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We derive accurate semi-analytic formulae for the power spectra of two-field inflation assuming
an arbitrary potential and arbitrary non-canonical kinetic terms, and we use them both to build
phenomenological intuition and to constrain classes of two-field models using WMAP data. Using
covariant formalism, we first develop a framework for understanding the background field kinematics
and introduce a “slow-turn” approximation. Next, we find covariant expressions for the evolution of
the adiabatic/curvature and entropy/isocurvature modes, and we discuss how the evolution of modes
can be inferred directly from the background kinematics and the geometry of the field manifold.
From these expressions, we derive semi-analytic formulae for the curvature, isocurvature, and cross
spectra, and the standard spectral observables, all to second-order in the slow-roll and slow-turn
approximations. In tandem, we show how our covariant formalism provides useful intuition into how
the general features of the inflationary Lagrangian translate into distinct features in the observable
power spectra. In particular, we find that key features of the power spectra can be directly read
off from the nature of the roll path, the curve the field vector rolls along with respect to the two-
dimensional field manifold. For example, models whose roll path makes a sharp turn around 60
e-foldings before the end of inflation tend to be ruled out because they produce stronger departures
from scale invariance than are allowed by the latest CMB observations. Finally, we apply our
formalism to confront four classes of two-field models with WMAP data, including doubly quadratic
and quartic potentials and non-standard kinetic terms, showing how whether a model is ruled out
or not depends not only on certain features of the inflationary Lagrangian, but also on the initial
conditions. Ultimately, for a two-field model to be consistent with observations, we show that it
must possess the right balance of certain kinematical and dynamical behaviors, which we reduce to
a set of functions that represent the main characteristics of any two-field model of inflation.

I. INTRODUCTION

Cosmic inflation is currently the leading model for
generating the primordial density perturbations that
seeded structure formation. According to the inflation-
ary paradigm, our universe experienced an early period of
accelerated expansion, which solved the horizon, flatness,
and relic problems (see, e.g., [1–5]). The accelerated ex-
pansion also stretched quantum fluctuations beyond the
causal horizon, freezing them in. Over time, these per-
turbations were gravitationally amplified, eventually ini-
tiating the formation of galaxies and large-scale structure
[6–11].

In the simplest models, inflation is driven by a sin-
gle, slow-varying scalar field whose potential serves as
an effective cosmological constant. However, there are
good reasons to believe that inflation might have been
driven by more than one field. First, many theories be-
yond the standard model of particle physics—such as
string theory, grand unified theories, supersymmetry, and
supergravity—involve multiple scalar fields. Second, in-
troducing one or more fields may provide attractive fea-
tures. For example, hybrid models of inflation involving
two scalar fields are able to achieve sufficient inflationary
expansion and match the observed power spectrum of
density fluctuations, while possessing more natural val-
ues for their coupling constants and occurring at sub-
Planckian field values [12–14].

Despite the attractiveness of multi-field inflationary
models, the task of analyzing them and comparing them

against observations is considerably more complicated
than the single-field case. First of all, when there are
two or more fields, perturbations in the relative contribu-
tions to the energy density (entropy/isocurvature pertur-
bations) are possible, in addition to perturbations in the
total energy density (adiabatic/curvature perturbations)
[15, 16]. These isocurvature perturbations can source
the curvature perturbations, causing them to evolve on
super-horizon scales [15, 17–19], which complicates the
calculation of the density power spectrum. Moreover, the
isocurvature perturbations themselves give rise to their
own power spectrum and potentially also a correlated
cross spectrum, as was first recognized by [20]. Finally,
multi-field models are accompanied by an uncountable
number of initial conditions. Since initial conditions may
affect the power spectra (e.g., [21, 22]), this complicates
testing multi-field models against observational data.

It is therefore important to develop a complete frame-
work that takes these issues into account and that can
be used to test multi-field models of inflation against ob-
servations. In this paper, we focus on developing a the-
oretical framework to intuitively understand and to test
two-field models of inflation with non-canonical kinetic
terms. Pioneering work enabling the calculation of the
power spectra for general multi-field inflation was done
in [15, 21, 23–34].1 For two-field inflation, a myriad spe-

1 An interesting complementary approach, which avoids discussing
an inflaton potential at all, is to treat inflation as an effective field
theory [59].
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cific models have been investigated in the literature, e.g.,
[20, 35–58]. For the general case of two-field inflation, an
approximate solution for the metric perturbations was
found to lowest-order in the slow-roll approximation in
[60]. Later, evolution equations for the adiabatic and en-
tropy perturbations were found for models with canon-
ical kinetic terms [61] and for models with certain non-
canonical kinetic terms [62]. The complete set of curva-
ture, isocurvature, and cross spectra were first estimated
for canonical kinetic terms by [63] and for some particu-
lar non-canonical kinetic terms by [64] (and was later ex-
tended to include second-order terms by [65]). However,
these analytical results were all derived under the as-
sumption that the slow-roll parameters and the effective
entropy mass are approximately constant in the super-
horizon limit. In exploring double inflation, Tsujikawa
et al. (2003) [66] questioned this assumption by numeri-
cally illustrating that this assumption often did not hold
for their specific inflationary model. Indeed, Lalak et

al. (2007) [65] reported similar problems with inaccu-
racies when comparing these analytical estimates to nu-
merical integration of the full equations of motion, which
they used to follow the evolution of the power spectra
to high accuracy. Not using this assumption, a general
formalism for parameterizing the evolution of adiabatic
and entropy modes was developed in terms of a transfer
matrix by [67]. This formalism was used to estimate the
power spectra in the slow-roll limit in the case of canon-
ical kinetic terms to first-order in slow-roll in [68] and to
second-order in [69]. Also of note, there have been more
in-depth investigations of the evolution of and the cross-
correlations between curvature and isocurvature modes
around horizon-crossing for general models with canoni-
cal kinetic terms [70] and for models with extremely gen-
eral Lagrangians in which the entropy modes are not even
assumed to propagate at the speed of light [34, 71].

In the first half of this paper (Section II), we build
on these past results by deriving covariant expressions
valid to second-order in the slow-roll and slow-turn lim-
its for the unperturbed and perturbed fields; for the
curvature, isocurvature, and cross spectra; and for the
associated spectral observables, in the case of an ar-
bitrary inflationary potential with completely arbitrary
non-canonical terms. In doing so, we extend the work
done by [62, 64, 65], which assumes a particular form for
the non-canonical kinetic terms, and we improve substan-
tially on analytic estimates that assume that the slow-roll
parameters and effective entropy mass can be treated as
approximately constant in the super-horizon limit [63–
65]. We also provide new intuition into two-field models,
explaining in detail how the general features of the evolu-
tion of modes and of the power spectra can largely be in-
ferred from the kinematics of the background field vector
and from the curvature of the field manifold. And lastly,
we reduce all two-field models to a set of just a handful
of parameters that determine all the inflationary dynam-
ics; these parameters provide a foundation for comparing
the general features of all two-field models against each

other. In the second half of this paper (Section III), we
illustrate how to apply our theoretical framework by an-
alyzing four different classes of inflationary models. For
each type of model, we test more than 10,000 different
combinations of the initial conditions and a character-
istic Lagrangian parameter in order to understand the
power spectra they produce. This paper provides the first
thorough investigation of the role of initial conditions in
determining two-field power spectra, and demonstrates
how to rigorously test and constrain two-field models of
inflation, using only minimal assumptions about the end
of inflation and reheating. Though our paper focuses on
the two-field case, many of our results are more widely
applicable, as in many multi-field models, only two fields
dominate during the last several e-folds of inflation [30].

This paper is organized as follows. In Section II A,
we present exact and approximate expressions for the
background equations of motion, develop a framework
for understanding the background kinematics, and we
introduce a new approximation that we call the “slow-
turn” approximation. In Section II B, we derive evolution
equations for the perturbations in both the given and
kinematical bases, and we find super-horizon solutions
for the adiabatic/curvature and entropic/isocurvature
modes. In tandem, we discuss how the evolution of modes
can be inferred from the background field kinematics
and the field manifold. We also explain why previous
approaches based on assuming the slow-roll parameters
and effective entropy mass are approximately constant
in the super-horizon limit often lead to substantial in-
accuracies in estimating the power spectra. Thereafter,
we find simple expressions for the power spectra, spec-
tral indices, and other observables in Section II C. We
discuss how the general features and the relative sizes of
these spectra can be inferred from the background field
kinematics and the field manifold, and we discuss when
two-field models are effectively equivalent to single-field
models. In Section III, we apply our theoretical frame-
work to four general classes of inflationary models. We
vary both the initial conditions and a characteristic pa-
rameter of the Lagrangian to understand what sorts of
kinematical behaviors, power spectra, and spectral ob-
servables each class of models can produce. We use these
results to test these models against observations. We con-
clude this paper by discussing the general implications for
constraining two-field models using observational data.

II. THEORETICAL FRAMEWORK

A. Unperturbed Equations

In Section II A 1, we present the background equations
of motion for an arbitrary two-field inflationary potential
with arbitrary non-canonical kinetic terms. To simplify
the equations, we use covariant vector notation and use
the number of e-folds, N , as our time variable. In Sec-
tion II A 2, we present a framework for understanding the
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kinematics of the background field vector. This frame-
work is very powerful, as it will later allow us to formulate
a measure of multi-field effects, to predict the behavior of
the field perturbations, and to connect the power spectra
to certain features of the inflationary Lagrangian. In Sec-
tion II A 3, we use this kinematical framework to gener-
alize the single-field slow-roll approximation to two-field
inflation, dividing it into a slow-roll approximation and
a separate “slow-turn” approximation. This new distinc-
tion is important because, as we show later, the “rolling”
and “turning” behavior of the background field vector
have different effects on the field perturbations and hence
the power spectra. We conclude Section II A 3 by present-
ing covariant first- and second-order approximations to
the background equations.

1. Background Equations

We assume the background spacetime is a flat (3+1)-
dimensional homogeneous and isotropic spacetime and is
described by the familiar Robertson-Walker metric,

ds2 = −dt2 + a(t)2
[

dx2 + dy2 + dz2
]

, (1)

where a(t) is the scale factor.
We investigate inflationary scenarios driven by two

scalar fields, φi, where i = 1, 2. We assume Einstein
gravity and that the non-gravitational part of the infla-
tionary action is of the form

S =

∫
[

−1

2
gµνGij

∂φi

∂xµ

∂φj

∂xν
− V (φ1, φ2)

]√−g d4x, (2)

where V (φ1, φ2) is the inflationary potential, gµν is the
spacetime metric, and Gij ≡ Gij(φ1, φ2) determines the
form of the kinetic terms in the Lagrangian.2 We call
Gij the field metric, and it can be viewed as inducing a
field manifold. If the kinetic terms are canonical, then
Gij = δij , and the field manifold reduces to Euclidean
space. In this paper, we allow both the field metric and
the inflationary potential to be completely arbitrary. We
refer to any specific combination of a field metric and an
inflationary potential as the inflationary Lagrangian, or
equivalently, the inflationary model.

Before we present the background equations of motion,
we introduce some notation. Since we will be taking
derivatives with respect to both the spacetime coordi-
nates and the fields, we use Greek indices to represent
quantities related to the spacetimes coordinates, xµ, and
Latin indices to represent quantities related to the fields,
φi. To denote the fields more compactly, we use boldface
vector notation, i.e.,

φ ≡ (φ1, φ2), (3)

2 We assume that the non-canonical kinetic terms can be expressed
in the form shown in equation (2). For an even more general
inflationary action, see references [34] and [71], for example.

and we call φ the field vector for short. Note that de-
spite calling φ the field vector, the fields themselves do
not transform as vectors, but rather they represent co-
ordinates on the field manifold. For true vectorial quan-
tities lying in the tangent and co-tangent bundles of the
field manifold, we also use boldface vector notation. In
addition, we use standard inner product notation. The
inner product of two vectors A and B is

A†B ≡ A · B ≡ GijA
iBj , (4)

and the norm of a vector A is

|A| ≡
√

A†A, (5)

where we use the symbol † on a naturally contravariant

or covariant vector to denote its dual, e.g., φ̇
† ≡ (Gij φ̇

j)

and ∇
† ≡ (Gij∇j). We use this set of vector notation

both for compactness and so that the background equa-
tions presented here can be applied to an arbitrary num-
ber of fields.

Now we summarize the key background equations for
multi-field inflation with a non-trivial field metric [21, 25,
28, 30]. The background density and pressure are found
by varying the action in equation (2) with respect to the
spacetime metric, which gives

ρ =
1

2
|φ̇|2 + V, P =

1

2
|φ̇|2 − V. (6)

The familiar Friedmann equation describing the evolu-
tion of the scale factor is derived from the (0, 0) compo-
nent of Einstein’s equations, which yields

H2 =
ρ

3
=

1

3

(

1

2
|φ̇|2 + V

)

, (7)

where H ≡ ȧ
a is the Hubble parameter and where the re-

duced Planck mass, m̄ ≡ mP l√
8π

, has been set equal to one.

The equation of motion for the field vector is obtained by
imposing zeroth-order covariant conservation of energy,

ρ̇+ 3H(ρ+ P ) = 0. (8)

Substituting equation (6) into equation (8) gives

Dφ̇

dt
+ 3Hφ̇ + ∇

†V = 0, (9)

where D acting on a contravariant vector X i means

DX i ≡ ∇jX
i dφj = dX i + Γi

jkX
kdφj , (10)

where Γi
jk and ∇j are the Levi-Civita connection and

the covariant derivative, respectively, associated with the

field metric. Dφ̇
dt represents the covariant rate of change

of the field velocity vector with respect to the field man-
ifold, but we call it the acceleration of the field vector
for short. In this paper, we use D and the covariant
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derivative ∇ to make the equations of motion simpler
and manifestly covariant with respect to the field metric.

From here forward, we depart from the standard ap-
proach of working in terms of the comoving time, t. In-
stead, we work in terms of the dimensionless parameter
N , which represents the logarithmic growth of the scale
factor and is related to t by

dN ≡ d ln a = H dt. (11)

Sasaki and Tanaka [26] were the first to repeatedly use
N as the time variable in their equations of motion and
to recognize its advantages. Our three primary reasons
for using N are

1. Because N represents the number of e-foldings of
the scale factor, it is more directly linked to observ-
ables;

2. It simplifies both the background and perturbed
equations of motion; and

3. It makes the equations of motion dimensionless
(since φ is expressed in units ofm) and hence makes
it easier to compare the relative sizes of various
terms and parameters in the theory.

These three advantages make it easier to extract physical
meaning from the equations of motion. In working in
terms of N , we use the short-hand notation

′ ≡ d

dN
(12)

to represent differentiation with respect to N .
We now re-cast the set of background equations for

multi-field inflation using the time variable N . Using
equation (11), the Friedmann equation (7) is written in
our notation as

H2 =
V

(

3 − 1
2 |φ

′|2
) . (13)

To re-cast equation (9) in terms ofN , we change variables
and use equation (13), obtaining

Dφ′

dN
+ (3 + (lnH)′)φ′ +

(

3 − 1

2
|φ′|2

)

∇
† lnV = 0.

(14)

To further simplify these two equations of motion, we
introduce the canonical slow-roll parameter ǫ, defined as

ǫ ≡ − Ḣ

H2
= −(lnH)′, (15)

which represents how much the inflationary expansion
deviates from perfect exponential growth. Combining the
logarithmic derivative of equation (13) and equation (14)
yields [26]

ǫ =
1

2
|φ′|2. (16)

Therefore, the parameter ǫ can also be interpreted simply
in terms of the dimensionless speed of the field vector:

v ≡ |φ′| =
√

2ǫ. (17)

Substituting this result into equation (13), the Fried-
mann equation reduces to [28]

H2 =
V

(3 − ǫ)
. (18)

Similarly, equation (14) simplifies to

η

(3 − ǫ)
+ φ′ + ∇

† lnV = 0, (19)

where η represents the covariant acceleration of the field
vector and is defined as

η ≡ Dφ′

dN
. (20)

We use the symbol η in analogy to Nibbelink and Van

Tent’s [28] multi-field slow-roll vector η(2) ≡ Dφ̇/dt

H|φ̇| ,

which was inspired by the standard single-field slow-roll

parameter η ≡
d2V

dφ2

V ≈ −
(

φ̈

Hφ̇
− ǫ
)

.

Note that in equation (19), the field metric appears
both in the first term through the Levi-Civita connection
and in the third term to raise the index of the covariant
gradient operator. Therefore, the two background fields
in φ can be coupled through the field metric if it is non-
trivial, as well as through the gradient of lnV .

Equation (19) (along with equation (16)) governs the
evolution of the fields. To solve this equation, the final
ingredient we need is a particular choice of initial condi-
tions for φ and φ′. In two-field inflation, each potential
choice of initial conditions corresponds to a different posi-
tion and roll direction in the two-dimensional field space.
That is, we can view the inflationary Lagrangian as spec-
ifying all possible trajectories and the initial conditions
as picking one particular trajectory to follow.

The result of this extra field degree of freedom is that
the role of initial conditions in two-field inflation is more
complicated than in the single-field case. First, the land-
scape of inflationary dynamics that can arise from two
fields is potentially much richer and more complex. Sec-
ond, there is an uncountable number of initial conditions
and hence trajectories corresponding to each inflationary
Lagrangian. As a result, it is possible for two very simi-
lar sets of initial conditions to give rise to very different
inflationary dynamics. Fortunately, in some inflationary
models, attractor solutions may make the inflationary dy-
namics essentially independent of the initial conditions.
However, in other models, we must be wary that the infla-
tionary dynamics—and hence observables like the power
spectra—may be very sensitive to the initial conditions.
Looking ahead, this means that it is often not sufficient
to test the viability of a two-field inflationary model using
only one or a handful of initial conditions. We mention
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these complications now because it is important to con-
sider them when finding the background solution(s) to
the equations of motion. Later, in Section III of this pa-
per, we discuss the ramifications of these complications,
and we illustrate for the first time how to incorporate suf-
ficient consideration of initial conditions into constrain-
ing two-field models of inflation.

Finally, the above equations and considerations apply
to finding the background solution for any two-field or
indeed any multi-field model of inflation.

2. Background Field Kinematics

In this section, we present a framework for understand-
ing the background field kinematics. Such a framework
will be useful for understanding and classifying the kine-
matics of a wide variety of two-field inflationary models.
It also helps provide a direct link between the inflation-
ary Lagrangian and the inflationary dynamics. Moreover,
there are other important benefits of such a framework.

1. It allows us to appreciate the separate impacts of
different kinematical quantities on key observables.
In the past, these quantities were lumped together
and assumed to be small under the standard two-
field slow-roll approximation, hence their separate
effects had not been fully explored.

2. It allows us to infer how the field perturbations
evolve and to predict general features in the power
spectra, as we show later in this paper.

3. It helps us to work backwards to determine what
features an inflationary model needs to have in or-
der to be consistent with observational data.

In multi-field inflation, we find that the three primary
kinematical vectors of interest are

1. The field vector, φ;

2. The field velocity, φ′; and

3. The covariant field acceleration, η ≡ Dφ′

dN , which
was defined through equations (10) and (20).

This set of vectors has the intuitive appeal of being di-
rectly analogous to the position, velocity, and accelera-
tion vectors in Newtonian mechanics. The main differ-
ences worth emphasizing are (1) that here the fields are
to be viewed as the “position” coordinates on the field
manifold that is induced by the field metric, and (2) that
the kinematical vectors are manifestly covariant with re-
spect to the field manifold, which may have non-trivial
geometry.

For two-field models of inflation, the above set of three
vectors constitutes a set of 6 scalar quantities, with 3
scalars for each of the two given fields. Along with these
three kinematical vectors, we can associate a field ba-
sis, where the e1 basis vector points in the direction of

the first field, φ1, while the e2 basis vector points in the
direction of the second field, φ2.

Although we could consider the field kinematics in the
given field basis, there is a second basis in which it is
more useful to consider the background kinematics. This
second basis is motivated by the fact that the field per-
turbations can be decomposed into perturbations paral-
lel and perpendicular to the field trajectory, and that the
former constitute bona fide density perturbations, while
the latter do not. In this basis, the e‖ basis vector points
in the direction of the field velocity, while the e⊥ basis
vector points orthogonal to the field trajectory, in the

direction of (I−e‖e
†
‖)η, where I is the 2×2 identity ma-

trix. Because this basis is induced by the inflaton vector
kinematics, we call it the kinematical basis. This basis
has been used before in two-field inflation, initially by
[61], and was extended to multi-field inflation by [28, 30].
To denote the components of a general vector A in this
basis, we use the notation

A‖ ≡ e‖ · A, A⊥ ≡ e⊥ · A, (21)

and to denote a particular component of a general matrix
M, we use the notation

M‖⊥ ≡ e
†
‖Me⊥, etc. (22)

Let us consider our original kinematical vectors, but in
the kinematical basis. First, the field vector, φ, decom-
poses into components φ‖ and φ⊥. In this paper, we will
not need to use this decomposition of the field vector, so
we do not consider it further.3 Second, in this basis, the
field velocity points along the e‖ basis vector. Its com-

ponents in this basis are φ′ = (v, 0), where we defined v
earlier as the field speed. Lastly, there is the field accel-
eration, which decomposes into a component parallel to
the field trajectory, η‖, and a component perpendicular
to the field trajectory, η⊥.

