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Conservative corrections to the innermost stable circular orbit (ISCO) of a Kerr black
hole: a new gauge-invariant post-Newtonian ISCO condition, and the ISCO shift due
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The innermost stable circular orbit (ISCO) delimits the transition from circular orbits to those
that plunge into a black hole. In the test-mass limit, well-defined ISCO conditions exist for the Kerr
and Schwarzschild spacetimes. In the finite-mass case, there are a large variety of ways to define
an ISCO in a post-Newtonian (PN) context. Here I generalize the gauge-invariant ISCO condition
of Blanchet & Iyer [Class. Quantum Grav. 20, 755 (2003)] to the case of spinning (non-precessing)
binaries. The Blanchet-Iyer ISCO condition has two desirable and unexpected properties: (1) it
exactly reproduces the Schwarzschild ISCO in the test-mass limit, and (2) it accurately approximates
the recently-calculated shift in the Schwarzschild ISCO frequency due to the conservative-piece of
the gravitational self-force [Barack & Sago, Phys. Rev. Lett. 102, 191101 (2009)]. The generalization
of this ISCO condition to spinning binaries has the property that it also exactly reproduces the Kerr
ISCO in the test-mass limit (up to the order at which PN spin corrections are currently known).
The shift in the ISCO due to the spin of the test-particle is also calculated. Remarkably, the
gauge-invariant PN ISCO condition exactly reproduces the ISCO shift predicted by the Papapetrou
equations for a fully-relativistic spinning particle. It is surprising that an analysis of the stability
of the standard PN equations of motion is able (without any form of “resummation”) to accurately
describe strong-field effects of the Kerr spacetime. The ISCO frequency shift due to the conservative
self-force in Kerr is also calculated from this new ISCO condition, as well as from the effective-one-
body Hamiltonian of Barausse & Buonanno [Phys. Rev. D 81, 084024 (2010)]. These results serve
as a useful point-of-comparison for future gravitational self-force calculations in the Kerr spacetime.

PACS numbers: 04.25.Nx, 04.25.-g, 04.25.D-, 04.30.-w, 95.30.Sf, 97.60.Lf

I. INTRODUCTION, MOTIVATION, &

SUMMARY

The innermost stable circular orbit (ISCO) is a point
of dynamical instability in black hole (BH) spacetimes
that separates stable, circular, and bound geodesic or-
bits from those that “plunge” into the BH event hori-
zon. The location of the ISCO can be quantified in a
gauge-invariant manner by specifying its orbital angular
frequency as measured by a distant observer. For a test-
particle in the Schwarzschild spacetime, this frequency
occurs at m2Ω = 6−3/2, where m2 is the mass of the BH.1

The location of the ISCO is important in the context
of quasi-circular, inspiralling compact binaries (an im-
portant source for ground and space-based gravitational-
wave detectors) because it represents the point where the
character of the orbit (and hence the gravitational-waves)
abruptly changes. Because of this, the ISCO frequency
is often taken as the termination point of inspiral tem-
plates. The ISCO is also important because its location

∗ NASA Postdoctoral Fellow; favata@tapir.caltech.edu
† Copyright 2010 California Institute of Technology. Government

sponsorship acknowledged.
1 Throughout this article m1 < m2 denote the binary masses,

q = m1/m2 ≤ 1 is the mass ratio, M = m1 + m2 is the total
mass, and η = m1m2/M2 = q/(1 + q)2 ≤ 1/4 is the reduced
mass ratio (denoted ν by some authors).

encodes (potentially observable) information about the
strong-gravity region of the BH spacetime.

What happens if we no longer have a geodesic or-
bit? When dissipation (i.e., radiation-reaction) is in-
cluded, the location of the ISCO is no longer precisely
quantifiable—it becomes “blurred” into a transition re-
gion (in orbital radius or frequency) separating the adia-
batic inspiral from the plunge [1, 2]. However, if we con-
sider only conservative corrections to geodesic motion, a
precise ISCO can (in some cases) continue to exist. In
particular here we will consider two types of conserva-
tive corrections to geodesic motion: (i) the gravitational

self-force (GSF; a force arising from the point-particle’s
finite mass which causes it to deviate from geodesic mo-
tion) and (ii) the force due to the spin of the test body.2

Calculations of the GSF are motivated by the need
to model extreme-mass-ratio inspirals (EMRIs), an im-
portant source for the planned Laser Interferometer
Space Antenna (LISA) [3] consisting of a compact ob-
ject (m1 ∼ 1–100M⊙) inspiralling into a massive BH
(m2 ∼ 104–107M⊙) with mass ratios q . 10−4. Comput-
ing the GSF is challenging (see [4–7] for reviews and refer-
ences), but several groups have had recent success [8–13].
In particular, one of the concrete results to emerge from

2 The quadrupole and higher-order multipole moments of an ex-
tended body could also cause a shift in the ISCO location.

mailto:favata@tapir.caltech.edu


2

the self-force program has been the calculation by Barack
& Sago (BS) of the shift in the ISCO frequency due to the
conservative GSF in the Schwarzschild spacetime [14, 15].
This result is especially interesting because it supplies
a gauge-invariant, exact strong-field result that is only
computable using the full self-force formalism. (This is
in contrast to standard BH perturbation theory calcu-
lations, which only provide access to the time-averaged
dissipative pieces of the self-force.) The resulting conser-
vative GSF ISCO frequency shift can be expressed in the
form

MΩ = 6−3/2[1 + ηcGSF(0) + O(η2)], (1.1)

where BS calculated the value cGSF(0) =
1.2512(±0.0004). This value can be used to com-
pare different GSF codes, and to set constraints on
the effective-one-body (EOB) [2, 16–18] formalism (see
[19–21]).

In Ref. [21] I compared the above GSF ISCO shift
with ∼ 15 distinct post-Newtonian (PN) or EOB meth-
ods for computing the ISCO. Among those methods, two
approaches—based on the EOB formalism and the stan-
dard PN equations of motion—have especially desirable
features. In particular, the best agreement (∼ 10% error)
with the BS result was found using a version of the EOB
formalism in which a pseudo-4PN term is added to the
effective metric and calibrated with the Caltech/Cornell
numerical relativity simulations [22]. This method also
adequately predicted (with ∼ 16% error) the ISCO fre-
quency for equal-mass binaries as computed from se-
quences of quasi-circular initial data [23]. However, in
the absence of calibration, the method which most accu-
rately reproduced the BS result was the gauge-invariant
ISCO condition of Blanchet & Iyer [24].3 This condition
is derived from a stability analysis of the 3PN (nonspin-
ning) equations of motion, and takes the form

Ĉ0 ≡ 1 − 6x + 14ηx2

+

[(

397

2
− 123

16
π2

)

η − 14η2

]

x3 + O(x4), (1.2)

where x ≡ (MΩ)2/3, and Ĉ0 ≥ 0 is required for stable,
circular orbits to exist. The ISCO is found by solving
Ĉ0 = 0 for x (or Ω). The resulting value for the conser-
vative GSF ISCO shift was found to be [21]

cGSF
C0

(0) ≡ 565

288
− 41π2

768
= 1.434 912 612 . . . , (1.3)

3 In addition to the above mentioned reasons, these two methods
for computing the ISCO are also preferred over the other ap-
proaches examined in [21] because: (i) the error in the ISCO
computed via these methods decreases monotonically as the PN
order is increased, and (ii) they each are derived from equations
of motion that allow for a complete description of the two-body
dynamics.

which differs from the exact BS result by 14.7%.
The above PN ISCO condition is especially interesting

because it exactly reproduces the Schwarzschild ISCO
(x = 1/6 or m2Ω = 6−3/2) in the test-particle limit.
It is surprising that a condition derived from the PN
equations of motion can reproduce a strong-field result
like the ISCO.4 For example, a standard way to compute
the ISCO in a PN context is by finding the minimum of
the circular-orbit energy.5 In the test-mass limit, the PN
expansion of the circular-orbit energy,

Ecirc(Ω)

ηM
=

(1 − 2x)

(1 − 3x)1/2
− 1 = −1

2
x

[

1 − 3

4
x − 27

8
x2

−675

64
x3 − 3969

128
x4 − 45927

512
x5 + O(x6)

]

, (1.4)

converges slowly: to get within 8% of the exact result
(x = 1/6) one needs to truncate the above expression at
4PN order or higher.

Part of the motivation for developing “resummation”
methods was to cure this problem while also providing
a means to compute the ISCO for finite mass-ratio bi-
naries. For example, Kidder, Will, & Wiseman [26, 27]
modified the PN equations of motion by replacing the
O(η0) terms with the corresponding terms derived from
the Schwarzschild geodesic equations (in the appropri-
ate coordinate system). This enforced the Schwarzschild
ISCO in the test-particle limit, but caused deviations
from this value for finite-η. Similarly, Ref. [28] intro-
duced Padé approximants to improve the convergence of
PN-based templates (in part by again enforcing agree-
ment with the test-particle limit). The EOB formalism
provides the most successful version of this idea by mod-
eling the two-body dynamics in terms of a Hamiltonian
that is based on a particle with reduced mass µ = ηM
moving in the “η-deformed” Schwarzschild background
of a central mass M . It is in light of these resummation
approaches that the ability of the Blanchet-Iyer ISCO
condition to predict the Schwarzschild ISCO is surpris-
ing (and perhaps not widely appreciated).

A. Summary of results

It is possible that the ability of the Blanchet-Iyer ISCO
condition to predict the Schwarzschild ISCO is coinci-
dental. One of the primary objectives of this study is to

4 Indeed, one can see from Eq. (1.2) that the Schwarzschild ISCO
frequency arises only from the 1PN equations of motion; the 2PN
and 3PN terms affect only the O(η) corrections. Note also that

in deriving this result, it was crucial to express Ĉ0 in terms of
the gauge-invariant observable x rather than a gauge-dependent
radial coordinate [24].

