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Abstract

General relativistic corrections to the expansion rate of the universe arise when the Einstein

equations are averaged over a spatial volume in a locally inhomogeneous cosmology. It has been

suggested that they may contribute to the observed cosmic acceleration. In this paper, we propose

a new scheme that utilizes numerical simulations to make a realistic estimate of the magnitude of

these corrections for general inhomogeneities in (3+1) spacetime. We then quantitatively calculate

the volume averaged expansion rate using N-body large-scale structure simulations and compare it

with the expansion rate in a standard FRW cosmology. We find that in the weak gravitational field

limit, the converged corrections are slightly larger than the previous claimed 10−5 level, but not

large enough nor even of the correct sign to drive the current cosmic acceleration. Nevertheless,

the question of whether the cumulative effect can significantly change the expansion history of the

universe needs to be further investigated with the strong-field relativity.
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I. INTRODUCTION

One of the most puzzling questions in modern cosmology is the nature and origin of the

dark energy that is responsible for the present cosmic acceleration. Over the last decade,

evidence has been accumulating from the type Ia supernova luminosity distance-redshift

relation [1–3] and other observations [4–8] indicating that the universe is accelerating. In

the standard Friedmann-Robertson-Walker (FRW) cosmology model, this can be explained

by introducing a dark energy term in the Friedmann equations. Observations indicate that

the dark energy comprises more than 70% of the mass-energy in the universe. Numerous

explanations have been proposed for the origin of the dark energy. The simplest explanation

is that of a mass-energy that violates the strong energy condition either in the form of a

cosmological constant [1–3] or a quintessence [9, 10]. However, this solution has an unnatural

fine tuning and coincidence problem. Alternately, one could assume that GR is not the

complete theory on cosmological scales (such as the Dvali-Gabadadze-Porrati (DGP ) [11]

or f(R) [12, 13] models), however, no corroborating evidence for deviations from standard

GR have yet been found. An alternative explanation of interest to the present work is that

corrections to a FRW cosmology, due to the presence of local inhomogeneities, may introduce

dark energy like terms in the equation of cosmic expansion.

While the universe appears homogeneous and isotropic on large cosmological scales, this

is not the case on smaller scales. Local inhomogeneity and structure always exist. It has

been argued [14–16], therefore, that one should study the observational data in the context

of a realistic lumpy universe first, instead of assuming that the FRW model is correct, to fit

cosmological parameters. Hence, it is imperative to clarify how the inhomogeneities affect

the interpretation of the observational data.

Even before the discovery of the cosmic acceleration, it was argued [17] that when light

propagates only through a nearly empty intergalactic medium, there is a dimming effect

compared to the FRW model. This may affect the interpretation of the supernova lumi-

nosity distance-redshift data. Recently, one simple class of the inhomogeneous models, the

Lemâıtre-Tolman-Bondi (LTB) model, has been extensively studied [18–21]. In this model,

it is assumed that we are living near the center of a spherical underdense region and the

universe may have one or many such regions. The supernova data can then be fit without

introducing a dark energy term. Although we may indeed reside in an underdense region,
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the special symmetry in this model is not consistent with current observations of the large-

scale structure of the universe. Moreover, none of the realistic models of this class can fit

all of the observed cosmological constrains [19, 20, 22, 23].

While more general inhomogeneous cosmological models have been investigated using

various methods [24–27], the domain averaging procedure proposed by Buchert [28–31] has

been of most interest recently. By using perturbation methods in this domain averaging

procedure in a general synchronous gauge, Kolb et. al [32, 33] claimed that an effective

negative pressure term can arise from averaging local fluctuations. However, it has been

strongly argued [34–39] that the effect from this procedure is either not a physical observable

or not large enough to drive the current cosmic acceleration. Moreover, such perturbative

analysis is not easily amenable to the nonlinear evolution of the large-scale structure. The

lack of a realistic model and the limitation of the perturbation methods make it difficult to

calculate the proposed effect accurately. To alleviate this problem, therefore, we describe

here the first step toward the development of a relativistic numerical scheme to explicitly

calculate the proposed effect of domain averaging.

