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A stochastic gravitational wave background causes the apparent positions of distant sources to
fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational
waves. These fluctuations may be detectable with high precision astrometry, as first suggested by
Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper
limits obtainable on the gravitational wave spectrum Ωgw(f), at frequencies of order f ∼ 1 yr−1,
both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI
interferometry in radio wavelengths with the SKA. For GAIA, tracking N ∼ 106 quasars over
a time of T ∼ 1 yr with an angular accuracy of ∆θ ∼ 10µas would yield a sensitivity level of
Ωgw ∼ (∆θ)2/(NT 2H2

0 ) ∼ 10−6, which would be comparable with pulsar timing.
In this paper we take a first step toward firming up these estimates by computing in detail the

statistical properties of the angular deflections caused by a stochastic background. We compute
analytically the two point correlation function of the deflections on the sphere, and the spectrum as
a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for
a scale invariant stochastic background), and at large angular scales, starting with the quadrupole.
The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power.

I. INTRODUCTION AND SUMMARY OF RESULTS

A. The Stochastic Gravitational Wave Background

There is great interest in detecting or constraining the strength of stochastic gravitational waves (GWs) that may
have been produced by a variety of processes in the early Universe, including inflation. The strength of the waves is pa-
rameterized by their energy density per unit logarithmic frequency divided by the critical energy density, Ωgw(f). Cur-
rent observational upper limits include (i) the constraint Ωgw . 10−13(f/10−16 Hz)−2 for 10−17 Hz . f . 10−16 Hz
from large angular scale fluctuations in the cosmic microwave background temperature [1]; (ii) the cosmological nucle-
osynthesis and cosmic microwave background constraint

∫

d ln f Ωgw(f) . 10−5, where the integral is over frequencies
f & 10−15 Hz [2]; (iii) the pulsar timing limit Ωgw . 10−8 at 10−9 Hz . f . 10−8 Hz [3]; (iv) the current LIGO/VIRGO
upper limit Ωgw . 7× 10−6 at f ∼ 100 Hz [4]; and (v) the limit

∫

d ln f Ωgw . 10−1 for 10−17 Hz . f . 10−9 Hz from
VLBI radio astrometry of quasars.

Many new techniques also promise future measurements of these primordial GWs. Firstly, it has been shown that
such a GW background would leave a detectable signature in the polarization of the cosmic microwave background
[CMB; 5, 6], which will be measured by many current and future observational efforts [7–16]. The planned space-based
interferometer LISA will also set limits on the primordial stochastic gravitational wave background (SGWB) [17]. The
planned successor to LISA, the Big Bang Observer, is a space-based interferometer mission designed primarily to detect
the primordial SGWB [18]. Finally, Seto and Cooray have suggested that measurements of the anisotropy of time
variations of redshifts of distant sources could provide constraints of order Ωgw . 10−5 at f ∼ 10−12 Hz [19]. For
more details on GWs, the search for them, and the SGWB, see the review articles [1, 20, 21].

B. High Precision Astrometry

The possibility of using high precision astrometry to detect GWs has been considered by many authors [22–34].
There was an early suggestion by Fakir [26] that GW bursts from localized sources could be detectable by the angular
deflection ∆θ to light rays that they would produce. Fakir claimed that ∆θ ∝ 1/b, where b is the impact parameter.
This claim was shown later to be false, and in fact the deflection scales as 1/b3 [25, 27]. Therefore the prospects for
using astrometry to detect waves from localized sources are not promising [34].

However, the situation is different for a SGWB, as first discussed by Braginsky et al. [24]. For a light ray propagating
through a SGWB, one might expect the direction of the ray to undergo a random walk, with the deflection angle



growing as the square root of distance. However, this is not the case; the deflection angle is always of order the
strain amplitude hrms of the GWs, and does not grow with distance [i] [24, 29, 30]. Specifically, a SGWB will cause
apparent angular deflections which are correlated over the sky and which vary randomly with time, with an rms
deflection δrms(f) per unit logarithmic frequency interval of (see Eq. 3 below)

δrms(f) ∼ hrms(f) ∼ H0

f

√

Ωgw(f). (1)

Suppose now that we monitor the position of N sources in the sky, with an angular accuracy of ∆θ, over a time
T. For a single source, one could detect an angular velocity (proper motion) of order ∼ ∆θ/T , and for N sources,

a correlated angular velocity of order ∼ ∆θ/(T
√

N) should be detectable. The rms angular velocity from (1) is

ωrms(f) ∼ f δrms(f) ∼ H0

√

Ωgw(f), and it follows that one should obtain an upper limit on Ωgw of order [33]

Ωgw(f) .
∆θ2

NT 2H2
0

. (2)

This bound will apply at a frequency of order f ∼ 1/T . It will also apply at lower frequencies [33] since the
angular velocity fluctuations are white (equal contributions from all frequency scales), assuming a flat GW spectrum
Ωgw = const. The quantity that will be constrained by observations is roughly this total Ωgw,

∫

f.T−1 d ln fΩgw(f).

The advent of microarcsecond astrometry has started to make the prospects for constraining GW backgrounds more
interesting. The future astrometry mission GAIA (Global Astrometric Interferometer for Astrophysics) is expected to
measure positions, parallaxes and annual proper motions to better than 20µas for more than 50 million stars brighter
than V ∼ 16 mag and 500,000 quasars brighter than V ∼ 20 mag [23]. Similarly the Space Interferometry Mission
(SIM) is expected to achieve angular accuracies of order 10 µas. Estimates of the sensitivities of these missions to a
SGWB, at the Ωgw ∼ 10−3 – 10−6 level, are given in Refs. [23, 31, 32].

VLBI radio interferometry is another method that can be used to detect the astrometric effects of a SGWB on
distant sources. This method detects the same pattern as that discussed in this paper for visible astrometry, and
differs from astrometry using the GAIA satellite in its longer duration (tens of years versus a few years for GAIA), and
in the smaller number of sources, on the order of hundreds, that have currently been measured using this method. In
the radio, the planned Square Kilometer Array (SKA) is also expected to be able to localize sources to within ∼ 10µas
[35]. Jaffe has estimated that with 106 QSO sources, the SKA could achieve a sensitivity of order Ωgw ∼ 10−6 [28].

The astrometric signals due to a SGWB expected for a single object are quite small, on the order of 0.1 µas yr−1,
much smaller than the typical intrinsic proper motion of a star in our galaxy. We therefore propose to use quasars as
our sources, since their extragalactic distances cause their expected intrinsic proper motions to be smaller than those
expected from a SGWB [23]. The construction of a non-rotating reference frame using quasars in astrometric studies
will remove the l = 1 dipole component of the measured quasar proper motions, but will leave intact the l = 2 and
higher multipoles which are expected to be excited by GWs.

Using the estimate N ∼ 106 (GAIA), ∆θ ∼ 10 µas, T ∼ 1 yr gives from Eq. (2) the estimate

Ωgw . 10−6

at f . 10−8 Hz for astrometry. This is an interesting sensitivity level, roughly comparable with that obtainable with
pulsar timing [3].

Astrometry has already been applied to obtain upper limits on Ωgw using a number of different observations.
First, Gwinn et. al analyzed limits on quasar proper motions obtained from VLBI astrometry, and obtained the
upper limit Ωgw . 10−1 for 10−17 Hz . f . 10−9 Hz [22]. This limit was recently updated by Titov, Lambert and
Gontier [36]. Finally, Linder analyzed observed galaxy correlation functions to obtain the limit Ωgw . 10−3 for
10−16 Hz . f . 10−10 Hz [37].