We now collect the results of this decomposition into a
set of three scalar quantities to represent the main field
kinematics in any two-field model of inflation. The first
quantity in this trio is the field speed, v, which typi-
cally appears in the equations of motion via the quantity
ǫ = 1

2v
2; we use v and ǫ interchangeably as our first

kinematical scalar quantity. For the second quantity, we
choose the term

η‖

v = (ln v)′ because η‖ often appears

in the equations of motion in the combination
η‖

v . The

quantity
η‖

v has a physical meaning: it measures the log-
arithmic rate of change of the field speed, v, and for this
reason, we call it the speed up rate. The third quantity

3 The decomposition of the background field vector into compo-
nents φ‖ and φ⊥ can indeed be useful. For example, Nibbelink
and Van Tent [30] calculated the adiabatic part of gravitational
potential spectrum for multi-field quadratic potentials in the con-
ventional slow-roll limit and found that the particular solution
depends on φ⊥.
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Table 1. Covariant Field Vector Kinematics

Main Kinematical Vectors

Field Vector Field Velocity Field Acceleration

φ φ′ η ≡ Dφ′

dN

Main Kinematical Scalars

Field Speed Speed Up Rate Turn Rate

v
η‖
v = (ln v)′

η⊥
v =

∣

∣

∣

De‖

dN

∣

∣

∣

we include in our trio is η⊥

v , as η⊥ often appears in the
equations of motion in the combination η⊥

v . The quan-
tity η⊥

v measures how fast the field velocity is changing
direction with respect to the field manifold. We can see
this by considering the rate of change of the basis vectors:

De‖
dN

=
η⊥
v

e⊥,
De⊥
dN

= −η⊥
v

e‖. (23)

Since e‖ also represents the direction of the field trajec-
tory, this means that the quantity

∣

∣

∣

∣

De‖
dN

∣

∣

∣

∣

=
η⊥
v

(24)

tells us how quickly the field trajectory is changing di-
rection along the field manifold. We therefore call η⊥

v
the turn rate. Note that unlike the speed up rate, which
can be either positive or negative depending on whether
the field speed is increasing or decreasing, the turn rate
is always positive. One can therefore think of our three
kinematical scalars as simply representing the field speed
(v) and the rate of change of the magnitude (

η‖

v ) and
direction (η⊥

v ) of the field velocity. Our three kinemat-
ical quantities in the kinematical basis can be concisely
written as v and the vector η

v , and they are summarized
in Table 1.

Of our three kinematical scalars, the first two—the
field speed and the speed up rate—also characterize
single-field models of inflation. But the third kinemati-
cal scalar, the turn rate, is necessarily zero in single-field
inflation since the field trajectory has no ability to turn
in a one-dimensional field space. Therefore, it is the turn
rate that distinguishes between single-field and multi-
field models of inflation. Indeed, other authors have rec-
ognized that the ‘turning’ of the field trajectory is the
true marker of multi-field behavior (e.g., [3, 28, 30, 61]).
Here, we are building on this work by formalizing the
idea of a quantity that precisely describes how quickly the
background field trajectory is changing direction, and we
do so in a completely covariant manner that can be ap-
plied to any arbitrary inflationary Lagrangian, including
those with non-canonical kinetic terms.

Taking this idea one step further, we introduce a new
way of understanding the background kinematics. We

propose viewing the first two kinematical scalars—the
field speed and the speed up rate—as characterizing the
‘single-field type’ behavior of any inflationary model. We
propose using the third kinematical scalar, the turn rate,
to characterize the degree of multi-field behavior in any
inflationary model. This provides an intuitive way to
parse and analyze the kinematical behavior of any model
of inflation into parts shared in common with single-field
models of inflation and parts unique to multi-field infla-
tion. Moreover, with this understanding, we introduce a
new idea: the ratio of the speed up rate to the turn rate,
η⊥

v /
η‖

v , can be used to indicate the relative ‘proportion’
of multi-field to single-field behavior in any inflationary
scenario. That is, when η⊥

v ≪ η‖

v , the background tra-
jectory has very little curvature and hence resembles a
single-field trajectory, whereas when η⊥

v &
η‖

v , the tra-
jectory has substantial curvature with respect to the field
manifold, indicating significant multi-field behavior. We
will later show that this same ratio, η⊥

v /
η‖

v , also indicates
how much the evolution of adiabatic density modes is af-
fected by mode sourcing. Hence, the ratio of the turn
rate to speed up rate can be used to signify the relative
importance of multi-field effects for both the unperturbed
and perturbed solutions.

The full power of this kinematical framework will be-
come apparent later, when we show how it can provide
important insight into the evolution of field perturba-
tions and into the power spectra, and how it can help
us connect features of the inflationary Lagrangian to the
spectral observables.

3. Slow-roll and Slow-turn Approximations

In this section, we consider approximations to the
background equations of motion. Using the above kine-
matical framework, we generalize the single-field slow-roll
approximation to two-field inflation and introduce a new
approximation: the slow-turn approximation. At the end
of this section, we use these approximations to derive ap-
proximate expressions for the background equations.

Our natural starting point is the single-field slow-roll
approximation, which consists of two simplifying assump-
tions: (1) the potential dominates the energy density

(V ≫ φ̇2), and (2) the field acceleration is small enough

to be neglected (φ̈≪ 3Hφ̇) in the equation of motion for
the field vector (9). When both conditions are met, the
field is slowly changing or “slow-rolling” with respect to
the Hubble time. And therefore, by equations (7) and
(9), the potential must change slowly, too. Together,
these two conditions ensure that the potential serves as
an effective cosmological constant, driving nearly expo-
nential growth of the scale factor. Nearly exponential ex-
pansion in turn guarantees a nearly scale-invariant spec-
trum of adiabatic density fluctuations, in good agreement
with observational data.

To generalize the slow-roll approximation to two-field
inflation, we follow a common approach in generalizing
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the first slow-roll condition, but not in generalizing the
second condition. We generalize the first slow-roll condi-
tion as the inflationary expansion is nearly exponential,
which can be mathematically expressed as

ǫ ≡ −(lnH)′ =
1

2
v2 ≪ 1. (25)

Equation (25) shows that the field speed, our first kine-
matical scalar, must be small for the inflationary expan-
sion to be nearly exponential. Just like its single-field
counterpart, when the first slow-roll condition in equa-
tion (25) is satisfied, the potential does indeed dominate
the energy density, which is clear from equation (18).

In generalizing the second slow-roll condition, however,
we depart from the common approach of individually
constraining each of the matrix components of the Hes-
sian of V (e.g., [60, 63, 64, 68, 69]), i.e.,

∣

∣

∣

∣

∇i∇jV

V

∣

∣

∣

∣

≪ 1. (26)

We also do not follow the other common approach (e.g.,
[26, 28, 30]), which is to generalize the second slow-roll
condition as

∣

∣

∣

∣

∣

Dφ̇

dt

∣

∣

∣

∣

∣

≪ 3H |φ̇|. (27)

In our formalism, equation (27) would be equivalent to
the condition

∣

∣

∣

∣

η

3 − ǫ

∣

∣

∣

∣

≪ v. (28)

The reason why we depart from these two standard
approaches as represented by equations (26) and (28)
is because they are more stringent than the minimum
condition needed to ensure that the potential is slowly
changing. Also, they lump together and simultane-
ously constrain two different aspects of the background
kinematics—the speed up rate and the turn rate. These
two rates have very different impacts on the inflationary
dynamics. Moreover, the two rates may not necessarily
be small at the same time, and different approximations
can be made depending on whether one or both of the
two rates are small. So departing from convention, we
treat the turn rate as distinct from the speed up rate to
embrace the facts that not only the individual sizes of
the two rates matters but also their relative sizes to each
other matters.

Instead, we redefine the second slow-roll condition
more narrowly as the deviation from exponential expan-
sion is slowly changing. Using equations (15) and (16),
it can be shown that this is equivalent to requiring the
speed up rate, our second kinematical scalar, to be small,

∣

∣

∣

η‖
v

∣

∣

∣
≪ 1. (29)

Table 2. Kinematical Limits

Slow-Roll Conditions Slow-Turn Condition

(1) ǫ = 1
2v

2 ≪ 1, η⊥
v ≪ 1

(2)

∣

∣

η‖
v

∣

∣≪ 1

This less restrictive version of the second slow-roll condi-
tion in equation (29) along with equation (25) is sufficient
to guarantee that the potential is slowly changing, which
can be seen from equation (18).

As for the turn rate, our third kinematical scalar, we
instead endow it with its own separate condition and set
of approximations. If the turn rate is sufficiently small
such that

η⊥
v

≪ 1, (30)

then the field trajectory changes direction slowly, and we
say that the field vector is slowly turning or is exhibiting
slow-turn behavior.

These distinctions between slow-roll and slow-turn be-
havior are more important than they might initially ap-
pear. As we argued earlier, the field speed and speed up
rate represent single-field type behavior, while the turn
rate represents the degree of multi-field behavior. There-
fore, the importance of our alternative framework is that
we have separated the limits on single-field-type behavior
(our slow-roll conditions) from the limits on multi-field
behavior (our slow-turn condition). We later illustrate
the full benefits of this disaggregation by showing that
these two limiting cases of behavior have different impli-
cations for the evolution of perturbations and the power
spectra.

Table 2 summarizes our conditions for slow-roll and
slow-turn behavior. Since two-field models often exhibit
both slow-roll and slow-turn behavior at the same time,
we call the combined slow-roll and slow-turn limits the
SRST limit for short.

Now armed with our slow-roll and slow-turn condi-
tions, we return to the background equations to see how
they simplify in the slow-roll and slow-turn limits. We
denote the lowest-order approximation to a function f
by the notation f (1) and the next-to-lowest-order ap-
proximation by f (2), where f (2) includes both the lowest
and next-to-lowest-order terms. The Friedmann equation
(18) depends only on ǫ and not on the speed up or turn
rates. To lowest-order in the slow-roll limit, it reduces to

(H(1))2 =
1

3
V. (31)

The background field equation (19) can be re-arranged
as

φ′ + ∇
† lnV = − η

(3 − ǫ)
. (32)
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Given the slow-roll and slow-turn conditions in equations
(29) and (30), the right-hand side of equation (32) there-
fore represents deviations from the SRST limit: in the
slow-roll limit, η‖ can be neglected, while in the slow-
turn limit, η⊥ can be neglected. In the full SRST limit,
equation (32) reduces to

φ′(1) = −∇
† lnV. (33)

When the field vector is in the SRST limit, we can
find approximations for each of our three key kinemat-
ical quantities directly in terms of the potential. Start-
ing with equation (33), we find that to first-order in the
SRST limit, the field speed is

v(1) = |∇ lnV |, (34)

and hence

ǫ(1) =
1

2
|∇ lnV |2. (35)

Differentiating equation (33) gives

η(1) = −Mφ′(1) = M∇
† lnV, (36)

where we define the mass matrix, M, as

M ≡ ∇
†
∇ lnV. (37)

(As an aside, we define the mass matrix differently from
Nibbelink and Van Tent [28], who defined a mass matrix

for general multi-field inflation as M2 ≡ ∇∇
†V , because

when using N as the time variable, it is more natural
to define the mass matrix as a dimensionless quantity.)
From equation (36), to first-order in the SRST limit, the
speed up rate is

(η‖
v

)(1)

= −M (1)
‖‖ , (38)

where

M
(1)
‖‖ ≡ (e

(1)
‖ )†Me

(1)
‖ (39)

and

e
(1)
‖ = −∇

† lnV

|∇ lnV | . (40)

Similarly, the turn rate can be approximated by

(η⊥
v

)(1)

= −M (1)
‖⊥ , (41)

where M
(1)
‖⊥ is defined in analogy to M

(1)
‖‖ and where e

(1)
⊥

is orthogonal to e
(1)
‖ , in the direction that makes the

turn rate positive. These coefficients of our mass ma-
trix are related to quantities originally defined and used
by [61] and [68] for two-field inflation with canonical ki-
netic terms and by [28] for multi-field inflation with non-
canonical kinetic terms. These authors first thought to
project the Hessian of V onto the kinematical basis vec-
tors, as these quantities appear naturally in the equations
of motion for the field perturbations when working in the
kinematical basis. Nibbelink and Van Tent [28] also effec-
tively related their mass matrix back to their kinematical
parameters to first-order in the SRST limit, similarly to
what we have done above.

Let us step back and consider the full importance of
equations (34), (38), and (41). These equations show
that the gradient and the covariant Hessian of lnV pro-
vide insight into the background field kinematics: the
norm of the gradient approximates the field speed, while
the (‖, ‖) and (‖,⊥) components of the mass matrix
approximate the speed up rate and turn rate, respec-
tively. That is, from only the inflationary Lagrangian and
the field coordinates, we can estimate the background
field kinematics without solving the equations of motion.
We will later show that this very important bridge be-
tween the background kinematics and the inflationary
Lagrangian allows one to connect certain features of the
Lagrangian to certain features in the power spectra.

When more accuracy is desired, it is useful to have
next-to-lowest-order approximations for the various kine-
matical quantities. The second-order expressions for the
field velocity and acceleration can be obtained by apply-

ing the operator
[

I − 1
(3−ǫ)

D
dN

]

≈
[

I + 1
3∇

† lnV∇

]

to

the corresponding first-order expressions. This gives the
compact expressions

φ′(2) = −
[

I +
1

3
M

]

∇
† lnV,

η(2) = −
[

M +
1

3
M2 +

1

3
∇

† lnV ∇M

]

φ′(2), (42)

=

[

M +
2

3
M2 +

1

3
∇

† lnV ∇M

]

∇
† lnV.

Therefore, the second-order expressions for our kinemat-
ical quantities are
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(a) First-Order SRST Approximation
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(b) Second-Order SRST Approximation
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FIG. 1. The exact (colored lines) and approximate (black dashed lines) solutions are depicted for both the (a) first-order and
(b) second-order SRST approximations. Shown are the field trajectory and the three kinematical scalars (with ǫ used in place
of v) for six different values of the mass ratio m2

m1
for the double quadratic potential V = 1

2
m2

1φ
2
1 + 1

2
m2

2φ
2
2 with canonical

kinetic terms. The same initial conditions were assumed 60 e-folds before the end of inflation, and the x-axis for plots (ii) -
(iv) represents the number of e-folds before inflation ends. Only the trajectory corresponding to m2

m1
= 8 violates the slow-roll

and slow-turn conditions and only for less than 2 e-folds. Overall, the SRST approximation is a good approximation as long
as the gradient of ln V is not too large and is not changing rapidly in magnitude or direction.

v(2) =|∇ lnV |
[

1 +
1

3
M‖‖

]

,

ǫ(2) ≈1

2
|∇ lnV |2

[

1 +
2

3
M‖‖

]

, (43)

(η‖
v

)(2)

= −M‖‖ −
1

3
(M‖‖)

2 − 1

3
(M‖⊥)2 − 1

3
(∇† lnV∇M)‖‖,

(η⊥
v

)(2)

= −M‖⊥ − 1

3
M‖‖M‖⊥ − 1

3
M‖⊥M⊥⊥ − 1

3
(∇† lnV∇M)⊥‖,

where it is implied that the matrix components are with respect to the second-order expressions for the kinemat-
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ical basis vectors. Lastly, using equation (43), the Fried-
mann equation to next lowest-order in slow-roll is

(H(2))2 =
V

3

(

1 +
1

6
|∇ lnV |2

)

. (44)

Finally, we emphasize that although we have intro-
duced approximations for the slow-roll and slow-turn lim-
its, we will not restrict ourselves to the small subset of
inflationary models that exhibit strictly SRST behavior
up until close to the end of inflation. Indeed, some com-
mon types of two-field models can temporarily violate
the slow-roll and/or slow-turn conditions for a handful
of e-folds, only to satisfy the conditions again thereafter.
Fortunately, it turns out that we can use the slow-roll
and slow-turn approximations at first- or second-order
even when the field vector velocity is moderately large or
is changing moderately fast in magnitude or direction, as
shown in Figure 1. Therefore, we can apply either the
first- or second-order slow-roll and slow-turn approxima-
tions to a wide range of two-field inflationary scenarios.

B. Perturbed Equations

We now turn our attention to the field perturbations.
Using our formalism and working in terms of gauge-
invariant quantities defined in Section II B 1, we simplify
the standard equation for the evolution of the field per-
turbations in Section II B 2. We show that the evolution
of modes is determined by the mass matrix, M, plus typi-
cally small corrections. Thereafter, in Sections II B 3 and
II B 4, we decompose the field perturbations into adia-
batic and entropy modes, and then build on the work
of [61, 62] to derive covariant equations for the evolu-
tion of both mode types in the case of a completely ar-
bitrary field metric. We show how the evolution of these
two modes and the relative degree of mode sourcing (the
multi-field effects) can be inferred from the background
field kinematics and the curvature of the field manifold.
In addition, for the super-horizon limit, we present a
simple exact equation of motion for the adiabatic modes
and two semi-analytic approximations for the amplitude
of entropy modes. We also explain why previous ana-
lytic estimates which assume that the effective entropy
mass and kinematical quantities are approximately con-
stant in the super-horizon limit [63–65] generally produce
large errors in estimating the power spectra and hence
why a semi-analytic approach is needed. Finally, in Sec-
tion II B 5, we use these results to derive expressions for
the super-horizon evolution of the related curvature and
isocurvature modes.

1. Metric Perturbations

Since the primordial density perturbations are small,
we work to linear order in both the spacetime metric and

the scalar field perturbations. At linear order, the scalar
field perturbations decouple from the vector and tensor
metric perturbations, so we only need to consider the cou-
pling between the scalar field and metric perturbations
[18, 72]. Considering only scalar perturbations to the
metric, the most general metric for a perturbed (3+1)-
dimensional Friedmann-Robertson-Walker spacetime can
be written as [15, 18, 73]

ds2 = − (1 + 2A)dt2 + 2a(t)∂iBdx
idt

+ a2(t) [(1 − 2ψ)δij + 2∂i∂jE] dxidxj , (45)

where the functions A, B, ψ, and E completely
parametrize the set of all possible scalar metric pertur-
bations (and where here only the scripts i and j refer to
the spatial spacetime coordinates, not the fields).

To avoid the complications of working in a particu-
lar gauge, we work instead in terms of so-called gauge-
invariant quantities. Such an approach also has the ben-
efit of ensuring that we work only in terms of physical
quantities. Considering the four scalar metric perturba-
tions, two linear combinations of them represent gauge
modes, and a third is linearly related to the others since
scalar field theories produce no anisotropic stress to lin-
ear order [73]. That leaves us needing to choose a single
gauge-invariant quantity to represent the scalar metric
perturbations. The gauge-invariant quantity we use is
the Bardeen variable Ψ [18, 73], defined as

Ψ ≡ ψ + (aH) [(aH)E′ −B] , (46)

which equals the metric perturbation in the longitudinal
gauge.

To represent the field perturbations in gauge-invariant
form, we work in terms of the multi-field version of the
Mukhanov-Sasaki variable [74, 75],

δφf ≡ δφ + ψφ′, (47)

which equals the field vector perturbation in the flat
gauge. This choice has a very important benefit: it de-
couples the field perturbations from the metric perturba-
tion (but not vice versa), eliminating the need to solve
a coupled set of field and metric perturbation equations.
Because of this and the fact that we will work in terms of
the power spectra of the scalar field perturbations rather
than of the metric perturbations, we will not have to con-
sider Ψ any further. Therefore, in the remainder of this
section, we consider only the field perturbations.