The paper is organized as follows: We first develop a theoretical scheme that enables us

to calculate the magnitude of the proposed correction terms quantitatively using an N-body

large-scale structure simulation as described in Sec. II. The details of the numerical simula-

tions are discussed in Sec. III. The results are presented and discussed in Sec. IV followed

by a summary in Sec. V. The main purpose of this paper is to present the formalism and

to make initial numerical investigations of the effects from this domain averaging procedure

on the expansion rate of the universe. This study will shed light on whether this is a viable

approach to explain the nature of the dark energy.

II. GENERAL RELATIVISTIC CORRECTIONS FROM DOMAIN AVERAGING

A. Domain averaged expansion rate in an inhomogeneous cosmology

Here, we will roughly follow the domain averaging procedure proposed by Buchert [28–

31]. Numerical calculations in general relativity are best formulated in the Arnowitt-Deser-

Misner (ADM) formalism [40–42]. Hence, we start with the general (3+1) ADM metric:

ds2 = −(α2 − βiβ
i)dt2 + 2βidx

idt+ γijdx
idxj , (1)
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where α is the lapse function denoting the lapse of proper time, βi is the shift vector de-

scribing the shift of coordinates, respectively, from one time slice to the next and γij is the

spatial three-metric. The proper volume of an arbitrary domain D in this scheme can then

be defined as:

VD =

∫

D

γ d3x , (2)

where γ =
√

det(γij), and det(γij) is the determinant of γij. We can then define the average

of an arbitrary scalar field ψ(x, t) on the domain D as:

〈ψ(x, t)〉D =
1

VD

∫

D

ψ(x, t)γ d3x . (3)

The time derivative of this domain average is then:

∂〈ψ〉D

∂t
=

∂

∂t
(

1

VD

∫

D

ψγ d3x)

= − V̇D

VD

〈ψ〉D + 〈ψ̇〉D +
1

VD

∫

D

ψγ̇ d3x . (4)

Now, using the fact that for any invertible matrix A:

∂ det(A)

∂Aij
= det(A)(A−1)ji , (5)

and the fact that γij is symmetric. The derivatives of γij can be written as:

∂ γ2

∂ γij
= γ2γij,

1

γ
γ̇ =

1

2
γ̇ijγ

ij . (6)

We next choose the Eulerian gauge (shift vector βi = 0)∗ to reduce the ADM metric to:

ds2 = −α2(x, t)dt2 + γij(x, t)dx
idxj . (7)

In this gauge, the extrinsic curvature Kij, which can be interpreted as the rate of change of

the spatial metric γij along the normal vector, can be simply expressed as:

Kij = − 1

2α
γ̇ij, K = γijKij = − 1

2α
γ̇ijγ

ij . (8)

By inserting the expression for 1
2
γ̇ijγ

ij from Eq. (8) into Eq. (6), we have:

γ̇ = −αKγ . (9)

∗ The purpose of this simplification and application of the conformally flat condition in Sec. IIB is solely

to make easy use of current numerical large-scale structure simulation codes. The generalization of the

expressions in Sec. IIA and IIB in the general ADM formalism is straightforward.
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The time evolution of the domain average in Eq. (4), can then be expressed as:

∂〈ψ〉D

∂t
= − V̇D

VD

〈ψ〉D + 〈ψ̇〉D − 1

VD

∫

D

αKγψ d3x . (10)

The new dimensionless scale factor aD for the domain D, and the new Hubble parameter

HD for this domain, can now be defined as:

aD =

(

VD

VD0

)1/3

, HD =
ȧD

aD

=
1

3

V̇D

VD

, (11)

where VD is the proper volume defined in Eq. (2) and VD0
denotes the domain volume at

the present time. HD can be further expressed as:

HD =
1

3VD

∫

D

γ̇ d3x =
1

3VD

∫

D

−αKγ d3x =
1

3
〈−αK〉D =

1

3
〈Θ〉D , (12)

where we introduce the trace of the expansion tensor Θi
j as Θ = Θi

i = −αK. HD is now the

appropriate physical quantity to describe the overall expansion rate of the inhomogeneous

domain D. In what follows, we calculate this quantity explicitly using numerical large-

scale structure simulations as realistic representations of the evolution of the lumpy universe

within the domain.