All of these analyses used a relativly simple model of the effect of graitational waves on proper motions. In this
paper we give a detailed computation of the spectrum of angular fluctuations produced by a stochastic background,
including the relative strengths of E- and B-type multipoles for each order l. In a subsequent paper we will follow up
with a derivation of the optimal data analysis method and a computation of the Ωgw sensitivity level, to confirm the
existing crude estimates of the sensitivity of future astrometric missions such as GAIA.

[i] It is sometimes claimed in the literature that the deflection angle depends only on the GWs near the source and observer. In fact, this
is not true, as we discuss in Appendix A. A similar claim about the frequency shift that is the target of pulsar timing searches for GWs
is also false in general.



C. Summary of results

For a source in the direction n, the effect of the GW background is to produce an apparent angular deflection
δn(n, t). We first find a general formula for the angular deflection of a photon, for an arbitrary GW signal hij ,
emitted by a source that can be at a cosmological distance. This deflection is derived in Secs. II and III below, and
is given by [cf. Eq. (55)]

δni =
1

2

{

njhij(0) − ninjnkhjk(0) − ω0

ζs

(

δik − nink
)

nj·

·
[

−2

∫ ζs

0

dζ′
∫ ζ′

0

dζ′′hjk,0(ζ
′′) + nl

∫ ζs

0

dζ′
∫ ζ′

0

dζ′′ (hjk,l(ζ
′′) + hkl,j(ζ

′′) − hjl,k(ζ′′))

]}

.

Here, n is the direction to the source, ω0 is the emitted frequency of the photon, ζ parameterizes the path of the
photon τ(ζ) = τ0 + ω0ζ, xi(ζ) = −ζω0n

i, hij(τ,x) is treated as a function of ζ through this parameterization of the
photon path, ζs is the value of ζ at the emission event of the photon at the source, and the spacetime metric is

ds2 = a(τ)2
{

−dτ2 + [δij + hij(τ,x)] dxidxj
}

.

We then specialize to the limit in which the sources are many gravitational wavelengths away and to plane waves
propagating in the direction p to obtain a simple formula, which generalizes a previous result of Pyne et al [33]. We
find that the deflection, as a function of time τ and direction on the sky n, is given by

δnî(τ,n) =
ni + pi

2(1 + p · n)
hjk(0)njnk − 1

2
hij(0)nj ,

where p is the direction of propagation of the GW, and hij(0) is the GW field evaluated at the observer, hij(τ,0).
The main result of this paper is a computation of the statistical properties of the angular deflection resulting from

a SGWB, which is carried out in Secs. IV and V. The apparent angular deflection caused by such a GW background
is a stationary, zero-mean, Gaussian random process. We compute the fluctuations in δn by making two different
approximations: (i) The GW modes which contribute to the deflection have wavelengths λ which are short compared
to the horizon size c H−1

0 today. (ii) The mode wavelengths λ are short compared to the distances to the sources; this
same approximation is made in pulsar timing searches for GWs [38]. Since our calculations are only vaild for GWs
with wavelengths much smaller than the horizon, the contribution from waves with wavelengths comparable to the
horizon scale will cause a small deviation from our results (on the order of a few percent for a white GW spectrum).

The total power in angular fluctuations is then

〈

δn(n, t)2
〉

= θ2
rms =

1

4π2

∫

d ln f

(

H0

f

)2

Ωgw(f). (3)

Taking a time derivative gives the spectrum of fluctuations of angular velocity or proper motion:

〈

δṅ(n, t)2
〉

=

∫

d ln fH2
0Ωgw(f),

which gives a rms angular velocity ωrms(f) of order

ωrms(f) ∼ H0

√

Ωgw ∼ 10−2µas yr−1

(

Ωgw

10−6

)1/2

.

This is the signal that we hope to detect.

We now discuss how the angular fluctuations are distributed on different angular scales, or equivalently how the
power is distributed in the spherical harmonic index l. The total angular fluctuations can be written as



TABLE I: First 10 nonzero multipole coefficients αEE
l as defined in Eq. (87) and plotted in Fig. 1.

l αEE
l

2 0.833333

3 0.116667

4 0.03

5 0.0104762

6 0.00442177

7 0.00212585

8 0.00112434

9 0.000639731

10 0.000385675

11 0.000243696

〈

δn(n, t)2
〉

=

∫

d ln f

∞
∑

l=2

[

θE
rms,l(f)2 + θB

rms,l(f)2
]

. (4)

Here θE
rms,l(f)2 is the total electric-type power in angular fluctuations per unit logarithmic frequency in multipole

sector l, and θB
rms,l(f)2 is the corresponding magnetic-type power. These quantities can be written as

θQ
rms,l(f)2 = θ2

rms gQ σ(f)αQQ
l , (5)

where Q = E or B. The various factors in this formula are as follows. The factors gE and gB are the fractions of the
total power carried by E-modes and B-modes respectively, and satisfy gE + gB = 1. Their values are gE = gB = 1/2,
implying that electric and magnetic type fluctuations have equal power. The function σ(f) describes how the power
is distributed in frequency, and is the same for all multipoles, both electric and magnetic. It is normalized so that
∫

d ln fσ(f) = 1, and is given explicitly by [cf. Eq. (3) above]

σ(f) =
f−2 Ωgw(f)

∫

d ln f ′f ′ −2 Ωgw(f ′)
. (6)

Finally, the angular spectra αEE
l and αBB

l describe how the power is distributed in different multipoles, starting with
the quadrupole at l = 2, and are normalized so that

∞
∑

l=2

αQQ
l = 1 (7)

for Q = E and Q = B. We show that αEE
l = αBB

l , and this spectrum is plotted in Fig. 1 and tabulated in table
I. These coefficients are well fit by the power law αEE

l = 32.34 l−4.921. We note that the result for the quadrupole,
αEE

2 = 5/6, has previously been derived using a different method in Ref. [33].

II. CALCULATION OF ASTROMETRIC DEFLECTION IN A MINKOWSKI BACKGROUND

SPACETIME

A. Setting the stage–Minkowski Calculation

We will first calculate the angular deflection due to a small GW perturbation on a flat background metric,

ds2 ≡ gµνdxµdxν = −dt2 + (δij + hij)dxidxj . (8)



FIG. 1: Here we plot the coefficients αEE
l as defined in Eq. (87) vs. multipole l.

We are considering the effect of these GWs on a photon traveling from a source to an observer, with an unperturbed
worldline xα

0 (λ) = ω0(λ,−λn) + (t0, 0, 0, 0), where −n is the direction of the photon’s travel, ω0 is its unperturbed
frequency, and the photon is observed at the origin at time t0. The photon’s unperturbed 4-momentum is given by
kα
0 = ω0(1,−n).
To calculate the geodesics that the photon, source and observer follow, we need the connection coefficients in this

metric. There are three non-zero connection coefficients:

Γk
0i =

1

2
hki,0, Γ0

ij =
1

2
hij,0, Γk

ij =
1

2
[hki,j + hkj,i − hij,k]. (9)

First, using the geodesic equation

d2xα

dτ2
= −Γα

βγuβuγ , (10)

it is straightforward to verify that the paths of stationary observers in these coordinates are geodesics. Therefore we
can assume that both the source and observer are stationary in these coordinates, with

xi
obs(t) = 0

xi
s(t) = xi

s = constant.

The affine parameter of the source is therefore

λs = −|xs|
ω0

.



