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I. INTRODUCTION

Over the past few years, there has been an explosion of interest in three-dimensional supersymmetric Chern-Simons
gauge theories. Much progress was sparked by the N = 8 theory put forth in [1],[2],[3], and independently in [4], that
was proposed to describe the world volume theory of coincident M2-branes [5, 6].

The theory contains 8 scalars, XI , which take values in the transverse space, and a 16-component real fermion
Ψ, which is a two-component real d = 3 spinor in one of the 8-dimensional spinor representations of the SO(8) R-
symmetry group; the supersymmetry parameter ǫ is in the other. The fields take values in a 3-algebra, defined by a
totally antisymmetric triple product, given by

[T a, T b, T c] = fabc
dT

d. (1)

The invariant, symmetric inner-product (T a, T b) = hab raises and lowers indices, so that fabcd is real and totally
antisymmetric. The theory is gauged, with gauge field

Ãµ
a

d = fabc
dAµbc. (2)

The gauge field is constrained, so the degrees of freedom balance between bosons and fermions. The 3-algebra satisfies
the so-called fundamental identity,

[T a, T b, [T c, T d, T e]] = [[T a, T b, T c], T d, T e] + [T c, [T a, T b, T d], T e] (3)

+ [T c, T d, [T a, T b, T e]],

which implies that the gauge transformations act as derivations. These constraints define the N = 8 theory, of which
there is only one (unitary) example: fabcd ∼ εabcd and hab ∼ δab, for which the gauge group is SO(4).

More theories can be found by reducing the number of supesymmetries. These include the ABJM theories, with
N = 6 supersymmetry and U(N) × U(N) gauge symmetry [7], and the ABJ theories [8], with N = 6 and U(N)
× U(M) gauge symmetry, as well as N = 5 with Sp(2N) × O(M). Similar theories were constructed in [9]. A
classification of the possible N = 6 theories of ABJM type was presented in [10].

None of these constructions made use of a 3-algebra, so it is natural to ask whether they play any role in theories
with N < 8. In fact, the most general N = 6 theory was constructed from a 3-algebra in [11]. One realization gives
rise to an N = 6 theory with SU(N) × SU(N) gauge symmetry; another describes the N = 6 U(N) × U(M) ABJ
theories. It has recently been shown that the SU(N) × SU(N) theory is related to the U(N) × U(N) ABJM theory
[12], so the 3-algebraic approach indeed describes the complete set of N = 6 ABJM and ABJ theories.

Given these results, one would also like to know the role that 3-algebras play in N = 5 theories. The quaternionic
unitary 3-algebras were classified in [13], where it was found that they are in one-one correspondence with the N = 5
Chern-Simons theories presented in [9] and [15]. In this paper we take a more direct approach and construct the
most general three-dimensional N = 5 superconformal Chern-Simons theories from first principles. We work in
components and close the supersymmetry transformations on the fields. We find that the theories depend on real
structure constants with four upstairs indices, satisfying N = 5 versions of the fundamental identity. When the
structure constants obey fabcd = −f bacd = f cdab, they give rise to N = 5 truncations of N = 6 theories, with
supersymmetry transformations given in [11]. When they obey gabcd = gbacd = gcdab, with g(abc)d = 0, the theories
are purely N = 5. For this case, our N = 5 transformation laws agree with those presented in [14]. Our results are
in accord with the classification derived in [13]. In addition, they clarify the connection between N = 5 and N = 6
theories and show that they both arise as independent solutions to a single set of constraints.

In what follows we also present explicit 3-algebra representations for various N = 5 theories. We recover all the
examples discussed in [9, 13, 15]. We find an Sp(2N) × SO(M) theory of ABJ type, with matter fields transforming
in the bifundamental representation of the gauge group, as well as an SO(4) × SU(2) theory with one free parameter.
We also find more exotic theories with gauge groups G2 × SU(2), with bifundamental matter, and SO(7) × SU(2),
with matter in the 8-dimensional spinor representation of SO(7). These theories can also found using the “embedding
tensor” approach to d = 3, N = 8 gauged supergravity in the conformal limit [17, 18], or using N = 1 superspace, as
was done in [16].

Finally, in this paper we also show how to lift certain theories with N = 5 and N = 6 supersymmetry to N = 6
and N = 8. We first lift the N = 6 theory with SU(2) × SU(2) ≃ SO(4) gauge symmetry to N = 8. We then lift
the Sp(2N) × SO(2) invariant N = 5 theory to N = 6. As a third example, we lift the N = 5 theory with SO(4) ×
SU(2) gauge symmetry to N = 6 at one point in its parameter space. At that point, the gauge symmetry is reduced
to SO(4) = SU(2) × SU(2), as required for N = 6 supersymmetry.

The layout of the paper is as follows. In the next section, we review the 3-algebraic construction of the N = 6
theories. We present specific representations of the various gauge groups that arise, and we demonstrate the lift to
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N = 8. We then turn our attention to N = 5 and construct the most general theory based on a 3-algebra. We
find the fundamental identity, and solve it in terms of structure constants of two different kinds. We discuss explicit
representations, and present the lifts from N = 5 to N = 6.