B. Time evolution of the expansion rate and effective pressure

We now derive the time evolution equation of the domain averaged expansion rate. Sub-

stituting Eq. (12) into Eq. (10), we obtain an important commutation rule:

∂〈ψ〉D

∂t
− 〈ψ̇〉D = 〈Θψ〉D − 〈Θ〉D〈ψ〉D , (13)

which for ψ = Θ, gives:
∂〈Θ〉D

∂t
− 〈Θ̇〉D = 〈Θ2〉D − 〈Θ〉2

D
. (14)

In the ADM formalism, the time evolution of the extrinsic curvature scalar K can be written

as [40–42]:

K̇ = −DiD
iα + α(3R +K2) + 4πGα(S − 3ρH) , (15)

where Di is the covariant derivative operator in the three-space which reduces to an ordinary

gradient operator for a scalar such as α. The quantity 3R is the Ricci scalar for the three-

metric γij. S = 3P + ρh(W 2 − 1) is the trace of the spatial stress, and ρH = ρhW 2 − P is
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the Hamiltonian density. In the expressions above, ρ is the rest mass energy density, P is

the pressure, W ≡
√

1 + uiui is a generalized Lorentz factor, ui denotes spatial components

of the four velocity, h = 1 + ǫ+P/ρ is the specific enthalpy, and ǫ is the internal energy per

unit mass.

The Hamiltonian constraint derives from the “00” component of the Einstein equation.

In the ADM formalism, it can be written as:

3R +K2 −KijK
ij = 16πGρH . (16)

In the slow-motion, low-temperature limit, i.e. W ∼= 1, ǫ ∼= 0, ρH
∼= ρ, S−3ρH

∼= 3(P −ρ),
Eq. (15) then becomes:

K̇ = −DiD
iα + α(3R +K2) + 12πGα(P − ρ) . (17)

Henceforth, we denote 3R as R.

For the present application, there is no significant rotation, shear or gravity waves. Hence,

we can adopt a conformally flat condition [42] to further simplify the ADM metric to the

form:

ds2 = −α2(x, t)dt2 + a2
F RW

(t)φ4(x, t)δijdx
idxj , (18)

where aF RW (t) is the scale factor in the FRW model limit which is generally different from aD

in Eq. (11), φ(x, t) is the conformal factor denoting the local deviations from a homogeneous

and isotropic curvature in the three-space. Now, the conformally flat three-metric γij takes

the form:

γij = a2
F RW

(t)φ4(x, t)δij . (19)

In this formulation, Kij has diagonal elements only and KijK
ij = −1

3
K2, thus we have:

Kij = − 1

2α
γ̇ij = − 1

α
(
ȧF RW

aF RW

+ 2
φ̇

φ
)γij ,

K = − 3

α
(
ȧF RW

aF RW

+ 2
φ̇

φ
) . (20)

The Hamiltonian constraint can then be reduced to:

R +
2

3
K2 = 16πGρ . (21)

Using Eq. (21), the K̇ equation [Eq. (17)] can be rewritten as:

K̇ = −DiD
iα +

1

3
αK2 + 4πGα(ρ+ 3P ) . (22)
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Now employing the relation αK̇ = −Θ̇ − α̇K, we can express the domain averaged K̇

equation as:

〈αK̇〉D = −〈Θ̇〉D − 〈α̇K〉D = −〈αDiD
iα〉D +

1

3
〈Θ2〉D + 4πG〈α2(ρ+ 3P )〉D . (23)

Using Eq. (14), we can then rewrite Eq. (23) as:

〈Θ2〉D − 〈Θ〉2
D
− ∂〈Θ〉D

∂t
= (〈α̇K〉D − 〈αDiD

iα〉D) +
1

3
〈Θ2〉D + 4πG〈α2(ρ+ 3P )〉D . (24)

The ∂〈Θ〉D/∂t term can be rewritten as:

∂〈Θ〉D

∂t
= 3

∂ (ȧD/aD)

∂t
= 3

(

äD

aD

−
(

ȧD

aD

)2
)

= 3
äD

aD

− 1

3
〈Θ〉2

D
. (25)

Plugging this expression into Eq. (24), we have:

3
äD

aD

+ SD(α) + 4πG〈α2(ρ+ 3P )〉D =
2

3

(

〈Θ2〉D − 〈Θ〉2
D

)

. (26)

Here, we denote SD(α) ≡ 〈α̇K〉D − 〈αDiD
iα〉D because it behaves like a source term. The

new term 2
3
(〈Θ2〉D − 〈Θ〉2

D
) is the kinematic backreaction term QD originally proposed by

Buchert [28, 29].

