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A Simple method to set up low eccentricity initial data for moving puncture

simulations

Wolfgang Tichy and Pedro Marronetti
Department of Physics, Florida Atlantic University, Boca Raton, FL 33431, USA

We introduce two new eccentricity measures to analyze numerical simulations. Unlike earlier
definitions these eccentricity measures do not involve any free parameters which makes them easy to
use. We show how relatively inexpensive grid setups can be used to estimate the eccentricity during
the early inspiral phase. Furthermore, we compare standard puncture data and post-Newtonian
data in ADMTT gauge. We find that both use different coordinates. Thus low eccentricity initial
momentum parameters for a certain separation measured in ADMTT coordinates are hard to use
in puncture data, because it is not known how the separation in puncture coordinates is related to
the separation in ADMTT coordinates. As a remedy we provide a simple approach which allows
us to iterate the momentum parameters until our numerical simulations result in acceptably low
eccentricities.

PACS numbers: 04.25.dg, 04.25.Nx, 04.20.Ex, 04.30.Db,

I. INTRODUCTION

Currently several gravitational wave detectors such as
LIGO [1, 2], Virgo [3, 4] or GEO [5] are already operat-
ing, while several others are in the planning or construc-
tion phase [6]. One of the most promising sources for
these detectors are the inspirals and mergers of binary
black holes. In order to make predictions about the fi-
nal phase of such inspirals and mergers, fully non-linear
numerical simulations of the Einstein Equations are re-
quired. To numerically evolve the Einstein equations, at
least two ingredients are necessary. First we need a spe-
cific formulation of the evolution equations. And second,
to start such simulations initial data are needed. As the
first ingredient most groups nowadays use the BSSNOK
formulation [7–9] of the evolution equations. This formu-
lation is usually evolved using finite differencing methods,
but for single black holes there have been some attempts
to use spectral methods [10–12]. For binary black holes
the BSSNOK system is usually used together with the
moving puncture approach [13, 14]. This approach so
far works only with finite differencing methods since cer-
tain evolved variables are not smooth inside the black
holes (at the punctures). Almost all simulations using
the BSSNOK formulation to date use standard puncture
data [15, 16] as initial data. These initial data are very
flexible in that they contain free parameters for the posi-
tion, momentum and spin of each black hole and thus one
can setup practically any kind of orbit. Note, however,
that the emission of gravitational waves tends to circu-
larize the orbits [17, 18]. Thus for realistic binary black
hole systems that have been inspiraling already for a long
time, we expect the two black holes to be in quasi-circular
orbits around each other with a radius which shrinks on
a timescale much larger than the orbital timescale. This
means that the initial data should be such that the or-
bit has no or at least very small eccentricity. For our
purposes here we follow the NRAR (Numerical Relativ-
ity - Analytical Relativity) collaboration [19] guidelines

which consider eccentricities of order a few times 10−3 ac-
ceptably small. There have been several previous works
that have considered eccentricities for puncture initial
data [20–22]. However, the most successful approach in
terms of achieving low eccentricities was implemented for
excision type initial data [23–25]. The method discussed
in this work aims at lowering the eccentricity for the kind
of puncture initial data that is routinely used with the
moving puncture approach.

Throughout we will use units where G = c = 1. The
black hole masses are denoted by m1 and m2. We also
introduce the total massM = m1+m2, the reduced mass
µ = m1m2/M and ν = µ/M .

The paper is organized as follows. Sec. II introduces
and compares several eccentricity measures. In Sec. III
we describe grid setups that can be used in numerical
simulations aimed at measuring the eccentricity. Sec. IV
discusses a simple method to pick initial momentum pa-
rameters. This is followed by Sec. V which describes how
to iterate these parameters to arrive at a reduced eccen-
tricity. We conclude with a discussion of our results in
Sec. VI.

II. DEFINING ECCENTRICITY FOR INSPIRAL

ORBITS

Real binary black hole orbits can never be circular.
They always follow spirals. So when we are aiming for low
eccentricity initial data, we really want data that result in
trajectories that spiral in smoothly without oscillations in
the black hole separation. Of course this issue is further
complicated by the fact that trajectories are coordinate
dependent.