II. REVIEW OF THE N = 6 CONSTRUCTION

In this section, we review the relevant features of the construction in [11]. We start by decomposing the SO(8)
global symmetry into SO(6) × SO(2) = SU(4) × U(1). The matter fields are a scalar ZA

a and a spinor ΨAa, both
with U(1) charges +1, together with their conjugates Z̄a

A and ΨAa, where A = 1, .., 4 is the SU(4) index and a
spans a representation of some gauge group. The 3-algebra structure constants fab

cd are no longer necessarily real
or totally antisymmetric, but satisfy fab

cd = −f ba
cd = f ba

dc = f∗
cd

ab. The six supersymmetry parameters εAB are
antisymmetric in A and B, and obey the reality condition

εAB =
1

2
εABCDεCD. (4)

The N = 6 supersymmetry transformations on the scalar and the fermion are

δZA
d = iε̄ADΨDd,

δΨDd = γµεADDµZ
A
d (5)

+ fab
cdZ

A
a Z

B
b Z̄

c
AεBD + fab

cdZ
A
a Z

B
b Z̄

c
DεAB,

where the gauge-covariant derivative on the scalar is defined by

DµZ
A
d = ∂µZ

A
d − Ãµ

a
dZ

A
a . (6)

The transformations on the scalar close according to the supersymmetry algebra,

[δ1, δ2]Z
A
d = vµDµZ

A
d + Λ̃a

dZ
A
a , (7)

where

vµ =
i

2
ε̄CD
2 γµε1CD (8)

and

Λ̃a
d = iε̄CE

[2 ε1]BE f
ab

cdZ
B
b Z̄

c
C , (9)

where the antisymmetrization is done without a factor of 1
2 .

The transformations on the fermions close similarly,

[δ1, δ2]ΨDd = vµDµΨDd + Λ̃a
dΨDa, (10)

provided the equations of motion are satisfied:

EDd = γµDµΨDd − 2fab
cdΨBaZ

B
b Z̄

c
D (11)

+ fab
cdΨDaZ

B
b Z̄

c
B + εABCDf

ab
cdΨ

CcZA
a Z

B
b = 0.

Finally, the gauge field transformations

δÃµ
a

d = −ifab
cd(ε̄

BCγµΨBbZ̄
c
C + ε̄BCγµΨCcZB

b ) (12)

close as follows,

[δ1, δ2]Ãµ
a

d = Dµ(Λ̃a
d) + vνF̃µν

a
d + O(Z4), (13)

provided the field strength obeys the following condition:

F̃µν
a

d = −∂µÃν
a

d + ∂νÃµ
a

d + Ãν
a

bÃµ
b
d − Ãµ

a
bÃν

b
d

= −εµνλ

(

DλZB
b Z̄

c
B − ZB

b D
λZ̄c

B − iΨ̄BcγλΨBb

)

fab
cd. (14)

Canceling the O(Z4)-terms leads to the N = 6 fundamental identity,

fef
gbf

cb
ad + ffe

abf
cb

gd + f∗
ga

fbf ce
bd + f∗

ag
ebf cf

bd = 0. (15)

The fundamental identity ensures that the gauge transformation acts as a derivation. With these ingredients, it is
not hard to construct the N = 6 Lagrangian, written in terms of the 3-algebra. In the next section, we discuss
representations of the N = 6 gauge groups.
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III. N = 6 REPRESENTATIONS

A representation of the 3-algebra can be constructed from rectangular M ×N matrices, X,Y, Z, as follows:

[X,Y ;Z] = XZ†Y − Y Z†X, (16)

where Z† is the conjugate transpose of Z. This can be interpreted as a gauge transformation on Xdl, acting via left
and right multiplication, with X carrying bifundamental indices d and l,

δXdl = [X,Y ;Z]dl

= XdkZ
†kbYbl − YdkZ

†kbXbl. (17)

In this case, the 3-algebra structure constants are given by

faibj
ckdl = δa

dδ
b
cδ

i
kδ

j
l − δa

c δ
b
dδ

i
lδ

j
k. (18)

The structure constants have the correct symmetries and satisfy the N = 6 fundamental identity.
Using (9), it is a simple matter to determine the gauge theories that are constructed in this way. For this particular

3-algebra, we find

δZA
dl = Λ̃ai

dlZ
A
ai = iε̄CE

[2 ε1]BEZ
B
bl Z̄

bk
C ZA

dk − iε̄CE
[2 ε1]BEZ

B
djZ̄

cj
C Z

A
cl , (19)

The matrix Λ̃ai
dl is anti-Hermitian, with a non-vanishing trace for M 6= N and a vanishing trace for M = N . As

expected, these N = 6 theories have U(N) × U(M) and SU(N) × SU(N) gauge symmetry. The original U(N) ×
U(N) ABJM model can be recovered by gauging the global U(1) symmetry, as was done in [12].