2. The Field Perturbation Equation

For multi-field inflation, the evolution equation for the
field perturbations can be found by perturbing the equa-
tion of motion for the background fields (see, e.g., [25]).
The standard result in Fourier space [25] is expanded as
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D2δφf

dt2
+ 3H

Dδφf

dt
+

(

k

a

)2

δφf = −
[

∇
†
∇V −

(

3 − Ḣ

H2

)

φ̇φ̇
† − 1

H

Dφ̇

dt
φ̇

† − 1

H
φ̇
Dφ̇

†

dt
− R(φ̇, φ̇)

]

δφf , (48)

where k is the comoving wavenumber and the matrix
R(φ̇, φ̇) is defined as [28]

Ra
d(φ̇, φ̇) ≡ Ra

bcdφ̇
bφ̇c, (49)

where Ra
bcd is the Riemann curvature tensor associated

with the field metric. To simplify equation (48), we
change variables using equation (11), use equation (15),
and substitute equation (19) for each instance of φ′.
Also, we simplify the matrix R(φ̇, φ̇) using the Bianchi
identities, which for a general two-dimensional metric
yield

Rabcd =
1

2
R(GacGbd −GadGbc), (50)

where R is the Ricci scalar, which equals twice the Gaus-
sian curvature, or equivalently, the product of the two
principle curvatures of the field manifold. Substituting
equation (50) into equation (49) and using equation (16)
gives

R(φ̇, φ̇) =
1

2
H2R

(

φ′φ′† − 2ǫI
)

= −ǫH2R e⊥e
†
⊥, (51)

where in the last step, we used the completeness relation
for our kinematical basis vectors. Finally, after substitut-
ing equation (51) into equation (48) and using equation
(18), we find

1

(3 − ǫ)

D2δφf

dN2
+
Dδφf

dN
+

(

k2

a2V

)

δφf

= −
[

M̃ +
ηη†

(3 − ǫ)2

]

δφf , (52)

where the effective mass matrix,4 M̃, is defined as

M̃ ≡ M +
1

(3 − ǫ)
ǫRe⊥e

†
⊥. (53)

The beauty of this more compact version of the field per-
turbation equation is that it reveals the mode evolution
is determined primarily by the mass matrix, plus correc-
tions arising from the curvature of the field manifold5 and
usually negligible corrections from the field acceleration.

4 For comparison, Nibbelink and Van Tent defined an effective
mass matrix as M̃2 ≡ ∇∇†V − R(φ̇, φ̇) [30].

5 We make the typical assumption that the curvature of the field
manifold is not too large. More specifically, we assume |R| . 1
and therefore that ǫ|R| ≪ 1 in the slow-roll limit.

We can show that these corrections are typically small
by working in the kinematical basis. First, note that con-
tracting e‖ with the terms in brackets on the right-hand
side of equation (52) and using the lowest-order SRST ap-
proximation in equation (36) for the uncontracted vector
η yields

[

M +
ηη†

(3 − ǫ)2

]

e‖ ≈
[

1 − 2ǫ(1)

9

(η‖
v

)

]

Me
(1)
‖ ≈ Me

(1)
‖ ,

(54)

where in the final step, we ignored the second term in
brackets because it is suppressed by two SRST terms: ǫ
times the speed up rate.

Second, consider the (⊥,⊥) components of the same
terms in brackets on the right-hand side of equation (52).
The term involving the field acceleration will be much
smaller than M⊥⊥ as long as the background field vector
is not turning rapidly. Rewriting this term as

(

η⊥
3 − ǫ

)2

= M⊥⊥

[

1

(3 − ǫ)2

(

2ǫ

M⊥⊥

)

(η⊥
v

)2
]

, (55)

we can see that if ǫ is no more than an order of mag-
nitude greater than M⊥⊥,6 then this term can be ne-
glected as long as the field vector is not turning very
rapidly. But this result also holds even in those cases
where M⊥⊥ ≪ ǫ≪ 1, as in such two-field scenarios, this
means that the second field has a negligible effect on the
background field dynamics and hence the turn rate is mi-
nuscule, i.e., η⊥

v ≪ 1. A more direct argument follows
from the fact that in the conventional slow-roll approxi-

mation, M⊥⊥ ≫ (∇ lnV e⊥)2 =
(

η⊥

3−ǫ

)2

, where the last

equality follows from projecting equation (19) onto e⊥.
Combining these observations, we can conclude that

the term ηη†

(3−ǫ)2 is effectively suppressed by two SRST

parameters relative to M̃. Therefore, in the SRST limit,
the perturbed equation of motion can be approximated
by

1

(3 − ǫ)

D2δφf

dN2
+
Dδφf

dN
+

(

k2

a2V

)

δφf ≈ −M̃ δφf ,

(56)

6 In [30], it was effectively assumed that M⊥⊥ is the same order as
ǫ, but we find that in scenarios where both fields are important,
more typically M⊥⊥ tends to be within an order of magnitude
of ǫ.
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where either the first-order SRST approximation

M̃(1) ≡ M +
1

3
ǫ(1)R e

(1)
⊥ (e

(1)
⊥ )†, (57)

or the second-order SRST approximation

M̃(2) ≡ M +
1

3

[

ǫ(2) +
1

3
(ǫ(1))2

]

R e
(2)
⊥ (e

(2)
⊥ )† (58)

can be used in place of M̃, as desired (and where it is
understood that the factor 1

(3−ǫ) on the left-hand side of

equation (56) is to be expanded to the same order for
consistency). If the kinetic terms are canonical, then the
effective mass matrix simply reduces to the mass matrix,
M, to either order in the SRST limit.

We conclude this section by considering the perturbed
equation of motion for modes with wavelengths signifi-
cantly larger than the causal horizon. In this limit, the

mode wavelengths satisfy
(

k
aH

)2 ≪ 1, and the equa-
tion of motion (56) reduces even further. First, the

sub-horizon term,
(

k2

a2V

)

δφf , can be neglected since

k2

a2V ∼
(

k
aH

)2 ≪ 1. Second, for modes significantly out-
side the horizon, the acceleration of the field perturba-
tion vector can be neglected whenever the background
field vector is in the SRST limit [30, 76]. The reason
why is that according to the separate universe formalism
(see [76, 77], in particular), the combination of the back-
ground fields and the field perturbations is indistinguish-
able from the background outside the horizon. Thus, it
can be shown that for super-horizon modes, if the back-
ground field vector is in the SRST limit, so is the per-
turbed field vector [30, 76]. Therefore, the super-horizon
evolution of the field perturbations can be approximated
to first-order by

Dδφf

dN
≈ −M̃(1) δφf . (59)

where the first-order approximation for the effective mass
matrix is given by equation (57).

Interestingly, equation (59) is similar in form to equa-
tion (36). Indeed, to first-order in the SRST limit, the
super-horizon evolution of both δφf and φ′ are deter-

mined by the effective mass matrix, M̃. This can be seen
by re-writing equation (36) as

η(1) = −M̃(1)φ′(1), (60)

where we have used that M̃φ′ = Mφ′. This means that
in the super-horizon SRST limit, we simply need to un-
derstand the matrix coefficients of M̃ in order to un-
derstand the behavior of both the unperturbed and per-
turbed fields. It is this very important commonality that
allows us to predict the super-horizon behavior of the
field perturbations simply by knowing the field kinemat-
ics and the field manifold curvature. And, as we will later
see, it is the three unique coefficients of M̃ (or equiva-
lently, the speed up rate, the turn rate, and the effective
entropy mass), along with H and ǫ, that fully represent
all the main features of a two-field inflationary model.

3. Adiabatic Modes

We now examine the evolution of the field perturba-
tions in greater detail, but in the kinematical basis. In
rotating to the kinematical basis, the modes naturally
separate into adiabatic modes and entropy modes. Adia-
batic modes are field perturbations along the trajectory,
and we use the notation δφ‖ ≡ e‖ ·δφf to represent them,
dropping the subscript f for simplicity. They correspond
to perturbations in the total energy density, or equiva-
lently, in the curvature of constant time hypersurfaces
(curvature perturbations). The second type of modes in
this basis, the entropy modes, are orthogonal to the field
trajectory, and we denote them as δφ⊥ ≡ e⊥ · δφf . In
contrast to adiabatic modes, entropy modes do not rep-
resent bona fide density perturbations, but rather corre-
spond to relative fluctuations in the two different fields
that leave the density or curvature unperturbed (isocur-
vature perturbations). We will discuss the relationships
between adiabatic and entropy modes and the curvature
(density) and isocurvature perturbations in more detail
in Section II B 5.

Evolution equations for both adiabatic and entropy
modes have been derived for two-field inflationary mod-
els under the assumption of canonical kinetic terms [61]
and for the non-canonical field metric G = diag(1, eb(φ1))
[62], which can be used to describe scalar-tensor theories
in the Einstein frame.7 Here, we build upon this work by

1. Deriving evolution equations for a completely arbi-
trary field metric and doing so in covariant form;

2. Discussing how the evolution of adiabatic and en-
tropy modes can be inferred from the background
kinematics and the curvature of the field manifold;

3. Deriving an exact expression for the evolution
of adiabatic modes and two approximate semi-
analytic solutions for the entropy modes in the
super-horizon limit; and

4. Explaining why the common assumption that a pa-
rameter called the effective entropy mass is approx-
imately constant is generally not accurate for esti-
mating the amplitude of entropy modes and hence
for estimating the power spectra.

We start by deriving a covariant evolution equation for
the adiabatic modes. In contrast to other approaches,
we derive the evolution equation exclusively in terms of
our kinematical quantities. This alternative approach is

7 More recently, evolution equations for non-canonical kinetic
terms that cannot be expressed as gµνGij∂µφi∂νφj have been
found [34], which allows for scenarios in which the entropy modes
propagate at the effective speed of sound. But we adhere to
models where the non-canonical kinetic terms can be expressed
as gµνGij∂µφi∂νφj and hence where both the adiabatic and en-
tropy modes propagate at the speed of light.
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worthwhile because it allows us to directly see how the
background kinematics affect the evolution of adiabatic
modes. To derive such an expression starting from equa-
tion (52), we need to find an expression relating the coef-

ficients of M̃ in the kinematical basis to our kinematical
quantities, defined in Section II A 2. We can find expres-

sions for the matrix coefficients M̃‖‖ and M̃‖⊥ by dif-
ferentiating the background field equation (19) and then
projecting the resulting equation onto our two kinemat-
ical basis vectors. Using the results of these projections,
equation (52), and the covariant derivatives of the kine-
matical basis vectors in equation (23), the evolution equa-
tion for the adiabatic perturbations can be written as

1

(3 − ǫ)
δφ′′‖+δφ′‖ +

{(

k2

a2V

)

−
(η‖
v

)

[

1

(3 − ǫ)

(

ln
η‖
v

)′
+ 1 +

1

(3 − ǫ)

(η‖
v

)

]}

δφ‖

= 2
(η⊥
v

)

{

1

(3 − ǫ)
δφ′⊥ +

[

1

(3 − ǫ)

(

ln
η⊥
v

)′
+ 1 +

1

(3 − ǫ)

(η‖
v

)

]

δφ⊥

}

. (61)

Equation (61) shows that the sub-horizon term, the
speed up rate, and the turn rate primarily control the
evolution of the adiabatic modes. Notice that when the
turn rate is non-zero, the entropy modes source the adi-
abatic modes. But when the turn rate is zero, the adi-
abatic modes decouple from the entropy modes, and we
recover the equation of motion for the single-field case.
This shows that the turn rate is not only the marker
of multi-field behavior for the unperturbed fields, but
also is the marker of multi-field behavior for the per-
turbed fields. Here, we are defining multi-field behavior
for the perturbed fields to mean sourcing of the adiabatic
modes by the entropy modes (though we recognize that
the multi-field case is additionally distinguished from the
single-field case by the presence of entropy modes).

Now focusing on the super-horizon limit,
(

k
aH

)2 ≪ 1,
we can derive a particularly elegant and simple expres-
sion for the growing adiabatic modes. Neglecting the
subhorizon term in equation (61) and regrouping the re-
maining terms, we can write the super-horizon equation
of motion as

[

1

(3 − ǫ)

d

dN
+ 1 +

2

(3 − ǫ)

(η‖
v

)

](

δφ‖
v

)′
(62)

=

[

1

(3 − ǫ)

d

dN
+ 1 +

2

(3 − ǫ)

(η‖
v

)

](

2
η⊥
v

δφ⊥
v

)

.

Setting the right-hand side of equation (62) to zero and
solving the resulting homogeneous equation yields the ho-
mogeneous solutions for the growing and decaying modes.
The latter will be strongly suppressed by the quasi-
exponential expansion, and hence generally does not con-
tribute much to the adiabatic density power spectrum
at the end of inflation. As it turns out, the evolution
equation for the growing adiabatic mode—both the com-
plementary and particular parts of the solution—can be
picked off of equation (62) by recognizing that the two
terms in brackets on the left and right-hand sides of equa-
tion (62) are identical. From this recognition, we can con-
clude that the growing super-horizon adiabatic modes are

described by

(

δφ‖
v

)′
= 2

η⊥
v

(

δφ⊥
v

)

, (63)

or equivalently, using (ln v)′ =
η‖

v , by

δφ′‖ =
(η‖
v

)

δφ‖ + 2
(η⊥
v

)

δφ⊥. (64)

We emphasize that equations (63) and (64) describing the
growing adiabatic modes are exact in the super-horizon
limit. If additionally the fields are in the SRST limit,
the speed up and turn rates in equation (64) can be re-
placed by the approximations in equations (38) and (41),
respectively, yielding

δφ′‖ ≈ −M (1)
‖‖ δφ‖ − 2M

(1)
‖⊥ δφ⊥. (65)

The same SRST expression can also be obtained by start-
ing from equation (59) and using equations (23) and (41).

Equation (64) shows that in the super-horizon limit,
the evolution of the growing adiabatic modes is con-
trolled simply by the speed up rate and the turn rate.
The first term on the right-hand side of the equation im-
plies that the larger the speed up rate, the faster the ‘in-
trinsic’ evolution of the modes. The second term, which
involves both the turn rate and the amplitude of the en-
tropy modes, represents the sourcing of adiabatic modes
by the entropy modes. The faster the turn rate, the more
the entropy modes source the adiabatic modes. When
both kinematical rates are small—that is, when the back-
ground fields are in the SRST limit—the adiabatic modes
evolve slowly. However, when either rate is large, the adi-
abatic modes evolve significantly.

But it is not just the absolute sizes of the speed up
and turn rates that determine the evolution of adiabatic
modes; the relative sizes of the two rates to each other
also matters. In fact, the ratio of these two kinematical
scalars—in conjunction with the ratio of the two mode
amplitudes—determines the relative contribution of the
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Table 3. Super-Horizon Growth of Adiabatic Modes

Condition Physical Behavior

η‖
v δφ‖ ≫ η⊥

v δφ⊥

Entropy mode sourcing is negli-
gible. The evolution is effectively
single-field: δφ‖ ∝ v.

η‖
v δφ‖ ∼ η⊥

v δφ⊥

Entropy mode sourcing is appre-
ciable. Multi-field effects must be
taken into account.

η‖
v δφ‖ ≪ η⊥

v δφ⊥

Entropy mode sourcing predom-
inates. Multi-field effects are
strong.

entropy mode sourcing to the total growth of adiabatic
modes. We can therefore categorize the inflationary dy-
namics in a region of spacetime into three kinds of phys-
ical behavior, depending on the strength of the entropy
mode sourcing. First, when

η‖

v δφ‖ ≫ η⊥

v δφ⊥, the sourc-
ing of adiabatic modes by entropy modes is negligible. In
this limit, the solution to equation (64) is

δφ‖ ∝ v, (66)

and hence the adiabatic modes evolve essentially inde-
pendently. Since equation (66) becomes exact in the
single-field case, anytime the evolution of the growing
adiabatic modes can be well-approximated by equation
(66), we say that the inflationary dynamics for the adia-
batic mode are effectively single-field. The second case is

when
η‖

v δφ‖ ∼ η⊥

v δφ⊥. In this regime, sourcing must be
taken into account, and we say that the scenario is inher-
ently multi-field since the evolution of adiabatic cannot
be approximated by the single-field equation of motion.
Finally, when

η‖

v δφ‖ ≪ η⊥

v δφ⊥, the sourcing effects are
the dominant driving force behind the growth of adia-
batic modes. In this limit, we say that the multi-field
effects are strong. Again, this shows how critical the ra-
tio η⊥

v /
η‖

v is in determining the relative contribution of
the multi-field effects—in other words, the importance of
the mode sourcing. We summarize these three cases in
Table 3.

Thus, we have shown how the background kinematics
control the evolution of adiabatic modes. This is a prime
example of the usefulness of viewing the speed up and
turn rates as distinct quantities that serve as markers of
very different physical behavior.

4. Entropy Modes

In this section, we derive a covariant equation of mo-
tion for the entropy modes, as well as approximate semi-
analytic expressions that are valid in the super-horizon
slow-turn limit. In tandem, we discuss how the evolution
of entropy modes can be inferred from the background
kinematics and the curvature of the field manifold.

We start from equation (52) and use both equation
(23) and the projections of the derivative of equation (19)
onto both e‖ and e⊥. After some algebra, the equation
of motion for the entropy modes becomes

1

(3 − ǫ)
δφ′′⊥ + δφ′⊥ +

[(

k2

a2V

)

+M⊥⊥ +
ǫR

(3 − ǫ)
− 3(1 − ǫ)

(3 − ǫ)2

(η⊥
v

)2
]

δφ⊥ = − 2

(3 − ǫ)

(η⊥
v

) [

δφ′‖ −
(η‖
v

)

δφ‖
]

. (67)

In contrast to the equation of motion for adiabatic modes
(61), the evolution of entropy modes is controlled by six
quantities: the sub-horizon term, M⊥⊥, ǫ, R, the turn
rate, and the speed up rate. So the curvature of the field
manifold, R, does affects the evolution of entropy modes,
but not the evolution of adiabatic modes. Interestingly, ǫ
rather weakly affects the evolution of entropy modes but
with one exception: it strongly modulates the effect of
the curvature of the field manifold on the entropy modes.
In addition, notice that again the turn rate controls the
sourcing of one mode type by the other.

Now we consider equation (67) in the super-horizon
limit, both with and without making assumptions about
the background kinematics. In the general super-horizon
limit, the sub-horizon term vanishes, and we can substi-
tute equation (64) for the term in brackets on the right-

hand side of equation (67) to obtain

δφ′′⊥
(3 − ǫ)

+ δφ′⊥ = −µ⊥δφ⊥, (68)

where µ⊥ is the effective entropy mass and is defined as

µ⊥ ≡M⊥⊥ +
ǫR

(3 − ǫ)
+

9 − ǫ

(3 − ǫ)2

(η⊥
v

)2

. (69)

Equation (68) shows that the entropy modes evolve inde-
pendently in the super-horizon limit, even in the presence
of an arbitrary non-canonical field metric. This is a very
important result: because the entropy modes evolve inde-
pendently in this limit, we can find their amplitude and
also determine the evolution of adiabatic modes without
solving a set of fully coupled equations.

Equation (68) also reveals that the evolution of entropy
modes is determined by a quantity called the effective en-
tropy mass. The concept of an effective entropy mass for
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a general two-field potential was first introduced in [61]
and was also used in [63, 64, 66], for example. We are
building upon this work by (1) redefining the effective
entropy mass so that it is dimensionless and can be more
directly compared against our kinematical and other pa-
rameters in the theory, and by (2) deriving a covariant
expression for it in the case of an arbitrary two-field po-
tential with a completely arbitrary field metric. More-
over, in the remainder of this section, we will extend this
work on the effective entropy mass by:

1. Exploring the absolute and relative sizes of the
terms in the effective entropy mass in greater de-
tail than has been done before, and clarifying which
terms in µ⊥ can be neglected depending on the
background kinematics and the curvature of the
field manifold;

2. Showing that assuming the effective entropy mass
is constant generally produces large errors in esti-
mating the amplitude of entropy modes and hence
in estimating the power spectra; and

3. Deriving semi-analytic approximations for the am-
plitude of entropy modes, which are based on ap-
proximations to the effective entropy mass.

First, we examine each of the three terms in the ef-
fective entropy mass. The first term in equation (69) is
the (⊥,⊥) coefficient of the mass matrix (the covariant
Hessian of lnV ) and hence is an indication of the local
curvature of the surface f(φ1, φ2) = lnV (φ1, φ2) along
the entropic direction. When the (⊥,⊥) coefficient of
the mass matrix is positive, as is most typical, this term
will suppress the amplitude of entropy modes after hori-
zon exit. However, when M⊥⊥ is negative, this term will
fuel the growth of entropy modes.