There are several earlier eccentricity definitions for in-
spiral orbits in the literature [20–25]. All of them define
eccentricity as a deviation from an underlying smooth,
secular trend in some specific quantity that is associated
with the orbits. In [20] the frequency of the dominant
l = m = 2 mode of the gravitational waves emitted is fit-
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ted to a fourth order monotonic polynomial, and the de-
viation of the frequency from this fit is used to compute
the eccentricity. This approach works for non-spinning
binaries. Essentially the same method is also used in [21],
but instead of the gravitational wave frequency [21] uses
the orbital frequency and also the coordinate separation
to obtain two eccentricity measures. These same mea-
sures are also used in [22]. The approaches in [23, 24] fit
a linear function plus a sine function to the coordinate
separation and also the proper separation. The eccen-
tricity can then be obtained from the amplitude of the
fitted sine function. In [25] the same fitting approach as
in [21] is used, but the fitted quantities are coordinate
separation, proper separation and also orbital frequency.
All the approaches based in orbital parameters should in
principle also work for systems with spin. Also note that
all these eccentricity definitions are chosen such that they
result in the correct value for Newtonian orbits.

Below we will introduce two new eccentricity defini-
tions and compare them to the earlier definition based
on fitting the orbital frequency [21, 25].

The first eccentricity definition is based on the coordi-
nate separation of the two black holes. It is given by

er(t) =
∆rmax(t) − ∆rmin(t)

2rav
(1)

where the average separation, and the maximum and
minimum deviation from a smoothed value rs are given
by

rav =

∫ t+T/2

t−T/2

r(t′)dt′/T (2)

∆rmax(t) = max
t′∈[t−T/2,t+T/2]

[r(t′) − rs(t
′, t)] (3)

∆rmin(t) = min
t′∈[t−T/2,t+T/2]

[r(t′) − rs(t
′, t)]. (4)

Here the period T is defined using Kepler’s law

T = 2π(r3/M)1/2. (5)

Notice that the actual orbital period may be slightly dif-
ferent, but this estimate suffices to get an approximate
eccentricity measure. The smoothed value rs(t

′, t) is ob-
tained from

rs(t
′, t) = r(t) +

r(t+ T/2) − r(t− T/2)

T
(t′ − t), (6)

but different smoothings are possible (e.g., by performing
a least-squares fit of e.g. a linear or quadratic function
to r(t) in the interval [t+ T/2, t− T/2]). Essentially the
definition in Eq. (1) measures how much the coordinate
separation oscillates over the time T . For Newtonian
orbits it coincides with the usual eccentricity definition
for elliptic orbits. For orbits whose radius shrinks linearly
in time (without any oscillations) er(t) is zero.

Another similar eccentricity measure can be obtained
using the gravitational wave signal of the inspiraling

binary. The idea is to determine the separation in a
more gauge invariant way from the amplitude of Ψ4 in-
stead of using the gauge dependent coordinate separa-
tion. In [26] it is shown that for a non-precessing binary
in the quadrupole approximation the amplitude of the
l = m = 2 spin-weighted Spherical Harmonic mode is
given by

|C22| = 32
√

π/5ν(Mω)8/3, (7)

where ω is the orbital angular velocity. Using Kepler’s
law we can define a separation

r22 = M1/3ω−2/3 = M [|C22|/(32
√

π/5ν)]−1/4 (8)

which is directly related to the amplitude of |C22| of the
l = m = 2 mode of Ψ4. Replacing the coordinate sepa-
ration in Eq. (1) by r22 we define

e22(t) =
∆r22,max(t) − ∆r22,min(t)

2r22,av
, (9)

which is an eccentricity definition that can be computed
from Ψ4 alone. Note that this definition needs to be
extended for the case of precessing orbits, since in that
case |C22| will oscillate even for spherical orbits (i.e. or-
bits with r = const). The extension could be achieved
by instead using a |C22| that is computed in a coordinate
system where the z-axis points along the instantaneous
orbital angular momentum.