A second choice of structure constants is given by

fab
cd = JabJcd + (δa

c δ
b
d − δa

dδ
b
c), (20)

where Jab = i(σ2 ⊗ IN×N)ab is the antisymmetric invariant tensor of Sp(2N). The fab
cd also obey the fundamental

identity and have the correct symmetries. As before, we close the algebra to find the gauge transformation on ZA
d ,

δZA
d = Λ̃a

dZ
A
a = iε̄CE

[2 ε1]BE(ZB
d Z̄

a
C + JabJcdZ

B
b Z̄

c
C)ZA

a

− iε̄CE
[2 ε1]BEZ

B
b Z̄

b
CZ

A
d . (21)

This transformation is a sum of two parts. The first is of the form δ′ZA
d = Λ̃′a

dZ
A
a ; the second is a phase. It is easy

to see that JabΛ
′b

cJ
cd = Λ′d

a, so the gauge group is simply Sp(2N) × U(1).

IV. LIFT: N = 6 → N = 8

From the above construction, it is possible to find an explicit lift from the N = 6 theory with SU(2) × SU(2) gauge
symmetry to the unique N = 8 theory. We begin by writing the matter fields ZA

αα̇ in SO(4) notation,

ZA
d = ZA

αα̇σ̄
α̇α
d , (22)

using the ordinary Pauli matrices of [19] (except taking σ0 → iσ0 = iσ̄0 to make the gauge-space Euclidean). Because
of the well-known identity

(σ̄aσbσ̄c − σ̄cσbσ̄a)α̇α = −2εabcdσ̄α̇α
d ,

the representation of the SU(2) × SU(2) transformation given in (16) exactly reproduces the 3-algebra of the N = 8
theory, with fabcd = εabcd (we absorb the constant of proportionality into εabcd).

In this notation, we start with the original N = 6 supersymmetry transformations presented above, parameterized
by εAB, and construct two additional supersymmetries, parameterized by a complex spinor η of global U(1) charge
+2. The most general supersymmetry transformations consistent with these assignments are

δZA
d = iε̄ADΨDd + iΘ1η̄Ψ

A
d

δΨd
D = γµεADDµZ

Ad + Θ2γ
µηDµZ̄

d
D (23)

+ εabcdZA
a Z

B
b Z̄DcεAB − εabcdZA

a Z
B
b Z̄BcεAD

− Θ3ε
abcdZA

a Z̄AbZ̄Dcη + Θ4εABCDε
abcdη∗ZA

a Z
B
b Z

C
c ,
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for some complex numbers Θ1,Θ2,Θ3,Θ4. Note that since the gauge group is SO(4), the gauge indices can be raised
and lowered at will.

Imposing the supersymmetry algebra on the scalar transformation leads to Θ1 = Θ3 and Θ1 = Θ2. In particular,
we find

[δ1, δ2]Z
A
d = vµDµZ

A
d + Λ̃a

dZ
A
a , (24)

where

vµ =
i

2
ε̄BC
2 γµε1BC + i|Θ1|

2η̄[2γ
µη∗1] (25)

and

Λ̃ad = iε̄CE
[2 ε1]BEε

abcdZB
b Z̄Cc + 3iΘ4ε̄[2BCη

∗
1]ε

abcdZB
b Z

C
c

+ iΘ1η̄[2ε
BC
1] εabcdZ̄BbZ̄Cc + i|Θ1|

2η̄[2η
∗
1]ε

abcdZB
b Z̄Bc. (26)

Anti-Hermicity of the generator Λ̃ad requires Θ1 = −3Θ∗
4. This leaves only Θ1 independent; it can be absorbed into

the parameter η.
With these results, the supersymmetry transformations are

δZA
d = iε̄ADΨDd + iη̄ΨA

d

δΨd
D = γµεADDµZ

Ad + γµηDµZ̄
d
D

+ εabcdZA
a Z

B
b Z̄DcεAB − εabcdZA

a Z
B
b Z̄BcεAD

− εabcdZA
a Z̄AbZ̄Dcη −

1

3
εABCDε

abcdη∗ZA
a Z

B
b Z

C
c . (27)

Closing on the fermion gives

[δ1, δ2]ΨDd = vµDµΨDd + Λ̃a
dΨDa

+
i

2
ε̄CB
[2 ε1]CDEBd −

i

4
ε̄BE
2 γµε1BEγµEDd (28)

+ iη̄[2ε1]CDE
C
d −

i

2
(η̄[2η

∗
1] + η̄∗[2γ

µη1]γµ)EDd,

as required, whereEDd denotes the fermion equation of motion (11). The same calculation also fixes the transformation
of the gauge field,

δÃad
µ = −iεabcdε̄BCγµΨB

b Z
C
c − iεabcdε̄BCγµΨBbZ̄Cc

+ iεabcdη̄∗γµΨBbZ
B
c + iεabcdη̄γµΨB

b Z̄Bc. (29)

Closing on Ãad
µ imposes the constraint (14).