5 The critical point defined in this way is sometimes called an ICO
(innermost circular orbit). See Sec. II B of [21] (as well as Sec. IV
A 2 of [25]) for a discussion of the difference and relationship
between the ISCO and ICO. In the rest of this article, I will refer
to both terms as an ISCO.
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test this by extending the Blanchet-Iyer ISCO condition
[Eq. (1.2)] to the case of spinning (non-precessing) bina-

ries. This calculation is performed in Sec. II. The result
is given by [see also Eq. (2.29) below]

Ĉ0 ≡ 1 − 6x + x3/2

(

14
Sc

ℓ

M2
+ 6

δm

M

Σc
ℓ

M2

)

+ x2

[

14η − 3

(

Sc
0,ℓ

M2

)2
]

+ x5/2

[

− Sc
ℓ

M2
(22 + 32η) − δm

M

Σc
ℓ

M2
(18 + 15η)

]

+ x3

[(

397

2
− 123

16
π2

)

η − 14η2

]

, (1.5)

where Sc
ℓ ≡ ℓ · Sc, Σc

ℓ ≡ ℓ · Σc, Sc
0,ℓ ≡ ℓ · Sc

0, ℓ is the
unit vector along the direction of the Newtonian orbital
angular momentum, Sc ≡ Sc

1 + Sc
2, Σc ≡ M(Sc

2/m2 −
Sc

1/m1), Sc
0 = (1 + m2/m1)S

c
1 + (1 + m1/m2)S

c
2, δm =

m1 − m2, and Sc
A = χc

Am2
Aŝc

A are the individual spin
angular momenta for body A = 1, 2 with dimensionless
spin parameters χc

A and unit direction vectors ŝc
A. This

condition is derived from the 3PN equations of motion,
including all explicitly-known spin terms up to 2.5PN
order.

In the test-particle limit (η → 0), the ISCO determined
from Eq. (1.5) can be compared with the ISCO of the
Kerr spacetime [29]. This comparison can be performed

by deriving a condition analogous to Ĉ0 from the Kerr
metric, expanding the result in powers of the BH spin
(χK

2 ), and comparing to Eq. (1.5) (see Sec. III for details).
The resulting comparison shows that the two conditions
agree up to the order to which the PN spin corrections
are known. This comparison is also shown graphically
in Figure 1. Note the large improvement in comparison
with the 3PN energy function [which includes spin cor-
rections; see Eq. (A1)]. Presumably, if higher-order spin
corrections in the PN equations of motion were included,
the error in comparison with the Kerr ISCO for large
values of |χ2| would improve. This excellent agreement
suggests that the standard PN equations of motion are
able to exactly recover some strong-field results.

A second objective of this article is calculate the shift in
the ISCO frequency due to conservative effects (Sec. IV).
In particular, two types of conservative effects are con-
sidered: the first due to the GSF, and the second due
to the spin of the test particle. As discussed above, the
conservative GSF ISCO shift was computed in [14, 15]
for a Schwarzschild background, and compared with var-
ious PN calculations in [21]. Here we focus on the ISCO
shift in the Kerr background, for which GSF calculations
are not currently available. Instead, we make predictions
for what that ISCO shift might be according to two ana-
lytic approaches: the ISCO condition in Eq. (1.5) above
and the recently-developed spinning EOB formalism of
Barausse & Buonanno [20] (Sec. IVA). (In the latter
case, the ISCO shift was calibrated to match the exact
Schwarzschild result [14, 15].)
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FIG. 1. (color online) Comparison of three different meth-
ods for computing the ISCO of a non-spinning test parti-
cle in the Kerr spacetime. The solid (black) curve (labeled
“Kerr”) refers to the exact result for the Kerr ISCO [Ref. [29]
or Eq. (3.7) here]. The dashed (red) curve (labeled “C0”) is
the η → 0 limit of the gauge-invariant ISCO condition de-
rived here [Eq. (1.5) or (2.29)]. The dash-dotted (blue) curve
(labeled “E3PN”) is the ISCO computed by minimizing the
3PN circular-orbit energy [Eq. (A1)]. The inset shows the
fractional errors of the E3PN or C0 curves with respect to
the Kerr curve.

To quantify these conservative ISCO shifts, we expand
the ISCO frequency as [Eq. (4.3) below]

MΩ = m2Ω
K(χ2)[1 + ηcGSF(χ2) + ηχ1c

COspin(χ2)

+ O(η2) + O(χ1η
2) + O(χ2

1η
2)], (1.6)

where ΩK(χ2) is the Kerr ISCO frequency [29]. The shift
in the ISCO due to the conservative GSF is parameter-
ized by the function cGSF(χ2). In Sec. IVB this function

is calculated via the EOB and Ĉ0 approaches; the results
are presented graphically in Figure 2 and tabulated in
Table I. It will be interesting to compare these numbers
with future GSF calculations in Kerr.
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In Sec. IVC the function cCOspin(χ2) is also calcu-

lated via the EOB and Ĉ0 approaches.6 However, in
this case the EOB calculation via the Hamiltonian in [20]
yields the exact (fully-relativistic) result. This is because
this Hamiltonian reproduces the Papapetrou-Mathisson-
Dixon equations of motion [33–40] in the small-η limit.
An analysis of the ISCO shift directly using the Papa-
petrou equations is also presented in Appendix B; the
results are identical to those obtained from the EOB
Hamiltonian (providing further confirmation of the work
in [20, 40]). These results are shown in Figure 2 and
Table I. In the Schwarzschild case a fully-analytic anal-
ysis of the Papapetrou equations is straight-forward and
presented in Appendix B3. It shows that the Boyer-
Lindquist radial coordinate of the Schwarzschild ISCO is
shifted by O(χ1m1):

risco = 6m2 − 2

√

2

3
χ1m1 + O(χ2

1m
2
1), (1.7)

and frequency shift of the ISCO due to the point-particle
spin is given by

cCOspin(0) =

√
6

8
= 0.306 186 . . . . (1.8)

Interestingly, this ISCO frequency shift is exactly repro-
duced by the Ĉ0 ISCO condition, again showing that the
standard PN equations of motion are able to exactly re-
produce a strong-field result. (If χ2 6= 0, the exact result

is only approximately reproduced by the Ĉ0 condition
because the PN spin terms are explicitly computed only
to 2.5PN order; see Fig. 2.)

Section V discusses some conclusions of this study. Ap-
pendix A compares the test-mass limits of several PN
quantities (the orbital energy, angular momentum, and
Keplerian relation) with the analogous quantities com-
puted from the Kerr metric.

II. GAUGE-INVARIANT ISCO CONDITION

FOR SPINNING BINARIES

Following the stability analysis of the PN equations of
motion in [24, 26], we can generalize the gauge-invariant
ISCO condition derived by Blanchet & Iyer [24] to the
case of spinning, non-precessing binaries.

We begin by writing the conservative PN equations of
motion for two spinning point-masses as

dv

dt
= B

NS
N + B

NS
1PN + B

NS
2PN + B

NS
3PN

6 The ISCO for a spinning test-particle in Kerr was previously con-
sidered in [30], but those authors focused on unphysically large
values of the test-particle spin and did not explicitly compute
the shift parameter cCO spin (see also [31, 32]).

+ B
SO

1.5PN + B
SO

2.5PN + B
SS+QM

2PN. (2.1)

On the first line we list the non-spin terms to 3PN order
(see [41] for references); note that the radiation-reaction
terms at 2.5PN and 3.5PN order are not present since
we are only concerned with conservative corrections to
the ISCO. The spin-orbit (SO) term at 1.5PN order and
the spin-spin (SS) term at 2PN order were first derived
in [42]. The SO term at 2.5PN order was first derived in
[43]. Here I use the forms given in Eqs. (5.7) of [44]. The
2PN order quadrupole-monopole (QM) term was derived
in [45]; Ref. [46] shows how to concisely combine this
term (when specialized to black holes) with the 2PN or-
der spin-spin term [see their Eq. (3.8)].

A. Equations of motion and the relationship

between spin variables

The spin-orbit contributions to the equations of mo-
tion given in [44] are expressed in terms of spin vectors
Snc

A (A = 1, 2) whose magnitudes χnc
A m2

A do not remain
constant with time. (Note that Refs. [44, 47] do not use
the superscripts “nc”.) An alternative set of spin vari-
ables Sc

A are defined in Eq. (7.4) of [47] [also Eq. (2.21)
of [46]] and have the property that their magnitudes are

constant.7 This choice of spin variables causes the spin-
precession equations to take a convenient form and is
generally preferred in computations. Here we denote
the non-constant-magnitude spin vectors of each body
by Snc

A , and the constant-magnitude spin vectors by Sc
A.

We also define the spin combinations

Sc ≡ Sc
1 + Sc

2, (2.2a)

Σc ≡ M

(

Sc
2

m2

− Sc
1

m1

)

, (2.2b)

and analogous relations for Snc and Σnc.
The relationship between (Snc,Σnc) and (Sc,Σc) is

given by Eqs. (2.22) of [46]:

Sc = Snc +
1

c2

{

η
M

r

[

2Snc +
δm

M
Σnc

]

−η

2

[

v · Snc +
δm

M
v ·Σnc

]

v

}

+ O(c−4), (2.3a)

Σc = Σnc +
1

c2

{

M

r

[

δm

M
Snc + (1 − 2η)Σnc

]

7 Throughout this section all of our spin variables are contravariant
vectors. In [46] these are denoted with an overbar. Note that the
spin variables used in Kidder [48] are the constant-magnitude,
contravariant spin vectors denoted S

c
A

here. Note also that we
use the notation Σ for the quantities denoted ∆ in [46, 48].
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−1

2

[

δm

M
v · Snc + (1 − 3η)v · Σnc

]

v

}

+ O(c−4),

(2.3b)

where r is the orbital separation in harmonic coordinates.
The inverse relationship is given by

Snc = Sc +
1

c2

{

−η
M

r

[

2Sc +
δm

M
Σc

]

+
η

2

[

v · Sc +
δm

M
v ·Σc

]

v

}

+ O(c−4), (2.4a)

Σnc = Σc +
1

c2

{

−M

r

[

δm

M
Sc + (1 − 2η)Σc

]

+
1

2

[

δm

M
v · Sc + (1 − 3η)v ·Σc

]

v

}

+ O(c−4), (2.4b)

where the powers of c were added to show that the correc-
tions to the spins are a relative 1PN order effect. We also
note the relationship between the individual spin vectors

[44, 46, 47]:

Sc
A =

(

1 +
mB

c2r

)

Snc
A − 1

2c2

(mB

M

)2

(v · Snc
A )v + O(c−4),

(2.5a)

Snc
A =

(

1 − mB

c2r

)

Sc
A +

1

2c2

(mB

M

)2

(v · Sc
A)v + O(c−4).