Now, we can write the modified first Friedmann equation by introducing an effective

energy density ρeff ,

H2
D

=

(

ȧD

aD

)2

=
8

3
πGρeff , with ρeff =

1

24πG
〈Θ〉2

D
. (27)

Similarly, from Eq. (26), the modified second Friedmann equation can be written by intro-

ducing an effective pressure Peff ,

äD

aD

= −4πG

3
(ρeff + 3Peff) , with Peff =

1

3
〈α2(ρ+3P )〉D+

1

12πG
SD(α)+

1

24πG
〈Θ〉2

D
− 1

18πG
〈Θ2〉D .

(28)

Here, Θ = −αK = 3(HF RW + 2φ̇/φ) and Θ2 = α2K2 = 9(HF RW + 2φ̇/φ)2, where

HF RW is the Hubble parameter defined by the unperturbed Friedmann equation, H2
F RW

=

(ȧF RW/aF RW )2 = 8
3
πGρF RW and Θ → 3HF RW in the FRW limit. We will use the correction

from ρF RW to ρeff to represent the correction from HF RW to HD in Sec. IV.
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C. Evaluating the correction terms with large-scale structure simulations

In order to connect the correction terms that we derived in Sec. IIA and IIB with presently

available large-scale structure simulation codes, we begin with the conformal Newtonian

gauge [43, 44],

ds2 = a2
F RW

(η)[−(1 + 2Φ)dη2 + (1 − 2Φ)dxidxi] . (29)

This describes a restricted class of general gauge-invariant cosmological perturbation theories

[45–48]. We then identify this as the weak-field limit of our conformally flat metric [Eq. (18)].

Here, Φ is the peculiar gravitational potential, η is the conformal time, dη = dt/aF RW (t).

Using the fact that for any given η, there is a corresponding t, we can make a mapping that

α2 → 1 + 2Φ and φ4 → 1 − 2Φ to express the metric coefficients, α and φ, in terms of Φ.

By definition, the domain averaged expansion rate HD is a constant within a local domain

at a given redshift. Utilizing this, and the expression φ̇/φ = −Φ̇/2(1 − 2Φ), HD can be

expressed as:

HD =
1

3
〈−αK〉D = 〈HF RW + 2

φ̇

φ
〉D = HF RW + 2〈 φ̇

φ
〉D = HF RW − 〈 Φ̇

1 − 2Φ
〉D . (30)

The determinant of γij in Eq. (19) now becomes, γ = a3
F RW

(t)φ6(x, t) = a3
F RW

(1 − 2Φ)
3

2 ,

and by using the definition of the domain average in Eqs. (2) and (3), HD can be further

written as:

HD = HF RW −
∫

D

Φ̇
1−2Φ

γ d3x
∫

D
γ d3x

= HF RW −
∫

D
Φ̇(1 − 2Φ)

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
. (31)

Now, HD is only dependent on HF RW and Φ. Both quantities can be easily extracted from

large-scale structure simulations. The effective energy density ρeff can be calculated as:

ρeff =
3H2

D

8πG
=

3

8πG
H2

F RW
− 3

4πG
HF RW

∫

D
Φ̇(1 − 2Φ)

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
+

3

8πG

(

∫

D
Φ̇(1 − 2Φ)

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x

)2

.

(32)

The correction to the energy density, (ρeff − ρF RW )/ρF RW , can then be expressed as:

ρeff − ρF RW

ρF RW

= − 2

HF RW

∫

D
Φ̇(1 − 2Φ)

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
+

1

H2
F RW

(

∫

D
Φ̇(1 − 2Φ)

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x

)2

. (33)

The expression for the effective pressure Peff in Eq. (28) is somewhat cumbersome. Hence,

we will analyze it term by term. Since for the current application, we only need to deal with
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a universe dominated by nonrelativistic matter, we can take the matter pressure P to be

negligible. The first term in the expression of Peff in Eq. (28) can then be written as:

1

3
〈α2(ρ+ 3P )〉D =

1

3

∫

D
ρ(1 + 2Φ)(1 − 2Φ)

3

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
. (34)

If we define the density fluctuation as δρ ≡ ρ− ρF RW and use the fact ρF RW = 3H2
F RW

/8πG,

we have:

1

3
〈α2(ρ+3P )〉D =

1

8πG
H2

F RW
+

1

4πG
H2

F RW

∫

D
Φ(1 − 2Φ)

3

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
+

1

3

∫

D
δρ(1 − 4Φ2)(1 − 2Φ)

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
.

