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We study ultrarelativistic encounters of two spinning, equal-mass black holes through simulations
in full numerical relativity. Two initial data sequences are studied in detail: one that leads to
scattering and one that leads to a grazing collision and merger. In all cases, the initial black hole
spins lie in the orbital plane, a configuration that leads to the so-called superkicks. In astrophysical,
quasicircular inspirals, such kicks can be as large as ∼ 3, 000 km/s; here, we find configurations that
exceed ∼ 15, 000 km/s. We find that the maximum recoil is to a good approximation proportional
to the total amount of energy radiated in gravitational waves, but largely independent of whether a
merger occurs or not. This shows that the mechanism predominantly responsible for the superkick
is not related to merger dynamics. Rather, a consistent explanation is that the “bobbing” motion
of the orbit causes an asymmetric beaming of the radiation produced by the in-plane orbital motion
of the binary, and the net asymmetry is balanced by a recoil. We use our results to formulate some
conjectures on the ultimate kick achievable in any black hole encounter.

PACS numbers: 04.25.D-, 04.25.dg, 04.70.-s, 04.70.Bw

I. INTRODUCTION

One of the more interesting consequences of binary co-
alescence is the recoil or kick velocity that the center of
mass can acquire during the event. This possibility was
first discussed by Bekenstein [1]. Kicks are generated by
an asymmetry in the momentum carried away by gravita-
tional waves (GWs): if more momentum is carried away
in any one direction, then the center of mass will “re-
act” by acquiring a velocity in the opposite direction to
conserve momentum.

In one particularly interesting scenario where the black
hole (BH) spins are equal in magnitude, opposite in di-
rection, yet within the orbital plane, the recoil velocity
can become quite large, a phenomenon that is sometimes
called a superkick [2–5]. At first glance, it is somewhat
surprising that this configuration can lead to such a large
recoil, as this is a highly symmetric orbit: the masses are
equal, the spins are anti-aligned, and the system’s total
angular momentum equals the orbital angular momen-
tum. Furthermore, the resultant kick velocity depends
sinusoidally on the initial phase of the binary, and lin-
early (at leading order) on the magnitude of the individ-
ual BH spins.

A schematic explanation of the superkick was initially
offered in Ref. [6], as being due to the “dragging of the
inertial frame” of one BH relative to the other, and vice-
versa. This was expanded upon in [7, 8], where it was
pointed out that, in addition to the frame-dragging ef-
fect, there is also a spin-curvature coupling effect respon-
sible for the super-kick at the same post-Newtonian or-

der. From a distant observer’s perspective, these effects
cause the orbital plane to “bob” up and down in a sinu-
soidal manner, while the binary inspirals, with frequency
equal to the orbital frequency. This bobbing motion by
itself does not directly produce the radiation that must
be balanced by a recoil. Rather, the bobbing causes the
radiation produced by the binary’s in-plane orbital mo-
tion to be blue/red-shifted, in synchrony with the bob-
bing. It is this asymmetry in the radiation pattern that
ultimately results in net linear momentum radiated in
a direction orthogonal to the orbital plane, balanced by
the remnant BH moving in the opposite direction, after
coalescence.

More recently, however, Gralla et al. [9] have argued,
based on an electromagnetic analogue model, that the
bobbing motion is purely “kinematical” in nature, and
not responsible for the recoil. Rather, they speculate
that the recoil has to arise in a process directly related
to the merger event which causes field momentum to be
“released” and radiated to infinity. Here we present a
first study of the ultrarelativistic scattering of two BHs
in the superkick configuration, in part to address the is-
sue about the origin of the superkick, and in part to
continue our study of the high-energy regime in BH col-
lisions. Specifically, we study two families of initial data,
one leading to merger and one leading to scattering, al-
though in the latter the BHs interact strongly. In both

cases we find essentially identical recoil behavior of the
center of mass following the interaction: the recoil direc-
tion is orthogonal to the orbital plane, and the magnitude
varies sinusoidally with the initial phase, with a maxi-
mum proportional to the net energy radiated in GWs.
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This is completely consistent with the original scenario
where bobbing-induced blue/red-shifting of the radiated
energy leads to the recoil. The only effect of the merger
is to slightly enhance the radiated energy, and hence the
maximum recoil.

These conclusions do not necessarily imply that the
electromagnetic analogue in [9] is incorrect. However,
since radiation-reaction effects were not included in that
study, it is conceivable that the same phenomena would
arise in the scattering of appropriately aligned magnetic
dipoles. In fact, then the two explanations described
above might more be a difference in semantics, i. e. an
issue of whether one considers radiation to be a “release”
of “field momentum”, which could happen regardless of
merger, as it does in the BH scattering case.