B. Photon Geodesic

Next, we solve the geodesic equation (10) for the path of a photon traveling from the source to the observer in the
perturbed metric. We write this path as the sum of contributions of zeroth and first order in h,

xα(λ) = xα
0 (λ) + xα

1 (λ). (11)

Similarly, the photon 4-momentum is

kα(λ) = kα
0 (λ) + kα

1 (λ). (12)

We note that the connection coefficients are all first order in h, so keeping only first order terms, we will use only the
unperturbed photon 4-momentum in the geodesic equation, yielding

d2x0
1

dλ2
= −ω2

0

2
ninjhij,0, (13)

d2xk
1

dλ2
= −ω2

0

2
[−2nihki,0 + ninj (hki,j + hkj,i − hij,k)]. (14)

We now integrate the geodesic equation to obtain the perturbed photon 4-momentum and trajectory. The right
hand sides are evaluated along the photon’s unperturbed path from λ = 0 at the present time back to λ, since they
are already first order in h. We define

Iij(λ) =

∫ λ

0

dλ′hij,0(λ
′), Jijk(λ) =

∫ λ

0

dλ′hij,k(λ′),

Kij(λ) =

∫ λ

0

dλ′

∫ λ′

0

dλ′′hij,0(λ
′′), Lijk(λ) =

∫ λ

0

dλ′

∫ λ′

0

dλ′′hij,k(λ′′), (15)

where hij(λ) means hij(t0 + ω0λ,−ω0λn). We find

k0
1(λ) = −ω2

0

2
ninjIij(λ) + I0, kj

1(λ) = −ω2
0

2
niRij + Jj

0 ,

x0
1(λ) = −ω2

0

2
ninjKij(λ) + I0λ + K0, xj

1(λ) = −ω2
0

2
niSij + Jj

0λ + Lj
0, (16)

where I0, Jj
0 , K0 and Lj

0 are constants of integration, and we have defined the quantities

Rij(λ) ≡
[

−2Iij(λ) + nk (Jijk(λ) + Jjki(λ) − Jikj(λ))
]

, (17)

Sij(λ) ≡
[

−2Kij(λ) + nk (Lijk(λ) + Ljki(λ) − Likj(λ))
]

. (18)

C. Boundary conditions

We determine the eight integration constants I0, Jj
0 , K0 and Lj

0 using the boundary conditions of the problem,
namely that the photon path passes through the detection event xµ

obs = (t0, 0, 0, 0), that it is null, that the photon
is emitted with the unperturbed frequency ω0, and that the photon path intersects the path of the source at some
earlier time.



1. Photon path must pass through detection event

First, the perturbed photon trajectory must pass through the detection event t = t0, xi = 0. Therefore,

xµ(0) = xµ
0 (0) + xµ

1 (0) = (t0, 0, 0, 0),

giving

K0 =
ω2

0

2
ninjKij(0) = 0, Lj

0 =
ω2

0

2
niSij(0) = 0, (19)

where we have used the fact that by definition Kij(0) = Sij(0) = 0.

2. Photon geodesic is null

The geodesic of the photon must be null, which gives one more constraint: gµνkµkν = 0. This is already true
to zeroth order. To first order we get:

0 = hµνkµ
0 kν

0 + 2ηµνkµ
1 kν

0 ,

where kα
0 = ω0(1,−n). Inserting the expression for the perturbed 4-momentum kα

1 given by Eqs. (15) , (16)
and (17) , and simplifying using

d

dλ
hij = ω0hij,0 − ω0nkhij,k (20)

shows that all of the terms involving λ cancel out, as they must, leaving the condition

I0 + niJ
i
0 =

1

2
ω0n

injhij(0). (21)

3. Photon is emitted with frequency ω0

The photon is emitted at the source with the unperturbed frequency ω0 = −gµνkµuν
s . The 4-velocity of the

source is uµ
s = (1, 0, 0, 0) as it has constant spatial coordinate position, so the constraint becomes −gµ0k

µ = ω0.
The source emits the photon at λ = λs, so from Eq. (16) this yields

I0 =
ω2

0

2
ninjIij(λs) (22)

4. Perturbed photon path must hit source worldline somewhere

The constraint that the perturbed photon trajectory must hit the source worldline somewhere can be written
as

xj(λ̃s) = xj
s = xj

0(λ̃s) + xj
1(λ̃s) (23)

for some λ̃s. To zeroth order we have λ̃s = λs, but there will be a first order correction. Inserting the expression
(16) for the perturbation of the geodisic gives

xj
s = −ω0λ̃sn

j − ω2
0

2
niSij(λ̃s) + λ̃sJ

j
0 . (24)



Projecting this equation perpendicular to n gives a formula for the perpendicular component of J i
0:

J i
0 ⊥ =

ω2
0

2λs

(

δik − nink
)

njSjk(λs). (25)

Here on the right hand side we have replaced λ̃s with λs, which is valid to linear order. Adding to this our
earlier result for the component of J i

0 parallel to n in Eqs. (21) and (22) gives

J i
0 =

ω2
0

2λs
njSjk(λs)

(

δik − nink
)

− ω2
0

2
ninjnkIjk(λs) +

1

2
ω0n

injnkhjk(0). (26)

D. Perturbation to Observed Frequency

We calculate the observed photon frequency ωobs = −gµνkµuν
obs, where uν

obs = (1, 0, 0, 0), and check our result
against standard formulae for the frequency shift, used in pulsar timing searches for GWs [39]. The observed frequency
is, from Eqs. (16) and (22),

ωobs = k0(0) = ω0 + I0 = ω0 +
ω2

0

2
ninjIij(λs). (27)

Using the definition (15), the perturbed redshift is therefore

z ≡ ω0 − ωobs

ω0
= −ω0

2
ninj

∫ λs

0

dλ′hij,0(λ
′). (28)

For a plane wave traveling in the direction of the unit vector p, we have

hij = hij(t − p · x) = hij [ω0λ(1 + p · n)] ,

giving

hij,0 ≡ ∂

∂t
hij =

1

ω0(1 + γ)

∂

∂λ
hij ,

where γ = p · n. This gives for the redshift

z = − 1

2(1 + γ)
ninj [hij(λs) − hij(0)] , (29)

which agrees with [39] up to a sign, which is an error in their calculation [40].

E. Local Proper Reference Frame of Observer

We must also account for the changes induced in the basis vectors of the observer’s local proper reference frame
due to the presence of the GW. We introduce a set of orthonormal basis vectors ~eα̂ which are parallel transported
along the observer’s worldline, with ~e0̂ = ~u. The parallel transport equation for the spatial vectors gives

uαeβ

ĵ;α
= uα

[

∂αeβ

ĵ
+ Γβ

αγeγ

ĵ

]

= 0. (30)

We separate the basis vectors into two pieces, ei
ĵ

= δi
ĵ
+ δei

ĵ
, where we assume that the unperturbed basis vectors are

aligned with the coordinate basis directions.



Using ~u = ∂t, and the connection coefficients (9) of the metric , Eq. (30) gives us an expression for the perturbation
to the basis tetrad:

δei
ĵ
(t) = −1

2
hiĵ(t,0) + ωiĵ ,

where ωi
ĵ

is a matrix of constants. Now, we observe that eĵ is an orthonormal set of three-vectors, which gives us six

constraints on the constants ωi
ĵ
:

(ηmn + hmn)
(

δm
ĵ

+ δem
ĵ

)(

δn
k̂

+ δen
k̂

)

= δĵk̂.

This is identically correct to zeroth order; to first order we get δejk̂ + δekĵ + hjk = 0, or, inserting our equation for

δe, and assuming that hij = hji, we find ωij = −ωji, i.e. that the constants ωij are antisymmetric in their indices.
These constants parameterize an arbitrary infinitesimal time-independent rotation. Evaluating now at the detection
event gives

δei
ĵ

= −1

2
hiĵ(0) + ωiĵ . (31)

For the remainder of this paper we will set to zero the term ωiĵ , since it corresponds to a time-independent, unob-
servable angular deflection. The deflections caused by GWs will be observable because of their time dependence.