The second term in equation (69) involves the Ricci
scalar, R, of the field manifold. When R is positive—
which occurs when the field manifold is locally elliptical—
the field curvature helps to suppress the entropy modes.
However, when R is negative—which occurs when the
surface is locally hyperbolic—the field curvature fuels the
growth of entropy modes. An example of a non-canonical
field metric that always produces a negative field curva-
ture is G = diag(1, eb(φ1)), which describes scalar-tensor
theories in the Einstein frame.8

The third term in the effective entropy mass is equal to
the turn rate squared times a numerical factor between 1
and 2 that depends on the value of ǫ. Because of the sign
in front of this term, it always damps the entropy modes.
In the limit of slow-turning, this term has a negligible
effect. In the limit of fast-turning (η⊥

v & 1), it causes a

8 This does not mean that the net result of having this non-
canonical field metric is an increase in the post-horizon amplitude
of entropy modes, as the field metric also affects the value of the
other two terms in the effective entropy mass.

rapid suppression of the entropy modes. Interestingly, a
large turn rate is frequently accompanied by a boost in
the magnitude of M⊥⊥, due to the rapid rotation of basis
vectors projecting out different combinations of the mass
matrix’s coefficients.

Now we consider the relative sizes of the three terms
in the effective entropy mass. The size of the Ricci scalar
term, ǫR

(3−ǫ) , relative to M⊥⊥ depends on the field metric

and the potential, so we cannot make any universal state-
ments about their relative sizes. However, if the kinetic
terms are canonical, then the Ricci scalar term vanishes.
Also, we note that it is common for some of the most
popular field metrics to produce field curvature terms
that are at least an order of magnitude less than M⊥⊥
when the fields are in the SRST limit, but this is not
true for all field metrics. Interestingly, the Ricci scalar
is multiplied by a factor of ǫ, so its effect on the entropy
modes is strongly controlled by the field speed; when all
else is equal, this curvature term becomes much more im-
portant near the end of inflation and whenever else ǫ is
large. Hence we expect the curvature term to typically
be more important when the slow-roll conditions are vi-
olated. As for the relative size of the third term in µ⊥,

this term at leading order is
(

η⊥

v

)2
, so based on the argu-

ments we made in Section II B 2, it is one order higher in
the SRST expansion than M⊥⊥. This term can therefore
be ignored whenever the field vector is slowly turning.

Next, since the super-horizon equation of motion for
the entropy modes (68) is homogeneous, we can consider
finding solutions to it. As there are no exact analytical
solutions to equation (68), we explore approximations.
In what follows, we assume that the curvature term is
the same order of magnitude as M⊥⊥, though depend-
ing on the model, the curvature term may be negligible
and hence may be dropped from various order approx-
imations; we leave it to the reader to determine when
this is possible. Now the most obvious approximation to
invoke is the SRST approximation applied to both the
unperturbed and perturbed fields. Under this approxi-
mation, the third term in the effective entropy mass can
be neglected, as well as the acceleration of the amplitude
of entropy modes,9 yielding

δφ′⊥ ≈ −M̃ (1)
⊥⊥δφ⊥, (70)

where recall that M̃⊥⊥ = M⊥⊥ + ǫR
(3−ǫ) and where we

have used e
(1)
⊥ to find the (⊥,⊥) component of M̃(1).

But the above equation actually holds more generally, as
long as the background field is slowly turning and ǫR≪
1; slow-roll is not needed for this approximation to be
valid. So in the slow-turn limit and assuming ǫR≪ 1, the
term which controls the evolution of entropy modes is just

9 By ignoring the acceleration of the amplitude entropy modes, we
have effectively ignored the decaying modes, which are usually
rapidly suppressed in this limit.
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the first-order slow-turn approximation to the effective

entropy mass, µ
(1)
⊥ = M̃

(1)
⊥⊥. Hence, equation (70) gives

us a simple metric, M̃
(1)
⊥⊥, that we can use to find and

compare the evolution of entropy modes across widely
different inflationary scenarios.

Now in using equation (70) to derive an analytical ap-
proximation for the entropy mode amplitude, the effec-
tive entropy mass has often been treated as constant [63–
66] , which yields the following approximation

δφ⊥(N) = [δφ⊥]∗e
−µ∗

⊥(N−N∗), (71)

where we use ∗ to denote that a quantity is to be eval-
uated at horizon exit. The rational behind this approxi-
mation is that as long as the background field vector is in
the SRST limit, the effective entropy mass can be treated
as roughly constant after horizon exit, because like the
standard slow-roll parameters, the effective entropy mass
is slowly changing. But this assumption is tantamount to
assuming that the standard slow-roll parameters continue
to remain roughly constant over many e-folds, which is
often problematic. (See [28] for a short discussion of this
general issue.) Indeed, with some exceptions, we find
that the effective entropy mass changes significantly be-
tween horizon exit and the end of inflation, and often well
before the SRST approximation breaks down. Tsujikawa
et al. [66] noticed this problem in exploring double infla-
tion scenarios. Lalak et al. [65] also acknowledged sim-
ilar limitations, and hence their numerical analysis used
the full equations of motion in order to accurately follow
the evolution of the power spectra. As to the origin of
the typically significant increase in the effective entropy
mass during inflation, we find that much of this increase
can often be attributed to the inevitable large drop in the
potential energy density and also in many cases to the ro-
tation of the kinematical basis vectors over many e-folds
of inflation. The former phenomenon is due to the fact
that as ǫ ≈ 1

2 |∇ lnV |2 increases, the potential decreases
more quickly, and hence M⊥⊥ significantly increases in
magnitude.

These findings have important implications. In most
cases, the entropy modes will be damped more strongly
than previously analytic estimates would predict [63, 64].
For some two-field scenarios, this leads to rather modest
inaccuracies in estimating the curvature (density)power
spectrum, while for others, it leads to unusably large er-
rors. The size of these inaccuracies often depends signif-
icantly on the initial conditions, so it is even less com-
mon that this assumption can be used to estimate the
density power spectrum for all possible initial conditions
for a given inflationary Lagrangian. More problemati-
cally, it leads to even larger inaccuracies in estimating
the isocurvature and cross spectra, which obviously de-
pend sensitively on the amplitude of entropy modes at
the end of inflation. In particular, this assumption often
over-estimates the isocurvature and cross spectra by one
to several orders of magnitude.

Therefore, we do not assume the effective entropy mass
is constant. Instead, we integrate over the effective en-

tropy mass to estimate the super-horizon amplitude of
entropy modes, obtaining the approximation

δφ⊥ ≈ [δφ⊥]∗ e
−

R

N

N∗
M̃

(1)
⊥⊥(Ñ) dÑ . (72)

Equation (72) provides a good approximation whenever
the background field vector is slowly turning, regardless
of the values of ǫ and of the speed up rate.

When more accuracy is desired or the turn rate is mod-
erately large, then the following second-order approxima-

tion can be used. Assuming that
(

η⊥

v

)2 ≈ (M
(1)
‖⊥ )2 is sig-

nificant relative to but still significantly less than M⊥⊥,
the equation

δφ′⊥ ≈ −µ(2)
⊥ δφ⊥, (73)

where µ
(2)
⊥ is equal to

µ
(2)
⊥ ≡ M̃⊥⊥ +

1

3
(M̃‖⊥)2 +

1

3
(M̃⊥⊥)2

+
1

3
(∇† lnV∇M̃)⊥⊥, (74)

is the second-order approximation to the equation of mo-
tion (68). That is, differentiating this expression to find
δφ′′⊥ yields equation (68) when equation (68) itself is
expanded to second-order in the SRST limit. In equa-
tion (74), the second-order SRST approximations for the
background fields and the kinematical basis vectors are
to be used, so that both the unperturbed and perturbed
fields are calculated to the same order in the SRST ex-
pansion. Solving equation (73) yields the same integral
expression as in equation (72) after making the replace-

ment M̃
(1)
⊥⊥ → µ

(2)
⊥ . Based on the definition of µ

(2)
⊥ in

equation (74), technically µ
(2)
⊥ is not the second-order

SRST approximation for the effective entropy mass; how-
ever, we still denote the quantity on the right-hand side

of equation (74) with the symbol µ
(2)
⊥ to avoid introduc-

ing too many new symbols and terms. Our results are
equivalent to those in [69] for the case of canonical ki-
netic terms and to those in [62] for the non-canonical
field metric G = diag(1, eb(φ1)).

From the above discussion and approximations, we can
therefore predict the behavior of the entropy modes sim-
ply from the background kinematics and the geometry
of the field manifold. When the turn rate is small, the
amplitude of entropy modes will be determined by M⊥⊥,
and we expect the entropy modes to be gradually sup-
pressed (or enhanced). Conversely, when the turn rate is
large, then the entropy modes will be rapidly suppressed.
If the Ricci scalar term is significant relative to M⊥⊥, it
will also either suppress or enhance the modes, depending
on its sign. In the slow-roll limit, the Ricci scalar term is
small, but when ǫ is large, then usually the Ricci scalar
term and the term M⊥⊥ will be larger in magnitude, so
the entropy modes will be more quickly suppressed (or
enhanced).
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FIG. 2. The accuracy of three different approximations for the super-horizon evolution of entropy modes for six different
values of the mass ratio m2

m1
for the double quadratic potential V = 1

2
m2

1φ
2
1 + 1

2
m2

2φ
2
2 with canonical kinetic terms. The

same initial conditions were assumed 60 e-folds before the end of inflation, and the x-axis for plots (b) - (f) represents the
number of e-folds before inflation ends. In Figures 2(a)-(d), the exact solutions (thick colored lines) and the second-order SRST
approximation (dashed black lines) are shown for (a) the field vector trajectory, (b) ǫ, (c) the speed up rate, and (d) the turn
rate. In Figure 2(e), the exact solutions (thick colored lines) and the second-order SRST approximation (dashed black lines)
are shown for the amplitude of entropy modes that exit the horizon N∗ = 10, 20, 30, 40, 50, 60, and 70 e-folds before the end
of inflation. The dimensionless effective entropy mass (thin brown line) is overlaid for comparison. In Figure 2(f), the exact
solution (thick colored lines) and three different approximations (dashed lines) for the post-horizon damping of the entropy
mode that exits the horizon N∗ = 60 e-folds before the end of inflation is shown for four of the six different trajectories. The
three approximations are the assumption that the effective entropy mass is constant after horizon exit (dotted green line); the
first-order slow-turn approximation for both the background and perturbed field vectors (dashed blue line); and the second-
order SRST approximation for both the background and perturbed field vectors (longer dashed purple line). Here, by the
end of inflation, and often much sooner, the assumption that the effective entropy mass can be treated as constant greatly
over-estimates the amplitude of entropy modes.
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Lastly, we illustrate the accuracy of the constant en-
tropy mass and our first-order and second-order semi-
analytic approximations for the super-horizon amplitude
of entropy modes. Figure 2 shows the accuracy of these
approximations for six related inflationary scenarios with
different speed up and turn rate profiles. Figure 2(f)
shows that assuming the effective entropy mass is con-
stant after horizon exit significantly over-estimates the
amplitude of entropy modes for all six trajectories by the
end of inflation, and most often, much sooner. The sec-
ond approximation, the first-order slow-turn approxima-
tion, provides an excellent approximation for the damp-
ing of entropy modes when the field vector is slowly turn-
ing. Its accuracy is insensitive to ǫ and to the speed up
rate, as is clear from its equally good accuracy near the
end of inflation for models with small turn rates. How-
ever, when the field trajectory is moderately to rapidly
turning, it does not estimate the amplitude of entropy
modes as well. We will later show that the curvature
power spectrum is most sensitive to the amplitude of en-
tropy modes when the background field vector is rapidly
turning, so this second approximation is not sufficiently
accurate to estimate the power spectra in the case of
moderately fast turning. Finally, the best approxima-
tion for the damping of entropy modes is given by the
second-order SRST approximation, which produces more
accurate estimates of the damping when the trajectory
is turning moderately fast.

5. Curvature and Isocurvature Perturbations

Before we proceed to calculate the power spectra, we
need to relate our field perturbations to the quantities
whose power spectra we want to calculate. The power
spectrum of greatest interest is usually the spectrum of
density perturbations. As a proxy for the density power
spectrum, often the power spectrum of a quantity called
the comoving curvature perturbation is calculated in-
stead, since the curvature power spectrum is easy to cal-
culate and the two power spectra are identical up to nu-
merical factors after inflation ends. We use this common
strategy and work in terms of the comoving curvature
perturbations and the associated isocurvature perturba-
tions. In this section, we define curvature and isocur-
vature perturbations, relate them to the adiabatic and
entropy modes, and find equations of motion for both
perturbation types.

The curvature perturbation is defined as the perturba-
tion in the curvature of constant time hypersurfaces. The
curvature perturbation in the comoving gauge, R, was
introduced by [15, 18, 78, 79], and it represents a gauge-
invariant quantity. During inflation, it can be shown that
the comoving perturbation equals [26]

R =
δφ‖
v
, (75)

where recall that δφ‖ represents the gauge-invariant

quantity e‖ · δφf . By contrast, isocurvature perturba-
tions represent relative fluctuations in the two different
fields that leave the total curvature unperturbed and
hence they are related to entropy perturbations. As in
[68], we define the isocurvature perturbations as

S ≡ δφ⊥
v
, (76)

so that the curvature and isocurvature power spectra
have similar power at horizon exit.

To find the spectra of these two quantities at the end
of inflation from their spectra at horizon exit, we need to
find evolution equations for the curvature and isocurva-
tive perturbations in the super-horizon limit. We start by
finding an evolution equation for the curvature perturba-
tions in the super-horizon limit. Recall that we already
found an expression for the super-horizon evolution of
δφ‖

v in equation (63). Substituting equations (75) and
(76) into equation (63), we find

R′ = 2
(η⊥
v

)

S. (77)

Equation (77) is exact in the super-horizon limit, as we
did not invoke any slow-roll or slow-turn approximations
in deriving equation (63). According to equation (77),
the super-horizon evolution of the curvature perturba-
tion depends only on the covariant turn rate of the back-
ground trajectory relative to the field manifold and on
the amplitude of the isocurvature perturbations; it is in-
sensitive to ǫ and the speed up rate. This matches previ-
ous results that the curvature perturbation evolves when
the background trajectory is curved (e.g., [3, 28, 30, 61]).
When all else is equal, the greater the turn rate, the
more the comoving curvature perturbation evolves. Con-
versely, whenever the field trajectory is not changing
direction, the comoving curvature perturbation is con-
served in the super-horizon limit, just like in single-field
inflation. All of this again proves that the turning of the
background field trajectory is the true marker of multi-
field effects (e.g., [3, 28, 30, 61]). Integrating equation
(77) gives

R = R∗ +

∫ N

N∗

2
(η⊥
v

)

S dÑ . (78)

Next, we derive a super-horizon evolution equation for
the isocurvature perturbations. Using equation (76) and
(ln v)′ =

η‖

v , we find

S′ =
1

v
(vS)′ − η‖

v
S =

1

v

[

δφ′⊥ − η‖
v
δφ⊥

]

. (79)

Thus, an expression for S can be found using the equation
of motion for the entropy modes (68) and the speed up
rate. If an exact solution for δφ⊥ is known analytically or
can be found from equation (68), then an exact solution
for the isocurvature modes can be found using equation
(76) directly. Otherwise, the approach of Wands et al.
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[68] can be used, which involves parametrizing the super-
horizon evolution of isocurvature modes as

S′ = βS. (80)

The above expression also holds in general on large scales
[80]. We can use the above expression by finding approx-
imations for β in the SRST limit. From the first-order
expressions for the evolution of entropy modes (70) and
the speed up rate (38), we find that to first-order

β(1) = M̃
(1)
‖‖ − M̃

(1)
⊥⊥. (81)

Similarly, to second-order, β is approximated by

β(2) = −
(η‖
v

)(2)

− µ
(2)
⊥ ,

= M̃‖‖ +
1

3
(M̃‖‖)

2 +
1

3
(∇† lnV∇M̃)‖‖ (82)

− M̃⊥⊥ − 1

3
(M̃⊥⊥)2 − 1

3
(∇† lnV∇M̃)⊥⊥,

which follows from equations (43) and (73). In equations
(81) and (82), the same order SRST approximations for
the background fields and basis vectors are to be used.
As an aside, note the degree of symmetry in the terms
in the second and third lines of equation (82): the terms
on the third line can be obtained from the terms on the
second line by the substitution e‖ → ie⊥. Finally, to find
a solution for the amplitude of isocurvature modes, we
integrate equation (80) to get

S = S∗e
R

N

N∗
β dÑ , (83)

where one of the two approximations for β is to be used,
depending on the accuracy required.

Equation (83) and the approximations for β show that
the amplitude of isocurvature perturbations depends on
the integral of negative the sum of the effective entropy
mass and the speed up rate. Through the effective en-
tropy mass, whenever the integral of M⊥⊥ or ǫR is large
and positive (negative), the isocurvature modes will be
suppressed (amplified). Also, since the effective entropy
mass depends on the turn rate at second-order in the
SRST approximation, whenever the turn rate becomes
substantial, the isocurvature modes will also be damped.
As for the speed up rate, it affects the isocurvature modes
simply because the isocurvature modes are related to en-
tropy modes by a factor of 1

v . So when the integral of
the speed up rate is large and positive—that is, when
the field speed has grown substantially—the isocurvature
modes are much smaller. Conversely, when the speed up
rate is large and negative—for example, due to a sud-
den drop in the field speed—the isocurvature modes will
increase. Alternatively, we can interpret the meaning of
equation (83) from a more geometrical perspective: the
amplitude of isocurvature modes depends at lowest-order
on the integral of the difference of an effective measure
of the curvatures of the surface f(φ1, φ2) = lnV (φ1, φ2)

along the adiabatic and entropic directions and on 1
3ǫ

(1)

times the curvature of the field manifold.
Now we use these results for the isocurvature modes

to find an equation of motion for the curvature modes.
Plugging equation (83) into equation (78), we finally ar-
rive at an expression for the super-horizon amplitude of
curvature modes:

R = R∗ + S∗

∫ N

N∗

2
(η⊥
v

)

e−
R

Ñ

N∗
β d ˜̃NdÑ . (84)

To understand equations (78) and (84), it is straight-
forward to carry over most of our separate observations
about how the kinematics and the curvature of the field
manifold affect the evolution of curvature and isocurva-
ture modes. However, there is one more complicated
scenario that merits further discussion: the competing
tendencies of the turn rate and the amplitude of isocur-
vature modes when the turn rate is large. When the turn
rate is large, the isocurvature modes will strongly source
the curvature modes, but eventually the large turn rate
will strongly suppress the isocurvature modes, thereby
quenching further sourcing. The net effect is that the cur-
vature modes will increase dramatically but then level off
very soon after. Interestingly, because the amplitude of
isocurvature modes tends to decrease after horizon exit,
these sourcing effects have the potential to be even more
dramatic if the large turn rate happens soon after hori-
zon exit or whenever else the amplitude of isocurvature
modes is large.

Now in order to solve equation (84) analytically, some
authors [63–65] have assumed that both the turn rate
and β can be taken to be approximately constant. We
have already discussed the problems with assuming that
the effective entropy mass is constant. The same prob-
lems arise in assuming that the speed up rate, turn rates,
and other slow-roll parameters are approximately con-
stant over several e-folds. So like the constant entropy
mass approximation, assuming that these parameters can
be approximated as constant has limited utility, as it
frequently introduces large errors into estimates of the
power spectra at the end of inflation.

However, we can derive two semi-analytic approxima-
tions to the full expression in equation (84). To first-
order in the SRST limit, equation (84) can be approxi-
mated completely in terms of the cofficients of the effec-
tive mass matrix as

R ≈ R∗ + S∗

∫ N

N∗

(−2M̃
(1)
‖⊥ )e

−
R

N

N∗
(M̃

(1)
⊥⊥−M̃

(1)

‖‖
) d ˜̃N

dÑ .

(85)

And for more accuracy, the second-order SRST approxi-
mations for the turn rate (equation (43)) and for β (equa-
tion (82)) can be used instead, as we will do in Sections
II C and III.

Since it will serve as helpful short-hand later, an es-
pecially useful parameterization of the general relation-
ship between curvature and isocurvature modes was in-
troduced by [67] and extended by [68] and is expressed
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as
(

R
S

)

=

(

1 TRS
0 TSS

)(

R∗
S∗

)

, (86)

where the transfer functions are defined as

TRS(t∗, t) ≡
∫ t

t∗

α(t̃)TSS(t∗, t̃)H(t̃)dt̃,

TSS(t∗, t) ≡ e
R

t

t∗
β(t̃)H(t̃)dt̃. (87)

Comparing equations (83) and (84) to the above two
equations, we can see that Wands et. al.’s [68] function
α equals twice the covariant turn rate and the function
β is as we defined earlier in equation (80), with first-
and second-order SRST approximations given by equa-
tions (81) and (82), respectively. In the SRST limit and
assuming canonical kinetic terms, our results agree with
those in [68] to first-order and to those in [69] to second-
order. In Sections II C and III, we use this convenient
framework as short-hand in our equations for the power
spectra at the end of inflation. However, we note that the
above parameterization (86) of the relationship between
curvature and isocurvature modes in the super-horizon
limit continues to hold even after inflation ends.