(35)

For the second term, we have α̇ = Φ̇/(1 + 2Φ)
1

2 , and DiD
iα = γijDiDjα = 3(a2

F RW
(1 −

2Φ))−1∇2(1 + 2Φ)
1

2 . The entire second term can then be written as:

1

12πG
SD(α) = − 1

4πG

(

〈 Φ̇

1 + 2Φ
(HF RW − Φ̇

1 − 2Φ
)〉D + 〈(1 + 2Φ)

1

2

∇2(1 + 2Φ)
1

2

a2
F RW

(1 − 2Φ)
〉D

)

= − 1

4πG

1
∫

D
(1 − 2Φ)

3

2 d3x

(

∫

D

Φ̇

1 + 2Φ
(HF RW − Φ̇

1 − 2Φ
)(1 − 2Φ)

3

2 d3x

+

∫

D

(1 − 4Φ2)
1

2a−2
F RW

∇2(1 + 2Φ)
1

2 d3x

)

. (36)

Using the fact that Φ ≪ 1 (or Φ/c2 ≪ 1, if we explicitly denote the value of “c”) in the

weak-field limit and the cosmic Poisson equation:

∇2Φ = 4πGa2
F RW

δρ , (37)

we deduce that a−2
F RW

∇2(1 + 2Φ)
1

2 = 4πGδρ. So the second term can be further written as:

1

12πG
SD(α) = − 1

4πG
HF RW

∫

D

Φ̇
1+2Φ

(1 − 2Φ)
3

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
+

1

4πG

∫

D

Φ̇2

1+2Φ
(1 − 2Φ)

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
−
∫

D
δρ(1 − 4Φ2)

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
.

(38)

The third term is simply the ρeff . The fourth term can be written as:

− 1

18πG
〈Θ2〉D = − 1

2πG

∫

D
(HF RW − Φ̇

1−2Φ
)2(1 − 2Φ)

3

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x

= − 1

2πG
H2

F RW
+

1

πG
HF RW

∫

D
Φ̇(1 − 2Φ)

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
− 1

2πG

∫

D

Φ̇2

(1−2Φ)
1

2

d3x
∫

D
(1 − 2Φ)

3

2 d3x
.(39)
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The effective pressure Peff can now be summarized as:

Peff =
1

4πG
H2

F RW

∫

D
Φ(1 − 2Φ)

3

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
+

1

πG
HF RW

∫

D
Φ̇Φ(1 − 2Φ)

1

2 (1 + 2Φ)−1 d3x
∫

D
(1 − 2Φ)

3

2 d3x

+
1

3

∫

D
δρ(1 − 4Φ2)(1 − 2Φ)

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
−
∫

D
δρ(1 − 4Φ2)

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x

− 1

4πG

∫

D
Φ̇2(1 + 6Φ)(1 + 2Φ)−1(1 − 2Φ)−

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x
+

3

8πG

(

∫

D
Φ̇(1 − 2Φ)

1

2 d3x
∫

D
(1 − 2Φ)

3

2 d3x

)2

.(40)

The equation of state parameter of the effective dark energy like term can be defined as

weff = Peff/(ρeff − ρF RW ).

III. DETAILS OF THE NUMERICAL SIMULATION

In the present work, our goal is to estimate the magnitude of the deduced correction

terms. To achieve this, we do a straightforward large-scale structure simulation in a standard

FRW cosmology and post-process the simulation data to evaluate the correction terms at

each given redshift. In subsequent works, we will evolve the simulation with the modified

equations of motion in real time and evaluate the resulting cumulative effect.

The code we have adopted for the present numerical simulation is the N-body SPH code

GADGET which was originally developed by Springel et al. [49]. The most current publicly

available version, Gadget-2 [50], is used for all of the simulations described in this paper.