(2.5b)
Since the spin variables differ at 1PN order, the equa-
tions of motion (but not the equations of precession) will
have the same form for the 1.5PN and 2PN spin terms
(aside from the replacements Snc

A ↔ Sc
A), but the 2.5PN

and higher-order spin terms will differ depending on the
choice of spin variables. Throughout this paper the su-
perscripts “c” and “nc” are sometimes dropped where
either index would be appropriate.

The 2.5PN spin-orbit corrections to Eq. (2.1) are given
in Eq. (5.7) of [44] in terms of the variables Snc and
Σnc. The equivalent expressions in terms of the constant-
magnitude spin variables are found by substituting the
relations (2.4) into the 1.5PN SO term [Eq. (5.7a) of [44]],
and combining the result with the 2.5PN SO term in
Eq. (5.7b) of [44] (into which the substitutions S → Sc

and Σ → Σc can be made since we only require accuracy
to relative 2.5PN order in the spin terms). The resulting
SO contributions to Eq. (2.1) in terms of the “c” spin
variables are

B
SO

1.5PN =
1

r3

{

n

[

12(Sc, n, v) + 6
δm

M
(Σc, n, v)

]

+ 9(nv)n× Sc + 3
δm

M
(nv)n × Σc − 7v × Sc − 3

δm

M
v × Σc

}

, (2.6a)

B
SO

2.5PN =
1

r3

{

n

[

(Sc, n, v)

(

−30η(nv)2+24ηv2−M

r
(44+25η)

)

+
δm

M
(Σc, n, v)

(

−15η(nv)2+12ηv2−M

r
(24+

29

2
η)

)]

+ (nv)v

[

(Sc, n, v)(−9 + 9η) +
δm

M
(Σc, n, v)(−3 + 6η)

]

+ n× v

[

− 3

2
(nv)(vSc)(1 − η) − 8

M

r
η(nSc)

− δm

M

(

4
M

r
η(nΣc) +

3

2
(nv)(vΣc)

)]

+ (nv)n × Sc

[

− 45

2
η(nv)2 + 21ηv2 − 7

M

r
(4 + 3η)

]

+
δm

M
(nv)n × Σc

[

− 15η(nv)2 + 12ηv2 − M

r
(12 +

23

2
η)

]

+ v × Sc

[

33

2
η(nv)2 +

M

r
(24 + 11η) − 14ηv2

]

+
δm

M
v × Σc

[

9η(nv)2 − 7ηv2 +
M

r
(12 +

11

2
η)

]}

. (2.6b)

In the above equations we define additional notation fol-
lowing [44]: the unit vector n = x/r points in the direc-
tion of the relative separation vector x = y1 − y2; v = ẋ

denotes the relative orbital velocity; scalar products of
vectors are denoted by (ab) ≡ a ·b; and the mixed prod-
uct of three vectors is denoted by (a, b, c) ≡ a · (b × c).

The sum of the spin-spin and quadrupole-monopole

terms is given in Eq. (3.8) of [46]:

B
SS+QM

2PN = − 3

2Mr4

{[

(Sc
0)

2 − 5(nSc
0)

2
]

n + 2(nSc
0)S

c
0

}

,

(2.7)
where

Sc
0 ≡ 2Sc +

δm

M
Σc =

(

1 +
m2

m1

)

Sc
1 +

(

1 +
m1

m2

)

Sc
2.

(2.8)
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Note that Eq. (2.7) has the same form in terms of the
“nc” spin variables; it is also only valid for Kerr BHs
as the value for the Kerr quadrupole moment was used.
Higher-order spin-spin corrections have recently been
computed in Refs. [49–59], but the explicit equations of
motion have not yet been derived.

B. Restriction to the non-precessing case

Now we restrict to non-precessing orbits in which the
individual spin vectors SA are aligned or anti-aligned
with the direction of the Newtonian orbital angular mo-
mentum vector ℓ ≡ LN/|LN|. We additionally define the
unit vector λ ≡ ℓ×n. Vectors can then be decomposed on
the orthonormal basis {n, λ, ℓ} as in S = Snn+Sλλ+Sℓℓ;
similar relations hold for Σ and S0 (in either spin rep-
resentation), as well as for v. The restriction to non-
precessing orbits having a fixed orbital plane in the di-
rection of ℓ then implies the following relations:

v = ṙn + rϕ̇λ, v2 = ṙ2 + r2ϕ̇2, (2.9a)

(nv) = ṙ, n× v = rϕ̇ℓ, (2.9b)

S = Sℓℓ, Σ = Σℓℓ, S0 = S0,ℓℓ, (2.9c)

(S, n, v) = rϕ̇Sℓ, (Σ, n, v) = rϕ̇Σℓ, (2.9d)

n× S = −Sℓλ, n × Σ = −Σℓλ, (2.9e)

v×S = Sℓ(rϕ̇n− ṙλ), v×Σ = Σℓ(rϕ̇n− ṙλ), (2.9f)

(nS) = (nΣ) = (vS) = (vΣ) = (nS0) = 0. (2.9g)

The above relations allow the conservative PN two-
body equations of motion to be put in the following form:

dv

dt
= −M

r2

[

(1 + Atot)n + Btot
λ
]

, (2.10)

where

Atot = ANS + ASO
1.5PN + ASO

2.5PN + ASS+QM
2PN (2.11a)

Btot = BNS + BSO
1.5PN + BSO

2.5PN + BSS+QM
2PN . (2.11b)

The non-spin terms ANS and BNS have been explicitly
calculated by various authors. The results can be found
in Eqs. (181)-(196) of Blanchet’s review article [41]. De-
noting Blanchet’s expressions by AB,NS and BB,NS, ig-
noring the dissipative terms at 2.5PN and 3.5PN orders,
and using the form of the equations without the 3PN
logarithmic terms, the non-spin terms in Eqs. (2.11) are
related to Blanchet’s by

ANS = AB,NS + ṙBB,NS, (2.12a)
BNS = rϕ̇BB,NS. (2.12b)

The 1.5PN spin-orbit terms are found to be

ASO
1.5PN = −M

r
(rϕ̇)

[

5
Sc

ℓ

M2
+ 3

δm

M

Σc
ℓ

M2

]

, (2.13a)

BSO
1.5PN = 2

M

r
ṙ

(

Sc
ℓ

M2

)

, (2.13b)

and have the same form in terms of the “nc” variables.
The 2.5PN spin-orbit terms in both spin variables are

ASO, c
2.5PN =

M

r
(rϕ̇)

{[

M

r
(20 + 14η) +

(

9 − 11

2
η

)

ṙ2 − 10η(rϕ̇)2
]

Sc
ℓ

M2
+

[

M

r
(12 + 9η) + (3 − 5η)ṙ2 − 5η(rϕ̇)2

]

δm

M

Σc
ℓ

M2

}

,

(2.14a)

ASO,nc
2.5PN =

M

r
(rϕ̇)

{[

M

r
(17 + 16η) +

(

9 − 11

2
η

)

ṙ2 − 10η(rϕ̇)2
]

Snc
ℓ

M2
+

[

M

r
(9 + 10η) + (3 − 5η)ṙ2 − 5η(rϕ̇)2

]

δm

M

Σnc
ℓ

M2

}

,

(2.14b)

BSO, c
2.5PN =

M

r
ṙ

{[

−2
M

r
(2 + 5η) + ηṙ2 + (9 − 2η)(rϕ̇)2

]

Sc
ℓ

M2
+

[

−6
M

r
η − ηṙ2 + (3 − η)(rϕ̇)2

]

δm

M

Σc
ℓ

M2

}

, (2.15a)

BSO,nc
2.5PN =

M

r
ṙ

{[

−2
M

r
(2 + 3η) + ηṙ2 + (9 − 2η)(rϕ̇)2

]

Snc
ℓ

M2
+

[

−4
M

r
η − ηṙ2 + (3 − η)(rϕ̇)2

]

δm

M

Σnc
ℓ

M2

}

. (2.15b)

Finally, the spin-spin + quadrupole-monopole pieces are

ASS+QM
2PN =

3

2

(

M

r

)2(Sc
0,ℓ

M2

)2

, (2.16a)

BSS+QM
2PN = 0, (2.16b)

and have the same form in terms of the “nc” variables.
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C. Perturbing the equations of motion

Having simplified the equations of motion, we now wish
to study perturbations about the circular orbit solutions.
We first reexpress the equations explicitly in terms of the
polar coordinates (r, ϕ) of the relative position vector.
Differentiating the expression for the velocity vector in
Eq. (2.9a) and using ṅ = ϕ̇λ and λ̇ = −ϕ̇n, the compo-
nents of Eq. (2.10) along n and λ are given by

r̈ = −M

r2
(1 + Atot) + rϕ̇2, (2.17a)

ϕ̈ = −1

r

(

M

r2
Btot + 2ṙϕ̇

)

. (2.17b)

This system can be reexpressed in first order form by
defining u ≡ ṙ and ω ≡ ϕ̇, resulting in three first-order
equations in the variables (r, u, ω).