F. Observed Angular Deflection

We can express the four-momentum of the incoming photon in the above reference frame as

kα(0) = ωobsu
α − ωobsn

ĵeα
ĵ
, (32)

where δĵk̂nĵnk̂ = 1, uα is the observer’s 4-velocity, and ωobs is given by equation 27. Note that we evaluate all

quantities at the detection event t = t0, x = 0. Plugging in our results for the perturbed 4-momentum and the

observed frequency, we obtain an equation for the observed direction to the source nĵ

ki(0) = − ω0n
i +

ω2
0

2λs
njSjk(λs)

(

δik − nink
)

− ω2
0

2
ninjnkIjk(λs) +

1

2
ω0n

injnkhjk(0)

= −
(

ω0 +
ω2

0

2
nknlIkl(λs)

)

nĵ

(

δi
j −

1

2
hi

j(0)

)

. (33)

We decompose the direction to the source into zeroth and first order pieces as nĵ = nĵ
0 + δnĵ . The zeroth order

terms in Eq. (33) give us nĵ
0 = nj . Plugging this into the first order terms and simplifying, we find the perturbation

to the source direction

δnî =
1

2

{

njhij(0) − ω0

λs
njSjk(λs)

(

δik − nink
)

− ninjnkhjk(0)

}

.

Inserting our definition of Sjk, we obtain the solution to the source direction perturbation in Minkowski space

δnî =
1

2

{

njhij(0) − ninjnkhjk(0) − ω0

λs

(

δik − nink
)

nj

×
[

−2

∫ λs

0

dλ′

∫ λ′

0

dλ′′hjk,0(λ
′′) + nl

∫ λs

0

dλ′

∫ λ′

0

dλ′′ (hjk,l(λ
′′) + hkl,j(λ

′′) − hjl,k(λ′′))

]}

. (34)



As a check of the calculation, we see that δnî is orthogonal to ni, so that ni + δnî is a unit vector, as expected.
We now specialize to the case of a plane wave propagating in the direction of the unit vector p,

hij(t,x) = hij(t − p · x).

Using the identity (20) we can reduce the double integrals in Eq. (34) to single integrals, obtaining

δnî =
(

δik − nink
)

nj

{

− 1

2
hjk(0) +

pknl

2(1 + p · n)
hjl(0) +

1

λs

∫ λs

0

dλ

[

hjk(λ) − pknl

2(1 + p · n)
hjl(λ)

]

}

. (35)

Evaluating this explicitly for the plane wave

hij(t,x) = Re
[

Hije
−iΩ(t−p·x)

]

gives

δnî =Re

[(

{

1 +
i(2 + p · n)

ω0λsΩ(1 + p · n)

[

1 − e−iΩω0(1+p·n)λs

]

}

ni

+

{

1 +
i

ω0λsΩ(1 + p · n)

[

1 − e−iΩω0(1+p·n)λs

]

}

pi

)

njnkHjke−iΩt0

2(1 + p · n)

−
{

1

2
+

i

ω0λsΩ(1 + p · n)

[

1 − e−iΩω0(1+p·n)λs

]

}

njHi
je

−iΩt0

]

. (36)

If we define the observed angles (θ, φ) by nî = (sin θ cosφ, sin θ sin φ, cos θ), then the observed angular deflections
are

δθ = eî
θ̂
δnî, δφ =

eî
φ̂
δnî

sin θ
, (37)

where eî
θ̂

= (cos θ cosφ, cos θ sin φ,− sin θ) and eî
φ̂

= (− sinφ, cos φ, 0).

As another check of our calculation, we now compare our result with the coordinate (gauge-dependent) angular
deflection computed by Yoo et al. [41]. Starting from our Eq. (34), we disregard the first term, which arises from
the change from the coordinate basis to the parallel transported orthonormal basis. The remaining terms in Eq. (34)

give the coordinate angular deflection δni. Simplifying using the identity (20) and the identity
∫ x

0
dx′
∫ x′

0
dx′′f(x′′) =

∫ x

0 dx′(x − x′)f(x′) gives

δni = −1

2
ninjnkhjk(0) +

(

δij − ninj
)

∫ λs

0

dλ

{

hjk(λ) − hjk(0)

λs
nk +

ω0

2

(

λs − λ

λs

)

∂j

(

nknlhkl

)

}

. (38)

When combined with Eqs. (37), this agrees with Eqs. (13) and (14) of [41], specialized to only tensor perturbations,
up to an overall sign. The sign flip is due to the fact that Ref. [41] uses a convention for the sign of angular deflection,
explained after their Eq. (16), which is opposite to ours.

G. The Distant Source Limit

We now specialize to the limit where the distance ω0 |λs| to the source is large compared to the wavelength
∼ c Ω−1 of the GWs. As discussed in the Introduction, astrometry is potentially sensitive to waves with a broad
range of frequencies, extending from the inverse of the observation time (a few years) down to the Hubble frequency.



Therefore this assumption is a nontrivial limitation on the domain of validity of our analysis. However, for sources at
cosmological distances (the most interesting case), this assumption is not a significant limitation.

In this limit, we can neglect the second term in each of the three small square brackets in Eq. (36), giving

δnî(t,n) = Re

[

(

ni + pi
) Hjknjnke−iΩt

2(1 + p · n)
− 1

2
Hijnje

−iΩt

]

, (39)

where we have written t for t0. This result agrees with and generalizes a calculation of Pyne et al. [33]. We note
that this same approximation is used in pulsar timing searches for GWs [39]. In that context the approximation is
essentially always valid, since pulsar distances are large compared to a few light years, and the properties of pulsar
frequency noise imply that that pulsar timing is only sensitive to GWs with periods of order the observation time,
and not much lower frequencies, unlike the case for astrometry.

III. GENERALIZATION TO COSMOLOGICAL SPACETIMES

Of course, we do not live in Minkowski space. The apparent homogeneity and isotropy of the universe imply that
our universe has an FRW geometry, with line element:

ds2 = gαβdxαdxβ = a(τ)2
{

−dτ2 + [δij + hij(τ,x)] dxidxj
}

, (40)

where τ is conformal time, and we specialize to the transverse traceless gauge in which δijhij = δij∂ihjk = 0. To
translate our calculation in Minkowski spacetime to this new metric, we define an unphysical, conformally related
metric ḡαβ = a(τ)−2gαβ given by

ḡαβdxαdxβ = −dτ2 + [δij + hij(τ,x)] dxidxj , (41)

which has an associated unphysical derivative operator ∇̄α.

A. Stationary Observers are Freely Falling

As before, it is straightforward to check that observers who are stationary in the coordinates (40) are freely falling.
Therefore we assume as before that the observer and source are stationary:

xi
obs(t) = 0, xi

s(t) = xi
s.

