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Astrophysically realistic black holes may have spins that are nearly extremal (i.e., close to 1 in
dimensionless units). Numerical simulations of binary black holes are important tools both for
calibrating analytical templates for gravitational-wave detection and for exploring the nonlinear
dynamics of curved spacetime. However, all previous simulations of binary-black-hole inspiral,
merger, and ringdown have been limited by an apparently insurmountable barrier: the merging
holes’ spins could not exceed 0.93, which is still a long way from the maximum possible value in
terms of the physical effects of the spin. In this paper, we surpass this limit for the first time, opening
the way to explore numerically the behavior of merging, nearly extremal black holes. Specifically,
using an improved initial-data method suitable for binary black holes with nearly extremal spins,
we simulate the inspiral (through 12.5 orbits), merger and ringdown of two equal-mass black holes
with equal spins of magnitude 0.95 antialigned with the orbital angular momentum.

PACS numbers: 04.25.D-, 04.25.dg, 04.30.-w

Although there is considerable uncertainty, it is pos-
sible that astrophysical black holes exist with nearly
extremal spins (i.e., in dimensionless units spins close
to 1, the theoretical upper limit for a stationary black
hole). Binary black hole (BBH) mergers in vacuum typ-
ically lead to remnant holes with dimensionless spins
χ ∼ 0.7 − 0.8 [1–3], although if the merging holes are
surrounded by matter the remnant’s spin typically could
be higher than χ ∼ 0.9 [1, 3]. Black holes can reach
higher spins via prolonged accretion [4, 5]: thin accre-
tion disks [with magnetohydrodynamic (MHD) effects
neglected] lead to spins as large as χ ∼ 0.998 [6], while
thick-disk accretion with MHD effects included can lead
to spins as large as χ ∼ 0.95 [7, 8]. Even without accre-
tion, at very high mass ratios with spins aligned with the
orbital angular momentum, binary black hole mergers
can also lead to holes with nearly extremal spins [9–11].
There is observational evidence suggesting the existence
of black holes with nearly extremal spins in quasars [12],
and some efforts to infer the spin of the black hole in mi-
croquasar GRS 1915+105 from its x-ray spectra suggest
a spin larger than 0.98, though other analyses suggest
the spin may be much lower [13–15].

Merging BBHs—possibly with nearly extremal spins—
are among the most promising sources of gravitational
waves for current and future detectors. Numerical simu-
lations of BBHs are important tools both for predicting
the gravitational waves that detectors will observe and
for exploring the behavior of nonlinear, highly dynam-
ical spacetimes. Following Pretorius’ breakthrough in
2005 [16], several groups have successfully simulated the
inspiral, merger, and ringdown of two coalescing black
holes in a variety of initial configurations; however, all
prior BBH simulations have been limited to spins of 0.93
or less, which is quite far from extremal. The parameter
χ is a poor measure of how close a black hole is to ex-
tremality in terms of physical effects: a black hole with
spin 0.93 has less than 60% of the rotational energy of
an extremal hole with the same mass (Fig. 1).
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FIG. 1. The rotational energy of a Kerr black hole as a
function of the hole’s dimensionless spin parameter χ :=
Spin/(Mass)2. The thick red line indicates the Bowen-York
limit: standard Bowen-York puncture initial data—used in
almost all numerical binary-black-hole calculations to date—
cannot yield rotational energies more than 60% of the way to
extremality. By using instead initial data based on two su-
perposed Kerr-Schild holes (“SKS initial data”), in this paper
we surpass the Bowen-York limit (green circle), opening the
way for numerical studies of merging, nearly extremal black
holes.

Previous simulations have been unable to reach higher
spins because of the way they construct their initial data.
Just as initial data for Maxwell’s equations must satisfy
constraints (the electric and magnetic fields must have
vanishing divergence in vacuum), initial data for the Ein-
stein equations must satisfy constraint equations. Most
BBH simulations begin with puncture initial data [17],
which assumes that the initial spatial metric is confor-
mally flat (i.e. proportional to the metric of flat space).
With this assumption, 3 of the 4 constraint equations can
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Mi/M 0.5000 MADM/M 0.9933 d0/M 15.366
χz

i -0.9498 Jz

ADM/M2 0.6845 Ω0M 0.014508
ȧ0 -0.0007139

TABLE I. Properties of initial data evolved in this paper.
The quantity M denotes the sum of the holes’ Christodoulou
masses at t = 0. Hole i (where i = A or B) has Christodoulou
mass Mi and dimensionless spin χz

i along the z axis (i.e., in
the direction of the orbital angular momentum). Also listed is
the Arnowitt-Deser-Misner (ADM) mass MADM and angular
momentum Jz

