ = δγ

β
has the following properties:

Kα = e
1
3
Kδαβz

β , gαβ = e−
1
3
K
(
δαβ − 1

3
zαzβ

)
= Ω2

(
δαβ − 1

3
zαzβ

)
, (B.8)

so that

VJ = Ω−2gαβ (Wα +WKα)
(
W β +WKβ

)
− 3Ω−2 |W |2 . (B.9)

With an account of the CSS Kähler geometry properties we may rewrite the potential as follows:

VJ = δαβWαW β − 3 |W |2 +WWαz
α +WWαz

α − 1
3
|Wαz

α|2 . (B.10)

Note that all Ω−2 factors in (B.10) have cancelled. It remains to take into account that the CSS

superpotential W is homogeneous of third degree in zα’s, it follows that

Wαz
α = 3W , Wαz

α = 3W . (B.11)

This allows to bring the F-term potential to the final form

VJ = δαβWαW β , (B.12)

where it is clear that it coincides with the global supersymmetric F-term potential.

C The moduli space geometry in CSS models with symmetry break-

ing χ-terms

In CSS models the moduli space geometry is flat as shown in (3.9). When superconformal symmetry

is broken by the χ-terms of the form given in (3.34), the Jordan frame potential depends on Gαβ̄

according to Eq. (3.36). Here we study the non-flat geometry for the models in (3.34) and, in

particular, we compute Gαβ̄. We start from Eq. (3.34) which we repeat here for convenience

N
(
X,X

)
= −

∣∣X0
∣∣2 + |Xα|2 − χ

aαβXαXβX
0

X0
+ aαβ

X
α
X
β
X0

X
0

 . (C.1)
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The metric

GIJ ≡
∂2N

∂XI∂X
J

(C.2)

can be computed to read

G00 = −1 + χ

aαβXαXβ

(X0)2 + aαβ
X
α
X
β(

X
0
)2

 ; (C.3)

G0β = −2χaβγ
X
γ

X
0

; (C.4)

Gα0 = −2χaαγ
Xγ

X0
; (C.5)

Gαβ = δαβ. (C.6)

The components of the inverse metric GIJ (such that GIJGIK = δJ
K

) can be computed to read

G00 = −

(
X0X

0
)2

 (X0X
0
)2

− χaγηXγXη
(
X

0
)2

− χaγηX
γ
X
η (
X0
)2

+4χ2X0X
0
δγηaγθaηρX

θX
ρ


; (C.7)

G0β = −
2χδλβaλξXξ

(
X

0
)2

X0 (X0X
0
)2

− χaγηXγXη
(
X

0
)2

− χaγηX
γ
X
η (
X0
)2

+4χ2X0X
0
δγηaγθaηρX

θX
ρ


; (C.8)

Gα0 = −
2χδαλaλξX

ξ (
X0
)2
X

0 (X0X
0
)2

− χaγηXγXη
(
X

0
)2

− χaγηX
γ
X
η (
X0
)2

+4χ2X0X
0
δγηaγθaηρX

θX
ρ


; (C.9)

Gαβ = δαβ −
4χ2X0X

0
δαλδσβaσζaλξX

ζX
ξ (X0X

0
)2

− χaγηXγXη
(
X

0
)2

− χaγηX
γ
X
η (
X0
)2

+4χ2X0X
0
δγηaγθaηρX

θX
ρ


. (C.10)

By performing the gauge-fixing

X0 = X
0 =
√

3MP ; (C.11)

Xα = yZα (z) ; (C.12)

y = y = 1; (C.13)

Zα = zα, (C.14)
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one then respectively obtains:

G00 = −1 +
χ

3M2
P

(
aαβz

αzβ + aαβz
αzβ
)

; (C.15)

G0β = − 2√
3
χ

MP
aβγz

γ ; (C.16)

Gα0 = − 2√
3
χ

MP
aαγz

γ ; (C.17)

Gαβ = δαβ; (C.18)

G00 = − 1[
1− χ

3M2
P

(
aγηzγzη + aγηzγzη

)
+ 4

3
χ2

M2
P
δγηaγθaηρzθz

ρ
] ; (C.19)

G0β = −
2
√

3MPχδ
λβaλξz

ξ[
3M2

P − χ
(
aγηzγzη + aγηzγzη

)
+ 4χ2δγηaγθaηρzθz

ρ
] ; (C.20)

Gα0 = −
2
√

3MPχδ
αλaλξz

ξ[
3M2

P − χ
(
aγηzγzη + aγηzγzη

)
+ 4χ2δγηaγθaηρzθz

ρ
] ; (C.21)

Gαβ = δαβ −
4χ2δαλδσβaσζaλξz

ζzξ[
3M2

P − χ
(
aγηzγzη + aγηzγzη

)
+ 4χ2δγηaγθaηρzθz

ρ
] . (C.22)

In particular, the metric Gαβ given by Eq. (C.22) is the metric appearing in Eq. (3.36). Notice that

clearly Gαβ given by (C.22) is not the inverse of Gαβ given by (C.18), because what really holds is

G0βG0γ +GαβGαγ = δβγ . (C.23)

D The h and s part of the NMSSM potential in the Jordan and the

Einstein frame

Here we present some details of the scalar-gravity part of the supergravity action given in Eq. (2.8).