We have also tested an eccentricity definition based on
the coordinate angular velocity ω. Here the eccentricity
is defined by [21, 25]

eω(t) =
ω(t) − ωfit(t)

2ωfit(t)
, (10)

where ω(t) is simply the coordinate angular velocity and
ωfit(t) is a polynomial fit of order 5 to ω(t) over a time
interval corresponding to several complete orbits. The
hope is that the fit will smooth out oscillations so that
eω(t) ∝ ω(t)−ωfit(t) becomes a measure of how much ω
oscillates. The actual eccentricity is the maximum mag-
nitude of eω(t).

In order to compare these three eccentricity definitions
we now present the eccentricities from an actual numer-
ical simulation. As we can see in Fig. 1 all three eccen-
tricity definitions agree well for 300M ≤ t ≤ 3000M .
They yield a value of about 0.02. Notice that er and e22
are direct eccentricity measures, while in the case of eω

the eccentricity corresponds to the maximum value of the
magnitude of eω. The eccentricity definition er which is
calculated from the separation has certain problems for
t < T/2 ∼ 135M . These occur because we have no data
for t < 0, which is needed in the average over one com-
plete period (centered around t) and also for the fitting
in Eq. (6). These same problems also affect e22. In e22,
however, they are exacerbated by the initial junk radi-
ation that dominates |C22| until about 150M (see mid-
dle panel). We see that e22 does not completely settle
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FIG. 1: This plot shows results from a numerical run (with
parameters from row 6 of table I. The upper panel shows
the coordinate separation r. The middle panel depicts the
magnitude of the l = m = 2 mode |C22| of Ψ4 extracted at a
separation of 70M from the center of mass. In the lower panel
we plot the three different eccentricities obtained with the
definitions given in Eqs. (1), (9) and (10). Note that er and
er directly measure eccentricity, while for eω the eccentricity
corresponds to the maximum values of |eω(t)|.

down until about 700M . Notice also that during stan-
dard moving puncture evolutions the coordinates adjust
quite rapidly initially. This means that any eccentricity
definition that is based on the coordinate separation or
the coordinate angular velocity will not be completely
reliable during the first 100M or so. Thus it comes as no
surprise that the eccentricity definition eω has a different
frequency and amplitude in the beginning.

The curves for er and e22 in Fig. 1 oscillate even at
later times. This oscillation is due to the fact that the
period T which we get from Kepler’s law is not exactly
equal to the actual orbital period. The magnitude of this
oscillation can be used as an error estimate of our eccen-
tricity measures. For a conservative eccentricity estimate
we can use the maximum values of er and e22.

Let us point out that er and e22 are easier to com-
pute than eω. The latter depends on a polynomial fit
to the measured orbital angular velocity. The problem
is that this fit has to be done over a certain time inter-
val, that must terminate well before the merger. Thus
it requires a certain amount of fine tuning and human
intervention. On the other hand er and e22 can be com-
puted at any time in a very simple way. Recall however,
that e22 is more sensitive to the initial junk radiation.
Thus for short runs used to probe the eccentricity of a
configuration we usually just use er.

III. NUMERICAL EVOLUTIONS

The numerical results discussed in this paper have been
obtained with the BAM code [27–29]. As already men-
tioned, the gravitational fields are evolved using the BSS-

NOK formalism [7–9] in the variation known as the “mov-
ing punctures” method [13, 14]. The particulars of our
BSSNOK implementation can be found in [28, 29]. For
completeness we note that lapse and shift evolve accord-
ing to

(∂t − βi∂i)α = −2αK,

(∂t − βk∂k)βi =
3

4
Bi,

(∂t − βk∂k)Bi = (∂t − βk∂k)Γ̃i − ηBi. (11)

The shift driver parameter is set η = 2/M in all our runs.
The BAM code is based on a method of lines approach

using sixth order finite differencing in space and explicit
fourth order Runge-Kutta time stepping. The time step
size is chosen such that the Courant factor is either 0.25
or 0.5. For efficiency, Berger-Oliger type mesh refinement
is used [30]. The numerical domain is represented by a
hierarchy of nested Cartesian boxes. The hierarchy con-
sists of L+1 levels of refinement, indexed by l = 0, . . . , L.
A refinement level consists of one or two Cartesian boxes
with a constant grid-spacing hl = h0/2

l on level l. We
have used here L = 10 to 11 for the number of refinement
levels, with the levels 0 through 5 each consisting of a sin-
gle fixed box centered on the origin (the center of mass).
On each of the finer levels 6 through L, we initially use
two sets of moving boxes centered on each black hole.
When the black holes get close enough that two of these
boxes start touching, they are replaced by a single box.
The position of each hole is tracked by integrating the
shift vector. We use this same set up but with different
resolutions depending on the purpose of each simulation.