ADM (e.g., Eqs. (25)–(26) of Ref. [35]). The
initial angular velocity Ω0, radial velocity ȧ0, and coordinate
separation d0 were tuned to reduce the orbital eccentricity.

be solved analytically using the solutions of Bowen and
York [18, 19]; however, conformally flat initial data can-
not describe single or binary black holes that are both in
equilibrium and possess linear [20] or angular [21, 22] mo-
mentum. Bowen-York puncture data can yield solutions
of binary black holes with spins as large as χ = 0.984 ini-
tially, but when such initial data are evolved, the holes
quickly relax to spins of about χ = 0.93 or less [23–25].
Several groups have evolved BBH puncture data with
spins near but below this Bowen-York limit [9, 26, 27],
with the simulation by Dain, Lousto, and Zlochower [28]
coming the closest with spins of 0.967 at time t = 0
quickly falling to 0.924.

To reach spins beyond the Bowen-York limit, one must
begin with initial data that is conformally curved. Re-
cently, Liu and collaborators [29] have constructed and
evolved conformally curved initial data based on that of
Brandt and Seidel [30, 31] for a single black hole with
spins as high as χ = 0.99. Hannam and collaborators [32]
have constructed and evolved conformally curved BBH
initial data [33, 34] for head-on mergers of black holes
with spins as large as χ = 0.9. In Ref. [35], conformally
curved BBH data with spins of χ = 0.93 were constructed
and evolved through the first 1.9 orbits of an inspiral, but
no attempt was made to simulate the complete inspiral,
merger, and ringdown.

In this paper, we demonstrate that conformally curved
initial data is suitable for simulations with nearly ex-
tremal spins by using it to compute the first inspiral,
merger, and ringdown of two black holes with spins larger
than the Bowen-York limit. By surpassing this limit,
our results open the way for numerical exploration of the
gravitational waveforms and nonlinear dynamics of black
holes that are nearly extremal.

Initial data—We evolve a low-eccentricity initial data
set: a BBH where the holes have equal masses and equal
spins of magnitude 0.95 antialigned with the orbital an-
gular momentum. Some properties of the initial data
used in this paper are listed in Table I.

Following Ref. [35] and the references therein, we
construct constraint-satisfying initial data by solving
the extended conformal thin sandwich equations with
quasiequilibrium boundary conditions [36–41] using a
spectral elliptic solver [42]. The initial spatial metric is

proportional to a weighted superposition of the metrics
of two boosted, spinning Kerr-Schild black holes.

We measure the quasilocal spin SAKV of each hole
in the initial data using the approximate-Killing-vector
method summarized in Appendix A of Ref. [35], which
is very similar to the prescription previously published
by Cook and Whiting [43]. The dimensionless spin of
each hole χ is then related to SAKV by the formula
χ := SAKV/M2

chr
, where Mchr :=

√

M2
irr

+ S2/4M2
irr

is

the Christodoulou mass, Mirr :=
√

A/16π is the irre-
ducible mass, and A is the area of the horizon. (For a
single Kerr black hole, Mchr reduces to the usual Kerr
mass parameter.)

To reduce eccentricity, we follow the iterative method
of Ref. [44], which is an improvement of the earlier
method of Ref. [45]. For each iteration, we construct
an initial data set and evolve it for approximately 3 or-
bits. Then, the initial angular and radial motion of the
holes are adjusted to minimize oscillations in the orbital
frequency. Using this method, we reduce the orbital ec-
centricity to approximately 10−3.

Evolution—We evolve our initial data using the Spec-
tral Einstein Code SpEC [46]. Building on the methods of
Ref. [47] and the references therein, we have made several
technical improvements to our code which both enable us
to evolve our χ = 0.95 initial data through merger and
make our code more robust in general. Here we briefly
summarize some of the most important improvements;
full details of these techniques will be described in a fu-
ture paper.