Circular orbits correspond to the conditions ṙ = u̇ =
ω̇ = 0. In particular, the condition u̇ = 0 and Eq. (2.17a)
imply the following implicit relationship for the circular
orbital frequency:

ω2
0 =

M

r3
0

[1 + Atot
0 (r0, ω0)], (2.18)

or, in terms of the PN parameter x ≡ (Mω0)
2/3,

x = γ[1 + Atot
0 (γ, x)]1/3, (2.19)

where a subscript 0 refers to quantities evaluated along a
circular orbit and we have defined another PN expansion
parameter γ ≡ M/r.

Equation (2.19) provides an implicit relationship be-
tween the two PN expansion parameters γ and x. Later,
we shall need an explicit PN expansion for γ in terms of x.
To derive this relationship from (2.19), we first substitute
a 3PN series expansion with undetermined coefficients,

γ = x
(

1 + c1x + c1.5x
3/2 + c2x

2 + c2.5x
5/2 + c3x

3
)

,

(2.20)
into the right-hand-side of Eq. (2.19). Next we series
expand the result in x to 3PN order, and equate the co-
efficients of like powers of x on both sides of the equation.
This results in a linear system of 5 equations for the 5
unknowns in Eq. (2.20). Solving this system easily yields

γ = x

{

1 + x
(

1 − η

3

)

+ x3/2

(

5

3

Sc
ℓ

M2
+

δm

M

Σc
ℓ

M2

)

+ x2

[

1 − 65

12
η − 1

2

(

Sc
0,ℓ

M2

)2
]

+x5/2

[(

10

3
+

8

9
η

)

Sc
ℓ

M2
+ 2

δm

M

Σc
ℓ

M2

]

+ x3

[

1 +

(

−2203

2520
− 41

192
π2

)

η +
229

36
η2 +

η3

81

]}

. (2.21)

In terms of the non-constant spin magnitude variables,
the 2.5PN order term in the above equation should be
replaced with [see Eq. (6.3) of [47]]

+ x5/2

[(

13

3
+

2

9
η

)

Snc
ℓ

M2
+
(

3 − η

3

) δm

M

Σnc
ℓ

M2

]

, (2.22)

while the 1.5PN and 2PN order spin terms have the same
form with “c” replaced by “nc”.

Now we examine linear perturbations to the equations
of motion (2.17) about circular orbits parameterized by
(r0, ω0). Introducing a small expansion parameter ǫ, we
substitute the following expansions into Eqs. (2.17),

r = r0 + ǫδr, (2.23a)

u = 0 + ǫδu, (2.23b)

ω = ω0 + ǫδω, (2.23c)

and linearize. In doing so we expand Atot as

Atot = Atot
0 + ǫ

∂Atot

∂r

∣

∣

∣

∣

0

δr + ǫ
∂Atot

∂u

∣

∣

∣

∣

0

δu + ǫ
∂Atot

∂ω

∣

∣

∣

∣

0

δω,

(2.24)

and likewise for Btot. From the explicit form of Atot and
Btot, one can verify that

∂Atot

∂u

∣

∣

∣

∣

0

=
∂Btot

∂r

∣

∣

∣

∣

0

=
∂Btot

∂ω

∣

∣

∣

∣

0

= 0. (2.25)

Then, at O(ǫ0), the equations of motion reduce to
Eq. (2.18) and Btot

0 = 0. At O(ǫ1), we have the system

δ̇r = δu, (2.26a)

˙δu = α0δr + β0δω, (2.26b)

˙δω = γ0δu, with (2.26c)

α0 = 3ω2
0 − M

r2
0

∂Atot

∂r

∣

∣

∣

∣

0

, (2.27a)

β0 = 2r0ω0 −
M

r2
0

∂Atot

∂ω

∣

∣

∣

∣

0

, (2.27b)

γ0 = − 1

r0

(

2ω0 +
M

r2
0

∂Btot

∂u

∣

∣

∣

∣

0

)

, (2.27c)
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where γ0 is not related to the γ ≡ M/r defined earlier.
Now we assume a perturbation of the form δq = Eqe

iλt

[where q = (r, u, ω)] and substitute into Eqs. (2.26),
resulting in a linear algebraic system for the Eq and
the eigenvalue λ. A trivial solution corresponding to
λ = 0 is Eu = 0 and Er = −(β0/α0)Eω; this rep-
resents a non-oscillatory displacement from one circu-
lar orbit to another. The remaining eigenvalues are
λ = ±[−(α0 + β0γ0)]

1/2. If the argument of the square-
root is positive, then the resulting solutions are stable.

The condition for the existence of stable circular orbits
can therefore be expressed as

C0 ≡ −α0 − β0γ0 > 0, (2.28)

and the equality C0 = 0 defines the ISCO.
Using Eqs. (2.27) and (2.11), eliminating r via (2.21),

and expanding to the appropriate PN order, one can ex-
press the stability condition explicitly in terms of x, yield-
ing the following gauge-invariant condition for the ISCO:

Ĉ0 ≡ M2

x3
C0 = 1 − 6x + x3/2

(

14
Sc

ℓ

M2
+ 6

δm

M

Σc
ℓ

M2

)

+ x2

[

14η − 3

(

Sc
0,ℓ

M2

)2
]

+ x5/2

[

− Sc
ℓ

M2
(22 + 32η) − δm

M

Σc
ℓ

M2
(18 + 15η)

]

+ x3

[(

397

2
− 123

16
π2

)

η − 14η2

]

. (2.29)

In terms of the non-constant magnitude spin variables,
the 2.5PN spin-orbit term is replaced with

+ x5/2

[

−Snc
ℓ

M2
(13 + 30η) − δm

M

Σnc
ℓ

M2
(9 + 14η)

]

, (2.30)

while the 1.5PN and 2PN spin terms have the same form
with “c” relabeled to “nc”. Note that in the non-spinning
case, Eq. (2.29) reduces to the 3PN gauge-invariant sta-
bility condition of Blanchet & Iyer [24] [their Eq. (6.41)
or Eq. (1.2) here].

III. COMPARISON WITH THE KERR ISCO

In the non-spinning case, Eq. (2.29) reduces in the test-
mass limit to

Ĉ0 = 1 − 6x. (3.1)

The PN ISCO criterion Ĉ0 = 0 in this case clearly repro-
duces the exact Schwarzschild ISCO, x = 1/6. We wish
to determine if Eq. (2.29) similarly reproduces the Kerr
ISCO.

Recall that the Kerr ISCO radius in Boyer-Lindquist
coordinates is given by [29]

rK
isco

m2

= 3 + Z2 − sign(χK
2 )[(3 − Z1)(3 + Z1 + 2Z2)]

1/2,

Z1 = 1 + [1 − (χK
2 )2]1/3[(1 + χK

2 )1/3 + (1 − χK
2 )1/3],

Z2 = [3(χK
2 )2 + Z2

1 ]1/2, (3.2)

where the mass of the Kerr BH is denoted m2, and its
dimensionless spin is χK

2 ∈ [−1, 1] (with negative values
corresponding to point particles with retrograde orbital

motion).8 An expression equivalent to Eq. (3.2) can be
found by differentiating the reduced particle energy [29]

Ẽ ≡ E

m1

=
1 − 2wBL + χK

2 w
3/2

BL
√

1 − 3wBL + 2χK
2 w

3/2

BL

, (3.3)

where wBL ≡ m2/rBL and rBL is the Boyer-Lindquist
radial coordinate. Some simple algebraic manipulation
of dẼ/drBL = 0 yields

ĈK
0 ≡ 1 − 6wBL + 8χK

2 w
3/2

BL − 3(χK
2 )2w2

BL = 0. (3.4)

Solving this equation for rBL produces results identical
to Eq. (3.2). But note that since wBL depends on a co-
ordinate radius, Eq. (3.4) is clearly not a gauge-invariant
expression.

To derive a gauge-invariant version of Eq. (3.4), we first
define the variable X ≡ |m2Ω

K|2/3, which is analogous
to the PN parameter x (in the test-mass limit, x → X).
The frequency ΩK ≡ dϕ/dt refers to the circular-orbit
angular frequency seen by a distant observer and follows
from the Kerr geodesic equations [Eq. (2.16) of [29]]:

m2Ω
K = sign(χ2)

w
3/2

BL

1 + χK
2 w

3/2

BL

. (3.5)

Defining β ≡ 1 − χK
2 X3/2, we invert Eq. (3.5) to obtain

wBL =
X

β2/3
. (3.6)

8 In the notation of the previous section, the BH spin angular
momentum is S

K
2 ≡ χK

2 m2
2ŝ

K
2 , where, in our restriction to non-

precessing circular orbits, the orbital angular momentum points
in the ℓ = ẑ direction and we choose ŝK2 = ẑ.
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Substituting this result into Eq. (3.4), we arrive at the
gauge-invariant relation

ĈK
0 ≡ 1 − X

β2/3

[

6 − χK
2

X1/2

β1/3

(

8 − 3χK
2

X1/2

β1/3

)]

. (3.7)

For χK
2 = 0 we easily obtain the Schwarzschild value for

the ISCO frequency (X = 1/6). One can verify numeri-

cally that solving ĈK
0 = 0 as a function of χK

2 reproduces
the ISCO frequency computed from Eqs. (3.2) & (3.5)
for all values of χK

2 ∈ [−1, 1].
Now we wish to compare the test-mass limit of the

ISCO condition derived in Eq. (2.29) with the gauge-
invariant Kerr ISCO expression in Eq. (3.7). Note that
Eq. (3.7) is valid for arbitrary spin, while Eq. (2.29) is
limited by the PN order to which spin terms have been
computed in the equations of motion (currently 2.5PN
order). To allow a meaningful comparison, we must ex-
pand Eq. (3.7) in the spin parameter χK

2 , yielding

ĈK
0 = 1 − 6X + χK

2

(

8X3/2 − 4X5/2
)

+ (χK
2 )2

(

−3X2 + 8X3 − 10X4/3
)

+ O
[

(χK
2 )3
]

. (3.8)

We can also perform a PN expansion of Eq. (3.7) in X ,
which results in

ĈK
0 = 1 − 6X + 8χK

2 X3/2 − 3(χK
2 )2X2

− 4χK
2 X5/2 + 8(χK

2 )2X3 + O
[

(χK
2 )3X7/2

]

. (3.9)

Note that both expansions give consistent results at the
appropriate orders in χK

2 and X . This is especially inter-
esting because in Eq. (3.8), no PN expansion has been
made. It also suggests the presence of additional self-spin
terms at 3PN and 4PN orders in the equations of motion
(in addition to the currently known 2PN-order terms).
Equation (3.9) suggests that cubic self-spin interaction
terms will not appear until 3.5PN order.