Several other interesting conclusions can be drawn
from the results of this study, other than implications
for the nature of the mechanism of the superkick. First,
in the scattering cases, we also see situations where a so-
called anti-kick is present; i.e., where the maximum in-
stantaneous net linear momentum radiated is not equal
to the final value. Thus, again, explanations of this phe-
nomenon relying on effects due on the presence of a com-
mon horizon (as in Ref. [10]) cannot be the complete pic-
ture. Second, to gauge the effect that spin in this config-
uration has on the overall energy and angular momentum

radiated in a merger, we compare the results obtained for
each sequence with those for an equivalent binary, except
the BHs initially have zero spin. We find that spin has
very little effect on the radiated energy and angular mo-
mentum. Third, we show that subdominant effects in the
spins scale as predicted by the “spin expansion formal-
ism” developed by Boyle, Kesden and Nissanke [11, 12].
This is true for both merging and scattering configura-
tions; the latter result is nontrivial, since the spin expan-
sion was explicitly formulated for binaries that lead to
mergers. Fourth and last, these simulations result in the
largest superkicks seen to-date in merger simulations, up-
wards of ∼ 15, 000km/s. This is a factor of 5 larger than
the maximum yet seen in quasicircular BH coalescences,
and 50% larger than those obtained by Healy et al. in
hyperbolic encounters [13]. In Section III C we provide
some speculations on the maximum kick that could theo-
retically be achievable in any ultrarelativistic encounter.
We note that such enormous super-kicks are not expected
to occur in realistic astrophysical scenarios.

An outline of the rest of the paper is as follows. Sec-
tion II discusses the numerical implementation of the
problem and related numerical uncertainties. In Sec-
tion III we present our results on the radiated energy
and linear momentum. We conclude in Sec. IV with a
summary of our findings. Throughout this work we use
geometrical units (G = c = 1), unless otherwise noted.

II. NUMERICAL SIMULATIONS

We have performed numerical simulations with the
Lean code [14] which evolves the Einstein equations us-
ing the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formulation [15, 16] in combination with the moving
puncture method [17, 18]. The exact form of our evo-
lution system is given by Eqs. (11), (A1), (A4), (A6-A8)
in Ref. [14]. For evolving the shift βi, we follow [19]
and employ a first order in time version of the so-called
“Gamma driver” [see their Eq. (26)]. The free parame-
ter η is set to η = 0.7 (in code units) in all simulations.
This corresponds to Mη = 0.868, where M is the total
center-of-mass energy of the system.

The Lean code is based on the Cactus computa-
tional toolkit [20] and uses mesh refinement provided
by Carpet [21, 22]. Initial data are calculated ac-
cording to the puncture method [23] with Bowen-York
parameters [24] using the Cactus thorn TwoPunc-

tures based on Ansorg’s spectral solver [25]. Appar-
ent horizons are located and analyzed with Thornburg’s
AHFinderDirect [26, 27]. GWs are extracted using
the Newman-Penrose scalar Ψ4, as summarized in Ap-
pendix C of Ref. [14]. The energy, linear and angular
momentum carried by GWs are obtained from Ψ4 accord-
ing to Eqs. (2.8), (2.11) and (2.24) of Ref. [28]. For more
details on the code we refer the reader to Refs. [14, 29].

A. Initial configurations

All of our simulations are performed in the center-of-
mass frame of the binary, defined as the frame with zero
ADM linear momentum [30]. We determine the initial
parameters of each BH under the assumption of isolated
horizons. This approximation is justified by the large ini-
tial separations used for all simulations. We thus obtain
the irreducible mass Mirr,i for BH i = 1 and 2 and calcu-
late the BH rest mass from Christodoulou’s [31] relation

M2
i = M2

irr,i +
S2

i

4M2
irr,i

, (1)

where Si is the spin magnitude of the ith BH. The boost
parameter is defined by the ratio of dynamic to rest mass
γ = Mdyn/(M1 + M2), where

M2
dyn = M2

1 + P 2
1 + M2

2 + P 2
2 , (2)

and Pi is the magnitude of either BH’s initial linear
momentum. In this work, we consider equal-mass bi-
naries so that the boost of the individual BHs equals
γ. In practice, both BHs start on the x-axis at lo-
cation ±x0 and their initial Bowen-York momenta are
P = (∓Px, ±Py, 0), so that the initial orbital angular
momentum is given by L = d Py = 2x0 Py.