The above transformations are manifestly SU(4) × U(1) covariant. However, they must also be covariant under
SO(8), the N = 8 R-symmetry group. As a check, therefore, we compute their transformations under the twelve
remaining generators of SO(8)/(SU(4) × U(1)), which we denote gAB, with U(1) charge 2. The transformations are

δZA
a = gABZ̄Ba

δΨBa = −
1

2
εBCDEg

DEΨC
a

δεAB = gABη∗ +
1

2
εABCDg∗CDη (30)

δη = −
1

2
gABεAB,

consistent with the fact that ZA
a , ΨBb and εAB live in different SO(8) representations. The transformations (30)

close into SU(4) × U(1), as required by the SO(8) algebra. Moreover, it is not hard to show that the supersymmetry
transformations (27) and (29) are covariant under (30), as they must be. Thus, for the case of SO(4) gauge symmetry,
the supersymmetry transformations (27) and (29) do indeed lift the N = 6 theory to N = 8.
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V. N = 5 CONSTRUCTION

In this section, we proceed along similar lines to construct the most general N = 5 theories that make use of a
3-algebra. We start by decomposing the SO(8) global symmetry into SO(5) × SO(3) = Sp(4) × SU(2). We take the
eight scalar fields to have the index structure XA

id, where A = 1, .., 4 and i = 1, 2 are indices that refer to the Sp(4)
R-symmetry and the global SU(2), respectively; the index d spans a representation of the gauge group. The Sp(4)
indices are raised or lowered with the Sp(4)-invariant tensor,

ωAB = i(σ2 ⊗ I2×2)
AB ,

for which ωABωBC = −δA
C . Here and elsewhere we adopt the convention XA = ωABXB, XA = −ωABX

B for any
symplectic structure. The supersymmetry parameters are real spinors ξAB, antisymmetric in A and B and traceless,

ωABξ
AB = 0, (31)

so the ξAB are in the 5 of Sp(4). The superpartner fermions are real spinors as well, with index structure ΨAid.
The most general supersymmetry transformations are of the following form,

δXA
id = iξ̄ADΨDid (32)

δΨDld = γµξADDµX
A
ld

+ ωBDξACǫ
jk(fabc

dX
A
laX

B
jbX

C
kc + gabc

dX
A
kaX

B
lbX

C
jc)

+ ωACξBDǫ
jk(habc

dX
A
laX

B
jbX

C
kc + jabc

dX
A
kaX

B
lbX

C
jc),

where the Levi-Civita tensor ǫij raises and lowers the SU(2) indices. Without loss of generality, we may take gabc
d

and jabc
d to be symmetric in a and c.

The tensors gabc
d, h

abc
d, and jabc

d are fixed by closing the supersymmetry algebra on the scalar,

[δ1, δ2]X
A
id = vµDµX

A
id + Λ̃a

dX
A
ia, (33)

with vµ = i
2 ξ̄

BC
2 γµξ1BC . We find

fabc
d = 2gcab

d = hacb
d = 2jcab

d, (34)

which implies

Λ̃a
dX

A
ia =

i

2
ǫjk ξ̄EF

[2 ξ1]CFωEBf
abc

dX
B
jbX

C
kcX

A
ia. (35)

Because of conflicting symmetries, Λ̃a
d vanishes, so no gauge transformation appears in the closure of the algebra.

With these conditions, the fermion supersymmetry transformation becomes

δΨDld = γµξADDµX
A
ld

+ ǫjk(ωBDξAC + ωACξBD)

× (fabc
dX

B
jbX

C
kcX

A
la −

1

2
fabc

dX
B
laX

C
kcX

A
jb). (36)

Closing this transformation leads to a trivial theory. All interaction terms cancel in the equation of motion. Indeed,
upon closer inspection, it is possible to show that the interaction terms in the fermion transformation (36) also vanish,
as indeed they must.

To find a nontrivial N = 5 theory, we need to impose a less restrictive global symmetry group. Therefore, in what
follows, we will take the global symmetry group to be the R-symmetry group SO(5) = Sp(4). Since Sp(4) ⊂ SU(4),
we can carry over many results from N = 6.

We start by examining the supersymmetry parameters. We write the N = 6 parameters εAB in terms of the N = 5
parameters ξAB, together with a real R-symmetry singlet spinor η, as follows:

εAB = ξAB + iωABη

εAB = ξAB − iωABη. (37)
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In an N = 5 theory, the Sp(4) indices are raised and lowered using the antisymmetric tensors ωAB and ωAB,
respectively. For the N = 5 parameters ξAB , this convention is consistent with the SU(4) R-symmetry of the N = 6
theory:

ξAB ≡ ωACωBDξCD

=
1

2
(ωACωBD − ωADωBC − ωABωCD)ξCD

=
1

2
εABCDξCD. (38)

The sign change in the singlet follows from the group theory,

ωABη ≡ ωACωBDωCDη

= −
1

2
(ωACωBD − ωADωBC − ωABωCD)ωCDη

= −
1

2
εABCDωCDη. (39)

It is also necessary for the closure of the supersymmetry transformations, as can be checked for the free case.
We next consider the fields. The 4 of Sp(4) is obtained from the 4 and 4̄ of SU(4) by imposing a reality condition.