C. The Power Spectra

We now use our results to calculate and interpret the
power spectra at the end of inflation. We build on pre-
vious results for simpler kinetic terms in [63–65, 69] by
treating the general case of completely arbitrary kinetic
terms and doing so in a covariant manner. We start by
treating the field perturbation equation over its entire do-
main of validity in Section II C 1, and we find solutions
for the modes during the sub-horizon, horizon-crossing,
and super-horizon regimes. In Section II C 2, we use these

results and perform a rotation of bases in order to calcu-
late the power spectra at horizon exit. This rotation of
basis gives rise to correlations between the curvature and
isocurvature modes and hence a correlated cross spec-
trum. In Section II C 3, we use our results for the evolu-
tion of curvature and isocurvature modes to find compact
expressions for the power spectra at the end of inflation.
We discuss how these results reflect the background kine-
matics and the field manifold, and we discuss when multi-
field effects are significant and when a two-field inflation-
ary model can be dimensionally reduced to a single-field
model. We also use these results to argue that all two-
field inflationary models can be reduced to just a handful
of characteristic functions, representing all the kinemat-
ics and dynamics of the model. Finally, we conclude by
presenting simple expressions and a consistency condition
for the canonical power spectrum observables in Section
II C 4.

1. Solving the Field Perturbation Equation

In Section II B, we presented equations of motion for
the field perturbations both in the given basis and in the
kinematical basis, and we focused on how these equations
simplify in the super-horizon limit. In this section, we
quantize the fields; solve the equation of motion over its
entire domain; and use a rotation of bases to match the
solutions across the boundaries.

To solve equation (52), we follow an approach similar
to [25]. We start by re-casting equation (52) using the
vector q, where

q ≡ aδφf , (88)

and using the conformal time, τ , which is defined as

dτ ≡ dt

a
=

1

aH
dN. (89)

After some algebra, we obtain

D2q

dτ2
+ k2q = (aH)2

{

(2 − ǫ)I − (3 − ǫ)

[

M̃ +
ηη†

(3 − ǫ)2

]}

q. (90)

While there is no exact solution to equation (90) that is
valid for all values of τ , we can find separate solutions
in the three standard regimes of interest and match the
separate solutions on the boundaries.

The first regime of interest is the sub-horizon limit,
when the modes are well inside the horizon, which is de-
fined by k

aH ≫ 1 (or equivalently, by −kτ → ∞). In
this limit, the right-hand side of equation (90) is negligi-
bly small, and equation (90) reduces to the Klein-Gordon
equation. The vector q thus describes a pair of decou-
pled simple harmonic oscillators, so the sub-horizon re-

sult from single-field inflation can simply be applied to
each field. The sub-horizon solution to equation (90) can
thus be written as

q =
1√
2k

[

a(k)e−ikτ + a†(−k)eikτ
]

, (91)

where we have gone ahead and quantized the fields, intro-

ducing ai and a†i as the particle annihilation and creation
operators, respectively, for field i. The annihiliation and
creation operators for the two fields satisfy the canonical
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commutation relations,

[ai(k), a†j(k
′)] = δijδ

3(k − k′), (92)

and the relation

ai(k)|0〉 = 0, (93)

where we have assumed the usual Bunch-Davies vacuum
[81].

The second regime centers around the time when the
modes exit the causal horizon, which is defined by k

aH ∼
1. Around horizon-crossing, the behavior of q changes
rapidly, and the oscillatory behavior of the two modes
starts to diminish. In this regime, both the sub-horizon
term k2q and the terms on the right-hand side of equation
(90) have to be taken into account. To find a solution
during horizon-crossing, we change variables to z ≡ −kτ .
Using equation (89), to first order in slow-roll,

z = −
∫

k

aH
dN ≈ (1 + ǫ)

k

aH
, (94)

where we used integration by parts and then neglected
higher-order terms. After using this change of variables
and equation (94), and keeping terms to the two lowest
orders in the SRST expansion, we obtain

D2q

dz2
+ q =

1

z2

[

2I + 3(ǫI− M̃(1))
]

q. (95)

To solve equation (95), we assume that during horizon-
crossing, the time variation of the term in brackets on the
right-hand side of the equation can be neglected. Using
this assumption, we can decouple the two modes by ro-
tating to the basis that diagonalizes the effective mass
matrix at horizon exit. Here, we follow an approach sim-
ilar to those used in references [63], [69], and [70]. We
write the rotation matrix that diagonalizes the mass ma-
trix as

U =

(

cos θ̃ − sin θ̃

sin θ̃ cos θ̃

)

. (96)

Using the rotation matrix, the effective mass matrix can
be diagonalized as

U†M̃(1)U =

(

m+ 0
0 m−

)

, (97)

where the eigenvalues of the effective mass matrix are

m± =
1

2

[

Tr(M̃(1)) ±
√

[Tr(M̃(1))]2 − 4 Det(M̃(1))

]

∗
.

(98)

Using equation (98), we find the rotation angle for the
rotation matrix to be

tan 2θ̃ =
2M̃

(1)
12

M̃
(1)
11 − M̃

(1)
22

. (99)

Now we use equations (95) and (97) to find an equa-
tion of motion for the modes in the rotated basis, q̃ ≡
(q̃+, q̃−) = U†q. We find

D2q̃±
dz2

+

[

1 − 1

z2

(

ν2
± − 1

4

)]

q̃± ≈ 0, (100)

where

ν± ≡ 3

2
+ ǫ−m± (101)

and where we made the conventional assumption that
the time variation of U along the field trajectory can
be neglected for the couple of e-folds on either side of
horizon exit, which is a valid assumption in the SRST
limit (see, e.g., [25, 30, 63]). Now that we have decoupled
the modes, the solution for the modes can be written in
terms of Hankel functions as

q̃± =

√

π

4k

√
z[ei π

2 (2+ǫ−m±)H(1)
ν±

(z)ã±(k)

+ e−i π
2 (2+ǫ−m±)H(2)

ν±
(z)ã†±(−k)], (102)

where ã ≡ U†a and where the overall normalization was
determined from matching to the sub-horizon solution in
equation (91).

Once the modes have passed significantly outside the
horizon, the oscillatory behavior of the fields dies away
and the fields are free to grow, decay, and/or to couple to
each other. After horizon exit but not too late that the
SRST parameters have significantly evolved, the growing
mode solutions can be found from the leading order term
in the asymptotic expansion of the horizon-crossing so-
lution in equation (102). The leading order term in this
expansion is

q̃± → i√
2k

[1 + C(ǫ−m±)] z−1−(ǫ−m±)b±(k), (103)

where

C = 2 − ln 2 − γ ≈ 0.7296, (104)

γ ≈ 0.5772 is the Euler-Mascheroni constant, and

b±(k) = eiπ(ǫ−m±)/2ã±(k) − e−iπ(ǫ−m±)/2ã†±(−k).
(105)

Note that equation (105) implies that the perturbations
become classical soon after passing outside the horizon,
since now q̃ and its conjugate momenta commute [25].

Finally, since the SRST parameters will inevitably
evolve some time after the modes exit the horizon, we
will need to perform a second rotation in field space to
the kinematical basis in order to determine the late-time
behavior of the modes. After performing the rotation, we
will be able to use our second-order SRST semi-analytic
approximations for the curvature and isocurvature modes
that we derived for the super-horizon limit. In Section
II C 3, we illustrate this last series of steps using the
transfer matrix formalism as short-hand.
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2. Power Spectra At Horizon Exit

Armed with these results, we now calculate the curva-
ture and isocurvature power spectra and their correlated
cross spectrum at horizon exit.

We define the power spectrum, PX , of a quantity X as

PX δ
3(k − k̃) ≡ k3

2π2
〈X (k)X †(k̃)〉, (106)

and the cross spectrum, CXY , of the quantities X and Y
as

CXYδ
3(k − k̃) ≡ k3

2π2
〈X (k)Y†(k̃)〉. (107)

To calculate the spectra of curvature and isocurvature
perturbations at horizon exit, we need to relate the per-
turbations in the decoupled basis to the curvature and
isocurvature perturbations. To relate the modes in the
two bases, we follow a procedure similar that used by [63],
[69], and [70]. The curvature and isocurvature modes are
related to the modes in the original given basis by a ro-

tation matrix with rotation angle θ, where tan θ ≡ φ′
2

φ′
1
.

In turn, the modes in the given basis are related to the

decoupled modes by the rotation matrix U defined in
equation (96). Therefore, the curvature and isocurva-
ture modes can be related to the decoupled modes by
the combined transformation
(

aδφ‖
aδφ⊥

)

=

(

cos(θ̃ − θ) − sin(θ̃ − θ)

sin(θ̃ − θ) cos(θ̃ − θ)

)(

q̃+
q̃−

)

,

(108)

where the angle of the combined rotations can be ex-
pressed as

tan 2(θ̃ − θ) =
2M̃

(1)
‖⊥

M̃
(1)
‖‖ − M̃

(1)
⊥⊥

. (109)

Notice that the same two terms that determine the evo-
lution of the curvature perturbations to first-order in the
SRST expansion in equation (85)—2M̃‖⊥ and the com-

bination M̃‖‖ − M̃⊥⊥—also determine the net rotation
angle between the kinematical and the decoupled bases.

Now we find the power spectra at horizon exit. Using
the combined rotation angle to relate the modes in the
two bases, the spectra of adiabatic and entropy modes
are related to the spectra of decoupled modes by

〈δφ‖δφ†‖〉 =
1

2a2
[(1 + cos 2(θ̃ − θ))〈q̃2+〉 + (1 − cos 2(θ̃ − θ))〈q̃2−〉],

〈δφ‖δφ†⊥〉 =
1

2a2
sin 2(θ̃ − θ))

(

〈q̃2+〉 − 〈q̃2−〉
)

, (110)

〈δφ⊥δφ†⊥〉 =
1

2a2
[(1 − cos 2(θ̃ − θ))〈q̃2+〉 + (1 + cos 2(θ̃ − θ))〈q̃2−〉].

After substituting equation (103) and the expectation
values

〈b†i (k)bj(k̃)〉 = Gijδ
3(k − k̃) (111)

into equation (110), the power spectra are given by

PR∗ =

(

H∗
2π

)2
1

2ǫ∗

[

1 + 2(C − 1)ǫ− 2CM̃‖‖
]

∗
,

CRS∗ =

(

H∗
2π

)2
1

2ǫ∗
[−2CM̃‖⊥]∗, (112)

PS∗ =

(

H∗
2π

)2
1

2ǫ∗

[

1 + 2(C − 1)ǫ− 2CM̃⊥⊥
]

∗
.

where it is implied that the terms are to be calculated
to second-order in the SRST expansion; we have dropped
the superscripts and chosen not to expand terms in order
to de-clutter the expressions.

Equation (112) shows that at horizon exit, the curva-
ture and isocurvature spectra have similar power, while
the correlated cross spectrum is down by a factor of

approximately 2C times the turn rate (η⊥

v ≈ −M̃ (1)
‖⊥ ).

Thus, to lowest-order, the turn rate alone determines the
size of the cross-spectrum relative to the curvature and
isocurvature spectra at horizon exit. This makes sense
as we found earlier that the turn rate determines the
strength of sourcing of one mode by the other. If the turn
rate vanishes when the modes exit the horizon, then those
particular curvature and isocurvature modes will not be
correlated at horizon exit, as in this case, the decoupled
basis coincides with the kinematical basis.

Finally, we introduce the tensor power spectrum, PT ,
which represents the spectrum of gravitational waves.
We introduce the tensor power spectrum in order to cal-
culate the tensor-to-scalar ratio, an important spectral
observable. The tensor spectrum is independent of the
number of scalar fields, and to next-to-lowest-order in the
slow-roll expansion, it is calculated to be [82]

PT∗ = 8

(

H∗
2π

)2

[1 + 2(C − 1)ǫ]∗ . (113)

It is conserved for modes outside the horizon.
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3. Power Spectra At The End of Inflation

We now calculate the three scalar spectra at the end
of inflation.

We can calculate the spectra at the end of inflation
from the corresponding spectra at horizon exit. To do
so, we simply need to account for the further growth
or decay of the modes after they exit the horizon. To
account for the mode evolution, we can use the semi-
analytic expressions we found in Section (II B 5). But
rather than write out these expressions in full, we will
use the transfer matrix formalism in equations (86) and
(87) as short-hand. Using the transfer matrix formalism
[67, 68] , the modes at the end of inflation are related to
the modes at horizon exit by

(

R
S

)

=

(

1 TRS
0 TSS

)(

R∗
S∗

)

. (114)

where it is implied that the transfer functions are eval-
uated at the end of inflation. Hence, the spectra at the
end of inflation are related to the spectra at horizon exit
by [69]

PR = PR∗ + 2TRSCRS∗ + T 2
RSPS∗ ,

CRS = TSSCRS∗ + TRSTSSPS∗ , (115)

PS = T 2
SSPS∗ .

Substituing in equation (112) and keeping only the low-
est order terms in the SRST expansion, the power spectra
at the end of inflation are

PR =

(

H∗
2π

)2
1

2ǫ∗
(1 + T 2

RS),

CRS =

(

H∗
2π

)2
1

2ǫ∗
TRSTSS , (116)

PS =

(

H∗
2π

)2
1

2ǫ∗
T 2
SS .

In equation (116), all terms are calculated to lowest-
order in the SRST expansion, including the transfer func-
tions. The single-field power spectra can be recovered

from equation (116) by setting TSS to zero, which also
forces TRS = 0.

Next, we find the power spectra to second order in
the SRST approximation. But first, we introduce two
new quantities that will allow us to write the expressions
for the spectra and spectral observables more compactly.
We start by introducing a quantity called the correlation
angle, which we define as

sin ∆N ≡ TRS
√

1 + T 2
RS

, (117)

where we add the subscript N to make it clear that ∆
represents the correlation angle, not the spectra them-
selves.10 We chose the subscript N because the correla-
tion angle represents the angle between e‖ and the gra-
dient of the number of e-folds, ∇N—that is,

e‖ · ∇N ∝ cos∆N . (118)

We can see this by considering the following facts. For
any multi-field model, the curvature spectrum equals [21]

PR =

(

H∗
2π

)2

|∇N |2, (119)

to lowest order. Since

φ′ · ∇N = 1, (120)

then comparing equation (116) to equation (119), it fol-
lows that for two-field inflation

∇
†N =

1√
2ǫ

[

e‖ + TRSe⊥
]

. (121)

Therefore, the correlation angle is indeed the angle be-
tween ∇N and e‖. Also, it is useful to define a unit

vector, eN , that points in the direction of ∇
†N , where

based on the above expressions, eN is related to the kine-
matical basis vectors by

eN = cos∆N e‖ + sin∆N e⊥. (122)

Now combining equations (112) and (115), and using
our two new quantities (117), and (122), the second-order
power spectra can be written as

10 Our correlation angle is inspired by the correlation angle in-
troduced by Wands et. al [68], which was defined as cos ∆ ≡

CRS√
PRPS

≈ TRS
q

1+T2
RS

. But we have chosen to modify the defini-

tion of this quantity for two reasons. First, Bartolo et. al. [63]

had already assigned the symbol rC to the quantity CRS√
PRPS

, to

reflect the fact that it is similar in form to the tensor-to-scalar
ratio, rT . Second, we needed a quantity to represent the angle
between ê‖ and ∇N , so making this modification seemed to be
the best compromise.
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PR =

(

H∗
2π

)2
1

2ǫ∗
(1 + T 2

RS)[1 + 2(C − 1)ǫ− 2Ce
†
NM̃eN ]∗,

CRS =

(

H∗
2π

)2
1

2ǫ∗
TRSTSS [1 + 2(C − 1)ǫ− 2Ce

†
NM̃e⊥ sin−1 ∆N ]∗, (123)

PS =

(

H∗
2π

)2
1

2ǫ∗
T 2
SS [1 + 2(C − 1)ǫ− 2Ce

†
⊥M̃e⊥]∗.

For consistency, all terms are calculated to second-order
in the SRST approximation, with the understanding that
here we are using the second-order SRST approximations
for the turn rate (equation (43)) and for β (equation (82))
to calculate the transfer functions. We can also write the
power spectra a bit more compactly using equation (113):

PR =
PT

16ǫ∗
(1 + T 2

RS)[1 − 2Ce
†
NM̃eN ]∗,

CRS =
PT

16ǫ∗
TRSTSS [1 − 2Ce

†
NM̃e⊥ sin−1 ∆N ]∗,

PS =
PT

16ǫ∗
T 2
SS [1 − 2Ce

†
⊥M̃e⊥]∗. (124)

Note the high degree of symmetry among the second-
order terms in equation (124): each instance of the cur-
vature perturbation in the spectra is accompanied by the
unit vector eN , while each instance of the isocurvature
perturbation is accompanied by the unit vector e⊥.

Now we analyze the power spectra at the end of infla-
tion. At lowest-order, the power spectra are determined
by just four quantities: H , ǫ, TSS , and TRS . Equation
(116) shows that all three spectra are modulated by the

factor
(

H∗

2π

)2 1
2ǫ∗

. The differences among the spectra lie

in the transfer functions, with the ratio TSS

TRS
effectively

controlling the relative sizes of the three spectra. In fact,
this ratio directly controls the relative sizes of the isocur-
vature and cross spectra: if TRS ≥ TSS , then CRS ≥ PS ,
otherwise CRS < PS . Also, since TSS < 1 is virtually
always true, we expect the curvature spectrum to be the
largest of the three spectra. Indeed, the smaller TSS is,
the smaller the cross spectrum (CRS ∝ TSS) and the
isocurvature spectrum (PS ∝ T 2

SS).
In turn, the two transfer functions depend on the kine-

matical profiles of the speed up rate, the turn rate, and
the effective entropy mass, as we explained in detail in
Section II B 5. Typically, TSS ≪ 1 by the end of inflation,
since the speed up rate usually must be large and posi-
tive to end inflation, or equivalently, since the amplitude
of isocurvature modes depends inversely on v =

√
2ǫ.

For inflationary scenarios with large turn rates, typically
TRS & a few and TSS ≪ 1—for reasons we discussed
earlier—resulting in PR ≫ CRS ≫ PS . For these sce-
narios, we expect that the cross and isocurvature spectra
will be hard to measure, if not undetectable, and that
PR ≫ PT . On the opposite extreme, if the turn rate is

very small and satisfies η⊥

v ≪ η‖

v during inflation, then
we expect TRS to be significantly less than one and TSS
to be larger than in the previous case but still at least
an order of magnitude smaller than one. In this limit,
the curvature spectrum can be approximated by the cor-
responding single-field result, and the isocurvature and
cross spectra will be smaller, with their relative sizes de-
pending on the ratio of TSS

TRS
. However, unlike in the case

of a large turn rate, the isocurvature and cross spectra
will be still be appreciable and hence potentially mea-
sureable, as long as the isocurvature modes are not de-
stroyed during the reheating process following inflation.
And if the turn rate vanishes exactly for all scales of in-
terest, then we recover the exact single-field expression
for the curvature spectrum, and the cross spectrum is
exactly zero. In this case, the isocurvature spectrum is
still usually much smaller than the curvature spectrum.

Taking these dependences together, this means that we
can trace the behavior of the power spectra back to just
five kinematical functions: H and ǫ, which set the overall
scale of the spectra; and

η‖

v , η⊥

v , and µ⊥, which deter-
mine the behavior of the transfer functions. Or, being

even more succinct, since ǫ = −(lnH)′ and
η‖

v = (ln H)′′

2(ln H)′ ,

we can pare these functions down to a set of just three
functions with their scale-dependences: H , η⊥

v , and µ⊥,
where the second two functions are unique to two-field
inflation. To lowest order in the SRST limit, these quan-
tities represent the value of V , |∇ lnV |, and the three

unique coefficients of M̃. In order words, we can think of
these quantities as representing vital information about
the value, the gradient, and the Hessian of lnV , along
with corrections from any non-trivlal geometry of the
field manifold. It is precisely these relationships among
the kinematical functions, the Lagrangian, and the spec-
tra that allow us to connect features in the spectra di-
rectly back to features in the inflationary Lagrangian.
We summarize these kinematical functions in Table 4,
where we also indicate how they can be reconstructed
from observational data.