We set up the initial condition for the simulation as follows: First, the initial linear matter

power spectrum for one specific set of cosmological parameters is generated by standard CMB

codes such as CMBFAST [51]; We then use the associated power spectrum to generate a

Gaussian random field with the Zel’dovich approximation [52] utilizing such generator codes

as the Grafic [53] packages and the IC [54] package; Finally, the file is converted into the

Gadget-2 format to start the simulation within a periodic comoving box. Some authors

[31, 55–57] have argued that the application of a periodic boundary condition in numerical

simulations is equivalent to forcing a standard FRW cosmology and thus eliminates any

proposed corrections. However, for the tree algorithm in the Gadget-2 simulation [49, 50,

58, 59] and the size of our domain, this is not necessarily the case as discussed below.

In order to calculate the new domain averaged terms, ρeff , Peff and weff , as derived in Sec.

II, we utilize the Gadget-2 output of particle masses and positions at each time slice. For
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the domain averaging procedure, we first divide the whole domain, i.e. the entire simulation

box, into a fine spatial grid of size Ld. We then use a Cloud-in-Cell (CIC) [60] method

to assign the matter density ρ to each zone within the grid. Finally, we use the cosmic

Poisson equation [Eq. (37)] with the method of Successive Over Relaxation (SOR) [61] to

calculate the peculiar gravitational potential Φ for each zone. We note that the application

of a periodic boundary condition in the simulation implies that the solution to Eq. (37) for

the whole grid is only unique up to an arbitrary constant, this is adequate for evolving the

equation of motions because they only involve the gradient of Φ. However, this periodic

boundary condition approach does not determine the value of Φ uniquely as is needed to

calculate the correction terms. Hence, we use a fixed comoving boundary assuming that

outside of the simulation box, the matter density is exactly ρF RW . In this way, Φ is uniquely

determined by the matter density distribution within the simulation only. Once ρ and Φ are

obtained in this way, the domain averaged quantities defined in Sec. II can be calculated.

The physical implication of this procedure is that by reducing the smoothing length from the

Hubble scale to the resolution limit of the simulation, we can effectively evaluate the effect of

the local inhomogeneities on the global cosmic expansion rate, which is always neglected in

the standard FRW cosmology. This is the procedure that was proposed by Ellis [14, 16] and

by Ellis and Stoeger [15]. The accuracy of this approach is limited, however, by the number

of particles in the simulation and the resolution of the spatial grid. In the next section, we

examine the dependence of the effect on the size, resolution and number of particles in the

simulation. We show that a converged result can be obtained.

IV. RESULTS

As an illustration, Fig. 1 shows the matter power spectrum for three different cosmologies

as labeled from our simulations at redshift z=0. On small scales, the simulations involve

substantial nonlinear growth of structures that a linear theory cannot predict accurately.

Fig. 2 shows the growth of the peculiar gravitational potential Φ during the structure

formation epoch at three different redshifts in a flat, Ωm = 1 cosmology simulation. In all of

these simulations, the upper limit of the absolute value of the metric perturbations, Φ/c2,

is about 10−3 and the upper limit of the magnitude of the peculiar velocities is about 104

km/s (v/c ≤ 0.03). Hence, the simulations indeed stay within the weak-field, slow-motion
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regime as assumed in the derivation in Sec. II.
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FIG. 1: Matter power spectrum for three different cosmologies from both a linear theory and

simulations.

Next, we study the proposed correction terms in detail using simulations in a flat, Ωm = 1,

matter-dominated cosmology. Table I lists the various box sizes and numbers of particles

we used for this special case.

TABLE I: List of the parameters of the simulations

Parameter I II III IV V VI VII VIII IX

Box size (Mpc/h) L 100 100 200 200 400 400 800 800 1600

Number of particles Np 1283 2563 1283 2563 1283 2563 2563 5123 2563

Since the proposed correction terms arise from the domain averaging procedure, we wish

to investigate their dependence on the smoothing length Ld, which is the individual zone size

of the grid.† Figs. 3 and 4 plot the correction to the energy density (ρeff − ρF RW )/ρF RW and

the effective equation of state parameter weff as a function of Ld at the current epoch. We

have considered a set of Ld values equal to the simulation box size L divided by the powers

of two, i.e. Ld = L,L/2, L/4, . . .. We can see from Fig. 3 that when Ld is comparable to

the box size L, i.e. Ld = L,L/2, the correction to the energy density is essentially negligible

and we recover a standard FRW cosmology. This is because the local inhomogeneities in

† Note that Ld is not the size of the whole domain, it is the smoothing length as described in [14–16].
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FIG. 2: The growth of the peculiar gravitational potential Φ from redshift z = 9 to z = 0 on a

comoving spatial slice in the X-Y plane in a three dimensional simulation. The value of Φ/c2 is

drawn along the Z axis as indicated at the bottom of the figure.

the individual zones are effectively smoothed out just as in the case when one simply uses

the averaged energy density in a FRW cosmology. When Ld further decreases from L/4, one

can clearly see that the correction quickly grows and then converges to a negative value at

about the 10−5 level.