The above expansions can now be compared with the
test-mass limit of Eqs. (2.29) & (2.30). Taking η → 0,
δm/M → 1, and (Sℓ/M

2, Σℓ/M
2, S0,ℓ/M

2) → χ2, the
result is

Ĉ0 = 1−6x+8χ2x
3/2−3χ2

2x
2−4χ2x

5/2+O(x3). (3.10)

This is valid for either choice of spin variable (χnc
2 or χc

2).
Comparing with Eq. (3.8) (and identifying X with x and
χK

2 with χ2), we see that the PN gauge-invariant ISCO
condition (3.10) agrees with the Kerr ISCO condition up
to the PN order (2.5PN) to which we know the spin terms
in the PN equations of motion.

Figure 1 compares different methods for computing
the ISCO frequency (in the test-mass limit): (i) the ex-
act Kerr expression [computed from solving Eq. (3.7) or
plugging Eq. (3.2) into Eq. (3.5)]; (ii) solving the gauge-
invariant ISCO condition in Eq. (2.29) or (3.10); and (iii)
finding the minimum of the PN circular-orbit energy with
non-spin terms to 3PN order and spin terms to 2.5PN or-
der [Eq. (A1)]. [The ISCO frequencies for approaches (i)

and (ii) are also listed in Table I.] The method using

the gauge-invariant condition Ĉ0 agrees exceptionally-
well for all spins up to χ2 . 0.5. In the non-spinning case
(χ2 = 0), the agreement is exact. For non-zero spins,
agreement with the exact Kerr result is limited by the
fact that we only know the spin terms in the equations
of motion to 2.5PN order. Note also that for small |χ2|,
the error is symmetric about χ2 = 0. This is in contrast
with the ISCO computed from the 3PN energy function,
for which the error increases (nearly) monotonically with
increasing ISCO frequency (or decreasing radius). This

indicates that the ISCO computed via Ĉ0 is limited not
by finite-PN corrections but by finite-spin corrections.

In Appendix A we examine how other PN expressions
agree with their Kerr-spacetime counterparts. We find
that test-mass limits of the circular-orbit energy and the
Keplerian relation γ(x) agree with their Kerr analogs if
we identify χK

2 with either choice of spin variable. How-
ever, the PN orbital angular momentum only agrees with
its Kerr analog if we identify χK

2 with χc
2.

IV. CONSERVATIVE SHIFTS IN THE ISCO

Consider the general behavior of the ISCO frequency
when the test-particle has a non-negligible mass and spin
(but assume that all spins are aligned or anti-aligned with
the orbital angular momentum). The ISCO frequency
can be split into the following pieces:9

m2Ω = Ω̂K(χ2) + δΩ̂GSF(χ2, q)

+ δΩ̂CO spin(χ2, q, χ1) + δΩ̂GSF+CO spin(χ2, q, χ1), (4.1)

where Ω̂K is the Kerr ISCO frequency in units of m2

[given by Eqs. (3.2) & (3.5), or Eq. (3.7)], δΩ̂GSF and

δΩ̂COspin are corrections to this frequency (also in units
of m2) due to the conservative GSF and the spin of the

smaller compact object, and δΩ̂GSF+COspin is a correc-
tion that results from cross-terms between both effects.
If we assume that the mass ratio q ≡ m1/m2 ≤ 1 is small,
then we can rewrite Eq. (4.1) as

m2Ω = Ω̂K(χ2)[1 + qc′GSF(χ2) + qχ1c
CO spin(χ2)

+ O(q2) + O(χ1q
2) + O(χ2

1q
2)]. (4.2)

Multiplying by M/m2 and using η = q+O(q2) [19] yields

Ω̃ ≡ MΩ = Ω̂K(χ2)[1 + ηcGSF(χ2) + ηχ1c
CO spin(χ2)

+ O(η2) + O(χ1η
2) + O(χ2

1η
2)], (4.3)

where cGSF = 1 + c′GSF was labeled cren
Ω in [19, 21] for

the χ2 = 0 case.

9 In the remainder of this paper and unless stated otherwise, all of
the spin variables refer to the constant-magnitude spins.
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In the remainder of this section, we shall concern our-
selves with the calculation of the coefficients cGSF(χ2)
and cCOspin(χ2) via the improved spinning EOB Hamil-
tonian of [20] and the new gauge-invariant PN ISCO con-
dition in Eqs. (2.29). In particular, we note that the im-
proved EOB Hamiltonian is constructed such that the

coefficients cGSF
EOB(0) and cCO spin

EOB (χ2) are exact.

A. The improved effective-one-body Hamiltonian

for spinning binaries

Recently, Barausse & Buonanno [20] have constructed
a new EOB Hamiltonian with the following features: (i)
In the test-particle limit, the Hamiltonian reduces to
the exact Hamiltonian of a spinning test-body in the
Kerr spacetime [40] (to linear order in the test-particle’s
spin; this limit of the EOB Hamiltonian produces equa-
tions of motion and precession that are equivalent to
the Papapetrou-Mathisson-Dixon equations [33–39]). (ii)
When PN-expanded, the EOB Hamiltonian reproduces
the 2PN spin-spin and 1.5PN and 2.5PN spin-orbit cou-
plings for arbitrary mass ratios. (iii) The Hamiltonian
includes an adjustable function K(η) that appears in the
spinning generalization of the effective metric function
A(r) [see Eqs. (6.9)–(6.11) of [20]]; this function is ad-
justed to enforce agreement with the Barack-Sago con-
servative GSF shift in the Schwarzschild ISCO [14, 15].
[But note that this adjustment does not guarantee good
agreement with the (yet uncalculated) conservative GSF
shift in the Kerr ISCO.] (iv) For arbitrary mass ratios,
this improved EOB Hamiltonian provides a well-defined
prescription to compute the conservative two-body dy-
namics and spin precession. (v) Lastly, in the case of
aligned or anti-aligned spins, this conservative dynamics
produces a well-behaved ISCO for any mass ratio.

The improved EOB Hamiltonian of [20] is compli-
cated to write out explicitly. For the case of equato-
rial (non-precessing) orbits with spins aligned or anti-
aligned with the orbital angular momentum, one can
construct the Hamiltonian by starting with Eq. (6.1) of
[20] and carefully following their paper for the subse-
quent chain of definitions (see Appendix C of [60] for
an alternate presentation). Once the EOB Hamilto-
nian is constructed, the ISCO angular frequency can
be computed from Eqs. (6.6)–(6.8) of [20]. Choosing
units in which the total mass M = 1, I constructed
a numerical code which computes the ISCO frequency
Ω̃EOB(η, χ1, χ2) given the reduced mass-ratio η, the spin
of the test-particle χ1, and the BH spin χ2. By con-
struction, the resulting EOB ISCO has three important
properties: (i) in the test-particle limit it reduces to the

Kerr ISCO [Ω̃EOB(0, 0, χ2) = Ω̂K(χ2)]; (ii) in the non-
spinning case it reproduces the exact conservative GSF
ISCO shift [cGSF

EOB(0) = cren
Ω ≈ 1.251]; and (iii) it correctly

accounts for the conservative ISCO shift due to the test-
particle’s spin (this was explicitly verified in Appendix B
by directly analyzing the Papapetrou equations).

TABLE I. ISCO quantities as a function of the dimensionless
BH spin parameter χ2. The second column denotes the stan-
dard Kerr ISCO angular frequency in units of m2 [Eqs. (3.2) &
(3.5)]. The third column is the test-particle limit of the ISCO
frequency computed from the gauge-invariant ISCO condition
Ĉ0 [Eq. (2.29) or (3.10)]. The fourth column is the conserva-
tive self-force ISCO shift parameter computed from the EOB
ISCO frequency [Eq. (4.4)]. The fifth column is the analogous

quantity computed from the Ĉ0 ISCO condition [Eq. (4.5)].
The sixth column computes the ISCO shift parameter due
to the spin of the test-particle (computed via the spinning
EOB ISCO frequency [Eq. (4.6)], or directly from the Pa-
papetrou equations [Appendix B]). The seventh column is

the analogous quantity computed via the Ĉ0 ISCO condition
[Eq. (4.7)]. Note the perfect agreement of several of these
quantities in the χ2 = 0 case, and the closeness in their val-
ues for small χ2 . 0.6 (see also Figs. 1 & 2).