We use a computational domain with the singularities
inside the horizons excised, and we use a time-dependent
coordinate mapping to keep the excision boundaries in-
side the individual apparent horizons as the horizons or-
bit and slowly approach each other [48]. Our coordinate
mapping also ensures that the excision surfaces’ shapes
conform to those of the horizons which enclose them.
One important ingredient of our improved binary black
hole evolutions is that the coordinate mapping is adjusted
adaptively throughout the evolution, which is helpful be-
cause the horizons’ dynamics change from slow to fast
during the simulation.

Because we apply no boundary condition on the exci-
sion surfaces, these surfaces must be pure-outflow bound-
aries (i.e., must have no incoming characteristic fields) in
order for the evolution to be well-posed. A second im-
provement to our code is that we now can adjust the
velocity of each excision surface to keep the character-
istic fields outgoing there. For the χ = 0.95 simulation
considered here, this characteristic speed control is nec-
essary only during the last orbit before merger; earlier,
it is sufficient to control the size of the excision surface
using the method of Ref. [47].

A third element which we have recently added to SpEC

is spectral adaptive mesh refinement (AMR). During
the evolution, we monitor the truncation error of each
evolved field, the resolution requirements of the appar-
ent horizons, and the local magnitude of constraint vi-
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FIG. 2. Color online. Left panel: The z component χz of
the dimensionless quasilocal spin of one individual horizon
vs time t. (The individual holes’ spins are equal within nu-
merical error.) Right panel: spin of the common horizon vs.
time and the final spins predicted by the fitting formulae in
Ref. [49] (“A”), Ref. [1] (“B”), Ref. [50] (“C”), and Ref. [9]
(“D”), and (for “B” and “C”, and “D”) the error bars corre-
sponding to the fitting formulae’s listed uncertainties. (Note
that the horizontal positions of points “A”–“D” on the figure
are arbitrary.) Our results are shown for several resolutions
(labeled Nx or Nx.y, where x ∈ 3, 4, 5 and y ∈ 1, 2, 3 label
the resolution used before and after merger, respectively).

olation; to maintain a desired accuracy, we then add or
remove spectral basis functions as needed. In the simula-
tion presented in this paper, we use AMR only during the
final quarter orbit before merger. Throughout the entire
simulation, we also adaptively adjust the resolution of
the apparent horizon finder as the horizon becomes more
distorted.

Results—In Fig. 2, we plot the dimensionless quasilocal
spin χ measured on one individual horizon and also on
the common horizon. From t = 0 to t = 50M , there is a
sharp, numerically-resolved drop in the magnitude of the
dimensionless spin χ from 0.9498 to 0.9492. During the
remainder of the inspiral, the spin drifts, with the amount
of drift decreasing as resolution increases; at the highest
resolution (N5), the spin remains χ = 0.949 throughout
the next 11.8 orbits, until just before merger, when the
magnitude of the spin of each hole drops sharply. This
result demonstrates that it is now possible to simulate
BBHs where the holes retain spins beyond the Bowen-
York limit throughout the inspiral; it also opens the way
for future explorations of the strong-field dynamics of
merging, nearly extremal holes—dynamics that can only
be explored using numerical simulations.

During the ringdown, the spin χ of the common hori-
zon quickly relaxes to its final value of χ = 0.3757±0.0002
(where the uncertainty is estimated as the difference be-
tween the highest and second-highest resolutions). This
is approximately consistent with but slightly larger than
the predictions obtained by extrapolating fitting formu-
lae from simulations with lower initial spins of Ref. [49]
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FIG. 3. Color online. The orbital trajectory of the centers
of the individual horizons and the individual and common
horizons at the end of the inspiral (top left) and the real
part of the ℓ = 2, m = 2 mode of the emitted gravitational
waveform h extracted at radius r = 405M (bottom). The
holes travel through about 12.5 orbits before merging. All
data is from resolution N5.3.

(χfit ≈ 0.371), Ref. [1] (χfit = 0.372 ± 0.057), Ref. [50]
(χfit = 0.369± 0.012), and Ref. [9] (χfit = 0.366± 0.002).
This result is a first step toward a better understanding
of the relation between the properties of the remnant hole
and those of the merging holes when the latter are nearly
extremal. Numerical simulations that directly measure
this relation (instead of extrapolating from lower-spin re-
sults) will yield greater understanding of the properties
of black holes produced from merging extremal holes.

Figure 3 shows the individual horizon trajectories and
the real part of the (ℓ, m) = (2, 2) spherical harmonic
mode of the emitted gravitational waveform. We extract
waves on a series of concentric spherical shells; the wave-
form shown was extracted on the outermost spherical
shell (at radius r = 405M). Accurate gravitational wave-
forms obtained from this and future simulations with
spins beyond the Bowen-York limit will be useful for cal-
ibrating analytic template banks for gravitational-wave
searches.