With these definitions, we can characterize a binary
initial configuration using the following parameters: the
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FIG. 1. Illustration of the BH binary initial configuration.

boost parameter γ, the magnitude of the dimensionless
spin χi = Si/M

2
i (where in all of our simulations χ1 =

χ2 = χ), the initial separation d, the impact parameter
b = L/P and the orientation of the spins measured by
the angle θ relative to the coordinate axis connecting the
initial BH positions (see Fig. 1).

For both sequences, we fix the boost parameter γ =
1.52, corresponding to P/M = 0.374, the dimensionless
spin χ = 0.621 and the initial separation d = 58.2 M .
The two sequences differ in the impact parameter; b =
3.34 M for the s-sequence (scattering) and b = 3.25 M
for the m-sequence (merging binaries). We carried out a
total of twenty simulations for selected values of the angle
θ in the range [0◦, 360◦]. For comparison, we also present
results from two nonspinning, equal-mass binaries with
the same rest mass, boost and impact parameters. Radi-
ated energy and angular momenta, and (for the merger
cases) final horizon properties are summarized in Table I
(some of these quantities have not yet been introduced,
but they will be defined later on in the paper).

B. Computational grid and uncertainties

We have evolved all binary configurations on a numer-
ical grid consisting of ten nested refinement levels, three
levels with one component centered on the coordinate
origin and seven levels with two components each, cen-
tered on either BH. Using the notation of Sec. II E of
Ref. [14], the exact grid setup in units of M (rounded to
three significant digits) is given by

{(258, 184, 92)

×(13.8, 6.90, 3.45, 1.73, 0.863, 0.431, 0.216), h} .

Our standard resolution is h = M/223, but for conver-
gence testing we have also evolved one merger case us-
ing a coarser resolution hc = M/195 and finer resolution
hf = M/250. GWs have been extracted on a a set of six
concentric spheres of coordinate radii Rex = 57.5M to
86.3M in steps of 5.76M .

The convergence analysis for the recoil velocity is
shown in Fig. 2. Here we define a time-dependent kick as
the quotient of the radiated momentum and the final BH
mass: vkick = −Prad(t)/Mfin. The figure demonstrates

Mergers Scatters

Average Max. Dev. Average Max. Dev.

Erad/M 0.295 2.3% 0.252 2.2%

Ephys/M 0.265 2.6% 0.222 2.1%

Jrad/J 0.643 2.6% 0.580 1.2%

Jphys 0.605 5.2% 0.531 0.7%

Mirr/M 0.607 0.3% — —

jfin 0.869 3.2% — —

jQNM 0.890 4.4% — —

jAH 0.889 2.2% — —

TABLE I. Initial and final parameters for the two sequences of
binary models. Note that in all cases the estimated uncertain-
ties in these quantities (not shown) from numerical truncation
error or finite extraction radius is larger than the intrinsic
variation within each sequence, including the two nonspin-
ning comparison cases. Therefore, rather than list the values
for all the separate cases, here we just list the average value,
and the maximum deviation relative to the average. Note
that for merger cases we only have apparent horizon informa-
tion from roughly half the simulations, and so corresponding
averages and deviations for the mass Mirr and spin jAH only
include those.
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FIG. 2. Convergence test for the recoil velocity vkick(t) ≡

Prad(t)/Mfin. The convergence factor Q2 = 1.459 corresponds
to second-order convergence.

second-order convergence. Richardson extrapolation re-
veals a relative uncertainty of the numerical kick velocity
obtained with medium resolution of about 9%.

A second main source of error is inherited from the use
of finite extraction radii. We study the resulting error by
analyzing vkick(t) extracted for the high-resolution simu-
lation of the test model at six different radii in Fig. 3. For
this purpose we have first aligned the velocity functions
in time to compensate for differences in the propagation
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FIG. 3. Difference of the recoil velocity vkick(t) ≡ P (t)/M at
different extraction radii from the reference curve obtained by
extrapolation according to Eq. (3), refered to as “xpol1”. We
also show the difference of a second fit assuming a quadratic
term according to Eq. (4), referred to as “xpol2”.

time, and fitted the resulting curves with either of

v(t, rex) = v0(t) +
v1(t)

rex
, (3)

v(t, rex) = v0(t) +
v1(t)

rex
+

v2(t)

r2
ex

. (4)

The predicted recoil for infinite extraction radius is given
by v0(t).

The fractional error in the velocity, as inferred from
the difference between the largest extraction radius used
in practice (rex = 86.3 M) and the extrapolated value, is
roughly 4%. We note that the main contributions to the
error in the velocity typically are opposite in sign: finite
resolution truncation error causes an underestimate of
the recoil, while the use of finite extraction radius results
in an overestimation.