We apply it to the frame function (7.7) and we consider β = π/4, α = α1 = α2 = 0. The kinetic scalar

terms in the Jordan frame are canonical, except for the contribution to the gauge singlet one due to

ζ(SS̄)2 corrections to the NMSSM frame function:

Lkinetic
J = −

√
−gJ
2

[
(1− 2ζs2)(∂µs)2 + (∂µh1)2 + (∂µh2)2

]
, (D.1)

where h1 ≡ h cosβ , h2 ≡ h sinβ. Note that the ζ-correction to the kinetic term of the s-field is always

small comparative to 1 and can be safely neglected. Along the D-flat direction with sin(2β) = 1 the
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curvature term in the action for real fields h and s is

Lcurv
J =

√
−gJ
2

[
1− 1

6

(
s2 + h2

)
+ 1

4χh
2 + 1

12ζs
4
]
R(gJ) . (D.2)

The potential in the Jordan frame for the non-vanishing χ and ζ and non-vanishing field s is compli-

cated:

VJ (s, h;χ, λ, ρ, ζ) =
A0 + s2A2 + s4A4 + s6A6 + s8A8

1− 2ζ s2 + 1
3ζ G s

4
. (D.3)

where we introduced the following notation

A0 ≡
λ2

16
h4, A2 ≡ −

h2

4
(
|λρ|+Gλ2(χh2 − 4)

)
, A4 ≡

ρ2

4
− ζ Gh2λ2

8
(
32− (12χ+ 1/3)h2

)
,

A6 ≡
1
12
ζ G

(
λ2 − |λρ| − 6χ |λρ|

)
h2 , A8 ≡

1
12
ζ Gρ2 , G ≡ 2

8 + (3χ− 2)χh2
. (D.4)

At ζ = 0 the potential simplifies to the form given by VJ = Gαβ̄WαW̄β̄ when only χ-term breaks

superconformal symmetry of the matter

VJ (s, h;χ, λ, ρ, ζ = 0) =
λ2

4
h4 − h2

4
(
|λρ|+ 2Gλ2(χh2 − 2)

)
s2 +

ρ2

4
s4 . (D.5)

At s = 0 the Jordan potential VJ |S=0 = GSS̄WSW̄S̄ restores the superconformal form at any values of

χ, λ, ρ, ζ.

VJ (s = 0, h;χ, λ, ρ, ζ) =
λ2

4
h4 . (D.6)

In the Einstein frame for the real fields, the expression of the F-term potential is

VE (s, h;χ, λ, ρ, ζ) =
9

Φ2
VJ =

A0 + s2A2 + s4A4 + s6A6 + s8A8[
1 + 1

4χh
2 − 1

6(s2 + h2) + 1
12ζs

4
]2 (1− 2ζ s2 + 1

3ζ G s
4)
, (D.7)

where all notations are given above. For ζ = 0 the potential in (E.2) reduces to the one studied in [1]

VE (s, h;χ, λ, ρ, ζ = 0) =
λ2

4 h
4 − |λρ|s2h2 − 2λ2s2h2(χh2−4)

8+3χ2h2−2χh2 + ρ2|s|4

4
[
1− 1

6 (s2 + h2) + 1
4χh

2
]2 . (D.8)

From this equation it is obvious that at large χh2 the mass squared of the s field is negative at ζ = 0,

as explained in detail in [1]. The crucial positive contribution to the gauge singlet mass term comes

from the negative term −2ζs2 in the second bracket in the denominator of (E.2), where 1
3ζ(SS̄)2 is

the quartic correction to the Kähler potential suggested in [4] and also studied before in [25].
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E The mass of the charged Higgs field

The mass of the physical charged Higgs field in globally supersymmetric NMSSM is e.g. given in [14]

in Eq. (2.29). In the absence of the soft breaking terms the F-term and the D-term contribution to

mass (in our notation) is

(m2
±)susy =

1
8

(−λ2h2 +
g2

2

2
h2) . (E.1)

For g2
2 > 2λ2, the charged Higgs field is not tachyonic, i.e. it is stabilized at h± = 0.

In supergravity we look first at the s = 0 expression of the F -term potential given by Eq. (D.8):

V F
E (s = 0, h;χ, λ) =

λ2

16h
4[

1 + 1
4χh

2 − 1
6h

2
]2 . (E.2)

As explained in Sec. 7, we can extend this potential using the SU(2) symmetry to include the charged

Higgs, so that h2 → h2 − h2
± in the part of the potential associated with the holomorphic functions,

i.e. in the terms originating from the superpotential and from the χ-terms in the Kähler potential.

However, one has to replace h2 → h2 + h2
± in the χ-independent part of the Kähler potential. This

leads to the following potential

V F
E (s = 0, h;h±, χ, λ) =

λ2

16 (h2 − h2
±)2[

1 + 1
4χ(h2 − h2

±)− 1
6(h2 + h2

±)
]2 . (E.3)

On the other hand, the D-term potential depends on charged Higgs field as follows

V D
E (h;h±, g, χ) =

g2h2h2
±

16
[
1 + 1

4χ
(
h2 − h2

±
)
− 1

6

(
h2 + h2

±
)]2 . (E.4)

One can easily see that after inflation, for χh2 � 1, the mass squared of the charged Higgs field

m2
± coincides with its value in the globally supersymmetric case, and therefore the stability condition

requires that g2
2 > 2λ2. During inflation, one has h2 � 1� χh2, and the second derivatives of (E.3)

and (E.4) respectively read

V
′′F
± ∼ −16λ2

χ3h4
, V

′′D
± ∼ g2

2

χ2h2
. (E.5)

In this regime, for g2
2 > 2λ2, the D-term contribution to m2

± is much greater than the F-term con-

tribution. In order to calculate m2
±, one should also take into account that the kinetic terms for the

fields h± are not canonical. By so doing, one finds that during inflation

m2
± ∼

g2
2

2χ
� H2 =

λ2

3χ2
. (E.6)

This means that this field is strongly stabilized at h± = 0.

In other words, under the condition g2
2 > 2λ2 the charged Higgs field vanishes during and after

inflation.
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