For an accurate simulation of the inspiral and merger
of two non-spinning equal mass black holes we might use
L = 10 with a resolution h10 = M/96 on the finest level
using 144 points on the fixed levels and 72 points on the
moving levels. The notation we use to describe this grid
setup for this simulation is:

[5 × 72, 6 × 144][M/h10 = 96, OB = 768M ][C = 0.25]
(12)

which indicates that we have 5 moving levels with 72
points in each box and 6 fixed levels with 144 points
each. The resolution is given byM/h10 = 96 on the finest
level, which results in an outer boundary at 768M . The
Courant factor here is chosen to be 0.25, which implies a
time step of dt10 = 0.25h10 = M/384 on the finest level.
If the black holes have spins and/or unequal masses even
more resolution is needed. For example for a mass ratio
of 3 and a dimensionless spin magnitude of 0.6 on the
larger hole we might use a setup described by:

[6 × 72, 6 × 144][M/h11 = 192, OB = 768M ][C = 0.25]
(13)

this setup has twice the resolution on the finest level, so
that the resolution in terms of the individual masses is
now given by m1/h11 = 48 for the smaller and m2/h11 =
144 for the larger hole. Such runs are quite expensive.
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FIG. 2: This plot shows the eccentricity er for two different
grid setups. Both start with the parameters from row 7 of
table I. The solid line shows er for a high resolution grid, while
the broken line shows the measured er if we use a less accurate
and computer intensive grid setup. Both yield similar orbital
eccentricities.

Until merger they take about one month on a Cray XT5
supercomputer like NICS Kraken if we use 96 cores.

However, if our objective is to simply measure the or-
bital eccentricity of a binary (characterized by certain
initial parameters), it is sufficient to evolve for only a
few orbits. We have found that such an evolution does
not need great accuracy. So if the goal is to simply de-
termine the initial eccentricity we use the following setup

[5 × 48, 6 × 96][M/h10 = 85.3, OB = 576M ][C = 0.5]
(14)

With this grid setup it takes only two days to evolve up
t = 800M if we use 48 cores on NICS Cray XT5 Kraken.
In Fig. 2 we see that the eccentricity er from this cheaper
run agrees quite well with the er from a more expensive
run. As explained above no eccentricity estimate is ac-
curate at the start of a run. We need to wait until about
500M for er to settle down to a regular oscillation. As
mentioned before we use the maxima of er as a conserva-
tive eccentricity estimate. Thus the eccentricities of the
cheap and expensive runs are 0.0013 and 0.0010. Hence
we need to evolve until at least about 800M to get a reli-
able estimate. From the oscillations in the curves we see
that the errors in both eccentricity estimates are about
0.0005.

IV. CHOOSING PUNCTURE PARAMETERS

In order to start our simulations we need initial data
for binary black holes with arbitrary spins and masses at
some given initial separation r. Since we will employ the
moving punctures approach in our evolutions, we will use
standard puncture initial data [15]. Thus the 3-metric
and extrinsic curvature are given by

gij = ψ4δij (15)

Kij = ψ−10
2

∑

A=1

{ 3

r2A

[

p
(i
An

j)
A −

δklp
k
An

l
A

2
(δij − ni

An
j
A)

]

+
6

r2A

[

ǫklmS
l
An

m
A δ

k(in
j)
A

]}

. (16)

Here pi
A and Si

A are the momentum and spin parameters
of black hole A, while rA and ni

A denote the distance
and normal vector measured from hole A. The conformal
factor is

ψ = 1 +
mb1

2r1
+
mb2

2r2
+ u, (17)

where mb1 and mb2 denote the black hole bare mass pa-
rameters. The scalar u is computed by numerically solv-
ing the Hamiltonian constraint. These initial data are
very flexible since the free parameters for the position,
momentum and spin of each black hole can be chosen
freely. Thus one can setup practically any kind of orbit.
Note, however, that our goal is to set up data for black
holes that are in quasi-circular orbit. This means that
we need to choose our momentum parameters such that
the eccentricity is as small as possible. Since we start
our evolutions in a frame where the center of mass is at
rest, both black holes have momenta that are equal in
magnitude but opposite in direction. Thus we have to
choose only two parameters: the tangential and radial
component of the momentum of one of the black holes.