χ2 ΩKerr
isco Ωisco

C0
cGSF
EOB cGSF

C0
cCOspin

EOB cCOspin

PN

-0.99 0.038635 0.038015 0.9486 1.1903 0.2313 0.1945
-0.9 0.040261 0.039681 0.9449 1.1961 0.2364 0.2020
-0.8 0.042223 0.041694 0.9423 1.2043 0.2424 0.2110
-0.7 0.044372 0.043901 0.9422 1.2148 0.2487 0.2205
-0.6 0.046736 0.046331 0.9458 1.2282 0.2553 0.2308
-0.5 0.049348 0.049016 0.9550 1.2453 0.2625 0.2417
-0.4 0.052251 0.051998 0.9726 1.2670 0.2700 0.2534
-0.3 0.055496 0.055325 1.0027 1.2948 0.2782 0.2657
-0.2 0.059149 0.059057 1.0517 1.3303 0.2868 0.2788
-0.1 0.063295 0.063266 1.1295 1.3759 0.2962 0.2923
0.0 0.068041 0.068041 1.2513 1.4349 0.3062 0.3062
0.1 0.073536 0.073492 1.4418 1.5116 0.3170 0.3199
0.2 0.079979 0.079750 1.7400 1.6118 0.3287 0.3328
0.3 0.087652 0.086978 2.2072 1.7434 0.3414 0.3435
0.4 0.096974 0.095365 2.9338 1.9167 0.3551 0.3502
0.5 0.108588 0.105125 4.0204 2.1441 0.3699 0.3499
0.6 0.123568 0.116470 5.4310 2.4388 0.3856 0.3382
0.7 0.143879 0.129564 6.3967 2.8098 0.4014 0.3097
0.8 0.173747 0.144421 4.2785 3.2524 0.4150 0.2590
0.9 0.225442 0.160767 -3.3671 3.7337 0.4152 0.1837

0.99 0.364410 0.176197 -23.763 4.1440 0.2937 0.0983

B. EOB and PN predictions for the conservative

self-force ISCO shift in Kerr

The conservative self-force ISCO shift parameter de-
noted cGSF in Eq. (4.3) is an especially interesting quan-
tity because it is a gauge-invariant that can be calculated
from self-force calculations. Barack & Sago [14, 15] have
computed this quantity in the case of Schwarzschild, and
in Ref. [21] this result was compared with multiple PN-
based computations of the ISCO shift.10 Gravitational
self-force results are not yet available for the Kerr space-
time, but here we explore the predictions for the conser-
vative GSF ISCO shift in Kerr given by two PN-based
calculations: the spinning EOB approach [20] and the
ISCO computed via the gauge-invariant PN ISCO condi-

10 For other comparisons of PN and GSF results, see [9, 19, 61–63].
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FIG. 2. (color online) ISCO shift parameters computed via the improved spinning-EOB Hamiltonian of [20] and the gauge-
invariant ISCO condition in Eq. (2.29). The left plot shows the ISCO shift due to the conservative gravitational self-force
(GSF) as a function of the big BH spin χ2 (the test-particle is assumed to be non-spinning in this case). The solid (blue)
“EOB” curve uses the Hamiltonian from [20] [which is fit to the exact Barack-Sago (BS) result in the non-spinning case] and
Eq. (4.4). The dotted (green) “EOB (uncalibrated)” curve also uses this Hamiltonian, but the adjustable function is set to
K(η) = 1/2. The dashed (red) curve labeled “C0” is from Eqs. (2.29) & (4.5). The right plot shows the ISCO shift due to the
spin of the orbiting test-mass. In this case the “EOB” curve [Eq. (4.6)] exactly reproduces the ISCO shift computed from the
Papapetrou equations (see, e.g., Appendix B; the Hamiltonian in [20] was constructed with this property). The “C0” curve
[Eq. (4.7)] agrees precisely with the exact result in the χ2 = 0 case. The difference between the cCOspin curves for nonzero χ2

arises from our limited knowledge of higher-order PN spin corrections.

tion Ĉ0 [Eq. (2.29)]. Based on the comparison study in
[21], these two methods are the most viable approaches
for computing the ISCO in the small-mass-ratio limit.

Using the EOB ISCO frequency calculated from [20]
as described above, the corresponding conservative GSF
ISCO shift parameter can be computed via

cGSF
EOB(χ2) = lim

η→0

1

η

[

Ω̃EOB(η, 0, χ2)

Ω̂K(χ2)
− 1

]

. (4.4)

In the PN case a function Ω̃C0
(η, χ1, χ2) is computed by

solving for the root of Eq. (2.29) numerically. The result-
ing conservative GSF ISCO shift parameter is defined by

cGSF
C0

(χ2) = lim
η→0

1

η

[

Ω̃C0
(η, 0, χ2)

Ω̂C0
(0, 0, χ2)

− 1

]

. (4.5)

Note that in this equation the denominator contains the
function Ω̂C0

(0, 0, χ2) rather than Ω̂K(χ2). This is be-

cause the gauge-invariant PN ISCO Ω̃C0
does not reduce

precisely to the Kerr ISCO (although it is very close for
small to moderate values of χ2; see Fig. 1 & Sec. III).

The resulting values for cGSF
EOB(χ2) and cGSF

C0
(χ2) are

listed in Table I and plotted in the left-half of Fig. 2.
Note that while the EOB curve is calibrated to the exact
result in the non-spinning case, there is no expectation
that it will also predict the correct ISCO shift in the spin-
ning case. The function K(η) will presumably need to be
recalibrated when GSF results for the Kerr ISCO shift are

available. To further explore the behavior of cGSF
EOB(χ2), I

have varied the value of K from 0 to 4. Figure 2 shows
one of these “uncalibrated” choices [K(η) = 1/2]. Vary-
ing K over this range changes the location of the “peak”
of cGSF

EOB(χ2). While the Barack-Sago result is no longer
reproduced for other choices of K (the difference with
the Barack-Sago value at χ2 = 0 gets especially large
for K > 2), it is interesting to note that both the cali-
brated and uncalibrated curves approach similar values
when χ2 → ±1.

It will be very interesting to compare future GSF cal-
culations of the ISCO shift in Kerr with the results shown
here. Strictly speaking, the values for cGSF

C0
(χ2) cannot

be precisely compared with the “exact” χ2 6= 0 GSF re-
sults because the ISCO frequency in this case does not
reduce precisely to the Kerr value. Still, for a large range
of χ2 (as quantified in Fig. 1), an accurate comparison
with future exact GSF results should still be possible.
Note in particular that all three curves in the left-half
of Fig. 2 roughly agree for χ2 . 0.2. This is perhaps
indicative that the exact GSF results will lie near those
values. These predictions are likely to be most accurate
for χ2 ≈ −1; varying K from 0 to 4 near this value indi-
cates cGSF

EOB(−1) ≈ 0.8–1.1
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C. Conservative ISCO shift due to the

test-particle’s spin

It is also interesting to examine the ISCO shift pa-
rameter cCO spin [Eq. (4.3)] originating from the spin of
the point-particle. Using the EOB ISCO frequency, this
quantity is calculated via

cCO spin
EOB (χ2) = lim

η→0

[

Ω̃EOB(η, χ1, χ2) − Ω̃EOB(η, 0, χ2)

ηχ1Ω̂K(χ2)

]

.

(4.6)
Although the quantity cGSF

EOB above is not exact (ex-
cept for χ1 = 0), in this case the EOB Hamiltonian is

constructed such that cCOspin
EOB (χ2) is in fact the “true”

value that would result from a calculation based on the
Papapetrou-Mathisson-Dixon [33–40] equations of mo-
tion.11 This was verified by an explicit calculation di-
rectly based on the Papapetrou equations (Appendix B);
the two methods give identical results for cCO spin(χ2).

In the case of the Ĉ0 ISCO condition, we define the
compact-object spin ISCO shift via

cCO spin
C0

(χ2) = lim
η→0

[

Ω̃C0
(η, χ1, χ2) − Ω̃C0

(η, 0, χ2)

ηχ1Ω̂C0
(0, 0, χ2)

]

,

(4.7)
where again the expression differs from Eq. (4.6) because

Ω̂C0
(0, 0, χ2 6= 0) does not reduce to the exact Kerr ISCO.

The resulting values for cCO spin
EOB (χ2) and cCO spin

C0
(χ2)

are listed in Table I and plotted in the right-half of Fig. 2.
Note in particular that in the Schwarzschild case the val-

ues for cCO spin
EOB and cCOspin

C0
agree precisely with each

other and with the analytic calculation in Appendix B 3:

cCOspin
EOB (0) = cCOspin

C0
(0) =

√
6

8
= 0.306 186 . . . . (4.8)

This is a remarkable result. It indicates that the gauge-
invariant ISCO condition Ĉ0 not only predicts (i) the ex-
act test-particle ISCO in the Schwarzschild case [24], and
(ii) the spin-expansion of the exact Kerr ISCO (Sec. III),
but it also predicts the exact shift in the Schwarzschild
ISCO caused by the test-particle’s spin. This shift is em-
bodied in the (fully-relativistic) Papapetrou-Mathisson-
Dixon equations of motion, and it is rather unexpected
that this shift could be predicted from an analysis based
on the standard (non-resummed) PN equations of mo-
tion. Along with the other qualities mentioned above
[and the closeness of cGSF

C0
(0) to the exact Barack-Sago

result], this further indicates that there is a special qual-
ity to the gauge-invariant ISCO condition in Eq. (2.29).

In the spinning case, we see from Fig. 2 that cCO spin
C0

(0)
starts to deviate from the exact result as |χ2| increases.

11 Note that cCO spin

EOB
does not depend on cGSF

EOB or the choice of the
adjustable function K(η).

This is due to the fact that the gauge-invariant ISCO
condition Ĉ0 is limited by the number of known spin
corrections in the PN equations of motion. Once higher-
order spin effects have been calculated and incorporated
into these calculations, it is expected that the curves la-
beled “C0” in Fig. 1 and the right-half of Fig. 2 will even
more closely approximate the exact results.

V. CONCLUSIONS

The primary objective of this study was the exten-
sion of the Blanchet-Iyer [24] ISCO condition to the case
of spinning, non-precessing binaries [Eq. (2.29)]. When
the test-mass limit of this condition is compared with
the exact Kerr ISCO, they are found to agree up to the
order to which the PN spin terms are explicitly known
[cf. Eqs. (3.8) & (3.10), and see Fig. 1]. In addition, the
conservative ISCO shifts were also computed using this
ISCO condition and the spinning EOB Hamiltonian of
[20] [see Table I and Fig. 2].