For the case at hand, we impose the following constraints on the fields of the N = 6 theory:[22]

Z̄a
A = −JabωABZ

B
b

ΨAa = −JabωABΨBb. (40)

Here ωAB is the antisymmetric Sp(4) invariant tensor, while Jab is an invariant (antisymmetric) tensor of the gauge
group, with JabJ

bc = −δc
a. The minus sign in the second term renders the constraint consistent with the N = 5

supersymmetry transformations. The constraint is inconsistent with the transformation parametrized by η, so it
explicitly breaks N = 6 supersymmetry to N = 5.

With this constraint, we can write the N = 5 supersymmetry transformations entirely in terms of the fields ZA
a

and ΨDd. The most general transformations take the following form,

δZA
d = iξ̄ADΨDd

δΨDd = γµξADDµZ
A
d + fabc

1 dZ
A
a Z

B
b Z

C
c ξDCωAB

+ fabc
2 dZ

A
a Z

B
b Z

C
c ξABωDC , (41)

where, without loss of generality, we take fabc
1 d and fabc

2 d to be antisymmetric in their first two indices. Closing on
the scalar gives

[δ1, δ2]Z
A
d = vµDµZ

A
d + Λ̃a

dZ
A
a , (42)

with

Λ̃a
d = ifabc

2 dZ
B
b Z

C
c ωDC ξ̄

DF
[2 ξ1]BF , (43)

where

fabc
1 d =

1

2
(f bca

2 d − facb
2 d). (44)

This implies

δΨDd = γµξADDµZ
A
d − facb

2 dZ
A
a Z

B
b Z

C
c ξDCωAB

+ fabc
2 dZ

A
a Z

B
b Z

C
c ξABωDC . (45)

Closing on the fermion gives

[δ1, δ2]ΨDd = vµDµΨDd + Λ̃a
dΨDa

−
i

2
ξ̄AC
[1 ξ2]ADECd +

i

4
(ξ̄AB

1 γνξ2AB)γνEDd,
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with the following fermion equation of motion:

EDd = γµDµΨDd

− fabc
2 d(ΨDcZ

A
a Z

B
b + ΨDbZ

A
a Z

B
c )ωAB

+ 2fabc
2 d(ΨAbZ

A
a Z

C
c + ΨAcZ

A
a Z

C
b )ωDC = 0. (46)

With these assignments, the gauge field transforms as

δÃµ
a

d = −i(facb
2 d + fabc

2 d)ω
BE ξ̄ECγµΨBbZ

C
c . (47)

Closing on the gauge field imposes additional constraints:

fabc
2 g(f

edg
2 f + f

egd
2 f )ZA

a Z
B
b Z

C
c Z

D
d ωADωBC = 0

fabc
2 g(f

edg
2 f + f

egd
2 f )ZA

a Z
B
b Z

C
c Z

D
d ξ̄AB[1γ

µξ2]CD = 0. (48)

These two constraints must be satisfied by the N = 5 fundamental identity.
Up to now, we have worked in complete generality. To proceed further, we impose symmetries on the structure

constants fabc
2 d. The most obvious choice is

fabcd
2 = fabcd = −f bacd = f cdab, (49)

as in N = 6. With this choice, the calculations work out just as before. In particular, the conditions (48) are satisfied
by the N = 5 restriction of the N = 6 fundamental identity:

Jgj(f
abfgf jhcd + fagfdfhbjc + fahfgf jbdc + fagfcf bhjd) = 0. (50)

In this case, the supersymmetry transformations are those of ref. [11].
A second and more interesting choice is to take

fabcd
2 = gacbd − gbcad, (51)

where

gacbd = gcabd = gbdac (52)

so fabcd
2 has all the right symmetries. As we shall see, this choice generates N = 5 theories that are not restrictions

of N = 6. The conditions (48) are satisfied if[23]

g(acb)d = 0 (53)

and

Jgj(g
afbggjchd + gafgdghjbc + gafhggjdbc + gafgcgbjhd) = 0. (54)

This is the N = 5 fundamental identity, which was also found in [15] by taking the conformal limit of three-dimensional
N = 8 gauged supergravity.

Substituting gabc
d for fabc

2 d in (41), (45) and (47), we find the N = 5 supersymmetry transformations

δZA
d = iξ̄ADΨDd

δΨDd = γµξADDµZ
A
d − gabc

dZ
A
a Z

B
b Z

C
c ξDBωAC

+ 2gabc
dZ

A
a Z

B
b Z

C
c ξACωDB

δÃµ
a

d = 3igbca
dω

BE ξ̄ECγµΨBbZ
C
c . (55)

These transformations close into a translation and a gauge variation, with parameter

Λ̃a
d = −

3i

2
gbca

dZ
B
b Z

C
c ωDC ξ̄

DF
[2 ξ1]BF . (56)

These are the same transformations that were found, starting from different assumptions, in ref. [14].
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VI. N = 5 REPRESENTATIONS

In this section we construct N = 5 gauge theories, built from symmetric structure constants gabcd, with gauge
transformations

δZA
d = Λ̃a

dZ
A
a = −

3i

2
gbca

dZ
B
b Z

C
c ωDC ξ̄

DF
[2 ξ1]BFZ

A
a . (57)

We will see that there are a host of such theories, including some with free parameters or exceptional gauge groups,
in stark contrast to N = 6 or 8.