In the remainder of this paper we report radiated quan-
tities obtained at rex = 86.3 M and at medium resolution
and cite a combined error due to discretization and fi-
nite extraction radius of 13%. For the reasons mentioned
above, we consider this a rather conservative estimate of
the uncertainties.

In order to calculate the physical radiated momenta
and energy (the quantities with a subscript “phys” in
Table I), we exclude from the extraction the early part of
the gravitational waveforms up to t− rex = 50 M , which
is dominated by spurious radiation due to the initial data.
For reference, the total radiated quantities that include
the spurious radiation are also shown in the table with a
subscript “rad”.

Before we discuss our results in more detail, we con-
clude this section with a summary of further diagnostic
quantities. The total center-of-mass energy of the system
is given by the ADM mass of the initial data as provided
by the spectral solver. The radiated momenta and energy

enable us to calculate the final BH mass

Mfin = M − Erad. (5)

In the case of scattering configurations this mass is to be
interpreted as the sum of the individual BH masses in
the limit of large separation. Balance arguments further
provide us with an estimate for the dimensionless spin of
the merged BH

jfin =
L − Jrad

M2
fin

. (6)

By virtue of the symmetry of the binaries studied in this
work, the angular momentum of the BH binary as well
as that contained in the gravitational radiation points
in the z direction, defined as the direction of the initial
orbital angular momentum.

We can also estimate the spin jQNM of the final BH by
fitting the gravitational waveform at late-times with an
exponentially damped sinusoid. The (QNM) frequency
and damping time of this signal can be inverted to obtain
jQNM (see e.g. Refs. [32, 33]).

An alternative measure for the final spin is given in
terms of the irreducible mass of the apparent horizon.
For this purpose we rewrite Christodoulou’s relation (1)
for the post-merger BH as

jAH = 2
Mirr

Mfin

√

1 −
M2

irr

M2
fin

. (7)

III. RESULTS

In this section we describe the main results from our
study. In Sec. III A we first discuss the total energy radi-
ated, before turning to the question of net momentum in
Sec. III B. In Sec. III C we comment on the relationship
between these quantities, borrowing results from a wider
set of published simulation results, noting that in magni-
tude the ratio of these two quantities is nearly constant.
Based on this observation, we describe several speculative
extrapolations to guess what the “ultimate” kick might
be in Sec. III D. Finally, in Sec. III E we comment on
what our results imply about the mechanism of the anti-
kick.

A. Radiated energy

Before we discuss in detail the radiation of linear mo-
mentum, we consider the energy carried away in the form
of gravitational radiation. Radiated energies are listed in
the rows labeled Erad and Ephys in Table I; again, the lat-
ter row excludes contributions due to spurious radiation
inherent in the initial data.

Note that the radiated energy shows little variation
(the “maximum deviation” column) within either se-
quence. Also, the orientation of the spins in the xy plane
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FIG. 4. Radiated energy flux dErad/dt for a selected set of
initial phase angles from both sequences (s for scatter, m for
merger), and including the nonspinning cases.

has no impact on the outcome (merger or scattering) of
the binary interaction. This confirms the observation
made for the astrophysically more relevant case of qua-
sicircular superkick configurations, as discussed for ex-
ample in Sec. III B of Ref. [3]: the spin orientation in
the orbital plane does not significantly influence the dy-
namics within the orbital plane. Furthermore, the spin
magnitude makes little difference, as evidenced in that
the maximum deviation listed includes the nonspinning
cases. Fig. 4 shows the energy flux dErad/dt for a few
cases from the two sequences.

The energy flux for all models within a sequence has
similar levels of agreement, so we restrict the number of
curves in the figure for clarity.

In summary, the total radiated energy is essentially
independent of the orientation of the spins or, indeed,
the presence of the spins in the first place.

B. Gravitational recoil

The two sequences studied in this work either result
in a merger or in a scattering where no common appar-
ent horizon forms and the BHs fly apart until they can
be regarded as isolated. For merging binaries the total
recoil is defined in the traditional manner: the linear mo-
mentum radiated in the form of GWs has to be balanced
by the recoil of the post-merger BH. For scattering runs,
we similarly define a total kick of the binary system, but
now the momentum due to the recoil is distributed over
two individual BHs instead of one. By virtue of the sym-
metry of all configurations studied in this work, the two
BHs acquire equal linear momentum after scattering, i.e.
they move in the z direction with identical velocities.