Finally, we discuss when a two-field model effectively
looks like a single-field model—that is, when CRS and
PS are vanishingly small and when PR is identical to
the single-field result. Of course, after inflation ends the
modes could be processed further, particularly during the
reheating process. However, because such post-
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Table 4. The Quantities That Capture the Key Features of Any Two-Field Model of Inflation

Quantity Relation to the Lagrangian Relation to the Spectral Observables

Hubble Rate, H
√

V
3 π

√

PT

2

Field Speed, v =
√

2ǫ |∇ lnV | √−nT

Speed Up Rate,
η‖

v
−M̃‖‖

nT −nR

2 +
r2

C

1−r2
C

(

2nC−nR−nS

2

)

, or αT

2nT

Turn Rate,
η⊥
v

−M̃‖⊥
rC√
1−r2

C

(

nS−nC

2

)

Effective Entropy Mass, µ⊥ M̃⊥⊥
nS−nT

2

TABLE 4. The above table lists the five quantities that represent the main features of any two-field model of inflation: H , ǫ,
η‖

v
, η⊥

v
, and µ⊥. Alternatively, since ǫ = −(lnH)′ and

η‖

v
= (ln H)′′

2(ln H)′
, we can reduce them further to a set of three functions

and their scale-dependences: H , η⊥
v

, and µ⊥, where the latter two are unique to two-field inflation. All other quantities are
derived from these fundamental quantities. The second column shows that to lowest order in the SRST limit, these quantities
represent the values of V , |∇ ln V |, and M̃, where M̃ = ∇

†
∇ ln V + ǫR

(3−ǫ)
and R is the Ricci scalar of the field manifold. The

third column shows how these quantities relate to the spectral observables, to lowest order in the SRST limit.

inflationary processing is model-dependent, we do not
consider it here, and leave the reader to append any post-
inflationary processing to our calculations here. If there
is no post-inflationary processing of modes, a two-field
model will look like a single-field model only if TRS ≈ 0
and TSS ≪ 1. The former holds when η⊥

v ≪
η‖

v . The
latter can be achieved only if the integral of the sum of
M⊥⊥ and of ǫ times the Ricci scalar of the field manifold
is large and positive, due to tight constraints on the turn
rate. So given that the turn rate can be approximated by
−M̃‖⊥, we require −M̃‖⊥ ≪ 1 over all measured scales

and M̃⊥⊥ ≫ 1 to hold for at least a couple of e-folds
before the end of inflation.

4. Spectral Observables and Consistency Condition

From the expressions for the power spectra, we find
the spectral indices, the running of the spectral indices,
the tensor-to-scalar ratio, and the cross-correlation ra-
tio, and then derive a consistency condition among these
quantities. In this section, it is implied that all quantities
are evaluated at horizon exit, so we drop the subscript ∗.
As before, our equations here do not include any model-
dependent post-inflationary processing of the modes.

First, we find the spectral indices and the running of

the spectral indices. We define the spectral index of a
spectrum, PX , as

nX ≡ d lnPX
d ln k

. (125)

For comparison, our definition of the curvature spectral
index is related to the more commonly used scalar spec-
tral index, ns, by

ns = 1 + nR = 1 +
d lnPR
d ln k

. (126)

We have chosen, however, to depart from convention and
to use equation (125) to define all four spectral indices
so that they can be more readily compared.

There are a few expressions that come in handy in
finding the spectral indices. The derivative with respect
to k is related to the derivative with respect to N by

d
d lnk ≈ (1 + ǫ) d

dN . To find the running of the transfer
functions, the following expressions are helpful:

T ′
SS = −βTSS ,

T ′
RS = −2

η⊥
v

− βTRS . (127)

We can use the above equations to derive another result:

[

ln

(

1 + T 2
RS

2ǫ

)]′
= 2 (ln |∇N |)′ = −2

η‖
v

cos2 ∆N − 4
η⊥
v

sin ∆N cos∆N + 2µ⊥ sin2 ∆N ≈ 2e†NMeN , (128)
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where M is defined as

M ≡
(

−
(η‖

v

)(2) −
(

η⊥

v

)(2)

−
(

η⊥

v

)(2)
µ

(2)
⊥

)

, (129)

Since to first-order in the SRST limit, M = M̃(1), M can
be viewed as the second-order extension of the effective
mass matrix. Equation (128) shows that the scale depen-
dence of |∇N | is determined by the (eN , eN ) component
of M.

Using the above relations, we find the power spectra
to first-order in the SRST limit:

nT = −2ǫ,

nR = nT + 2e†NM̃eN , (130)

nC = nT + 2e†NM̃e⊥ sin−1 ∆N ,

nS = nT + 2e†⊥M̃e⊥.

Equation (130) shows that the deviations from scale in-
variance are determined by ǫ and the various coefficients
of M̃. In fact, the last three spectral indices in equation
(130) are virtually identical up to the unit vectors used to
project out particular components of the effective mass
matrix. The spectral index nT depends on ǫ, while nS
depends on ǫ and M̃⊥⊥ (≈ µ⊥). But the dependence
of other two spectral indices on the various coefficients
of M̃ is more complicated, as eN depends strongly on
TRS , a double integral expression involving the speed up
rate, turn rate, and effective entropy mass. For example,
if multi-field effects are small (TRS ≪ 1), then eN will
point mostly in the direction of e‖ and hence nR will

depend mostly on the matrix coefficient M̃‖‖ (≈ − η‖

v ),
just like in single-field inflation. However, if multi-field

effects are sufficiently large that TRS > 1—that is, if the
sourcing of curvature modes by isocurvature modes ac-
counts for more than half of the amplitude of curvatures
modes at the end of inflation—then nR will depend more
on the coefficients M̃‖⊥ (≈ − η⊥

v ) and M̃⊥⊥ (≈ µ⊥) than

on M̃‖‖. Similarly, the exact dependence of nC on the

coefficients M̃‖⊥ and M̃⊥⊥ depends strongly on TRS .

Now we calculate the spectral indices to second-order
in the SRST limit. In doing so, we arrive at the following
intermediate step

nT =

[

1 + ǫ+ (1 − C)
d

dN

]

(−2ǫ),

nR = nT + 2

[

1 + ǫ− C
d

dN

]

e
†
NMeN , (131)

nC = nT + 2

[

1 + ǫ− C
d

dN

]

e
†
NMe⊥ sin−1 ∆N ,

nS = nT + 2

[

1 + ǫ− C
d

dN

]

e
†
⊥Me⊥.

To act the differentiation operator on the matrix product,
we use the first-order expressions D

dN ≈ −∇
† lnV∇ and

the helpful result

DeN

dN
≈ (e†NMe⊥N )e⊥N , (132)

where

e⊥N = − sin∆Ne‖ + cos∆Ne⊥. (133)

Using these expressions, the second-order spectral indices
can be written compactly as

nT =
[

1 + ǫ+ (C − 1)M‖‖
]

(−2ǫ),

nR = nT + 2e†N
[

(1 + ǫ)M− 2C(Me⊥N)(Me⊥N )† + C∇ lnV∇M
]

eN , (134)

nC = nT + 2e†N
[

(1 + ǫ)M + 2C(Me⊥N)(Me‖)
† sin−1 ∆N + C∇ lnV∇M

]

e⊥ sin−1 ∆N ,

nS = nT + 2e†⊥
[

(1 + ǫ)M− 2C(Me‖)(Me‖)
† + C∇ lnV∇M

]

e⊥,

where all terms are to be calculated to second-order and
terms of higher order are dropped.

The runnings of the spectral indices are defined as

αX ≡ dnX
d ln k

. (135)

We find them to first-order in the SRST limit by differ-
entiating equation (130) and using equations (23) and
(132). The results can be written compactly as
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αT = 4ǫM̃‖‖,

αR = αT + 2e†N

[

2(M̃e⊥N )(M̃e⊥N )† − ∇ lnV∇M̃
]

eN , (136)

αC = αT + 2e†N

[

−2(M̃e⊥N )(M̃e‖)
† sin−1 ∆N − ∇ lnV∇M̃

]

e⊥ sin−1 ∆N ,

αS = αT + 2e†⊥

[

2(M̃e‖)(M̃e‖)
† − ∇ lnV∇M̃

]

e⊥.

Next, we find the spectral observables that are based
on ratios of the spectra: the tensor-to-scalar ratio and the
cross-correlation ratio. The tensor-to-scalar ratio, rT , is
defined as the ratio of the tensor power spectrum to the
scalar (curvature) power spectrum. From equations (113)
and (124), we find that to first-order in the SRST limit,

rT =16ǫ cos2 ∆N , (137)

while to second-order,

rT =16ǫ cos2 ∆N (1 + 2Ce
†
NM̃eN ). (138)

Modulo the factor of cos2 ∆N , equation (137) is identical
to the single-field result; that is, the single-field result
provides only an upper bound on the two-field tensor-to-
scalar ratio. This result agrees with the result in [69] for
the case of canonical kinetic terms.

In analogy to the tensor-to-scalar ratio, Bartolo et. al.

[63] introduced the quantity

rC ≡ CRS√
PRPS

(139)

to represent the degree of cross-correlation in a two-field
model. We call this quantity the cross-correlation ratio.
To lowest order, rC gives the correlation angle,

rC = sin∆N , (140)

while to second-order,

rC = sin ∆N× (141)
[

1 + C cos2 ∆N

(

M̃‖‖ − M̃⊥⊥ − 2M̃‖⊥ cot∆N

)]

.

We have just found relations for the spectral indices,
running of the spectral indices, the tensor-to-scalar ratio,
and the cross-correlation ratio. These spectral observ-
ables give us important information about the physics of
inflation. The amplitude of the tensor spectrum gives
H , while combinations of the spectral observables nT ,
nR, nC , nS , rT , and rC give us expressions for our four

quantities that describe the shape of the inflation poten-
tial: ǫ ≈ 1

2 |∇ lnV |2, M̃‖‖, M̃‖⊥, M̃⊥⊥. First, the tensor
spectral index determines ǫ via equation (130). Next,
the lowest-order difference between the isocurvature and
tensor spectral indices yields

M̃⊥⊥ =
nS − nT

2
, (142)

while the difference between the isocurvature and the
cross spectral indices yields

M̃‖⊥ =
rC

√

1 − r2C

(

nC − nS
2

)

. (143)

The third effective mass matrix coefficient is given by

M̃‖‖ =
nR − nT

2
+

r2C
1 − r2C

(

nR + nS − 2nC
2

)

, (144)

to lowest order. Together, this means that if we can mea-
sure the above mentioned observables, we can put con-
straints on certain features of the inflationary Lagrangian
and hence work backwards to reconstruct the physics
of inflation. Table 4 summarizes the key relationships
among the kinematics, Lagrangian, and spectral observ-
ables.

Finally, we can combine these six spectral observables
into a consistency condition for general two-field infla-
tion. Bartolo et. al. [63] and Wands et. al. [68] were the
first to find consistency relations for two-field inflation
with canonical kinetic terms. In terms of our parameters
and allowing for non-canonical kinetic terms, we find the
lowest order consistency condition to be

rT = − 8nT (1 − r2C), (145)

which agrees with their results for canonical kinetic
terms. To extend the above result to second-order in the
SRST limit, we substitute equations (130), (140), (142),
(143), and (144) into equation (138) for rT to obtain

rT = − 8nT (1 − r2C) (146)

×
[

1 − 1

2
nT + nR +

r2C
1 + r2C

(nR + nS − 2nC)

]

.
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Table 5. Summary of Key Quantities and How They Affect the Power Spectra

Quantity Importance

ǫ
• Equals −(lnH)′.

• Is related to the field speed via ǫ = 1
2v

2.

η‖

v
• Determines the intrinsic growth rate of adiabatic modes.

η⊥
v

• Is the marker of multi-field behavior for both the unperturbed and perturbed
fields.

• Determines the degree of sourcing of adiabatic/curvature modes by en-
tropy/isocurvature modes.

η⊥
v
η‖
v

• Controls the relative contribution of entropy mode sourcing to the growth of
adiabatic modes.

• Can be viewed as indicating the relative importance of multi-field effects at
a given time.

µ⊥ • Determines the damping of entropy modes.

TSS
• Derivative quantity that depends on an integral of −µ⊥ − η‖

v .

• Represents the total damping of isocurvature modes after horizon exit.

TRS
• Derivative quantity that depends on an integral of η⊥

v and TSS .

• Represents the total sourcing of curvature modes by isocurvature modes after
horizon edit.

H2
∗

ǫ∗
• Sets the overall scale of the three scalar spectra.

TSS

TRS
• Determines the relative sizes of the three scalar spectra.

sin ∆N

• Equals TRS√
1+T 2

RS

.

• Gives an indication of the amount of cross-correlation.

• Determines which linear combinations of the coefficients of the effective mass
matrix appear in the power spectra and the spectral observables.

The above consistency condition agrees with the second-
order result obtained by [69] for the case of canonical
kinetic terms. This consistency relation is a potentially
powerful tool for testing the validity of two-field models
of inflation.

III. APPLICATIONS

In this section, we illustrate how to use our theoretical
framework to understand and calculate the power spec-

tra, and we show how to test two-field models of inflation
against observational data.

We demonstrate this by exploring four different classes
of inflationary models. Together, these four classes of
models cover a wide range of kinematical behaviors and
include an example with a non-canonical field metric.
For each class of models, we vary both the initial con-
ditions and a characteristic parameter of the inflation-
ary Lagrangian to understand the range of power spec-
tra that can be generated. To disentangle the separate
contributions to the power spectra, we present a series
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of plots showing the background trajectories, our kine-
matical quantities, and the transfer functions. Using
these plots, we discuss how the transfer functions and the
power spectra can be inferred from the background kine-
matics and the field metric. Thereafter, we allow both
the initial conditions and the characteristic Lagrangian
parameter to vary, and we plot the results for a set of
six spectral observables. Finally, we use these results to
determine which inflationary scenarios—that is, which
combinations of the initial conditions and the inflation-
ary Lagrangian—are consistent with observational con-
straints. To our knowledge, this constitutes the first
thorough and rigorous approach to understanding and
constraining two-field models of inflation.

A. Methods

In this section, we provide an overview of our methods
and general approach.

We start the investigation of each class of models by
first varying the initial conditions, while holding the La-
grangian parameter constant, and we determine the ef-
fects on the power spectra. Because the initial condi-
tions can affect the inflationary dynamics and hence the
power spectra, varying the initial conditions is essential
in order to test and constrain two-field inflationary mod-
els against observations. With an uncountable number of
initial conditions, this is ostensibly a formidable task. In-
deed, though there have been a few attempts to consider
initial conditions in single-field inflation, particularly by
[83, 84], there have not been many attempts to do so in
two-field inflation, though one notable exception in which
the initial conditions receive more consideration is [66].
Fortunately, most inflationary models have attractor so-
lutions and/or sampling a collection of initial conditions
is sufficient to extrapolate the results to the set of all pos-
sible initial conditions. In our analysis, we parameterize
the initial conditions via a single parameter, θ, which is
the polar angle for the field vector 60 e-folds before the
end of inflation. When varying only the initial condi-
tions, the six initial conditions we test for each model
are θ = 0, π

10 ,
2π
10 ,

3π
10 ,

4π
10 , and π

2 .
Next, we vary a characteristic parameter of the infla-

tionary Lagrangian, while holding the initial conditions
constant, and we find the resultant spectra. We choose
six representative values of that Lagrangian parameter
to test. We do this in order to understand how either
the strength of one of the interaction parameters in the
potential or the size of a parameter in the field metric
impacts the spectra. Varying a Lagrangian parameter
also has the benefit of extending our analysis to an en-
tire class of similar models, rather than just testing a
single Lagrangian from that class of models.

To conduct the above analyses, we perform all our cal-
culations to second-order in the complete SRST approx-
imation using our semi-analytic formulae. However, we
have checked these results all against exact numerical so-

lutions and find good agreement for the scenarios tested.
The one exception is that the second-order calculations
do not reflect any oscillations of the φ2 field about the
φ1 axis, which occur in a very small subset of scenarios.
The effect of these oscillations is to introduce some tiny
wiggles into the power spectra, but the full treatment of
these oscillations is beyond the scope of this paper. Also
beyond the scope of this paper is dealing with the small
subset of scenarios in which inflation will end before one
of the fields has a chance to roll down the potential—
that is, models that consist of two separate inflationary
phases separated by a non-inflationary phase. For these
scenarios, we simply set the initial conditions relative to
the end of the first phase of inflation. We refer the in-
terested reader to [37] to see how these scenarios can be
handled.

To complement the above mentioned analyses of the
power spectra, we also plot the the background trajec-
tories, kinematics, and transfer functions. We do this
in order to disentangle the multiple factors that affect
the power spectra. We now describe this series of plots
here to avoid having to use plot captions and to repeat
the same information several times. For our plots of the
background trajectories and the kinematical parameters
(ǫ,

η‖

v , η⊥

v ), we show the results for six different sample
scenarios for the time period 70 e-folds before the end of
inflation until the end of inflation. The gray contour lines
indicate the number of e-folds left before inflation ends.
To depict the two transfer functions—TSS and TRS—we
plot the functions from horizon exit until the end of in-
flation, where the x-axis represents the number of e-folds
before inflation ends. We do this for seven sample mode
wavelengths: for the modes that exit the horizon 70, 60,
50, 40, 30, 20, and 10 e-folds before the end of inflation
(colored lines). On the same plots, we overlay the value
of the transfer function at the end of inflation (solid black
lines). These lines indicate the value of the transfer func-
tion at the end of inflation for the modes that exited the
horizon at the time shown on the x-axis. On the plots
of TSS , we also overlay the value of the effective entropy
mass (dashed black lines) during inflation. For our spec-
tral plots, we plot PR at horizon exit and PR, CRS , and
PS at the end of inflation. We show the spectra for the
modes that exited the horizon between 70 e-folds before
the end of inflation and the end of inflation; that is, the
x-axis effectively represents the mode wavelength. To
calculate the spectra, we normalize the amplitude of the
curvature power spectrum at the end of inflation to the 7-
year WMAP + BAO + H0 result ∆2

R(k0) ≈ 2.44×10−9,
where k0 = 0.002 Mpc−1 [85], which we take to be 60
e-folds before the end of inflation. This normalization in
turn fixes the overall energy scale of the potential sepa-
rately for each combination of the initial conditions and
Lagrangian parameter, and hence also fixes the ampli-
tudes of the isocurvature and cross spectra.

After having separately varied the initial conditions
and the Lagrangian parameter, we end our exploration
of each class of models by allowing both parameters to
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vary. The mesh size we use when allowing both the initial
conditions and Lagrangian parameter to vary is 101 by
101, so we test a total of 10, 201 inflationary scenarios for
each type of model. For each of these 10,201 scenarios,
we find the six spectral observables rT , rC , the isocur-
vature fraction, nT , nR, and αR, where we define the
isocurvature fraction, fiso, as

fiso ≡ PS
PR

. (147)

We pick these particular observables because they are
among the ones that are most commonly considered
and/or that are most likely to be well-constrained in the
near future. In calculating the spectral observables, we
find them numerically from the power spectra, rather
than using our semi-analytic formulae. The numerical
errors are usually negligible, except in some cases for the
running of the curvature spectral index, αR. Lastly, we
plot each of these scenarios in the rT −ns plane, compar-
ing them against the 95% confidence limits derived from
observational data. To complement this plot, we provide
a second plot showing exactly which of these scenarios
are ruled by these observational constraints. The obser-
vational constraints we use are the WMAP + BAO +
H0 95% confidence limits in [85] on the combination of
ns = 1+nR and rT , which we approximate by the ellipse

0.214n2
s + 0.00357r2T − 0.0450nsrT

− 0.411ns + 0.0437rT + 0.198 ≤ 0. (148)

Finally, we note that for our aforementioned analyses,
we have computed the spectra and spectral observables
at the end of inflation and have therefore ignored any
model-dependent processing of the modes that may oc-
cur after inflation ends. What exactly happens to the
spectra thereafter is unknown: there are many uncer-
tainties associated with the end of inflation and with the
reheating process during its aftermath. Since the focus of
the present paper is rather orthogonal to these issues—on
the impact of having more than one inflaton field during

inflation—our calculations do not take these issues into
consideration. Of course, some sort of assumptions are
required in order to test an inflationary model against
observations, so we have assumed that

1. Inflation ends abruptly when the scale factor stops
accelerating, which is equivalent to the condition
ǫ = 1,11,

2. The curvature spectra are conserved across the in-
flationary boundary,12 and

11 Specifically, when applying this criterion, we compute ǫ using the
exact background equations.

12 For a given two-field model, inflation does not end at a unique
value of V , or equivalently, H. If inflation does not end at a
unique energy density, the power spectra are not necessarily con-

3. The isocurvature modes are not completely de-
stroyed by the reheating process, and hence our
calculations of the isocurvature spectra and frac-
tions constitute upper limits.