The ISCO shift due to the conservative gravitational
self-force (GSF) should eventually be compared with the
exact results from self-force calculations. This will allow
an extension of the study in [21] to the Kerr case, and will
provide insight into the relative accuracies of the EOB
formalism and the standard PN equations of motion. For
example, in [21] it was found that the Blanchet-Iyer ISCO
condition more accurately reproduces the Barack-Sago
ISCO shift than uncalibrated EOB methods. This excel-
lent agreement in the Schwarzschild case could be coin-
cidental, but it would be hard to dismiss if it were also
true in the Kerr case. Comparison with exact self-force
results in Kerr would clarify if the standard PN equations
of motion or the (uncalibrated) EOB approach can more
accurately predict strong-field, finite-η effects.

One of the most significant results of this study is
that the PN ISCO condition in Eq. (2.29)—in addition
to reproducing the Kerr ISCO for small spin and the
Schwarzschild conservative GSF ISCO shift with good
accuracy—also exactly reproduces the ISCO shift due to
the spin of the test mass. (This agreement is truly exact

only in Schwarzschild since the spin corrections in Ĉ0 are
only known to quadratic order.) This provides further

evidence that the ability of the Ĉ0 ISCO condition to
predict strong-field results is not coincidental. However,
it is somewhat mysterious as to why this ISCO condition
is able to accurately predict these strong-field effects.

In addition to explaining this agreement, future work
could involve extending this study to more general orbits
(such as precessing or eccentric binaries). The resulting
conditions for the last-stable-orbit could then be com-
pared with exact results from the Kerr spacetime.
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Appendix A: Comparing the PN and Kerr

expressions for the energy, angular momentum, and

Kepler relation

In this appendix we examine the test-mass limit of var-
ious PN expressions, and compare them with the equiv-
alent expressions derived from the Kerr metric. In par-
ticular, we wish to check if PN expressions using two dif-
ferent choices for the spin variables reduce to the same
Kerr result in the test-mass limit.

The energy for circular, non-precessing orbits is

EPN(Ω)

ηM
=−x

2

{

1 − x

(

3

4
+

η

12

)

− x2

(

27

8
− 19η

8
+

η2

24

)

+ x3

[

−675

64
+

(

34445

576
− 205

96
π2

)

η − 155

96
η2 − 35

5184
η3

]

+
x3/2

M2

(

14

3
Sc

ℓ + 2
δm

M
Σc

ℓ

)

− x2

M4
(Sc

0,ℓ)
2

+
x5/2

M2

[(

11 − 61

9
η

)

Sc
ℓ +

(

3 − 10

3
η

)

δm

M
Σc

ℓ

]}

, (A1)

where the first two lines contain the non-spin terms [64,
65], the third line contains the 1.5PN spin-orbit term
[44, 47, 48] and the combined spin-spin + quadrupole
monopole term (for BHs only) [45, 46, 48], and the fourth
line contains the 2.5PN spin-orbit term [44, 47]. In terms
of the non-constant magnitude spin variables, the 2.5PN
spin-orbit term can be written as [47]

+
x5/2

M2

[(

13 − 49

9
η

)

Snc
ℓ +

(

5 − 8

3
η

)

δm

M
Σnc

ℓ

]

, (A2)

while the 1.5PN and 2PN spin terms keep the same form
but with “c” replaced by “nc”. In the test-mass limit
EPN reduces to

EPN(Ω)

m1

= −1

2
x

[

1 − 3

4
x +

8

3
χ2x

3/2

−x2

(

27

8
+ χ2

2

)

+ 8χ2x
5/2 − 675

64
x3

]

, (A3)

where χ2 can be either χnc
2 or χc

2.
The total energy of a point-mass in the Kerr spacetime

is given in terms of wBL in Eq. (3.3). [Recall that Ẽ
includes the particle’s rest mass, so the orbital energy is
Ẽ−1.] Substituting Eq. (3.6) and expanding in X yields

Ẽ−1 = −X

2

{

1 − 3

4
X +

8

3
χK

2 X3/2 − X2

[

27

8
+ (χK

2 )2
]

+ 8χK
2 X5/2 + X3

[

−675

64
− 65

18
(χK

2 )2
]

+27χK
2 X7/2 + O(X4)

}

, (A4)

which agrees with Eq. (A3) to the expected order.
The orbital angular momentum (specialized to equa-

torial orbits) is given by Eqs. (6.10) and (7.10) of [47]:

L ·ℓ =
ηM2

x1/2

{

1 + x

(

3

2
+

η

6

)

+ x2

(

27

8
− 19η

8
+

η2

24

)

+
x3/2

M2

(

−35

6
Sc

ℓ − 5

2

δm

M
Σc

ℓ

)

+
x5/2

M2

[(

−77

8
+

427

72
η

)

Sc
ℓ +

(

−21

8
+

35

12
η

)

δm

M
Σc

ℓ

]}

,

(A5)

with the last two lines replaced by the following expres-
sion in terms of the “nc” spin variables:

+
x3/2

M2

(

−23

6
Snc

ℓ − 3

2

δm

M
Σnc

ℓ

)

+
x5/2

M2

[(

−77

8
+

259

72
η

)

Snc
ℓ +

(

−33

8
+

7

4
η

)

δm

M
Σnc

ℓ

]}

.

(A6)

Note that the 2PN spin(1)-spin(2) term is zero [48], but
the 2PN quadrupole-monopole contribution has not been
computed. The 3PN nonspin terms are given in general
form in [66], but have not been specified to circular orbits.
Also note that the spin-orbit terms in L differ even at
1.5PN order when one switches spin variable.12 In the
test-mass limit, these expressions reduce to

L · ℓ
m1

=
m2

x1/2

{

1 +
3

2
x − 10

3
χc

2x
3/2

+x2

[

27

8
+ Cc

QM(χc
2)

2

]

− 7χc
2x

5/2 + O(x3)

}

, (A7)

L · ℓ
m1

=
m2

x1/2

{

1 +
3

2
x − 7

3
χnc

2 x3/2

+x2

[

27

8
+ Cnc

QM(χnc
2 )2

]

− 11

2
χnc

2 x5/2 + O(x3)

}

, (A8)

where the constants Cc
QM and Cnc

QM have not been explic-
itly computed.

The orbital angular momentum of a test-particle in
Kerr is [29]

L̃ ≡ L

m1

=
sign(χK

2 )m2√
wBL

[1 − 2χK
2 w

3/2

BL + (χK
2 )2w2

BL]
√

1 − 3wBL + 2χK
2 w

3/2

BL

.

(A9)
Substituting Eq. (3.6) and expanding in X yields

12 The total angular momentum J = L+S1/c +S2/c is a constant
vector (up to 2PN order) that does not depend on the choice
of spin variable. Since the individual spins contribute a 0.5PN
correction to the total angular momentum, the 1PN corrections
in the relations between spin variables [Eqs. (2.5)] shift some
terms into (or out of) the 1.5PN piece of L.
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L̃ =
sign(χK

2 )m2

X1/2

{

1 +
3

2
X − 10

3
χK

2 X3/2

+ X2

[

27

8
+ (χK

2 )2
]

− 7χK
2 X5/2 + X3

[

135

16
+

26

9
(χK

2 )2
]

−81

4
χK

2 X7/2 + O(X4)

}

. (A10)

Here we see that the Kerr angular momentum agrees with
the test-mass limit of the PN expression only if we iden-
tify χK

2 with χc
2. Note also that Eq. (A10) provides the

test-mass limit of the previously unknown 2PN and 3PN
pieces of Eq. (A5).

We also check for agreement between the PN and Kerr
versions of the Keplerian relationship (see also Appendix
B of [44]). The PN relation is given in Eqs. (2.21) &
(2.22). In the test-mass limit it reduces to

γ → m2

rH
= x

[

1 + x +
2

3
χ2x

3/2 + x2

(

1 − χ2
2

2

)

+
4

3
χ2x

5/2 + x3 + O(χ2
2x

3)

]

, (A11)

where χ2 can be either spin variable. Note that the PN
radial coordinate used in the main text refers to harmonic
coordinates (here denoted rH). To derive the Kerr-analog
of this expression we first need the relationship between
Boyer-Lindquist and harmonic coordinates [43, 67]:

xH + iyH = (rBL − m2 + iχK
2 m2)e

iϕ sin θBL, (A12a)

zH = (rBL − m2) cos θBL, (A12b)

r2
H = x2

H + y2
H + z2

H = (rBL − m2)
2 + (χK

2 m2)
2 sin2 θBL.

(A12c)
Specializing to the equatorial plane (θBL = π/2) and
defining wH ≡ m2/rH , we have the relationship

wH =
wBL

√

(1 − wBL)2 + (χK
2 wBL)2

. (A13)

Substituting Eq. (3.6) for wBL and series expanding in X
yields

wH = X

{

1 + X +
2

3
χK

2 X3/2 + X2

[

1 − (χK
2 )2

2

]

+
4

3
χK

2 X5/2 + X3

[

1 − 17

18
(χK

2 )2
]

+X7/2
[

2χK
2 − (χK

2 )3
]

+ O(X4)
}

, (A14)

which agrees with Eq. (A11) to the expected order.

Appendix B: Spinning test-particle ISCO shift

derived from the Papapetrou-Mathisson-Dixon

equations

In this appendix I discuss how to compute the ISCO
for a spinning-test particle directly from the Papapetrou-
Mathisson-Dixon equations (rather than from the EOB

formalism of [20]). The results for the ISCO shift pa-
rameter derived below agree exactly with the results dis-
cussed in Sec. IVC, Table I, and the right plot of Fig. 2.
This provides further confirmation of the validity of the
Hamiltonian derived in [20, 40]. Previous examinations
of the ISCO of a spinning test particle are given in [30, 31]
(see also [32]). The results here are more explicit, exact
numerical values are given (Table I), and a fully analytic
examination in Schwarzschild is presented.