The final recoil velocity is shown in the top panel of
Fig. 5 for all parameters. The data exhibit the same sinu-
soidal dependence of the recoil on the orientation angle θ
that was found for astrophysical binaries. These best-fit
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FIG. 5. Top panel: the final recoil velocity as a function of
the spin orientation θ for the m- and the s-sequence. The
curves are best-fit sinusoids to the data. Bottom panel: sub-
dominant contribution to the final recoil velocity, obtained by
subtracting from the total recoil the sinusoidal fit in Eq. (8).

sinusoids, also shown in the figure, are

vkick, s = 12200 cos(θ − 2.53) km/s , (8)

vkick, m = 14900 cos(θ − 2.23) km/s . (9)

Most significantly, the magnitude of the total radiated
linear momentum is quite similar between the two cases.
It is also interesting to note, however, that both the max-
imum recoil and the radiated energy are a bit larger for
the m-sequence than for the s-sequence. We will investi-
gate this feature more closely in the following section.

Boyle, Kesden and Nissanke [11, 12] systematically ex-
panded the mass, recoil velocity and spin of the remnant
BH resulting from a binary BH merger in terms of the
binary’s mass ratio q and of the individual spins χi of
the two BHs. For equal-mass “superkick” configurations
where the two BHs have the same Kerr spin parameter
(χ1 = χ2 = χ) their result for the final kick can be ex-
pressed in the form

vkick ≃ k1χ cos(θ − θ1)

+ k3χ
3 cos(3θ − θ3) + O(χ5) , (10)

The bottom panel of Fig. 5 shows that the subdominant
contribution to the kick is indeed well fitted by a func-
tion of this form for both the merging and scattering se-
quences, whereas the spin expansion of Refs. [11, 12] con-
sidered mergers only. A fit of the data including third-
order contributions in χ yields

k
(m)
1 = 24119 , k

(m)
3 = −1722 ,

θ
(m)
1 = 2.227 , θ

(m)
3 = 0.373 (11)

for merging binaries, and

k
(s)
1 = 19634 , k

(s)
3 = −636 ,

θ
(s)
1 = 2.532 , θ

(s)
3 = 0.991 (12)
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in the scattering case. For comparison, the astrophysi-

cal mergers of “superkick” configurations lead to k
(J)
1 =

3769 , k
(J)
3 = 228 for the simulations by the Jena group

[3] and to k
(R)
1 = 3622 , k

(R)
3 = 216 for the simulations by

the Rochester group [5] (cf. Table V of Ref. [12]). Con-
sidering that these simulations were carried out by in-
dependent codes and considering different values of the
individual BH spins, these last sets of numbers are in
remarkable agreement and within the numerical errors.

Let us assume that the “true” values of the parame-
ters for astrophysical binaries are given by an average of
the Rochester and Jena results: k1 = 3695 , k3 = 222.
Then we find that, within the accuracy of the numer-
ics, the fitting coefficients of different orders in our rela-
tivistic mergers and those in “astrophysical” mergers are
roughly consistent with a single proportionality relation:

|k
(m)
1 /k1| ≃ 6.5 and |k

(m)
3 /k3| ≃ 7.8.

As discussed below, these findings may have interesting
implications to estimate the maximum kick achievable in
any binary BH encounter.

C. The relation between energy and recoil

Let us now investigate the relation between the ra-
diated energy Ephys and the maximum1 recoil veloc-
ity vkick. We will use this relation in the next section
to extrapolate existing information on BH binaries and
roughly estimate the ultimate recoil achievable in any
ultrarelativistic BH encounter.

The search for a trend between radiated energy and
recoil velocity requires use of data from different config-
urations. We here consider data obtained by Healy et
al. [13] for hyperbolic encounters (H in Table II) and
the simulations of Lousto & Zlochower [34] for approxi-
mately quasicircular binaries (QC in Table II). In order
to assess the impact of subdominant contributions to the
expansion in Eq. (10), we list in this table two values for
the maximum recoil velocity: (i) the leading order predic-
tion vmax,1 using only the linear term and (ii) the value
vmax,3 obtained by also including the cubic term. The
table further shows the radiated energy Ephys and the
value (or range) of the spin magnitude χ of the individ-
ual BHs considered. For either estimate of the maximum
kick velocity, we have calculated the ratio to the radiated
energy.