Any additional assumptions about the nature of the end
of inflation and reheating can simply be appended onto
our calculations here, as desired.

B. Multiplicative Double Polynomial Potential

With Canonical Kinetic Terms

The first class of inflationary models we investigate
is the multiplicative double polynomial potential with
canonical kinetic terms. We definite multiplicative dou-
ble polynomial potential to mean all potentials of the
form

V = M4|φ1|n|φ2|p. (149)

This inflationary potential falls under the general cate-
gory of multiplicative potential models, V =

∏

i Vi(φi),
where Vi(φi) means that Vi is a function only of the ith
field. Multiplicative models with canonical kinetic terms
have the feature that their effective mass matrices are di-
agonal and hence the fields and field perturbations evolve
essentially independently. Here, we take the adjustable
Lagrangian parameter to be the power, p, to which the φ2

field is raised. We vary p, which we take to be a contin-
uous variable greater than or equal to 1, while holding n
fixed at n = 2. Later, using the results in this section, it
will be become evident that we can extrapolate from the
n = 2 case to all values of n and hence consider the entire
class of multiplicative double polynomial potentials.

1. Varying the Initial Conditions

For the first part of our analysis, we vary the initial
conditions while holding the power p fixed at p = 4 and
investigate the background trajectories and kinematics,
the transfer functions, and the power spectra. For the
θ = 0o and θ = 90o initial conditions, the potential is
nonsensical if we set the corresponding field to zero, so
instead we simply ignore the zero-ed field, and use the
corresponding single-field potential for the non-zero field.

We find that varying the initial conditions results in
trajectories with very little curvature that are very widely

served across the inflationary boundary (e.g., [86]). However, in
many cases of two-field inflation (including many of our exam-
ples below), attractor solutions exist and/or the evolution of the
field vector at the end of inflation is essentially single-field, which
diminishes any corrections to the power spectra. So we make the
usual assumption that any corrections to the power spectra aris-
ing from the transition from inflation to the radiation-dominated
era are negligibly small [25].
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Figure 3. Multiplicative Double Polynomial Potentials, V (φ1, φ2) = M4φ2
1|φ2|p,

With Canonical Kinetic Terms

Varying the Initial Condition, θ, With the Lagrangian Parameter Fixed At p = 4
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separated in field space, as shown in Figure 3(a). With
the exception of the field trajectory corresponding to θ ≈
55o, the other five trajectories depicted show that one
field evolves significantly during the course of inflation,
ending around the reduced Planck scale, while the other
field only slightly evolves during the course of inflation.
Therefore, for most initial conditions, one of the two fields
will dominate the background dynamics and primarily
determine the kinematical parameters.

Plots of the three kinematical parameters show typical
slow-roll behavior up until the end of inflation. As shown
in Figure 3(b), ǫ is largest for those trajectories where
both fields dominate, and it is also a little larger for tra-
jectories corresponding to φ2 domination, reflecting the
higher power to which the φ2 field is raised. There is little
variation in the speed up rate (Figure 3(c)), and the turn
rate (Figure 3(d)) is very small for these models, typically
about an order of magnitude less than the speed up rate.
Therefore, the scenarios produced by these models sat-
isfy

η‖

v ≫ η⊥

v , and we expect the multi-field effects to be
small. These kinematics can also be gleaned by analyz-
ing the lowest-order effective mass matrix. This analysis

(not shown) reveals that M̃
(1)
‖‖ , which approximates the

speed up rate, will always be the largest magnitude ma-
trix coefficient and that the other matrix coefficients will
virtually always be within an order of magnitude of each
other, except near the very end of inflation or in the small
subset of models in which the fields co-dominate.

Now we consider the transfer functions. Since M̃⊥⊥ <
0 for these models, they provide an example of scenarios
in which the entropy modes actually grow in the super-
horizon SRST limit. However, since the speed up rate
is positive and larger in magnitude than the effective en-
tropy mass, the isocurvature modes will nevertheless be
increasingly damped by the transfer function TSS after
they exit the horizon (Figure 3(e)). The isocurvature
modes are damped fairly steadily in the super-horizon
limit, but the damping increases towards the end of in-
flation when both the effective entropy mass and speed
up rate increase. Also, the isocurvature modes are more
damped in those scenarios in which the φ2 field domi-
nates, and less damped in scenarios where the two fields
co-dominate due to the smaller difference between the
effective entropy mass and speed up rate in these scenar-
ios. Note that by the end of inflation, the isocurvature
modes are still appreciable in all cases, as expected when
the turn rate is so small and the effective entropy mass
is negative. (Except, of course, the isocurvature modes
do not exist when θ = 0o or θ = 90o.)

The second transfer function, TRS , is shown in Figure
3(f). For the trajectories where one field dominates, TRS
increases steadily until the end of inflation, and it is larger
as the initial angle increases. For the trajectory where the
fields co-dominate (θ ≈ 550), TRS starts off significantly
smaller, but increases much more rapidly at the very end
of inflation. Interestingly, the more the sub-dominant
field contributes to the inflationary dynamics, the more
scale-invariant TRS is. In all cases, however, TRS remains

less than about 1, reflecting the fact that the turn rate
is so small for these models and hence the total sourcing
of curvature modes by isocurvature modes is modest.

Finally, we plot the set of power spectra for these sce-
narios. The curvature power spectra at horizon exit (Fig-
ure 3(g)) and at the end of inflation (Figure 3(h)) show
some variations due to the initial conditions, being more
steeply sloped when the φ2 field is a dominant contribu-
tor to the background dynamics. But they are close to
scale-invariant and lack any substantial scale-dependent
features. The correlated cross spectrum (Figure 3(i)) and
isocurvature spectrum (Figure 3(j)) are both smaller by
about 1-2 orders of magnitude and are also close to scale-
invariant, which is as expected given that the isocurva-
ture modes are still appreciable at the end of inflation.
The two exceptions are the obvious absence of isocurva-
ture and cross spectra for the single-field scenarios corre-
sponding to θ = 0 and θ = 90o, and that the isocurvature
and cross spectra are virtually identical to the curvature
spectra for the trajectory corresponding to θ ≈ 55o, re-
flecting the fact that the two fields are co-dominant in
this scenario. These results match what we would pre-
dict in light of our analysis of the background kinematics
and the transfer functions.

2. Varying the Lagrangian Parameter

Now we vary the power, p, to which φ2 is raised, while
holding the initial condition fixed at θ = 45o.

Varying the Lagrangian parameter p also results in
field trajectories with very little curvature (Figure 4(a)).
For the particular initial condition θ = 45o, if p < 2, the
φ1 field dominates the inflationary dynamics, whereas if
p > 2, then the φ2 field dominates; around p ≈ 2, both
fields contribute about equally. However, for this particu-
lar initial condition, the degree of domination of one field
over the other is not as dramatic as some of the scenarios
we investigated in the previous section. As before, these
scenarios show typical single-field slow-roll behavior up
until the end of inflation, with ǫ (Figure 4(b)) increasing
as p increases but with little variation in the speed up
rate (Figure 4(c)). As before, the turn rate is very small
for these models (Figure 4(d)) and smaller than the speed
up rate. The turn rate is smallest when both fields co-
dominate, but is greatest when one field dominates but
then the second field starts to pick up speed towards the
end of inflation. As in the previous section, an examina-
tion of the first-order effective mass matrix agrees with
this analysis.

Now we investigate the two transfer functions. The
isocurvature modes are increasingly damped by the
transfer function TSS after they exit the horizon (Figure
4(e)), with slightly more damping as p increases, with
the exception of no damping in the scenario where p = 2,
where the fields exactly co-dominate. For the transfer
function TRS , its size mostly reflects the size of the cor-
responding turn rate, since TSS depends more weakly on
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Figure 4. Multiplicative Double Polynomial Potentials, V (φ1, φ2) = M4φ2
1|φ2|p,

With Canonical Kinetic Terms

Varying the Lagrangian Parameter, p, With the Initial Condition Fixed At θ = 45o
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Figure 5. Multiplicative Double Polynomial Potentials, V (φ1, φ2) = M4φ2
1|φ2|p,

With Canonical Kinetic Terms

Varying Both the Initial Condition, θ, and the Lagrangian Parameter, p
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p than the turn rate does (Figure 4(f)). So TRS is small-
est for those scenarios in which the fields co-dominate and
is largest for those scenarios in which the sub-dominant
field starts to pick up speed towards the end of inflation.
The rest of our observations from the previous section on
how the behavior of TSS and TRS reflects the dominance
of the fields and the field kinematics also applies here.

The set of power spectra for these scenarios shows sev-
eral similarities to those obtained when we varied the ini-
tial conditions. The curvature spectra (Figures 4(g)-(h))
all are nearly scale-invariant with similar amplitudes, but
they are more steeply sloped as the power p increases, as
expected. As before, the cross spectrum (Figure 4(i)) and
isocurvature spectrum (Figure 4(j)) are both smaller by
about 1-2 orders of magnitude than the curvature spec-
tra, reflecting the fact that the isocurvature modes are
still significant at the end of inflation. The one exception
is for the trajectory corresponding to p = 2, which has a
zero turn rate and zero damping of isocurvature modes,
so the isocurvature spectrum is identical to the curvature
spectrum and the cross spectrum vanishes.

3. Spectral Observables

Now we let the initial conditions and the power to
which the φ2 field is raised both vary at the same time.
We determine how these variations affect our set of power
spectrum observables, and we determine which scenarios
are consistent with observational constraints.

First, we consider the three quantities that depend on
the relative amplitudes of the power spectra: rT , rC , and
fiso. Figure 3(a) shows that except for the very small
band of trajectories in which both fields about equally
contribute to the inflationary dynamics, rT does not seem
to depend on the initial conditions, but only on the power
to which the dominant field is raised. As p increases, so
does rT . By comparison, Figure 3(b) shows that the
cross-correlation ratio—which also serves as a measure
of how much the curvature modes are sourced by the
isocurvature modes—exhibits more variation, increasing
the more the sub-dominant field contributes to the infla-
tionary dynamics. The two ridges coincide with the tra-
jectories with the largest turn rates, which correspond to
scenarios in which the sub-dominant field starts to pick
up more speed as the dominant field ends inflation. To
the left of the first ridge, φ2 dominates the inflationary
dynamics, while to the right of the second ridge, φ1 dom-
inates. The deep and narrow gorge-like feature between
the two ridges corresponds to scenarios in which the fields
are essentially equally co-dominant such that the turn
rate is very small and hence the cross-correlation is tiny.
Only for this small subset of scenarios where the fields co-
dominate is the isocurvature fraction large, as shown in
Figure 3(c); otherwise, the isocurvature fraction is small.

Next, we consider the derivative quantities associated
with the power spectra: the spectral indices nT and nR,
and the running of the curvature spectral index, αR. The

plots for both −nT ≈ 2ǫ (Figure 5(d)) and −nR (Figure
5(e)) are very similar in profile, since the speed up rate
and logarithmic running of TRS produce very small de-
viations from scale invariance, which serves to slightly
increase the value of −nR relative to −nT . The values
of these two spectral indices are greatest for those sce-
narios in which φ2 dominates or co-dominates, and they
increase as p increases. Also, we note that the larger p
is, the larger θ must be for the fields to be co-dominant.
As nR itself does not have much scale dependence, the
running of the curvature spectral index is very small and
negative for these models, as shown in Figure 5(f).

Finally, we examine which inflationary scenarios pro-
duced by this type of model can be ruled out by the 95%
confidence limits on the combination of ns = 1 + nR
and rT . According to these limits, the single-field poten-
tial V ∝ φ4 is ruled out, but the single-field potential
V ∝ φ2 is still a viable candidate for describing inflation
[85]. Therefore, whenever the φ1 field, which is raised to
the second power, dominates, the inflationary scenario is
consistent with observational data. This corresponds to
higher values for ns and lower values for rT , as shown in
Figure 5(g), and this corresponds to the rightmost white
region in Figure 5(h). However, when the φ2 field dom-
inates or co-dominates, whether the scenario is viable
depends on the power to which the φ2 field is raised. Sce-
narios in which p & 3.2 and φ2 dominates or co-dominates
are ruled out by observational constraints.

Taken together, these results suggest that multiplica-
tive double polynomial potentials with canonical kinetic
terms produce nearly scale-invariant power spectra that
are determined primarily by the field that dominates the
inflationary dynamics, or by both fields if they are co-
dominant, with corrections from the sub-dominant field.
As a result, the power to which the dominant field (or
co-dominant fields) is raised determines whether the sce-
nario is excluded by current observational data. Also in
these scenarios, the isocurvature and cross spectra is typ-
ically smaller, but possibly detectable, if unaffected by
reheating and other post-inflationary processes. There-
fore, we can view the role of initial conditions in these
models, in conjunction with the powers the two fields are
raised to, as being to determine the dominant field (or
whether the fields are co-dominant) and to set the size of
the corrections from the sub-dominant field.

C. Double Quadratic Potential With Canonical

Kinetic Terms

The second class of inflationary models we investigate
is the double quadratic potential with canonical kinetic
terms. We define double quadratic potential to mean all
potentials of the form

V =
1

2
m2

1φ
2
1 +

1

2
m2

2φ
2
2. (150)

This inflationary model falls under the general category
of additive potential models, V =

∑

i Vi(φi), where Vi
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is a function only of the ith field. Additive models with
canonical kinetic terms have the feature that the given
fields are non-interacting, so they interact only gravita-
tionally. Here, the adjustable Lagrangian parameter is
the ratio of the masses, m2

m1
, and we take m2

m1
≥ 1.

1. Varying the Initial Conditions

First, we vary the initial conditions while holding the
mass ratio m2

m1
fixed. We set m2

m1
= 5 since this mass

ratio produces trajectories with moderately fast turning
behavior.

The trajectories produced by this model (Figure 6(a))
and associated kinematical quantities (Figures 6(b)-(d))
depend significantly on the initial conditions and roughly
separate into three subsets of behavior. The first subset
of scenarios starts sufficiently close to the φ1 axis such
that the φ1 field dominates the energy density during
the last 60 e-folds of inflation. For these trajectories, the
field vector essentially rolls down the φ1 axis, producing
typical slow-roll inflation with at most a small turn rate.

The second and largest subset of trajectories consists of
those that experience φ2 domination 60 e-folds before in-
flation ends, but have an initial angle θ . 80o. For these
trajectories, the more massive φ2 field initially dominates
the energy density, driving the field vector towards the φ1

axis. Eventually, once φ2 becomes sufficiently small, φ1

takes over as the dominant field, causing the trajectory
to turn significantly in field space, before rolling down
the φ1 axis and ending inflation.13 Since φ2 dominates
the dynamics before the turn, while φ1 dominates the dy-
namics after the turn, these inflationary scenarios can be
considered to have two distinct phases of inflation. Ex-
ploring the kinematics of these scenarios in Figures 6(b)-
(d), we find that as the field vector approaches the φ1

axis, ǫ increases substantially reflecting the fact that φ2

picks up speed. But then as φ2 domination gives way to
φ1 domination, ǫ drops significantly, essentially resetting
itself for a phase of φ1 domination. During the transition
between the phases, the turn rate (Figure 6(d)) dramat-
ically and transiently increases, and the trajectory turns
significantly in field space; however, this peak in the turn
rate occurs slightly after the large negative drop in the
speed up rate. In general, we find that the larger the ini-
tial angle θ is, the larger the speed up and turn rates are
when they peak in magnitude, the narrower the peaks,
and the closer these peaks occur to the end of inflation.

13 We note that when using the exact equations of motion, the
trajectories with φ ≈ 70o will oscillate about the φ1 axis around
the time that the field vector turns sharply in field space. As
mentioned earlier, we will not be addressing these oscillations
and any subsequent particle decays that arise, but rather simply
point out that these oscillations arise as a consequence of the
classical background dynamics for certain combinations of the
initial conditions and sufficiently large values of the mass ratio.

As this subset of scenarios represents the case in which
the speed up rates and turn rates are comparable around
similar times during inflation, we therefore expect the
multi-field effects to be substantial.

The third subset of scenarios are also characterized by
initial φ2 domination 60 e-folds before inflation ends but
have initial angles θ & 80o. The difference is that for
these scenarios, the φ2 field picks up enough speed for in-
flation to end while the φ2 field still dominates the energy
density. Eventually, a second phase of inflation driven
by the φ1 field will occur sometime later. As mentioned
earlier, these more complicated scenarios are beyond the
scope of this work, so for simplicity, we calculate the in-
flationary dynamics by treating these scenarios as if they
consist of only one phase of inflation, with typical slow-
roll behavior and at most a very small turn rate. We
refer the interested reader to [37] to see in detail how one
might handle these more complicated scenarios.

Now we consider the two transfer functions TSS (Fig-
ure 6(e)) and TRS (Figure 6(f)). For all three subsets
of scenarios, whenever the fields are in the super-horizon
SRST limit, TSS decays gradually. However, for the sec-
ond subset of scenarios, during the transition between
inflationary phases, TSS varies dramatically. Initially,
the drop in ǫ (or equivalently, the large negative speed
up rate) strongly enhances the isocurvature modes, and
then the subsequent large turn rate strongly suppresses
the modes. After the turn, M̃⊥⊥ remains high and the
speed up rate gradually increases again, so that TSS ≪ 1
for all modes that exit the horizon both before and af-
ter the turn. This is exactly the behavior for TSS that
we expect in inflationary scenarios with large turn rates.
The second transfer function, TRS , satisfies TRS ≪ 1 for
the first and third subsets of scenarios, because of their
small turn rates. But TRS becomes larger than one by the
end of inflation and exhibits significant scale-dependent
features for the second subset of scenarios. For these
scenarios, TRS starts off small, but when the turn rate
rises dramatically, so too does TRS . The steepness of the
increase in the turn rate is indeed reflected in the steep-
ness of the rise in TRS , and after the sharp turn, TRS
levels off. Also, the value of TRS at the end of inflation
is largest for those modes that exit the horizon around
the time the turn rate is large. For modes that exit the
horizon after the sharp turn, the value of TRS at the end
of inflation is negligibly small.

Lastly, we examine the resultant power spectra in Fig-
ures 6(g)-(i). For the second subset of scenarios, the
curvature power spectrum is strongly scale-dependent
at horizon exit, largely reflecting the transient rise
and fall of ǫ during the transition between inflationary
phases. Interestingly, despite the strong scale depen-
dence of the curvature spectrum at horizon exit, this
scale-dependence is largely blunted by the sourcing of
curvature modes by isocurvature modes, so the curva-
ture spectrum has a much weaker scale dependence at
the end of inflation. The net result is that the two phases
of inflation are distinctly evident in the final power spec-
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Figure 6. Double Quadratic Potentials, V (φ1, φ2) = 1
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trum, and appear roughly as if the equivalent single-field
power spectrum from the second phase was essentially
appended to the equivalent single-field power spectrum
from the first phase, modulo a small transition region.
In all cases shown, since the large turn rate produced
TSS ≪ 1, the cross and isocurvature spectra are all van-
ishingly small, with amplitudes on the order of 10−20 or
even much less.

2. Varying the Lagrangian Parameter

Now we vary the mass ratio while holding the initial
condition fixed at θ = 45o.

The trajectories produced (Figure 7(a)) and the asso-
ciated kinematical quantities (Figures 7(b)-(d)) depend
strongly on the mass ratios of the fields. For our fixed
initial condition θ = 45o, trajectories with a mass ratio
of around 1 are approximately straight 45o lines in the
flat field space, representing the fact that the two fields
about equally contribute to the field dynamics. For mass
ratios m2

m1
& 2, the trajectories turn through roughly 90o

in field space, but the rate at which they complete this
turn varies dramatically. The greater the mass ratio, the
sharper the turn is in field space, as before the phase tran-
sition, the more massive φ2 field initially decreases faster
than the φ1 field. For mass ratios in the range of about
1 . m2

m1
. 3, both fields significantly contribute to the

energy density. These scenarios exhibit typical slow-roll
behavior, with small but still significant turn rates. For
mass ratios m2

m1
& 3, the turn in the trajectory is sharper

and occurs largely within a couple to several e-folds of in-
flation, reflecting the two distinct phases of inflation we
discussed earlier. The larger the mass ratio, the sharper
the turn and the larger and more abrupt the increase and
subsequent decrease in ǫ. For very large mass ratios (not
shown), inflation ends while the dynamics are still domi-
nated by φ2. Such scenarios are similar to those that we
classified as being under the third subset of scenarios in
the previous section.