To complete the definition of the initial data, we also
need to specify initial values for the lapse α and shift
vector βi. At time t = 0 we use

α = ψ−2,

βi = 0. (18)

A. Finding the momentum parameters

There have been various attempts to guess appropri-
ate momentum parameters. Some have used the quasi-
equilibrium approach [31–33], but most are based on
post-Newtonian (PN) approximations (see e.g. [29, 34,
35]). The latter have been taken to their extreme in [21]
and [22] who integrate PN equations in the ADMTT
gauge [36] in the hope that the thus obtained momen-
tum parameters will lead to orbits with less eccentricity.
However, as mentioned in [22], it is not certain that non-
eccentric PN parameters in ADMTT gauge should pro-
duce non-eccentric orbits in full General Relativity. We
want to point out here, that standard puncture data are
inconsistent with PN theory beyond (v/c)3 [46] [34, 37–
39], even in ADMTT gauge! The reasons for this incon-
sistency are as follows. First, the 3-metric of puncture
data is always conformally flat (see Eq.(15)), while the
PN 3-metric contains deviations from conformal flatness
at order (v/c)4 [37, 40]. This is true for both harmonic
and ADMTT gauge. Second, the conformal factor in
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ADMTT gauge is given by [37]

ψPN = 1 +
E1

2r1
+
E2

2r2
, (19)

where EA is the energy of each particle used to model
the black holes. If we compare Eqs. (19) and (17) we
see that the conformal factor in ADMTT gauge is not
identical to the conformal factor used in puncture initial
data. One difference is that the ADMTT ψPN contains
the particle energies EA while the puncture ψ contains
the bare masses mbA

. These two only agree for infinite
separation. Furthermore, the puncture ψ contains the
additional piece u that is obtained by numerically solv-
ing the Hamiltonian constraint, while PN data violates
the Hamiltonian constraint. One might like to argue that
the PN data should agree with puncture data up to the
higher order terms that are neglected in the PN approxi-
mation. This is however not true close to the black holes,
because PN theory is not valid in regions of very strong
gravity. Thus near the black holes the ADMTT metric
differs from the puncture metric by terms that are of low
PN order.

From the above explanation it is clear that the coor-
dinate separation in ADMTT gauge does not have the
same physical meaning as the coordinate separation in
puncture initial data. Thus if by some method we arrive
at the momentum parameters needed at a particular sep-
aration r (in ADMTT coordinates), we should not simply
use these same momentum parameters at the same punc-
ture separation.

So if (for some configurations) the more complicated
approaches in [21] or [22] lead to less eccentric orbits than
e.g. the simpler approaches in [29, 34, 35] this should
be considered a coincidence, since it is not due to the
inclusion of higher order terms or due to the integration
of post-Newtonian equations of motion. In fact, we find
that (as anticipated by [22]) for many configurations the
approaches in [21] or [22] do not lead to less eccentricity
than the ones in [29, 34, 35].

For these reasons we take a different approach here.
We will take a simple PN formula to obtain a reason-
able guess for both the tangential and radial momentum
components pt and pr. Then we numerically evolve the
resulting initial data for a short time (using the efficient
grid setup in Eq. (14)) to see how eccentric they really
are. Afterward we adjust pt to reduce the eccentricity. In
this way we can obtain low eccentricity orbits for any con-
figuration. In order to come up with a reasonable guess
for pt and pr we use 2PN accurate expressions of Kid-
der [41] in harmonic gauge. Specifically, we freely choose
the two masses m1, m2, the six spin components of S1

and S2 and a separation r. Next, choosing L̂N in the z-
direction, we use Eqs. (2.8) and (4.7) of [41] to compute
the total orbital angular momentum L, and Eq. (4.12)
of [41] to compute ṙ. We rotate L, S1 and S2 so that L

points in the z-direction. Then we obtain the momentum
in the xy-plane as

pt = |L|/r (20)

pr = µ|ṙ|. (21)

In all cases discussed in this paper we put the two punc-
tures on the y-axis at y1 = m2r/M and y2 = −m1r/M .
The two initial black hole momenta are then p1 =
(−pt,−pr, 0) and p2 = (pt, pr, 0).