Some comments on this table are in order. First, in
contrast with high-energy collisions, BH binaries in qua-
sicircular orbits radiate a significant fraction of their en-
ergy during the early inspiral phase. For example, the

1 “Maximum” in this context refers to variation over the orienta-
tion angle θ while keeping the center-of-mass energy constant.
To avoid confusion, we will refer to the “absolute maximum”
achievable when we vary also the intrinsic parameters of the bi-
nary (center of mass energy, mass ratio and spin magnitudes) as
the “ultimate” kick.

total radiated energy for a nonspinning equal-mass bi-
nary inspiral and merger is approximately 0.05 M [35],
out of which about 70% (0.035 M) is radiated in the
last two orbits; see e.g. [14, 36–38]. The radiated energy
for the quasicircular entry in Table II has been obtained
by averaging the values reported by Lousto & Zlochower
for their χ = 0.9 sequence, but we cannot rule out that
the relevant value may be larger. On the other hand,
the early inspiral appears to have less impact on the ac-
cumulated recoil, as intuitively expected: the GW flux
increases more slowly during early inspiral, so that the
orbital average of the net momentum flux is closer to zero
(cf. Sec. III E of [3]). In the remainder of this Section, we
will employ the values listed in the table, but one should
keep in mind the above caveats and lack of high-precision
data for long quasicircular inspirals.

A second comment on Table II concerns the study by
Healy et al. [13]. The sequence they simulated differs
from the other studies in that they vary the linear mo-
mentum of the BHs and, thus, the kinetic energy of the
binary. Because of this, we only use one simulation from
their Figure 2, which provides a maximum kick. In units
of the initial BH rest mass Mrest, they report an initial
linear momentum of P/Mrest = 0.308, a radiated energy
of 15% and vkick = 9590 km/s for this simulation. In
order to use their data, we need to adjust for the dif-
ferent normalization (with respect to the BH rest mass
in Ref. [13] and with respect to the total center-of-mass
energy in our comparison). Including linear momentum,
the dynamical BH mass is a factor 1.174 larger than the
rest mass. Therefore we estimate the energy radiated in
their binary system as 12.8% of the total energy of the
system. Finally, their data only allow us to estimate the
maximum kick using the leading-order extrapolation in
the spin magnitude χ.

In the final two columns of Table II we show the ratio
of the maximum kick velocity, extrapolated to maximal
spin χ = 1, to the radiated energy per center-of-mass en-
ergy of the binary. In this column we measure the recoil
velocity in units of the speed of light c. The results sug-
gest that, to leading order and for equal-mass binaries,
the maximum of the kick as we vary the orientation an-
gle θ is proportional to the radiated energy, which itself
is to leading order independent of θ and approximately
equal to the energy radiated by the binary’s nonspinning
counterpart.

D. Conjectures on the ultimate kick

In this section, we speculate on several possible ways of
extrapolating our results to the ultimate recoil achievable
in any binary black hole encounter and on the related
uncertainties.

Assuming that the scaling observed in the previous sec-
tion remains valid for arbitrary center-of-mass energies,
we could derive a leading-order estimate of the maximum
kick possible in any BH binary encounter if we knew the



7

Ref. χ Ephys/M vmax,1(km/s) vmax,3(km/s) M(vmax,1/c)/Ephys M(vmax,3/c)/Ephys

QC [34] 0.2 . . . 0.9 0.0401 3682 3680 0.306 0.306

H [13] 0.8 0.128 11988 −− 0.312 −−

s-seq. 0.621 0.220 19634 19043 0.298 0.289

m-seq. 0.621 0.265 24119 22398 0.303 0.282

TABLE II. Summary of the initial dimensionless spin magnitude, radiated energy and maximum recoil velocity. For the latter
quantity, we have two estimates, the first (vmax,1) obtained using the leading order term in (10), the other (vmax,3) also including
the next-to-leading order term.

maximum radiated energy for equal-mass, nonspinning

binaries. This maximum energy has as yet not been
determined, but ultrarelativistic grazing collisions with
boost factor γ ≈ 3 have been found to radiate as much
as 35 ± 5% of the total energy of the system [39]. Ex-
trapolation of the energy radiated by equal-mass binaries
has so far only been achieved for head-on collisions. In
this case, Ref. [40] predicts an increase in Ephys by a
factor of about 1.6 as γ increases from 3 to infinity via
extrapolation. Based on this information, let us assume
as a working hypothesis, that grazing collisions of equal-
mass, nonspinning BHs will result in maximum energies
up to about 50% of the total mass. When combined
with the findings in Table II, this would result in an “ul-
timate kick” of about 0.15 times the speed of light, or
∼ 45, 000 km/s. In view of the assumptions made for
this derivation, this prediction should only be regarded
as a rough estimate.