This can be explained by examining Eq. (33) for (ρeff − ρF RW )/ρF RW . It is obvious that

the second term in this expression is always positive and because our simulations are in

the weak-field, slow-motion regime. The magnitude of the second term is much smaller

than that of the first term because it is second order, i.e. Φ̇2. The sign of the first term
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is determined by the nature of the dominant volume weighted regions in the domain, i.e.

collapsing overdense regions or expanding underdense regions. From Eq. (37), one can see

that collapsing or expanding regions have negative or positive Φ̇ terms, respectively. This

leads to a positive or negative first term. From Fig. 3, the simulation results clearly indicate

that the expanding underdense regions are the dominant volume weighted regions. This also

explains why the correction remains invariant as Ld further decreases. This is because once

the resolution of the grid is fine enough to resolve the dominant regions, better resolution

only slightly improves the accuracy of the correction. From Fig. 3 we can also find that the

correction is nearly independent of the number of particles in the simulations. This is due

to the way the matter density is distributed on the grid as described in Sec. III.

The magnitude of the correction grows with the size of the simulation box. This is

because simulations with larger box sizes have less restriction on the nonlinear growth of

structures from a FRW cosmology boundary and thus include larger structures. It is clearly

shown in Fig. 3 that the magnitude of the correction asymptotically converges to a value

that is roughly represented by simulations with box sizes of 800 and 1600 Mpc/h. The most

realistic asymptotic value is −5.6×10−5 at the best resolution of the grid in the simulations.

For the equation of state parameter weff , we only plot the results with Ld ≤ L/4 in Fig. 4

because both Peff and ρeff − ρF RW are close to zero for Ld = L,L/2, so that large numerical

errors are introduced into the calculated weff on these scales. It is shown in Fig. 4 that

weff is always negative and has a magnitude of a few tenths for the plotted Ld values. It

decreases as Ld decreases. For different simulations, weff increases with the box size and is

almost independent of the number of particles in the simulations. Again, it asymptotically

converges to a value given in the 800 and 1600 Mpc/h simulations. The most realistic

value is about -0.24. Note that weff is negative because ρeff is less than ρF RW , while Peff

is always positive. A cosmic acceleration requires a negative Peff . Therefore, even though

weff < 0, no cosmic acceleration results. The sign of weff and Peff can be explained by

analyzing the expression for Peff , Eq. (40). Because our simulations are in the weak-field,

slow-motion regime, all of the second order terms, e.g. Φ2, Φ̇2 and ΦΦ̇, are much smaller

than the first order terms. Hence, the first and third terms in the expression of Peff are the

dominant terms. Since the expanding underdense regions are the dominant regions in all of

our simulations, the first term is positive. The third term is also positive. This is because

the collapsing overdense regions’ densities are always weighted more than the underdense
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ones due to the (1 − 2Φ)
1

2 factor no matter whether they are the dominant regions or not

as long as 1− 4Φ2 > 0. Therefore the effective pressure Peff is always positive. However, we

will discuss one possible scenario in which one can have a large negative pressure term in

Sec. V.
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FIG. 3: Correction to the energy density, (ρeff −ρF RW )/ρF RW as a function of the smoothing length

Ld for various box sizes and numbers of particles. Note the convergence for the largest box sizes.
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As an illustration of the time evolution of the correction terms, Figs. 5 and 6 show

(ρeff −ρF RW )/ρF RW and weff , respectively, as a function of redshift z with Ld = 3.125 Mpc/h.