B. Determining the bare mass parameters

The momenta p1, p2 and the spins S1, S2 for a co-
ordinate separation r directly enter the Bowen-York ex-
trinsic curvature of standard puncture data. Note, how-
ever, that the bare mass parameters mb1 and mb2 which
appear in the construction of standard puncture data
are not equal to the individual black hole masses. As
in [29, 34, 42, 43] we obtain the bare masses from the
condition that the ADM masses

mADM
A = mbA

(1 + uA) +
mb1mb2

2r
, (22)

measured at the punctures [44] should be equal to m1

and m2, where uA is the value of u at puncture A. As
in [16, 33, 44] we assume that the ADM masses measured
at each puncture are a good approximation for the initial
individual black hole masses. Numerically this condition
is implemented as a root finder in the initial data solver
that picks mb1 and mb2 such that the ADM masses at
the punctures are equal to m1 and m2.

V. REDUCING THE ECCENTRICITY

Now that we know how to generate initial data on
approximately circular orbits for arbitrary spins, masses
and separations, it is time to present some numerical re-
sults to demonstrate what eccentricities we get and how
we can reduce them. For our purposes here, we consider
the eccentricity small enough if it is 0.003 or less, which
agrees with the NRAR target of an eccentricity of a few
times 10−3. The first example we consider is an equal
mass binary without spin. The momentum parameters
are picked according to Eqs. (20) and (21). The values
of all the initial parameters are given in the first line of
table I. As we can see, the eccentricity is about 0.005 in
this case. In order to test how it varies with pt we have
also performed a run where we have increased pt by

∆pt = µ

√

M

r

[

11.29

(

M

r

)3

− 92.37

(

M

r

)4
]

. (23)

The results of this increase are shown in the second line
of table I and yield an eccentricity that is reduced by
more than a factor of 3. The expression for Eq. (23)
comes from the fitting of two of our older equal mass runs
that resulted in low eccentricity. Thus non-zero spins or
unequal masses are not taken into account by this fit.
Therefore Eq. (23) certainly does not present the opti-
mum momentum correction. In fact we have found that
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row r

M

mb1

M

mb2

M

m1

M

m2

M

|S1|

m2

1

, θ1, φ1

|S2|

m2

2

, θ2, φ2
10

2pt

M

10
4pr

M
103er

1 11.9718 0.488255 0.488255 1/2 1/2 0 0 8.5018 3.88 5.0
2 11.9718 0.488249 0.488249 1/2 1/2 0 0 8.5168 3.88 1.5
3 11.9694 0.404597 0.404687 1/2 1/2 0.6, 60, 0 0.6, 120, 90 8.5013 3.87 4.0
4 11.9694 0.404592 0.404681 1/2 1/2 0.6, 60, 0 0.6, 120, 90 8.5163 3.87 2.0
5 11.9694 0.404588 0.404677 1/2 1/2 0.6, 60, 0 0.6, 120, 90 8.5280 3.87 1.5
6 11.4546 0.2239 0.6145 1/4 3/4 0.4, 0, 0 0.6, 0, 0 6.4416 2.21 20
7 10.7271 0.223341 0.614005 1/4 3/4 0.4, 0, 0 0.6, 0, 0 6.6396 2.50 1.0
8 12.0815 0.224174 0.614794 1/4 3/4 0.4, 180, 0 0.6, 180, 0 6.5900 2.50 1.0
9 11.7173 0.223891 0.614572 1/4 3/4 0.4, 180, 0 0.6, 180, 0 6.7497 4.08 5.0