B. Null Geodesic in the Conformal Metric

Let us consider a photon traveling from a distant source to us, which follows a null geodesic in the physical metric
gαβ . Its path is also a null geodesic of the conformally related metric ḡαβ , though it it is not affinely parameterized
in this metric [42]. Specifically, the physical 4-momentum of the photon kµ must satisfy the geodesic equation
kµ∇µkν = 0. If we define a conformally related, unphysical 4-momentum k̄µ = kµ, whose contravariant components
are then related to those of the physical 4-momentum by

k̄µ = ḡµν k̄ν = a(τ)2gµν k̄ν = a(τ)2gµνkν = a(τ)2kµ, (42)

then we find that

k̄µ∇̄µk̄ν = a(τ)2kµ∇̄µkν . (43)

From [42] we know that for any vector vα, and conformally related derivatives ∇α and ∇̄α, we have ∇αvβ = ∇̄αvβ −
Cγ

αγvγ , where Cγ
αγ = 2δγ

(α∇β) ln a − gαβgγδ∇δ ln a. Thus, we find



k̄µ∇̄µk̄ν = a(τ)2kµ∇µkν + a(τ)2kµkρ

(

2δρ
(µ∇ν) ln a − gµνgρσ∇σ ln a

)

= a(τ)2kµ∇µkν + a(τ)2 (kρkρ∇ν ln a + kµkν∇µ ln a − kνkσ∇σ ln a)

= a(τ)2kµ∇µkν , (44)

where to get the last line we have used that the geodesic is null. Therefore, if kµ is a null geodesic of the physical
metric gµν , then k̄µ is a null geodesic of the conformally related metric ḡµν . If λ is an affine parameter of the geodesic,
it will not be an affine parameter of the geodesic in the unphysical metric. The affine parameter λ̄ in the unphysical
metric is related to λ by

dλ̄

dλ
=

1

a(τ(λ))2
. (45)

C. Parallel Transport of Basis Vectors in FRW Background Spacetime

We next investigate the parallel transport of the observer’s basis tetrad in a FRW background spacetime. From
the form (40) of the metric, we anticipate that the basis vectors must scale as a−1 to remain normalized. Thus, we
will define the basis vectors and their perturbations as

ei
ĵ

=
1

a

(

δi
ĵ
+ δei

ĵ

)

. (46)

The relevant connection coefficients are

Γi
0k =

ȧ

a
δi
k +

1

2
δimhmk,0. (47)

The parallel transport equation (30) for the spatial basis vectors gives us

∂0e
i
ĵ
+ Γi

0kek
ĵ

= 0. (48)

Plugging in the connection coefficients (47) and the basis vector expansion (46), we get

∂0δe
i
ĵ
+

1

2
δimhmĵ = 0, (49)

the same equation as before. The solution, as before, will be

δei
ĵ
(t) = −1

2
hi

j(t). (50)

D. Generalization of Angular Deflection Computation

We parametrize the photon path in the background spacetime by

τ(ζ) = τ0 + ω0ζ, xi(ζ) = −ζω0n
i, (51)

where ζ is an affine parameter of the unphysical metric (41) (denoted λ̄ above). From the decomposition (32), the
observed source direction is

nĵ =
gαβkαeβ

ĵ

gαβkαuβ
. (52)



We rewrite all the quantities in this expression in terms of their conformally transformed versions

ḡαβ = a−2gαβ , k̄α = a2kα, ūα = auα, ēα
ĵ

= aeα
ĵ
, (53)

which are the quantities that are used in the Minkowski spacetime calculation of Sec. II. This gives

nĵ =
ḡαβ k̄αēβ

ĵ

ḡαβk̄αūβ
, (54)

the same expression as in Minkowski spacetime. Therefore, the final result is the same expression (34) as before,
except that it is written in terms of the non-affine parameter ζ:

δnî =
1

2

{

njhij(0) − ninjnkhjk(0) − ω0

ζs

(

δik − nink
)

nj

×
[

−2

∫ ζs

0

dζ′
∫ ζ′

0

dζ′′hjk,0(ζ
′′) + nl

∫ ζs

0

dζ′
∫ ζ′

0

dζ′′ (hjk,l(ζ
′′) + hkl,j(ζ

′′) − hjl,k(ζ′′))

]}

. (55)

E. The Distant Source Limit

We now specialize again to the limit where the distance to the source is large compared to the wavelength ∼ c Ω−1

of the GWs. We also assume that the wavelength c Ω−1 is small compared to the horizon scale, but we allow the
sources to be at cosmological distances.

Starting from Eq. (55) and paralleling the derivation of Eq. (38) we obtain

δnî(τ0,n) =
1

2
siknjhjk(0) +

siknj

ζs

∫ ζs

0

dζ [hjk(ζ) − hjk(0)] +
ω0sik

2

∫ ζs

0

dζ

(

ζs − ζ

ζs
njnlhjl,k(ζ)

)

, (56)

where sik = δik − nink. Now the wave equation satisfied by the metric perturbation is

[

∂2
τ + 2

a,τ

a
∂τ −∇2

]

hij(τ,x) = 0,

and plane wave solutions are of the form

hij(τ,x) = Re
{

Hije
iΩp·xqΩ(τ)

}

,

where the mode function qΩ satisfies

q′′Ω + 2
a′

a
q′Ω + Ω2qΩ = 0. (57)

We now evaluate the angular deflection (56) for such a plane wave, in the limit where ε ≡ a′/(Ωa) ≪ 1, i.e. the
limit where the wavelength ∼ a/Ω of the GW is much smaller than the the horizon scale ∼ a2/a′. In the second term
in (56), the term hjk(ζ) is rapidly oscillating, and so its integral can be neglected compared to the integral of hjk(0);
corrections will be suppressed by powers of ε. In the third term in (56), the integrand is rapidly oscillating, and so
the integral will be dominated by contributions near the endpoints, up to O(ε) corrections. However the integrand
vanishes at ζ = ζs, and thus the integral is dominated by the region near ζ = 0. In that region we can use the leading
order WKB approximation to the mode function solution of (57),

qΩ(τ) =
1

a(τ)
e−iΩτ ,



and to a good approximation we can replace a(τ) by a(τ0). Thus we see that the same answer is obtained for distant
sources as in our Minkowski spacetime calculation, even for sources at cosmological distances. From Eq. (39) we
obtain

δnî(τ0,n) =
ni + pi

2(1 + p · n)
hjk(0)njnk − 1

2
hij(0)nj (58)

for plane waves in the direction p.

IV. CALCULATION OF ANGULAR DEFLECTION CORRELATION FUNCTION

Now that we have calculated the deflection of the observed direction to a distant source due to an arbitrary metric
perturbation hij , we would like to determine the properties of the deflection produced by a SGWB, such as that
produced by inflation.

A. Description of SGWB as a Random Process

In the distant source limit, the angular deflection (58) depends only on the GW field hij evaluated at the location
of the observer for each direction of propagation p. Moreover, we have restricted attention to modes with wavelengths
short compared to the Hubble time. Therefore, it is sufficient to use a flat spacetime mode expansion to describe the
stochastic background. This expansion is (see, e.g. Ref. [27])

hij(x, t) =
∑

A=+,×

∫

∞

0

df

∫

d2Ωp hAp(f) e2πif(p·x−t) eA,p
ij + c.c., (59)

where f and p are the frequency and direction of propagation of individual GW modes, hAp are the stochastic

amplitudes of modes with polarization A and direction p, and the polarization tensors eA,p
ij are normalized such that

eA,p
ij eB,p∗

ij = 2δAB.