1. Papapetrou-Mathisson-Dixon equations for

equatorial, non-precessing orbits

Saijo et al. [68] have explicitly derived the equations
of motion of a spinning particle in the equatorial plane
(θ = π/2) of a Kerr BH. For a particle with spin angular
momentum S1 = sm1ẑ aligned with the BH’s spin (S2 =
am2ẑ) and the orbital angular momentum Lz, the spin
vectors remain constant and the equations of motion take
a form similar to the Kerr geodesic equations [Eqs. (2.19)-
(2.25) of [68]]:

ΣsΛs
dt

dτ
=a

(

1 +
3m2s

2

rΣs

)

[

J̃z − (a + s)Ẽ
]

+
r2 + a2

∆
Ps,

(B1a)

ΣsΛs
dϕ

dτ
=

(

1 +
3m2s

2

rΣs

)

[

J̃z − (a + s)Ẽ
]

+
a

∆
Ps,

(B1b)

ΣsΛs
dr

dτ
= ±

√

Rs, where (B1c)

Σs = r2

(

1 − m2s
2

r3

)

, (B1d)

Λs = 1 − 3m2s
2r[J̃z − (a + s)Ẽ]2

Σ3
s

, (B1e)

Rs = P 2
s − ∆

{

Σ2
s

r2
+
[

J̃z − (a + s)Ẽ
]2
}

, (B1f)

Ps =
[

(r2 + a2) + as
(

1 +
m2

r

)]

Ẽ −
(

a + s
m2

r

)

J̃z,

(B1g)

∆ = r2 − 2m2r + a2, (B1h)

where (t, r, θ, ϕ) are Boyer-Lindquist coordinates13, τ is
the particle’s proper time, and the conserved energy
Ẽ ≡ E/m1 and total angular momentum J̃z ≡ Jz/m1

are given in Eqs. (2.10) of [68].

13 Note that in the rest of this paper r denotes the harmonic ra-
dial coordinate. Also, to maintain some notational consistency, I
continue to denote the central BH mass by m2 and the test par-
ticle’s mass by m1; in most of the literature on the Papapetrou
equations these quantities are denoted M and µ respectively.
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Note that the function Rs can be rewritten in the form

Rs = B(r)[Ẽ − Ẽ1(r, J̃z)][Ẽ − Ẽ2(r, J̃z)], (B2)

where the roots Ẽ1,2 of Rs = 0 are found by solving [see
also Eq. (2.26) of [68]]

αẼ2 − 2βẼ + γ = 0, with (B3)

α =
[

(r2 + a2) + as
(

1 +
m2

r

)]2

− ∆(a + s)2, (B4)

β =
{(

a + s
m2

r

)[

(r2 + a2)+ as
(

1+
m2

r

)]

−∆(a+s)
}

J̃z,

(B5)

γ =
(

a + s
m2

r

)2

J̃2
z − ∆

[

r2

(

1 − Ms2

r3

)2

+ J̃2
z

]

.

(B6)

Here (α, β, γ) are not to be confused with any quantities
defined earlier in this paper. The solution

Ẽ1 ≡ Veff =
β +

√

β2 − αγ

α
(B7)

corresponds to an effective potential for the particle mo-
tion.14 Here we have taken the positive square root to
ensure that the particle energy Ẽ = Ẽ1 → 1 when r → ∞
(in contrast to the negative root, for which Ẽ2 → −1).
This allows us to rewrite the equation for the radial mo-
tion in the form

ṙ2 = A(r, Ẽ, J̃z)[Ẽ − Veff(r, J̃z)], (B8)

where, for this appendix only, an overdot means d/dτ .
The explicit forms for A and B can be inferred from the
above equations but are not needed for the remainder of
the analysis.

2. General solution for the ISCO of a spinning

particle

The conditions for circular orbits (defined as orbits
with constant r) are that both ṙ and r̈ vanish. By differ-
entiating Eq. (B8) and dividing by ṙ,

r̈ =
1

2

[

(Ẽ − Veff)
∂A

∂r
− A

∂Veff

∂r

]

, (B9)

we see that the conditions for circular orbits are equiva-
lent to

Ẽ = Veff(r, J̃z) and
∂Veff(r, J̃z)

∂r
= 0. (B10)

14 Eq. (2.27) of [68] has the wrong sign in front of the αγ term.

To ensure that circular orbits are stable, we require that
under a small radial perturbation of a circular orbit,
r0 → r0 + δr, the particle is accelerated back to its ini-
tial configuration. Such a condition is equivalent to de-
manding that the perturbed coordinate acceleration sat-
isfy δ̈r = −ω̃2

0δr with ω̃2
0 > 0, where ω̃0 is the radial oscil-

lation frequency about the unperturbed orbit r0 [this is
equivalent to the analysis in Eqs. (2.26) – (2.28) above].
In this case ω̃0 is found by linearizing Eq. (B9) about the
circular orbit r0. Computing ∂r̈/∂r and evaluating along
the unperturbed circular orbit yields

ω̃2
0 = − ∂r̈

∂r

∣

∣

∣

∣

0

=
A

2

∂2Veff

∂r2
. (B11)

The ISCO is found from the equality ω̃2
0 = 0 (note that

A is nonzero for physically relevant parameter values).
To evaluate the ISCO frequency, we first solve the al-

gebraic system of equations

∂Veff(r, J̃z)

∂r
= 0 and

∂2Veff(r, J̃z)

∂r2
= 0 (B12)

for the ISCO values of (r, J̃z). This is done numerically,
specifying a = χ2m2, s = χ1qm2, m2 = 1, and us-
ing r = rK

isco [Eq. (3.2)] and J̃z = L̃(rK
isco) [Eq. (A9)]

as initial guesses for the solution. The resulting val-
ues (r0, J̃0) are then used to determine the ISCO energy

Ẽ0 = Veff(r0, J̃0). The ISCO angular frequency is then
found by substituting these quantities into

Ω ≡ dϕ/dτ

dt/dτ
(B13)

using Eqs. (B1a) & (B1b). This procedure allows
the ISCO frequency to be computed as a function of
(q, χ1, χ2).

The ISCO shift parameter cCO spin(χ2) is computed as
in Eq. (4.6). Note that in this case cGSF evaluates to
zero (as expected) and converting variables from (q, m2Ω)
to (η, MΩ) does not affect the value of cCOspin(χ2) [see
Eq. (4.3)]. The resulting values for cCOspin(χ2) are iden-

tical to those listed in Table I under cCO spin
EOB (χ2).

3. Analytic analysis of the ISCO in the

Schwarzschild, small-spin limit

It is instructive to reexamine the above analysis of the
ISCO, specializing to Schwarzschild (a = 0) and small
spin (s/m2 ≪ 1).15 Keeping terms linear in s, Eqs. (B1)
reduce to

dt

dτ
=

Ẽ

1 − 2m2

r

− sm2J̃z

r3
(

1 − 2m2

r

) + O(s2), (B14a)

15 Since s/m2 = χ1q, the small-spin limit is still quite accurate for
EMRIs since q ≪ 1 even if χ1 ∼ 1.
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dϕ

dτ
=

J̃z

r2
− sẼ

r2
+ O(s2), (B14b)

(

dr

dτ

)2

= Ẽ2−[V schw
eff (r, J̃z)]

2+ 2s
ẼJ̃z

r2

(

1− 3m2

r

)

+O(s2),

(B14c)

where (V schw
eff )2 ≡

(

1 − 2m2

r

)

(

1 +
J̃2

z

r2

)

(B15)

is the effective potential for Schwarzschild. Setting ṙ2 = 0
yields a quadratic equation for Ẽ which, when solved and
expanded in s, yields

Ẽ ≡ V schw, spin
eff = V schw

eff − sJ̃z

r2

(

1 − 3m2

r

)

+ O(s2).

(B16)
Note that this is equivalent to the O(s) expansion of
Eq. (B7) with a = 0.

For circular orbits we solve the condition
∂V schw, spin

eff /∂r = 0 for J̃z = J̃ schw
z + sδĴz + O(s2),

yielding the angular momentum for circular orbits:

J̃circ
z =

r
√

m2√
r − 3m2

+
s

2

(r − 2m2)(2r − 9m2)√
r(r − 3m2)3/2

+ O(s2).

(B17)
Substituting into Eq. (B16) and expanding in s yields the
energy along circular orbits:

Ẽcirc =
r − 2m2

√

r(r − 3m2)
− s

2r

(

m2

r − 2m2

)3/2

+ O(s2).

(B18)
To determine the ISCO we compute

∂2V schw, spin
eff /∂r2 = 0, substitute Eq. (B17) for J̃z,

expand to O(s), and solve for r = 6m2 + sδr̂ + O(s2).
The resulting ISCO radius is

risco = 6m2 − 2s

√

2

3
+ O(s2). (B19)

Substituting this result into Eqs. (B18) & (B17) gives the
energy and angular momentum at the ISCO:

Ẽisco =
2
√

2

3
−

√
3

108

s

m2

+ O(s2), (B20a)

J̃ isco
z = 2

√
3m2 +

√
2

3
s + O(s2). (B20b)

To compute the ISCO frequency we expand Eq. (B13),

Ω =
J̃z

r2Ẽ

(

1 − 2m2

r

)

−s(r − 2m2)

r3

(

1 − m2J̃
2
z

r3Ẽ2

)

+O(s2),

(B21)
substitute Eqs. (B19)–(B20), and expand to O(s):

m2Ωisco = 6−3/2 +
1

48

s

m2

+ O(s2). (B22)

Multiplying by M/m2 and using s = χ1qm2 and q =
η + O(η2), we can write the shift in the ISCO as

MΩisco = 6−3/2[1 + η + cCO spin
schw χ1η + O(η2)], (B23)

where the O(η) term would combine with the conserva-
tive GSF shift (not computed here), and

cCOspin
schw =

√
6

8
= 0.306 186 217 847 . . . . (B24)

This agrees with the Schwarzschild value found from
three separate calculations via the EOB Hamilto-
nian [Eq. (4.6)], the gauge-invariant ISCO condition
[Eq. (4.7)], and the numerical evaluation of the Papa-
petrou equations (Appendix B2 above).
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101503 (2008), arXiv:0809.2200 [gr-qc].
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Grav., 27, 135007 (2010), arXiv:1002.2093 [gr-qc].
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