10 10.9876 0.223317 0.614121 1/4 3/4 0.4, 0, 0 0.6, 180, 0 6.9756 3.19 3.0
11 11.5010 0.300017 0.543886 1/3 2/3 0.4, 60, 0 0.6, 60, 0 7.6504 3.18 2.0
12 11.5033 0.300020 0.543926 1/3 2/3 0.4, 60, 0 0.6, 60, 90 7.6509 3.19 1.8
13 11.6182 0.300023 0.543980 1/3 2/3 0.4, 60, 0 0.6, 120, 90 7.7896 3.51 2.1
14 11.5502 0.310095 0.656229 1/3 2/3 0.3, 0, 0 0 7.7196 3.32 1.3

TABLE I: Initial data parameters. The black holes have coordinate separation r. We give both bare masses mb1 , mb2 as well
as physical masses m1, m2. The punctures are located on the y-axis at y1 = m2r/M and y2 = −m1r/M . The spins are given
in terms of their magnitudes and the usual polar angles of spherical coordinates measured in degrees. The linear momenta are
(∓pt,∓pr, 0). The last column shows the resulting eccentricity.

adding ∆pt to pt does not always reduce the eccentricity
since the PN estimate of Eq. (20) for pt is sometimes too
large and sometimes too small for generic orbits. The
expression in Eq. (23) simply gives us a rough estimate
by how much we might have to raise or lower pt in order
to reduce the eccentricity.

So in order to really reduce the eccentricity we usually
start one run on the coarse grid described by Eq. (14).
This run normally uses pt given by Eq. (20). We then
look at the coordinate separation r(t) for this run. Usu-
ally one can tell whether the initial tangential momentum
pt was too large or too small. We then start a new run
where we either increase or decrease pt by ∆pt. This run
then gives a new r(t) and er. From the two resulting
simulations one can then extrapolate to zero eccentricity
to obtain a more refined tangential momentum parame-
ter. This procedure is illustrated in rows 3,4, and 5 of
table I. In row 3 we have used the pt = 8.5013× 10−2M
from Eq. (20) and obtained an eccentricity of 0.004. In
row 4 we have increased this pt by ∆pt which leads to a
decrease of the eccentricity to 0.002. A further increase
to pt = 8.5280 × 10−2M (as in row 5) then yields an
eccentricity of 0.0015.

Row 6 of table I shows the initial data that were used to
produce Fig. 1. In order to produce an eccentricity which
is clearly visible in the r(t) curve we have used a pt that
is deliberately chosen much larger than what is predicted
by Eq. (20). In row 7 we show the same configuration
(at somewhat closer separation), but this time we choose
pt according to Eq. (20), we see that in this case the
eccentricity is already small enough to satisfy e.g. the
NRAR guidelines.

In row 8 we have used our method to produce momen-
tum parameters for a similar configuration, but this time
both spins point in the negative z-direction. Again we
can reach the NRAR target of an eccentricity of order
0.001. In row 9 we also show the eccentricity resulting

0 200 400 600 800 1000 1200
t/M

10.0

10.5

11.0

11.5

12.0

r/
M

r(0)=12.08M,  p
t
=.0659M,  p

r
=.00025M

r(0)=11.72M,  p
t
=.0675M,  p

r
=.00041M

FIG. 3: This plot shows r(t) for the two numerical runs with
parameters from rows 8 (solid line) and 9 (broken line) of ta-
ble I. The parameters for the solid line were picked according
to the method explained in this paper while the broken line
is the result of setting the parameters according to the much
more complicated method in [22]. As we can see the eccen-
tricity difference of about a factor of 5 is quite noticeable in
the r(t) curves.

from the method introduced in [22] for the same mass
ratio and spin configuration. We can see that it is about
5 times larger, which supports our argument that inte-
grating PN equations of motion does not necessarily lead
to better results. The results from these two runs are
also shown in Fig. 3. The solid line corresponds to row
8 (i.e. our approach) and the broken line is generated
using the approach in [22]. As we can see our method
does give a noticeably less eccentric r(t) curve. Notice
that the initial dip in the coordinate separation r(t), is
due to the aforementioned initial coordinate adjustment.
It does not mean the two holes really plunge toward each
other initially.
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The last five rows of table I give a few more examples of
parameters and resulting eccentricities. They show that
we can obtain low eccentricities for generic mass ratios
and spin orientations.