We start by constructing a set of gabcd that lead to an Sp(2N) × SO(M) gauge group. There are four combinations
of the invariant tensors of Sp(2N) and SO(M) that have the symmetries (52):

g
aibjckdl
1 = (δacδbd − δadδbc)J ijJkl (58)

g
aibjckdl
2 = (J ikJjl + JjkJ il)δabδcd

g
(±)aibjckdl
3 = (δacδbd ± δadδbc)(J ikJjl ± JjkJ il),

where i, j, ... = 1, ... 2N are Sp(2N) indices, and a, b, ... = 1, ... M are SO(M). From them, we must select linear
combinations that satisfy (53) and the fundamental identity (54).

In fact, there are just two linear combinations that do the job:

gaibjckdl = g
aibjckdl
1 − g

aibjckdl
2 (59)

gaibjckdl = g
(+)aibjckdl
3 + g

(−)aibjckdl
3 .

Let us focus in detail on the first case. The structure constants are

gaibjckdl = (δacδbd − δadδbc)J ijJkl − δabδcd(J ikJjl + JjkJ il). (60)

They give rise to the following gauge transformation:

δZAdl = −
3i

2
ξ̄DF
[2 ξ1]BFωDCZ

B
bkZ

Cl
b ZAdk (61)

−
3i

2
ξ̄DF
[2 ξ1]BFωDCZ

Bk
b ZCd

k ZAl
b .

The two terms are Sp(2N) and SO(M) transformations, respectively, with matter fields in the fundamental represen-
tations of each [8, 15, 16].

For the second case, the structure constants are simply

gaibjckdl = J ikJjlδacδbd + J ilJjkδadδbc. (62)

The indices are in standard direct product form, so the theory has gauge group Sp(2MN), with matter fields in the
2MN dimensional fundamental representation.

For the special case of SO(4) × Sp(2) ≃ SO(4) × SU(2), it is possible to add another term to the structure constants
[15, 16]:

gaibjckdl = g
aibjckdl
1 − g

aibjckdl
2 + αεabcdJ ijJkl, (63)

where εabcd is the totally antisymmetric SO(4)-invariant tensor. The resulting gaibjckdl satisfy (53) and the funda-
mental identity, for any choice of the free parameter α. The gauge group closes into SO(4) × SU(2) for α 6= ∞. In
the next section, we will see that this example, in the limit α → ∞, has gauge group SO(4). In this limit, it lifts to
N = 6 and 8.

There are also two “exceptional” theories with N = 5. The first arises from the tensor

gaibjckdl = g
aibjckdl
1 − g

aibjckdl
2 + βCabcdJ ijJkl, (64)

where a, b, ... = 1, ... 7 and i, j, ... = 1, 2 are SO(7) and SU(2) indices, respectively. Here Cabcd is the totally antisym-
metric tensor that is dual to the octonionic structure constants Cefg ,

Cabcd =
1

3!
εabcdefgCefg. (65)
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[For a concise introduction to G2, SO(7) and the octonians, as well as a host of useful identities, see Section 2 and
Appendix A of [20].] The tensor (64) satisfies (53) and the fundamental identity for β = 0 or β = 1

2 . When β = 0,

the gaibjckdl are just the Sp(2) × SO(7) structure constants discussed above.
When β = 1

2 , the gauge group is G2 × SU(2). In this case, the structure constants take the form

gaibjckdl = (δacδbd − δadδbc +
1

2
Cabcd)J ijJkl − δabδcd(J ikJjl + JjkJ il), (66)

where i, j, ... = 1, 2. The gauge transformation is then

δZAdl = Λ̃aidlZA
ai,

with

Λ̃aidl =
3i

2
ξ̄DF
[2 ξ1]BFωDCδ

adZBi
b ZCl

b (67)

−
3i

4
ξ̄DF
[2 ξ1]BFωDC(δabδcd − δacδbd +

1

2
Cabcd)JjkJ ilZB

bjZ
C
ck.