The most uncertain assumption in the previous anal-
ysis concerns the maximum energy that can be radiated
by equal-mass, nonspinning binaries. It may well be pos-
sible that all the excess kinetic energy can be radiated as
we fine-tune the impact parameter around threshold. Let
us assume for the sake of argument that this conjecture
is true. Then, in the large–γ limit, the maximum energy
radiated would be ∼ 100% for finely-tuned initial data.
However, since spin does not change with boost, most of
this energy will be radiated when the spin is insignificant
relative to the total mass. The relevant question then
becomes: how much excess kinetic energy is left once the

spin becomes significant? Let us postulate that, for a
given γ, the kick is proportional to the relative excess
kinetic energy multiplied by an “effective” dimensionless
spin χeff :

v ∝
γ − 1

γ
χeff . (13)

If we were to let χeff = χ, we would clearly have a
problem, as we would not be accounting for the fact
that the spin becomes unimportant for large γ, and
we would arrive at a maximum kick speed at γ = ∞.
If instead we define χeff as the spin angular momen-
tum normalized by the total mass, not the rest-mass:
χeff ≡ S/M2 = χm2/(γm)2 = χ/γ2, then

v = v0
γ − 1

γ3
χ, (14)

where v0 is the proportionality constant. This scaling
takes into account the two limiting cases: for γ = 1 no
kinetic energy is radiated, so there should be no kick;
for γ → ∞ the spin is irrelevant, so (again) there should
not be a kick. Quite interestingly, this ad-hoc ansatz
yields a maximum kick at γ = 3/2, the case studied
here, and hence we can use these results to calculate
v0: this predicts a maximum kick of ≈ 24, 000 km/s.
A higher γ binary, sufficiently fine-tuned to the thresh-
old of merger, would presumably also yield a comparable
maximum kick. For then it would loose most of its excess
kinetic energy to gravitational radiation, and hence the
last few orbits (that contribute most to the kick) prior to
merger or scatter will occur at a much lower γ.

A potentially more accurate way to estimate the max-
imum kick could employ the Boyle-Kesden expansion,
Eq. (10). It is plausible to assume that the coefficients
k1 and k3 appearing in the fitting formula should only
be functions of γ. The numerical estimate of these coef-

ficients shows that |k
(m)
1 /k1| ≃ 6.5 and |k

(m)
3 /k3| ≃ 7.8,

so these coefficients could have (to leading order) the
same functional dependence on γ: say, k1 = αk3 = f(γ),
where α is a constant. The main difficulty here consists
of the fact that it is impossible to determine this func-
tional dependence having “sampled” the function at only
two values of γ (i.e., γ = 1 and γ = 1.52). If we assume
f(γ) ∼ γc we would get that c ≈ 4 is a good power-law
scaling in the range 1 ≤ γ < 2. However it would be
perfectly legitimate to assume (say) that f(γ) = a + bγc,
and then it would be impossible to constrain the three
parameters of the model with two data points. In fact,
we know that f(γ) must asymptote to a finite limit as
γ → ∞, because the kick velocity is limited by the speed
of light.

In summary, with presently available data, we can-
not discriminate between the scenarios discussed in this
section: (i) a tentative guess of 45, 000 km/s if the pro-
portionality between maximal kick and radiated energy
holds for arbitrary values of the boost parameter, (ii) a
significantly lower velocity of ∼ 24000 km/s if the spin
remains insignificant for the binary dynamics until most
of the kinetic energy has been radiated away; or (iii) a
more complex scenario where the ultimate kick can only
be predicted by a systematic expansion, as proposed by
Boyle, Kesden and Nissanke. This uncertainty provides
further motivation to simulate sequences of merging bi-
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naries with larger γ factors.

E. Time dependence of Prad and the “anti-kick”

Up until now, we have exclusively analyzed the final
value of the radiated linear momentum Prad(t = ∞),
but not its time-evolution. Here, we should distinguish
between “local” BH dynamics and the presence of local
extrema in Prad(t), as measured in the wave zone. The
former has been studied, for example, in Refs. [7, 8], and
reveals substantial reversals (of order 103 km/s) in local
estimates of the BH velocities. These large variations
are not mirrored in the radiated linear momentum as
measured far away from the BHs2, and henceforth, with
“anti-kick” we exclusively refer to the deceleration visible
in Prad as measured far away from the BHs.

This anti-kick has been discussed in connection with
ringdown radiation from the remnant BH in Refs. [42–44].
The addition of ringdown to post-Newtonian estimates of
the recoil generated by unequal-mass, nonspinning bina-
ries has resulted in excellent agreement with numerical
calculations. Ref. [10] attributed the anti-kick to defor-
mations of the common horizon after merger.