From Fig. 5, we can see that for all of the simulations, the correction to the energy density

(ρeff −ρF RW )/ρF RW grows from a negligible value at a redshift z ∼ 40 to a negative 10−5 level

at the current epoch. The raw data show that it grows by about five orders of magnitude

during this process. Starting from a redshift z ∼ 2, its magnitude quickly increases to the
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current level. The fact that it grows significantly during the structure formation process

suggests it is the structure formation that leads to the correction to the energy density. In

fact, this happens just as the dark energy becomes the dominant energy form in the universe.

This coincidence allows the possibility that there may yet be a possible connection between

structure formation and the emergence of the dark energy. As before, the results represented

by the simulations with box sizes of 800 and 1600 Mpc/h are the most realistic values.

Fig. 6 shows that weff is always negative and its magnitude grows gradually from a redshift

z ∼ 40 to the current epoch in all of the simulations. The apparent deviations, especially

for the L = 1600 Mpc/h simulation, at high redshifts are due to the fact that both Peff

and ρeff − ρF RW are very small at those redshifts and our simulations only have a limited

number of particles and limited resolution, thus, some numerical errors are introduced into

the values of weff . This is not the case at low redshifts. For this reason and the trend we

discussed before, we believe the result from the 800 Mpc/h with 5123 particles simulation is

closest to the true value of weff .
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FIG. 5: (ρeff−ρF RW )/ρF RW as a function of redshift z for various box sizes and numbers of particles.

Note the convergence for the largest box sizes.

From the results we have presented in this section, we conclude that: 1) Numerical

simulations can be used to calculate the proposed effect despite previous claims to the

contrary [31, 55–57]; 2) The correction to the energy density is negative and its magnitude

is slightly larger than the previously claimed [37, 38] 10−5 level at the current epoch. It

grows by about five orders of magnitude along with the structure formation process; 3) The

effective pressure is always positive and its magnitude is roughly at the same order as that of

ρeff − ρF RW . Hence, the effective equation of state parameter is negative and its magnitude
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FIG. 6: weff as a function of redshift z for various box sizes and numbers of particles. Note the

convergence for the largest box sizes.

is about -0.2 to -0.3; and 4) The proposed correction terms in the weak-field, slow-motion

limit are not able to drive the current cosmic acceleration for the simple reason that its

magnitude is too small and the effective pressure is always positive.

V. SUMMARY

We have used the ADM formalism to develop a practical scheme to calculate the proposed

domain averaging effect in an inhomogeneous cosmology within the context of numerical

large-scale structure simulations. We find that in the weak-field, slow-motion limit, the

proposed effect implies a small correction to the global expansion rate of the universe.

Under this limit, our simulations are always dominated by the expanding underdense regions,

hence the correction to the energy density is negative and the effective pressure is positive.

However, whether this is still the case when strong-field gravity is included in a more general

scenario needs to be further investigated. At least in the current investigation, the proposed

effect cannot be the source of the current cosmic acceleration. We have done our analysis

on each given redshift in standard FRW cosmology simulations, whether the cumulative

effect can significantly change the expansion history of the universe remains to be further

studied. Nevertheless, the fact that this effect just begins to grow during the structure

forming era allows the possibility that the development of the cosmic structure may have

played a non-negligible role on the global dynamics of the universe.

We wish to point out that one possible scenario exists in which one could have a large
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negative correction to the energy density and a large negative pressure. This occurs when

the underdense regions are the overwhelmingly dominant regions and they expand very fast

during the cosmic evolution. In this scenario, the second order terms in the expression of the

effective pressure become the dominant terms and they can induce a large negative pressure.

We have verified this prediction in simple toy models. Whether this can happen in a realistic

cosmological model needs to be investigated with strong-field gravity and full GR. If this

is the case, the proposed GR correction in an inhomogeneous cosmology model may yet be

found to serve as one possible source of the current cosmic acceleration. Also, for a simple

collapsing overdense region in a FRW cosmology box, we find both the correction to the

energy density and the effective pressure are positive. In this scenario, the cosmic expansion

is effectively slowed. From these two cases, it is suggested that the effect of the proposed GR

correction on the local expansion rate behaves like a positive “feedback” on the structure

formation. This aspect needs to be studied with a more realistic model and probably large-

scale structure surveys. Unlike the conformal Newtonian gauge, the conformally flat model

that we utilized in this paper can be applied to models beyond the weak-field, slow-motion

limit. In future work, we will use this metric to investigate some of these aspects.
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