We will assume that hij(x, t) is a Gaussian random process, as it is likely to be the sum of a large number of random
processes. We also assume that it is zero-mean and stationary. It follows that the mode amplitudes hAp(f) satisfy

〈hAp(f) hBp′(f ′)〉 = 0,

〈hAp(f) hBp′(f ′)∗〉 =
3H2

0Ωgw(f)

32π3f3
δ(f − f ′) δAB δ2(p,p′) (60)

for f, f ′ ≥ 0, where H0 is the Hubble parameter and δ2(p,p′) is the delta function on the unit sphere (see, e.g., [27]).
Since the angular deflection δn(n, t) depends linearly on the metric perturbation, it will also be a stationary, zero-

mean, Gaussian random process, whose statistical properties are determined by its two point correlation function
〈δniδnj〉. Specializing our expression (58) for the angular deflection to the form (59) of the metric perturbation, we
find

δni(n, t) =
∑

A=+,×

∫

∞

0

df

∫

d2Ωp hAp(f) e−2πift Rikl(n,p) eA,p
kl + c.c., (61)

where

Rikl(n,p) =
1

2

(

[ni + pi] nknl

1 + p · n − nkδil

)

. (62)



B. Power Spectrum of the Astrometric Deflections of the SGWB

So, we need only evaluate the two-point correlation function to gain full knowledge of the statistical properties of
the angular deflection due to the SGWB. Writing out this quantity explicitly using Eq. (61),

〈δni(n, t) δnj(n′, t′)〉 =
∑

A,B=+,×

∫ ∞

0

dfdf ′

∫

d2Ωpd2Ωp′

〈

[

hAp(f) e−2πift Rikl(n,p) eA,p
kl + c.c.

]

×
[

hBp′(f ′)∗ e2πif ′t′ Rjrs(n
′,p′)

(

eB,p′

rs

)∗

+ c.c.
]

〉

. (63)

The average, which is an average over ensembles, acts only on the stochastic amplitudes hAp. Using the mode 2 point
function (60) in Eq. (63), we get the simplified result

〈δni(n, t) δnj(n′, t′)〉 =

∫ ∞

0

df
3H2

0

32π3
f−3Ωgw(f)e−2πif(t−t′)Hij(n,n′) + c.c., (64)

where we have defined

Hij(n,n′) =
∑

A=+,×

∫

d2ΩpRikl(n,p) eA,p
kl Rjrs(n

′,p)
(

eA,p
rs

)∗

. (65)

C. Basis Tensors and their symmetries

We simplify the expression (65) for Hij further using the identity

∑

A=+,×

eA,p
ij

(

eA,p
kl

)∗

= 2Pijkl, (66)

where Pijkl is the projection tensor onto the space of traceless symmetric tensors orthogonal to p, given by

2Pijkl = δikδjl + δilδjk − δijδkl + pipjpkpl − δikpjpl − δjlpipk − δilpjpk − δjkpipl + δijpkpl + δklpipj . (67)

This gives

Hij(n,n′) = 2

∫

d2ΩpRikl(n,p)PklrsRjrs(n
′,p). (68)

Noting that the correlation function (64) is perpendicular to n on its first index and n′ on its second, we can
decompose it onto a basis of tensors with this property:

Hij(n,n′) = α(n,n′)AiAj + β(n,n′)AiCj + γ(n,n′)BiAj + σ(n,n′)BiCj , (69)

for some scalar functions α, β, γ and σ. Here we have defined

A = n× n′, B = n × A, C = −n′ × A. (70)

We can deduce from Eq. (68) that Hij(n,n′)∗ = Hji(n
′,n). Noting that Ai(n

′,n) = −Ai(n,n′), and Bi(n
′,n) =

−Ci(n,n′), this symmetry applied to the expansion (69) gives

α(n,n′)∗ = α(n′,n), σ(n,n′)∗ = σ(n′,n), β(n,n′)∗ = γ(n′,n).



We see from Eq. (65) that Hij transforms as tensor under rotations. This implies that the functions α, β, γ and σ must
be invariant under rotations, and can only depend on the angle Θ between n and n′. Thus, α(n,n′) = α(n′,n) = α(Θ)
and so forth, so α and σ must be real.

Next, we note that the expression (68) for Hij(n,n′) is invariant under the parity transformation n → −n and
n′ → −n′. Looking then at the basis tensors, we see that A is invariant under this transformation, while B and C

change sign. Thus, in order to insure that Hij is invariant, it can only have terms multiplying AiAj and BiCj , so
β(Θ) = 0 = γ(Θ).

Having taken the symmetries of the problem into consideration, we have found Hij to be of the form

Hij(n,n′) = α(Θ)AiAj + σ(Θ)BiCj . (71)

D. Solving the General Integral

We can evaluate the coefficients in the expansion (71) of Hij by contracting it with the basis tensors:

AiAjHij = sin4(Θ)α(Θ), BiCjHij = sin4(Θ)σ(Θ).

Rewriting these using Eq. (68), we find

α(Θ) =
2

sin4(Θ)

∫

d2ΩpAiRikl(n,p)PklrsA
jRjrs(n

′,p)∗, (72)

σ(Θ) =
2

sin4(Θ)

∫

d2ΩpBiRikl(n,p)PklrsC
jRjrs(n

′,p)∗. (73)

To simplify the calculation, we define the quantities κ = n · p, κ′ = n′ · p, λ = n · n′, µ = A · p, which satisfy
µ2 + λ2 + κ2 + κ′2 = 1 + 2λκκ′. Using these definitions and the definition (62) of Rikl, we can write

AiRikl(n,p) =
1

2
nk

(

µnl

1 + κ
− Al

)

, AjRjrs(n
′,p) =

1

2
n′

r

(

µn′
s

1 + κ′
− As

)

,

BiRikl(n,p) =
1

2
nk

(

−κ′ + λ

1 + κ
nl + n′

l

)

, CjRjrs(n
′,p) =

1

2
n′

r

(

− κ + λ

1 + κ′
n′

s + ns

)

.

We can then rewrite our expressions for α and σ

α(Θ) =
1

4 sin4(Θ)

∫

d2Ωp2Pklrsnk

(

µnl

1 + κ
− Al

)

n′

r

(

µn′
s

1 + κ′
− As

)

, (74)

σ(Θ) =
1

4 sin4(Θ)

∫

d2Ωp2Pklrsnk

(

−κ′ + λ

1 + κ
nl + n′

l

)

n′

r

(

− κ + λ

1 + κ′
n′

s + ns

)

. (75)

Let’s define two new variables ν2 = (1 − κ2), ν′2 = (1 − κ′2). Applying the definition (67) of the projection tensor
Pklrs, we can calculate the necessary contractions of Pklrs for α:

2PklrsnkAln
′

rAs = (λ − κκ′)
(

1 − λ2 − µ2
)

, 2Pklrsnknln
′

rAs = µ
(

κ′κ2 − 2λκ + κ′
)

,

2PklrsnkAln
′

rn
′

s = µ
(

κκ′2 − 2λκ′ + κ
)

, 2Pklrsnknln
′

rn
′

s = ν2ν′2 − 2µ2, (76)

and for σ:

2Pklrsnkn′

ln
′

rns = ν2ν′2, 2Pklrsnknln
′

rns = ν2 (λ − κκ′) ,

2Pklrsnknln
′

rn
′

s = ν2ν′2 − 2µ2, 2Pklrsnkn′

ln
′

rn
′

s = ν′2 (λ − κκ′) . (77)



Plugging these back into Eqs. (74) and (75) and simplifying, we find

α(Θ) =
1

4 sin4(Θ)

∫

d2Ωp

[

(λ − κκ′)(1 − λ2) − µ2(1 + λ) +
2µ2(λ + κ)(λ + κ′)

(1 + κ)(1 + κ′)

]

= −σ(Θ).