On the other hand, it is unclear if the anti-kick has any
physical significance at all. Consider the instantaneous
momentum radiated in GWs in any specific direction
as given approximately by a sinusoidal function (from
orbital motion and then ringdown if a merger occurs),
modulated by an envelope proportional to the radiated
energy, which is initially increasing (motion to closest ap-
proach) and then decreasing (from ringdown in a merger
scenario or due to increasing separations in a scattering
scenario). There is no a priori reason to expect that this
function, integrated in time from t = −∞ to some t = tf ,
should generically have its extremum at tf = ∞. As with
many other properties related to kicks, the difference be-
tween the maximum and the final value depends on the
phase of the modulated sinusoid and it does not require
any new physical mechanism to explain it.

The one piece of evidence we can provide to the ex-
planation of the anti-kick can be seen in Fig. 6, where
we plot the radiated linear momentum, converted into a
recoil velocity by rescaling with the final mass of the sys-
tem, as a function of time. Anti-kicks (a decrease in the
absolute magnitude of the kick velocity as a function of
time) are clearly present in both merger and scattering
cases. Hence, common horizon deformations cannot be
“the” explanation, as a common horizon does not form
in the scattering cases. Furthermore, since the magni-
tude of the anti-kick clearly depends on the initial phase

2 These large local velocities are consistent with the superkick ex-
planation in Ref. [41], as such velocities are necessary to produce
sufficient red/blue-shifts of the radiated momentum to account
for the actual kick.
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FIG. 6. The recoil vkick as a function of time extracted at
rex = 86.2 M for the s-sequence (upper panel) and the m-
sequence (lower panel). For reference, the vertical lines mark
the minimum coordinate separation of the punctures (for the
scattering runs) and the common apparent horizon formation
(for the mergers).

of the binary, the data is consistent with the modulated-
sinusoid description given in the previous paragraph.

IV. CONCLUSIONS

In this work we have studied grazing collisions of equal-
mass BH binaries with antialigned spin angular momenta
in the orbital plane – the so-called superkick configura-
tions. We have studied two sequences with a moderate
boost of γ ≈ 1.5: an m-sequence leading to formation of a
common apparent horizon; and an s-sequence where the
two BHs eventually scatter off to infinity. Within each se-
quence, we have varied the phase angle of the spin angu-
lar momentum relative to the x-axis connecting the initial
BH positions. For comparison, we have also included two
simulations of equal-mass, nonspinning BHs with impact
parameters corresponding to the two sequences.

We have shown that the qualitative details of the re-
coil (sinusoidal dependence on phase, and the maximum
being proportional to the total energy radiated) is in-
dependent of whether merger or scattering occurs. For
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the phase angle resulting in the maximum recoil, we
find vkick = 14, 900 km/s in the merger sequence, and
vkick = 12, 200 km/s for the scattering case. Thus,
the mechanism responsible for the superkick is, to lead-
ing order, not related to merger dynamics. We have
further found, as with earlier observations for approxi-
mately quasicircular binary systems, that the dynamics
and net energy radiated in the orbital plane is essentially
unaffected by the presence or orientation of the spins.
We obtain radiated energies of about (22.2 ± 2.2)% and
(26.5±2.7)% of the total center-of-mass energy for the s-
and m-sequence respectively, with no dependence on the
orientation of the spins to within the quoted uncertain-
ties of these numbers. The corresponding nonspinning
binaries also lead to similar radiated energies to within
the quoted uncertainties.

The ratio between the maximum recoil and the radi-
ated energy for our two sequences is very similar, and this
has led us to compare our data to available results from
the literature on quasicircular binaries and hyperbolic en-
counters of equal-mass, spinning binaries with opposite
spins in the orbital plane. Similar ratios between maxi-
mum radiated energy and recoil velocity are found in all
cases. Assuming that this scaling holds for arbitrary γ, a
rough guesstimate for the ultimate kick would be around
45, 000 km/s. On the other hand, it is equally possible
that the spin of the individual holes is insignificant until
most of the kinetic energy has been radiated away. We
have estimated the resulting consequences by introducing
an effective spin parameter. The ultimate kick would be
smaller in this case, about 24, 000 km/s. Even if neither
of these simplifying assumptions turn out to be valid, the
determination of the ultimate kick can be obtained from
a systematic expansion of the kick dependence on the
binary parameters, as proposed by Boyle, Kesden and
Nissanke [11, 12]. In view of the substantial number of
additional simulations required for this purpose, we post-
pone such a study to future work.

Finally, we have analyzed the time evolution of the
radiated linear momentum with regard to the presence
or absence of local extrema. The decrease in the ab-
solute magnitude of the recoil velocity after reaching a

local extremum has been dubbed “anti-kick”. In both
merging and scattering sequences, we observe anti-kicks,
though the particular value is dependent on the initial
phase. Therefore, as with the superkick, anti-kicks are
not a property exclusively related to the formation and
subsequent evolution of a common horizon.
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