The first term is clearly an SU(2) transformation. The second is a G2 ⊂ SO(7) transformation, as can be seen by
recognizing that the operator

Pabcd
14 =

1

3

(

δabδcd − δacδbd +
1

2
Cabcd

)

(68)

is a projector from the adjoint 21 of SO(7) to the adjoint 14 of G2,

Pabcd
14 Cbce = 0. (69)

In this way we construct the N = 5, G2 × SU(2) gauge theory from a 3-algebra, recovering the result found in [15, 16].
The second exceptional theory has SO(7) × SU(2) gauge symmetry with matter transforming in the spinor 8 of

SO(7) [15, 16]. To find the structure constants, we start with the tensor

gaibjckdl = δabδcd(J ikJjl + JjkJ il) + γΓab
mnΓcd

mnJ
ijJkl. (70)

where a, b, ... = 1, ... 8 and i, j, ... = 1, 2, and Γab
mn = 1

2 (ΓmΓn−ΓnΓm)ab is built from the SO(7) gamma matrices. The

gaibjckdl have the correct symmetries and satisfy the fundamental identity for γ = − 1
6 , in which case the structure

constants become

gaibjckdl = δabδcd(J ikJjl + JjkJ il) −
1

6
Γab

mnΓcd
mnJ

ijJkl. (71)

The gauge transformations reduce to

δZAdl = Λ̃aidlZA
ai, (72)

where

Λ̃aidl = −
3i

2
ξ̄DF
[2 ξ1]BFωDCδ

adZBi
b ZCl

b (73)

+
i

8
ξ̄DF
[2 ξ1]BFωDCΓad

mnΓbc
mnJ

jkJ ilZB
bjZ

C
ck.

We see that the gauge group is SO(7) × SU(2), with the matter fields in the spinor representation of each.

VII. LIFTS: N = 5 → N = 6

In this section, we lift two theories with N = 5 supersymmetry to N = 6, along the lines of the lift from N = 6
to N = 8. In particular, we lift the N = 5 theories with Sp(2N) × SO(2) and SO(4) × SU(2) gauge symmetry to
N = 6 theories with Sp(2N) × U(1) and SO(4) gauge symmetry, respectively. As we showed previously, the latter
theory can then be lifted to N = 8.
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To carry out the lifts, we first define unconstrained complex-conjugate scalars ZA
a and Z̄a

A, consistent with the
constraint (40):

ZA
a = ZA

a1 + iZA
a2

Z̄a
A = Z̄a1

A − iZ̄a2
A . (74)

Supersymmetry then requires that the superpartner ΞAa be defined as follows:

ΞAa = ΨAa1 + iΨAa2

Ξ∗Aa = ΨAa1 − iΨAa2. (75)

The indices 1 and 2 refer to either SU(2) or SO(2), while a refers to SO(4) or Sp(2N), respectively. The constraint
(40) allows us to write the complex-conjugate expressions in terms of the original fields. Note that this procedure
only works when one of the N = 5 gauge groups is SU(2) or SO(2).

We first consider the theory with Sp(2N) × SO(2) gauge symmetry, where a, b, ... = 1, ... 2N are Sp(2N) indices,
and i, j, ... = 1, 2 are SO(2). The conjugate scalar Z̄a

A takes the form

Z̄a
A = −ωABJ

ab(ZB
b1 − iZB

b2), (76)

and likewise for the conjugate spinor Ξ∗Aa. With these definitions, it is straightforward to check that the N = 5
transformations, with

gaibjckdl = −
2

3

(

(δikδjl − δilδjk)JabJcd − δijδkl(JacJbd + JbcJad)
)

, (77)

coincide with the N = 6 transformations, with

fab
cd = JabJcd + (δa

c δ
b
d − δa

dδ
b
c), (78)

for five of the six supersymmetries.
To find the sixth, we plug εAB → −iωABη into the transformations (5) and collect terms. After some calculation,

we find:

δZA
dl = −ωADη̄ΨDdl

δΨDdl = −iγµωADηDµZ
A
dl

+ ifab
cd(ωABωCD − ωACωBD)

×(ǫikǫjl + ǫjkǫil + iδijǫkl)Z
A
aiZ

B
bjZ

Cc
k η

δÃµ
iadl = ifabcd(η̄γµΨBbjZ

B
ck − η̄γµΨBckZ

B
bj)(δ

jkǫil + ǫjkδil), (79)

where ǫij is the antisymmetric, invariant tensor of SO(2). This is the extra supersymmetry transformation that lifts
the N = 5 theory with Sp(2N) × SO(2) gauge symmetry to the N = 6 theory with Sp(2N) × U(1).

Finally, we consider the N = 5 theory with SO(4) × SU(2) gauge symmetry, with gaibkckdl given in (63), in the
limit α→ ∞. In this limit, the structure constants reduce to

gaibjckdl → αεabcdǫijǫkl, (80)

where a, b, ... = 1, ... 4 are SO(4) indices, and i, j, ... = 1, 2 are SU(2), and ǫij is the antisymmetric, invariant tensor of
SU(2). We first compute the gauge transformation. Using (43), we find

δZD
dl ∝ ξ̄EF

[2 ξ1]BFωECε
abcdǫjkZB

bjZ
C
ckZ

D
al . (81)

This is a pure SO(4) gauge transformation; it suggests that the SO(4) × SU(2) invariant N = 5 theory, in the α→ ∞
limit, can be lifted to the SO(4) theory with N = 6 and 8.