Noticing that we can do the integrals
∫

d2Ωpµ2 = 4π
3 sin2 Θ and

∫

d2Ωpκκ′ = 4π
3 cosΘ, but that the last term is more

complicated, we find

α(Θ) = −σ(Θ) =
π

3

(cosΘ − 1)

sin2 Θ
+

1

2 sin4 Θ

∫

d2Ωp

µ2(λ + κ)(λ + κ′)

(1 + κ)(1 + κ′)
. (78)

We can reduce the two dimensional integral (78) to a one dimensional integral by parameterizing p in spherical
polar coordinates θp and φp, choosing n = (0, sin(Θ/2), cos(Θ/2)) and n′ = (0, − sin(Θ/2), cos(Θ/2)) and integrating
over φp. This gives

α(Θ) = −σ(Θ) =
π

3

(cos(Θ) − 1)

sin2(Θ)
+

π

2 sin2 Θ

∫ π

0

dθp sin θp

{

sin2 θp + 8 cos(Θ/2) [cos θp + cos(Θ/2)] [g(θp, Θ) − 1]
}

,

(79)
where

g(θp, Θ) =
|cos θp + cos(Θ/2)|

[1 + cos θp cos(Θ/2)]
. (80)

We perform the integral over θp, and find the final form of the function α(Θ)

α(Θ) = −σ(Θ) =
π

3 sin2 Θ
(7 cosΘ − 5) − 32π

sin4 Θ
ln (sin(Θ/2)) sin6(Θ/2). (81)

A plot of the function α(Θ) is shown in Fig. 2.
To summarize, we have now completed the calculation of the angular deflection correlation function. The final

answer is given by Eq. (64), with Hij(n,n′) given from Eqs. (71) and (81) as

Hij(n,n′) = α(Θ) (AiAj − BiCj) . (82)

Here the vectors A, B and C are defined by Eqs. (70), and α(Θ) is given by Eq. (81).

E. Special Case: Coincidence

As a check of our calculation, we can solve for the two-point correlation function exactly in the case that n = n′.
Using Eqs. (62), (67) and (68), the integral simplifies to

Hij(n,n) =
1

4

∫

d2Ωp

[

1 −
(

p · n)2
)]

(δij − ninj) .

We can solve this integral analytically, getting

Hij(n,n) =
2π

3
(δij − ninj) . (83)

This corresponds to the limit of α(Θ)(AiAj − BiCj) as n → n′, with α(Θ) = 2π/(3Θ2) + O(Θ−1) from Eq. (81).
Inserting the coincidence limit (83) into the correlation function (64) yields the formula (3) for the total rms angular
fluctuations discussed in the introduction.



FIG. 2: Here we plot the function α(Θ), the coefficient of Hij(n,n′) as shown in Eq. (82), as a function of the angle Θ between
n and n′.

V. SPECTRUM OF ANGULAR DEFLECTION FLUCTUATIONS

A. Overview

In the previous section we computed the correlation function 〈δni(n, t)δnj(n′, t′)〉 as a function of the unit vectors n

and n′. However for many purposes it is more useful to perform a multipole decomposition of the angular deflection,
and to compute the spectrum of fluctuations on different angular scales l, as is done with cosmic microwave background
anisotropies. We decompose δn(n, t) as

δn(n, t) =
∑

lm

δnElm(t)YE
lm(n) + δnBlm(t)YB

lm(n), (84)

where YE
lm and YB

lm are the electric- and magnetic-type transverse vector spherical harmonics defined by

YE
lm(n) = (l(l + 1))−1/2∇Ylm(n), YB

lm(n) = (l(l + 1))−1/2(n ×∇)Ylm(n). (85)

We will show in this section that the statistical properties of the coefficients are given by

〈δnQlm(t) δnQ′l′m′(t′)∗〉 = δQQ′δll′δmm′

∫

∞

0

df cos[2πf(t − t′)]SQl(f) (86)

for Q, Q′ = E or B, for some spectrum SQl(f), a function of frequency f and of angular scale l. The formula
(86) shows that different multipoles of the angular deflection are statistically independent, as required by spherical
symmetry of the stochastic background. Also the electric-type and magnetic-type fluctuations are uncorrelated, as
required by parity invariance of the stochastic background (see below).



The spectrum SQl(f) is given by

SQl(f) =
4π

2l + 1
θ2

rms

σ(f)

f
gQαQQ

l . (87)

Here θ2
rms is the total rms angular fluctuation squared, given by Eq. (3) in the introduction. The function σ(f)

describes how the power is distributed in frequency. It is the same for all multipoles, is normalized according to
∫

d( ln f)σ(f) = 1, and is given explicitly by Eq. (6) in the introduction. The quantities gE and gB are the fraction of
the total power in electric-type and magnetic-type fluctuations, and are gE = gB = 1/2. Finally the angular spectra
αEE

l and αBB
l describe the dependence on angular scale, which is the same for all frequencies. They are normalized

according to

∞
∑

l=2

αQQ
l = 1, (88)

and are the same for E and B modes, αEE
l = αBB

l . This spectrum is plotted in Fig 1 and the first 10 values are listed
in Table I. We note that these coefficients are well fit by the power law αEE

l = 32.34 l−4.921.
Before proceeding with the derivation of the spectrum (86), we first derive from (86) the expression (4) discussed

in the introduction for the total fluctuation power. Squaring the expansion (84), taking an expected value, and then
using (86) gives

〈δn(n, t)2〉 =
∑

Qlm

∑

Q′l′m′

Y
Q
lm(n)YQ′

l′m′(n)∗〈δnQlm(t)δnQ′l′m′(t′)∗〉

=
∑

Ql

∫ ∞

0

σ(f)

f

l
∑

m=−l

∣

∣

∣
Y

Q
lm(n)

∣

∣

∣

2

θ2
rms

4π

2l + 1
gQ αQQ

l . (89)

Using Unsöld’s theorem for vector spherical harmonics,

l
∑

m=−l

∣

∣

∣
Y

Q
lm(n)

∣

∣

∣

2

=
2l + 1

4π
,

gives

〈δn(n, t)2〉 =
∑

Ql

∫ ∞

0

θ2
rms

σ(f)

f
gQ αQQ

l , (90)

which reduces to Eq. (4). Note that using the normalization conventions for αQQ
l and σ(f) now gives 〈δn(n, t)2〉 =

θ2
rms(gE + gB) = θ2

rms, showing consistency of the definitions.

B. Derivation

We now turn to a derivation of the spectrum (87). First we note that the vector spherical harmonics are transverse

in the sense that Y
Q
lm(n) · n = 0 for Q = E, B, and are orthogonal in the sense that

∫

d2ΩnY Q
lmi(n)Y Q′i∗

l′m′ (n) = δQQ′δll′δmm′ .

Using this orthogonality property, we can extract the coefficients of the expansion (84)

δnQlm(t) =

∫

d2Ωnδni(n, t)Y Qi∗
lm (n).



Thus we can write for the correlation function between two of these coefficients

〈δnQlm(t)δnQ′l′m′(t′)∗〉 =

∫

d2Ωnd2Ωn′Y Q∗

lmi(n)Y Q′

l′m′j(n
′)〈δni(n, t)δnj(n′, t′)〉, (91)

or more explicitly, using Eq. (64)

〈δnQlm(t)δnQ′l′m′(t′)∗〉 =
3H2

0

16π3

∫

∞

0

df cos[2πf(t − t′)]
Ωgw(f)

f3
CQlmQ′l′m′ , (92)

where

CQlmQ′l′m′ =

∫

d2Ωnd2Ωn′Y Q∗

lmi(n)Y Q′

l′m′j(n
′)Hij(n,n′). (93)

We now argue that the EB cross-correlation vanishes. From Eq. (85), we see that YE
lm(n) has the same parity under

n → −n as Ylm(n), while the parity of YB
lm(n) is opposite. From section IVC above Hij(n,n′) is invariant under

both n → −n and n′ → −n′. Thus, if Q = E, Q′ = B in Eq. (92), the integral will be symmetric under n → −n but
antisymmetric under n′ → −n′, causing the integral over d2Ωn′ to vanish. Therefore, EB cross correlations vanish,
and we need only calculate the EE and BB correlation functions.