The Christodoulou mass of the final black hole is
Mfinal/Mrelax = 0.9683 ± 0.0001, where Mrelax =
1.0003M is the sum of the masses of the individual holes
after the initial relaxation and where the uncertainties
of Mfinal and Mrelax are estimated as the difference be-
tween the highest and second-highest resolution. Under
the assumption that each hole has a constant mass Mrelax

throughout the inspiral (which holds within O
(

10−5
)

in
our simulation after the holes have relaxed), the quan-
tity 1−Mfinal/Mrelax represents the fraction of the initial
mass that would have been radiated from t = −∞ to
t = +∞, had our simulation contained the entire inspiral
instead of just the final 12.5 orbits.
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Our results demonstrate for the first time that it is
possible to simulate merging black holes with spins larger
than the Bowen-York limit of χ = 0.93, the highest spin
previously obtainable. Because astrophysical black holes
may be nearly extremal, these simulations have astro-
physical as well as physical relevance. In particular, this
work opens the way to use numerical simulations to ex-
plore the strong-field dynamics of merging, nearly ex-
tremal black holes, to gain a better understanding of the
properties of the remnant hole formed by a nearly ex-
tremal BBH merger, and to provide high-spin gravita-
tional waveforms for data analysis.

ACKNOWLEDGMENTS

Acknowledgements—We are pleased to thank Nick
Taylor for a gauge modification that allows us to use
the non-smooth maps of Ref. [47] throughout our evo-

lutions and Larry Kidder, Robert Owen, Harald Pfeif-
fer, Saul Teukolsky, and Kip Thorne for helpful discus-
sions. This work was supported in part by grants from
the Sherman Fairchild Foundation to Caltech and Cor-
nell and from the Brinson Foundation to Caltech; by
NSF Grants No. PHY-0601459 and No. PHY-1005655 at
Caltech; by NASA Grant NNX09AF97G at Caltech; by
NSF Grants No. PHY-0969111 and No. PHY-1005426 at
Cornell; and by NASA Grant No. NNX09AF96G at Cor-
nell. The numerical computations presented in this paper
were performed primarily on the Caltech compute clus-
ter “Zwicky” (NSF MRI award PHY-0960291, co-funded
by the Sherman Fairchild Foundation). Some computa-
tions were also performed on the GPC supercomputer at
the SciNet HPC Consortium; SciNet is funded by: the
Canada Foundation for Innovation under the auspices of
Compute Canada; the Government of Ontario; Ontario
Research Fund - Research Excellence; and the University
of Toronto. Some computations were performed in part
using TeraGrid resources provided by NCSA’s Ranger
cluster under grant number TG-PHY990007N.

[1] W. Tichy and P. Marronetti, Phys. Rev. D 78, 081501(R)
(2008), arXiv:0807.2985 [gr-qc].

[2] U. Sperhake, E. Berti, V. Cardoso, J. González, B.
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B. Brügmann, Phys. Rev. D 82, 124008 (2010),
arXiv:1007.4789.

[27] P. Marronetti, W. Tichy, B. Brügmann, J. González, and
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fer, and A. Taracchini, “Reducing orbital eccentricity in
quasi-circular binary black-hole evolutions in presence of
spins,” (2010), in preparation.

[45] H. P. Pfeiffer, D. A. Brown, L. E. Kidder, L. Lindblom,
G. Lovelace, and M. A. Scheel, Class. Quantum Grav.

24, S59 (2007).
[46] http://www.black-holes.org/SpEC.html.
[47] B. Szilagyi, L. Lindblom, and M. A. Scheel, Phys. Rev.

D 80, 124010 (2009), arXiv:0909.3557 [gr-qc].
[48] M. A. Scheel, H. P. Pfeiffer, L. Lindblom, L. E. Kidder,

O. Rinne, and S. A. Teukolsky, Phys. Rev. D 74, 104006
(2006).

[49] M. Campanelli, C. O. Lousto, and Y. Zlochower, Phys.
Rev. D 74, 041501(R) (2006), gr-qc/0604012.

[50] E. Barausse and L. Rezzolla, Astrophys. J. Lett. 704,
L40 (2009), arXiv:0904.2577 [gr-qc].