We now construct the lift. We start by defining the complex-conjugate scalars ZA
a and Z̄a

A. For the case at hand,
we find

Z̄Aa = −iωAB(ZB
a1 − iZB

a2), (82)
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and likewise for the spinor Ξ∗Aa. As above, it possible to show that the N = 5 transformations with

gaibjckdl = −
2

3
εabcdǫijǫkl, (83)

and the N = 6 transformations with

fabcd = ǫabcd, (84)

coincide for five of the six supersymmetries.
The sixth supersymmetry is derived in the same way as before. Plugging εAB → −iωABη into (5) and collecting

terms, we find:

δZA
dl = −ωADη̄ΨDdl

δΨDdl = −iγµωADηDµZ
A
dl

+ 2εabcd ωABωCD δikδjl Z
A
aiZ

B
bjZ

C
ck η

δÃµ
aidl = −2iεabcdǫilη̄γµΨBbjZ

B
cj . (85)

Note that the interaction term explicitly breaks the SU(2) symmetry. The transformation is just what we need to lift
the N = 5 theory with SU(2)×SO(4) gauge symmetry to the N = 6 theory with SO(4) gauge symmetry. In Section
IV, we proved that this theory can again be lifted to N = 8.

It is worth emphasizing that these lifts arise from N = 5 theories that are not simply N = 6 theories with a
reality constraint. Instead they arise from purely N = 5 theories, using very special properties of the gauge groups
in question.

VIII. CONCLUSIONS

In this paper, we constructed the most general three-dimensional N = 5 superconformal Chern-Simons gauge
theory from first principles. We identified the 3-algebra, found the fundamental identity, and constructed various
representations of it. We used 3-algebras to demonstrate how certain theories can be lifted to N = 6 or 8 for an
appropriate choice of gauge group.

Our results confirm that 3-algebras provide a powerful approach to superconformal Chern-Simons theories in three
dimensions [16]. They unify and simplify the construction of theories with N ≥ 5. The number of supersymmetries is
determined by the structure of the underlying 3-algebra. Antisymmetric structure constants, with fabcd = −f bacd =
f cdab, give rise to N = 6 theories, corresponding to U(M |N) and OSp(2|N) in the Kac classification [21]. Symmetric
structure constants, with gabcd = gbacd = gcdab, give N = 5 theories, corresponding to OSp(M |N), D(2|1;α) and the
exotic pair F(4) and G(3).

Perhaps our most surprising result is that theories with different gauge groups can be continuously connected
through their 3-algebras. How does this occur in an M2 brane construction? We have seen that the N = 5 super-
symmetric SO(4) × SU(2) theory can be continuously deformed to the N = 6 SO(4) theory, changing both gauge
group and the number of supersymmetries along the way. It is surely of interest to find the M theory realization of
this phenomenon.
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APPENDIX

The theories we consider are constructed in three dimensions, with γµ = {iσ2, σ1, σ3}, with Minkowski metric
ηµν = (−,+,+). Therefore, {γµ, γν} = +2ηµν . In three dimensions, the Fierz transformation is

(λ̄χ)ψ = −
1

2
(λ̄ψ)χ−

1

2
(λ̄γνψ)γνχ. (86)
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We use the symmetrization conventions FA[BGC]D = FABGCD −FACGBD and FA(BGC)D = FABGCD +FACGBD,
for any parameters F,G, and indices A,B,C,D. We adopt the convention XA = ωABXB, XA = −ωABX

B for any
symplectic structure.

Throughout the paper, we denote spinors that are R-symmetry singlets by η. Those in the 6 of SU(4) are denoted
by εAB; those in the 5 of Sp(4) are denoted by ξAB. We note the following useful identities, which hold for both εAB

and ξAB , although they are presented with the latter, with the appropriate definition of εABCD:

1

2
ξ̄CD
1 γνξ2CD δA

B = ξ̄AC
[1 γνξ2]BC (87)

2ξ̄AC
[1 ξ2]BD = ξ̄CE

[1 ξ2]DEδ
A
B − ξ̄AE

[1 ξ2]DEδ
C
B

+ ξ̄AE
[1 ξ2]BEδ

C
D − ξ̄CE

[1 ξ2]BEδ
A
D (88)

1

2
εABCD ξ̄

EF
1 γµξ2EF = ξ̄AB[1γµξ2]CD + ξ̄AD[1γµξ2]BC

− ξ̄BD[1γµξ2]AC (89)

εABCD = ωACωBD − ωADωBC − ωABωCD. (90)

In our calculations concerning G2 and the spinor representation of SO(7), we made considerable use of the repre-
sentations and identities listed in [20]. The SO(7) gamma matrices are

Γmab = i(Cmab + δmaδb8 − δmbδa8). (91)

They lead to the SO(7) generators

Γmnab = Cmnab + Cmnaδb8 − Cmnbδa8 + δmaδnb − δmbδna, (92)

which require the following SO(7) identities:

CabeCcde = −Cabcd + δacδbd − δadδbc (93)

CacdCbcd = 6δab (94)

CabpqCpqc = −4Cabc. (95)

The Cabc are the structure constants for the octonian algebra, and

Cabcd =
1

3!
εabcdefgCefg. (96)
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