1. EE correlation

Inserting the definition (85) of the electric vector spherical harmonics and the formula (82) for Hij into Eq. (93)
and integrating by parts, we obtain

CElmE′l′m′ =
1

l(l + 1)

∫

d2Ωnd2Ωn′Y ∗

lm(n)Yl′m′(n′)βEE(Θ), (94)

where the function βEE is given by

βEE(Θ) = ∇i∇′

j [Hij(n,n′)] = ∇i∇′

j {α(Θ) [AiAj − BiCj ]} . (95)

Here ∇i and ∇′
j denote normal three dimensional derivatives with respect to x and x′, where n = x/|x| and n′ =

x′/|x′|. Integration by parts on the unit sphere of this derivative operator is valid as long as the radial component of
the integrand vanishes, from the identity ∇iv

i = ∂rv
r + 2vr/r + ∇AvA, where ∇A denotes a covariant derivative on

the unit sphere. It can be checked that the radial components do vanish in the above computation.
Next, we expand the function βEE in terms of Legendre polynomials, and use the spherical harmonic addition

theorem, which gives

βEE(Θ) =
∑

l

βEE
l Pl(cosΘ)

=
∑

lm

4π

2l + 1
βEE

l Ylm(n)Ylm(n′)∗ (96)

Inserting this into Eq. (94) and using the orthogonality of spherical harmonics gives

CElmE′l′m′ = δll′δmm′

1

l(l + 1)

4π

2l + 1
βEE

l . (97)

Inserting this into Eq. (92) now yields the correlation function given by Eqs. (86) and (87), and using the definitions
(3) and (6) of θ2

rms and σ(f) allows us to read off the electric multipole spectrum



gE αEE
l =

3

4πl(l + 1)
βEE

l . (98)

We will show below that gE = 1/2.
It remains to explicitly evaluate the function βEE(Θ) defined in Eq. (95) and evaluate its expansion coefficients.

We have

βEE(Θ) ≡ ∇i∇′

j

[

α(Θ)T ij
]

=
[

∇i∇′

jα(Θ)
]

T ij + [∇iα(Θ)]
(

∇′

jT
ij
)

+
[

∇′

jα(Θ)
] (

∇iT
ij
)

+ α(Θ)
(

∇i∇′

jT
ij
)

, (99)

where we have defined T ij =
(

AiAj(n,n′) − BiCj(n,n′)
)

. Using Ai = ǫijknjn
′

k, Bi = (n · n′)ni − n′i, Ci =

(n · n′)n′i − ni, we can write the tensor T ij in Cartesian coordinates as

T ij = ǫiklǫjrsnkn′

lnrn
′

s −
(

(n · n′)ni − n′i
) (

(n · n′)n′j − nj
)

.

Using ∇inj = δij − ninj , ∇′

in
′

j = δij − n′

in
′

j , ∇′

in
j = ∇in

′j = 0, and ∇lǫ
ijk = ∇′

lǫ
ijk = 0, we calculate the derivatives

∇iT
ij = (1 − 3(n · n′))

(

(n · n′)n′j − nj
)

, ∇′

jT
ij = (1 − 3(n · n′))

(

(n · n′)ni − n′i
)

,

∇i∇′

jT
ij = − 9(n · n′)2 + 2(n · n′) + 3. (100)

For the gradients of α, we use the fact that cos(Θ) = n · n′, so that − sin(Θ)∇iΘ = n′
i − (n · n′)ni, and similarly

for ∇′

j . Thus, we find

∇iα(Θ) = −α′(Θ)
n′

i − (n · n′)ni

sin(Θ)
, ∇′

jα(Θ) = −α′(Θ)
nj − (n · n′)n′

j

sin(Θ)

∇i∇′

jα(Θ) = α′(Θ)

{

δij − ninj − n′

in
′

j + (n · n′)nin
′

j

− sin(Θ)
+

cos(Θ) [n′

i − (n · n′)ni]
[

nj − (n · n′)n′

j

]

− sin3(Θ)

}

+ α′′(Θ)
[n′

i − (n · n′)ni]
[

nj − (n · n′)n′
j

]

sin2(Θ)
. (101)

Plugging Eqs. (100) and (101) into Eq. (99), we get

βEE(Θ) =
[

−9 cos2(Θ) + 2 cos(Θ) + 3
]

α(Θ) − sin2(Θ)α′′(Θ)

+ [1 − 6 cos(Θ)] sin(Θ)α′(Θ). (102)

Next, we insert the expression (81) for α(Θ) to obtain

βEE(Θ) =
4π

3

(

4 + (1 − cosΘ) {12 ln [sin(Θ/2)] − 1}
)

. (103)

We numerically compute the coefficients βEE
l of the Legendre polynomial expansion (96) of βEE(Θ), and from them

compute αEE
l using Eq. (98). The result is plotted in Fig. 1 and tabulated in table I.

2. BB correlation

We now calculate the BB correlation in a similar manner to the EE case above. Inserting into Eq. (93) the
definition (85) of magnetic vector spherical harmonics and integrating by parts, we find

CBlmBl′m′ =
1

l(l + 1)

∫

d2Ωnd2Ωn′Y ∗

lm(n)Yl′m′(n′)βBB(Θ),



where

βBB(Θ) = ∇l∇′

p [ǫiklǫjmpnkn′

mα(Θ)Tij ] . (104)

As before, we can derive from here the form (86) and (87) of the spectrum, with αBB
l given by

gB αBB
l =

3

4πl(l + 1)
βBB

l .

We now show that βBB(Θ) = βEE(Θ), from which it follows that gE = gB = 1/2 and that αEE
l = αBB

l . To see
this we evaluate the cross products in (104) using n× A = B, n× B = −A, n′ × C = A. This gives

ǫiklǫjmpnkn′

mHij = Hlp,

and using the definitions (95) and (104) of βEE and βBB, it follows that βBB = βEE .
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Appendix A: Non Local Dependence of Deflection Angle on Gravitational Waves

It is sometimes claimed in the literature that the deflection angle, in the distance source limit, depends only on
the GWs in the vicinity of the source and the observer. A similar claim is often made for the frequency perturbation
caused by GWs which is targeted in pulsar timing searches. Strictly speaking, these claims are not true: it is possible
to have a nonzero deflection when the GW field vanishes in a neighborhood of the source and of the observer, even
in the distant source limit. However, this type of circumstance requires a considerable fine tuning, so the claims are
colloquially valid.

To see this, it is sufficient to consider the simple model of a scalar field h(t, x) in 1 + 1 dimensions, obeying
(

∂2
t − ∂2

x

)

h = 0. A functional of h(t, x) that is qualitatively similar to the deflection angle formula (64) is

∆θ = cRhR(t − xobs) + cLhL(t + xobs). (A1)

where we have decomposed the field into left-moving and right-moving pieces,

h(t, x) = hR(t − x) + hL(t + x), (A2)

and cR and cL are fixed coefficients with cL 6= cR. In each sector (right moving and left moving), the quantity (A1)
depends only on the field evaluated at the location of the observer x = xobs. However, the sum does not. If we specify
the field in terms of its initial data h(t, x) and ḣ(t, x) at time t, t, and specialize to initial data of compact support,
we get

∆θ(t) =
1

2
(cL + cR)h(t, xobs) +

1

2
(cL − cR)

∫ xobs

−∞

dxḣ(t, x). (A3)

It is clearly possible to choose h and ḣ to vanish in a neighborhood of x = xobs and still have ∆θ 6= 0, for cL 6= cR.