Notice that our eccentricity reduction method is simi-
lar in spirit to the method described in [23, 24], in that
we also use short numerical runs to adjust certain pa-
rameters. There are, however, important differences.
In [23, 24] excision type initial data, not punctures are
used. These data are constructed using an extension
to the conformal thin sandwich formalism [45]. Empir-
ically it turns out that the tangential momentum that
is achieved with the conformal thin sandwich method is
quite close to what is needed for low eccentricity data.
The main reason for eccentricity is the absence of a ra-
dial momentum in the original conformal thin sandwich
method. In [23] a method is developed that adds an arbi-
trary radial velocity parameter to the initial data. This
radial velocity parameter together with the tangential
momentum are then adjusted to reduce the eccentricity.
The method introduced in [23, 24] is capable of producing
eccentricities of order of only 10−5. For standard punc-
ture data the method in [23, 24] cannot be used directly.
One problem is that standard moving puncture simula-
tions start with the lapse and shift given in Eqs. (18).
Thus the coordinates used are not well adapted to quasi-
equilibrium. Hence oscillations in the hole separation r
are not due to real eccentricity alone but also due to the
fact that the coordinates are still evolving as well. This
problem is quite visible in Fig. 3. The broken line shows
oscillations that have more than one frequency. Thus we
cannot fit the curve very well with a straight line plus
a single sine function as in [23, 24]. To summarize, re-
ducing the eccentricity for puncture data is harder than
for the extended conformal thin sandwich data in [23].
Therefore, our results in both final eccentricities and re-
duction of eccentricity per iteration are not as good as
in [23, 24].

In the cases we have studied so far, we have found
it unnecessary to adjust pr (away from the PN value in
Eq. (21)) in order to reach an eccentricity of order 0.001.
It is much more important to choose an appropriate pt.
However, we expect that adjusting pr will be necessary
to reach even lower eccentricities.

VI. DISCUSSION

We have introduced the two new eccentricity measures
er and e22. Both are easy to compute since their calcu-
lation does not involve any free parameters unlike earlier
definitions akin to eω(t). To compute eccentricity mea-
sures such as eω(t) one needs to specify a time interval
during the inspiral phase over which we fit the orbital an-
gular velocity to a polynomial of some low degree. This
degree is essentially another free parameter and is usually
chosen to be 4 or 5. Note, however, that all eccentricity
definitions are ambiguous to a certain extend since the

entire concept of eccentricity is only rigorously defined
for periodic orbits. All eccentricity definitions for inspi-
ral orbits depend on how we split a function of time (like
the separation) into a smooth and an oscillating piece.
Thus we do not claim that our definitions er and e22
are less ambiguous than earlier ones. For example our
definitions depend on the period T which we compute
from Kepler’s law, but other choices are possible (e.g.
an estimate of the actual orbital period of the numerical
simulation at each time). Since our definitions er and
e22 do not require us to choose extra parameters such as
fitting intervals they are easier to use.

We also show that certain low resolution grid setups
(which are relatively inexpensive) can be used to estimate
the initial eccentricity using our measure er. This gives
us a relatively efficient way to measure the eccentricity
of any initial data.

Furthermore, we have explained why the coordinates
of standard puncture data are not the same as in PN
calculations in ADMTT or harmonic gauge. Thus even
if one arrives at a highly accurate estimate of the mo-
mentum parameters needed for low eccentricity orbits in
ADMTT gauge, there is no easy way to incorporate this
knowledge into simulations starting from standard punc-
ture data. Indeed we find that using accurate parameters
in ADMTT gauge [21, 22] in standard puncture initial
data can lead to relatively large eccentricities.

We provide a simpler approach which starts from mo-
mentum parameters using the relatively short expressions
given by Kidder [41]. After measuring the resulting ec-
centricity er in a short inexpensive numerical simulation,
these parameters can then be refined by changing pt by
an amount of order ∆pt (see Eq. (23)). In this way we
can always arrive at eccentricities that are low enough for
the purposes of the NRAR collaboration [19]. In order
to achieve this we usually do not need more than three
numerical runs.
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[32] W. Tichy, B. Brügmann, and P. Laguna, Phys. Rev.
D68, 064008 (2003), gr-qc/0306020.
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