The coefficients of the lowest-order effective mass ma-
trix support our claims in this and the previous sections
about the types of trajectories that can be produced by
double quadratic potentials with canonical kinetic terms
(analysis not shown). The matrix coefficients vary by a
few orders of magnitude over the region of field space
shown, and they depend strongly on the combination of
the initial conditions and the mass ratio of the fields.
For a large fraction of the different possible combina-
tions of the initial conditions and mass ratio, the speed
up rate (

η‖

v ≈ −M̃‖‖) will be larger than the turn rate

(η⊥

v ≈ −M̃‖⊥), and the speed up rate and turn rates are
greatest near the axes. However, for mass ratios typically
greater than about 5, the SRST approximation breaks
down close to the φ1 axis, and both M̃‖⊥ and M̃⊥⊥ typ-
ically increase by a few orders of magnitude and reach
their largest values near the φ1 axis. This corroborates
both our earlier results and the results in this section that

trajectories with larger mass ratios that approach close to
the φ1 axis will turn quickly and have their isocurvature
modes be rapidly suppressed thereafter.

Indeed, we find that the isocurvature modes (Figure
7(e)) are initially steadily damped in the six scenarios de-
picted, but for those trajectories that later turn rapidly
in field space, their isocurvature modes experience a tran-
sient boost from the drop in ǫ, followed by a rapid sup-
pression from the subsequent larger turn rate. By the end
of inflation, all isocurvature modes have been strongly
suppressed. The net effect of the turn rate’s behavior and
the suppression of isocurvature modes on TRS is shown
in Figure 7(f). For small values of the mass ratio, TRS
is small and largely scale-independent. However, as the
mass ratio increases, TRS significantly increases in value
and becomes more scale-dependent. As in the previous
section, TRS increases dramatically when the turn rate
is large, and then levels off. The value of TRS at the end
of inflation increases as the mass ratio increases and is
largest for those modes that exit the horizon around the
transition from φ2 to φ1 domination.

The resultant curvature power spectra are shown in
Figures 7(g)-(h). Like in the previous section, the cur-
vature power spectrum exhibits strongly scale-dependent
features for those trajectories that correspond to two dis-
tinct phases of inflation, but is nearly scale-invariant for
trajectories that exhibit very little turning in field space.
Also, like in the previous section, the scale-dependence
at horizon exit is largely blunted by sourcing effects, so
the final curvature spectrum has a much weaker scale de-
pendence, and the two phases of inflation are distinctly
evident in the final power spectrum. Lastly, the cross
spectrum (Figure 7(i)) is small and only marginally sig-
nificant for those trajectories with small but non-zero
turn rates. Similarly, the isocurvature spectrum (Fig-
ure 6(j)) is only marginally significant for the trajectories
with zero or very small turn rates, but still is a few or-
ders of magnitude smaller than the curvature spectrum;
for all other trajectories, it is negligibly small.

3. Spectral Observables

Now we vary both the initial conditions and the mass
ratio, and we determine how these variations affect our
spectral observables. Using this information, we deter-
mine which scenarios are consistent with observational
constraints.

First, we consider the three quantities that depend
on the relative amplitudes of the power spectra. The
tensor-to-scalar ratio is rT ≈ 0.13, regardless of the ini-
tial conditions and the mass ratio, as shown in Figure
8(a). By comparison, the cross-correlation ratio (Figure
8(b)) varies dramatically and can be large, particularly
as θ decreases and m2

m1
increases, but is vanishingly small

when one field dominates the dynamics during the last
60 e-folds of inflation. When the cross-correlation ratio is
large, the isocurvature fraction (Figure 8(c)) is negligibly
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Figure 7. Double Quadratic Potentials, V (φ1, φ2) = 1
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Figure 8. Double Quadratic Potentials, V (φ1, φ2) = 1
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small, but when the cross-correlation ratio is small, the
isocurvature fraction becomes significant, reaching values
of up to about 0.015.

Like for the multiplicative double polynomial poten-
tials, the plots for both −nT (Figure 8(a)) and −nR
(Figure 8(b)) are quite similar to each other, illustrat-
ing that the main contribution to the spectral indices is
from ǫ. Interestingly, the deviations from scale invari-
ance stemming from the speed up and turn rates appear
to largely cancel each other out. Here, though, the spec-
tral indices depend strongly on the initial conditions and
the Lagrangian parameter. This is particularly true for
mass ratios above m2

m1
≈ 3, for which the greatest devia-

tions from scale invariance occur for small initial angles.
This is because these trajectories correspond to scenar-
ios where the turn rate is large around the pivot scale.
The significant scale dependence of nR is reflected in the
large magnitude of αR for certain combinations of initial
conditions and mass ratios, as shown in Figure 8(d).

Finally, we examine which combinations of the initial
conditions and the mass ratios can be ruled out based
on observations. Single-field V ∝ φ2 models are viable
under constraints on the combination of rT and ns, so it
is interesting to investigate the effect of adding a second
inflaton. Figure 8(f) shows that adding a second inflaton
can indeed change the viability of the quadratic potential.
Scenarios with mass ratios roughly above 3 and initial
conditions θ . 45o are ruled out by the 95% confidence
region in the ns − rT plane, largely due to the smaller
values of the scalar spectral index. Models with mass
ratios below about 2.5 are viable for all initial conditions.

Therefore, for this particular class of models, the power
spectra and associated observables are primarily deter-
mined by the mass ratio and whether one field dominates
the dynamics or not. Here, the role of the initial condi-
tions for mass ratios sufficiently larger than 1 is to deter-
mine whether inflation consists of two separate phases,
each dominated by a different field, or consists of a sin-
gle phase where the two fields are co-dominant. When
the field trajectory corresponds to two distinct phases,
these two phases will be reflected in the resultant cur-
vature spectrum, which somewhat surprisingly is much
less scale-dependent than the corresponding spectrum at
horizon exit, due to the fact that the scale-dependences
of the speed up and turn rates largely cancel each other
out. By contrast, for mass ratios close to 1, the infla-
tionary dynamics are much less sensitive to the initial
conditions and the curvature power spectrum is close to
scale-invariant. In general, for these models, the isocur-
vature and cross spectra are very small, if not completely
negligible, reflecting the larger turn rate and effective en-
tropy mass.

D. Double Quartic Potential With Canonical

Kinetic Terms

A somewhat similar class of potentials to the double
quadratic potential is the double quartic potential, which
includes all potentials of the form

V =
1

4
λ4

1φ
4
1 +

1

2
λ4

2φ
4
2. (151)

Since the addition of a second field to single-field V ∝ φ2

models changes their viability in certain cases, it is in-
teresting to consider whether the addition of a second
field to the otherwise ruled out single-field V ∝ φ4 mod-
els makes them viable for any particular combinations of
the initial conditions and the ratio of coupling constants.
Here, we again take the kinetic terms to be canonical.
We take the adjustable Lagrangian parameter to be the
ratio of the coupling constants, λ2

λ1
, where λ2

λ1
≥ 1.

As it turns out, the results for the double quartic po-
tential are similar in most ways to those for the dou-
ble quadratic potential, so we keep this discussion short.
Separately varying the initial conditions and the ratio of
the coupling constants, we find very similar results for the
trajectories, kinematics, transfer functions, and power
spectra (plots not shown) as for the double quadratic
models. However, there are a few important differences
worth mentioning. For those trajectories that turn sig-
nificantly in field space, they turn a bit further out from
the φ1 axis, representing the fact that the φ2 field is still
appreciably evolving during the φ1-dominated phase. As
a result, the turn rate is a bit smaller for these scenarios
and the isocurvature modes are less strongly damped in
the second phase of inflation, and so the isocurvature and
cross spectra tend to be orders of magnitude larger. Also
for these trajectories, the speed up rate tends to be a bit
larger in magnitude, so ǫ peaks at a higher value before
φ1 domination begins in earnest. This also results in a
higher boost in the amplitude of isocurvature modes dur-
ing the transition between φ2 and φ1 domination. Lastly,
the curvature power spectra produced by double quartic
potentials naturally have larger spectral indices, just like
the single-field quartic potential.

In Figure 9, we illustrate the ranges of values that
the double quartic models can produce for the spectral
observables. Since the kinematics are quite similar to
those for the double quadratic models, it is no surprise
that these observables share many of the same features.
The main differences are that the tensor-to-scalar ratio is
about twice as large with a value of rT ≈ 0.26; the spec-
tral indices nT and nR are larger in magnitude, with their
peak values being roughly three times higher and the dif-
ferences between the two being proportionally greater;
and the amplitude of the running of the curvature spec-
tral index is significantly larger. The net result of both
rT and nR being larger in magnitude (and hence ns be-
ing smaller) is that the double quartic model does not
produce any scenarios falling in the allowed region in the
ns − rT plane. Therefore, adding a second inflaton does
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Figure 9. Double Quartic Potentials, V (φ1, φ2) = 1
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not make these models viable. In fact, it make things
worse by decreasing the value of ns and hence shifting
the scenario far away from the allowed region in ns − rT
plane.

E. Double Quadratic Potential With

Non-Canonical Kinetic Terms

In the previous sections, we chose to investigate sim-
ple inflationary models that represent the most common
types of kinematical behaviors. In this section, we con-
sider the addition of non-canonical kinetic terms, and in
doing so, we also investigate the remaining unexplored
kinematical limit: η⊥

v ≫ η‖

v .
The last class of models we consider is the double

quadratic potential in equation (150) but with the ad-
dition of non-canonical kinetic terms in the form

G =

(

1 0
0 e2bφ1

)

, (152)

where b is a constant. The form of the field metric in
equation (152) is the same as that which appears in
Brans-Dicke theories after transformation to the Einstein
frame. The Ricci scalar for this field metric is

R = −2b2, (153)

so in keeping with our assumption that |R| . 1, we re-
quire that |b| . 1√

2
≈ 0.71. For these models, we vary

the Lagrangian parameter b, while holding the mass ra-
tio fixed at m2

m1
= 2. This will allow us to see whether

the addition of non-canonical kinetic terms to a model
that is otherwise allowed by observations can affect the
model’s viability.

1. Varying the Lagrangian Parameter

Since the dependence of the kinematics, transfer func-
tions, and power spectra on the initial conditions can be
inferred from Section III C 1, we skip directly to the vary-
ing the Lagrangian parameter, b, while holding the initial
condition fixed at θ = 45o.

In Figure 10(a), we plot the resultant trajectories rela-
tive to the φ1−φ2 coordinate plane, which we call the field
space for short, and we remind the reader that the field
manifold no longer coincides with field space when the
kinetic terms are non-trivial. For our fixed initial condi-
tion θ = 45o, varying b leads to trajectories starting and
ending in very different regions of field space, and hence
they correspond to quite different starting and ending
values for the potential. Also, the trajectories produced
have different curvatures from each other, regardless of
whether they are considered with respect to field space
or the field manifold. When b = 0, both the fields con-
tribute to the inflationary dynamics during most of the
last 60 e-folds of inflation. For negative values of b, the

more negative b is, the more strongly the field vector is
initially driven towards the φ1 axis, and the more in-
flation tends to consist of two distinct phases, with the
first phase dominated by φ2 and the second dominated
by φ1. Conversely, the more positive b is, the more the
field vector is initially driven towards the φ2 axis. If b is
sufficiently large and positive, then two distinct inflation-
ary stages emerge: initially φ1 evolves more much than
φ2, but eventually φ2 speeds up substantially. But here,
unlike in previous examples, the evolution of the less mas-
sive field dominates the first inflationary stage, as if the
large positive value of b effectively increases the mass of
the φ1 field. Also, unlike previously, although one field
initially evolves much faster than the other, both fields
significantly contribute to the potential energy density.

Depicted in Figures 10(b)-(d) are the associated infla-
tionary kinematics, which in many ways can be inferred
from our previous discussions, so we just make three new
points. First, the larger the magnitude of b, the greater
the maximum value of the turn rate tends to be. Second,
the two trajectories corresponding to large negative val-
ues of b have similar kinematics to double quadratic mod-
els with large mass ratios and canonical kinetic terms;
for this reason, we can think of negative values of b as
effectively increasing the mass of the φ2 field. Third, we
point out that the trajectory corresponding to b = 0.5
represents the interesting but less common case where
η⊥

v ≫ η‖

v for many e-folds of inflation, which corresponds
to the sourcing effects dominating the growth of adiabatic
modes. This last special scenario rounds out our coverage
of the various possible kinematical behaviors.

Figures 10(e)-(f) show the transfer functions for these
scenarios. Relative to the b = 0 trajectory, the larger
b is in magnitude, the greater the damping of isocurva-
ture modes. Sufficiently large and negative values of b
affect the transfer functions TSS and TRS in a similar
manner to large mass ratios. That is, the isocurvature
modes are initially boosted by the drop in ǫ during the
transition between phases and are then suppressed by the
subsequent larger turn rates and effective entropy masses.
Also, when the turn rates are large, the function TRS in-
creases dramatically in value but then levels off. At the
end of inflation, TRS is quite scale-dependent for these
values of b, being largest for those modes that exit the
horizon while the turn rate is significant. For trajecto-
ries with positive values of b, the background kinematics
are less scale-dependent, so the isocurvature modes are
suppressed more gradually and evenly, and the function
TRS is less scale-dependent and smaller, with its value
reflecting the size of the turn rate. As before, an anal-
ysis of the coefficients of the effective mass matrix is in
agreement with these findings, and also shows that the
Ricci scalar curvature term only slightly decreases the
damping of isocurvature modes.

Figures 10(g)-(j) show the resultant power spectra.
Many of the same results as for the double quadratic
potential with canonical kinetic terms carry over here, in
that the transfer function TRS blunts much of the scale-
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Figure 10. Double Quadratic Potentials, V (φ1, φ2) = 1
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Figure 11. Double Quadratic Potentials, V (φ1, φ2) = 1
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dependence of the curvature spectrum at horizon exit.
Interestingly, positive values of b make the curvature
power spectrum at the end of inflation more scale-
invariant than the corresponding spectrum at horizon
exit and than the final curvature spectrum for the b = 0
scenario. Indeed, the flatness of the curvature spectrum
for the b = 0.5 scenario is remarkable, suggesting that
a significant and sustained turn rate accompanied by a
significantly smaller roll rate (an example of the limit
η⊥

v ≫ η‖

v ) provides a way of achieving a very highly scale-
invariant curvature spectrum. We also point out that
the smaller b is, the larger the cross and the isocurvature
spectra tend to be, though both are at least a few orders
of magnitude smaller than the curvature spectrum at the
end of inflation. Interestingly, the the isocurvature spec-
trum for the b = 0.5 scenario shows significantly greater
power on smaller scales.

2. Spectral Observables

Now we vary both the initial conditions and the La-
grangian parameter b to determine their effects on the
spectral observables. In Figures 11(a)-(e), we plot the
values of the parameter b in decreasing order so that
more of the two-dimensional surfaces representing these
observables are visible.

Figure 11(a) shows that the parameter b can dramat-
ically affect the tensor-to-scalar ratio. When b = 0,
rT ≈ 0.13 regardless of the initial conditions. Negative
values of b do not effect this result much. However, for
positive values of b, the larger initial angle, the smaller
rT is, reflecting the fact that the turn rate is larger,
while ǫ and the speed up rate are still small. The cross-
correlation ratio, shown in Figure 11(b), has a complex
dependence on the initial conditions and b. For b ≈ 0, the
correlation is small. For negative values of b, the more
negative b is, the larger the correlation ratio is, and this
is largely independent of the initial conditions. For posi-
tive values of b, the larger b is, the larger the correlation
is for large angles, but the smaller it is for small angles.
These complicated dependences largely mirror the turn
rate profile. Interestingly, the isocurvature fraction is mi-
nuscule for these scenarios, peaking around fiso ≈ 0.006
for b ≈ −0.1 and θ ≈ 90o (Figure 11(c)).

Now we examine the key spectral indices. As for all
the other models we have considered, the profiles for −nT

(Figure 11(d)) and −nR (Figure 11(e)) are strikingly sim-
ilar. Here, the spectral indices are very small, except for
more negative values of b, for which the spectral indices
are moderately large for a significant fraction of initial
angles. The greatest differences between the two spec-
tral indices occurs for models with large turn rates, and
hence their curvature spectral index gets a boost from the
turn rate and effective entropy mass. For the running of
the curvature spectral index (Figure 11(f)), surprisingly,
it is small in all cases.

Finally, we examine which combinations of the ini-

tial conditions and the Lagrangian parameter b can be
ruled out based on observations. The double quadratic
model with a mass ratio of m2

m1
= 2 and canonical kinetic

terms is consistent with observations. Adding the non-
canonical kinetic terms in equation (152) makes the land-
scape of kinematical behaviors and spectral observables
far richer and more complex. Combinations of large neg-
ative or positive values of b and moderate initial angles
are ruled by the 95% confidence region in the ns − rT
plane. The former set corresponds to large turn rates
accompanied by large speed up rates, with the result
that this causes the curvature spectrum to be too scale-
dependent to match observations. The latter set corre-
sponds to scenarios in which the kinematical behavior
η⊥

v ≫ η‖

v causes the curvature spectrum to be too scale-
independent, causing an inflationary model that is other-
wise consistent with observations to be ruled out. There-
fore, the addition of non-canonical kinetic terms provides
a powerful way to fine-tune a model, to achieve the right
amount of scale-dependence in the density spectrum and
to achieve a tensor-to-scalar ratio that is consistent with
observations.

Ultimately, this analysis, along with other analyses we
have performed in Section III, shows that having the
right balance of the field speed, the speed up rate, and
the turn rate (along with reasonable values for the effec-
tive entropy mass) is critical for ensuring that the curva-
ture power spectrum is neither too scale-dependent nor
scale-independent and for achieving a tensor-to-scalar ra-
tio that is consistent with observations.

IV. CONCLUSION

A. Summary

In this paper, we have constructed a complete covari-
ant framework for understanding two-field models of in-
flation with an arbitrary potential and with arbitrary
non-canonical kinetic terms. We have derived the power
spectra to second-order in the combined slow-roll and
slow-turn (SRST) approximation, provided new insight
into how the spectra can be inferred from the background
kinematics and the field manifold, and we have illustrated
how to rigorously test and constrain two-field models of
inflation using observational data.

We started by considering the background dynamics
in Section II A. After simplifying the background equa-
tions of motion using covariant vector notation and the
number of e-folds as the time variable, we introduced a
set of three covariant quantities to understand the kine-
matics of the background field vector: the field speed
(v =

√
2ǫ), the speed up rate (

η‖

v ), and the turn rate
(η⊥

v ), where the third quantity is unique to multi-field
inflation and hence can be viewed as the marker of multi-
field effects. We used this kinematical framework to gen-
eralize the standard slow-roll approximation to two-field
inflation, dividing it into two separate parts: a slow-roll



47

approximation to represent limits on single-field-type be-
havior and a slow-turn approximation to represent lim-
its on multi-field behavior. We then derived first- and
second-order expressions for the background equations,
and we introduced the mass matrix, M = ∇

†
∇ lnV ,

whose coefficients estimate the speed up and turn rates.

In Section II B, we considered the perturbed equa-
tions of motion. Working in terms of gauge-invariant
quantities, we simplified the equation of motion for the
field perturbations and showed that their evolution is de-
termined primarily by the effective mass matrix, M̃ =
∇

†
∇ lnV + ǫR

(3−ǫ) , where R is the Ricci scalar of the

field manifold induced by the field metric. Thereafter,
we rotated to the kinematical basis and derived exact
expressions for the evolution of adiabatic and entropy
modes. Working in the super-horizon limit, we found
a simple exact expression for the evolution of adiabatic
modes, revealing that the growth of adiabatic modes is
determined by the speed up and turn rates, with the turn
rate determining the degree of sourcing by the entropy
modes. Further, we found that the ratio η⊥

v /
η‖

v , which
controls the relative contribution of mode sourcing to the
growth of adiabatic modes, can be viewed as indicating
the relative importance of multi-field effects. This also
has an aesthetic appeal, since the same ratio provides a
measure of the curvature of the background trajectory at
a given time. We also found approximate expressions for
the super-horizon evolution of entropy modes, which is
controlled by the effective entropy mass (µ⊥). From an-
alyzing the behavior of the effective entropy mass, we
argued that assuming the effective entropy mass and
slow-roll parameters are constant in order to estimate
the power spectra [63–66] generally leads to large inac-
curacies in estimating the amplitude of modes, even in
the SRST approximation. Finally, we used these results
to find semi-analytic expressions for the super-horizon
amplitude of the related curvature and isocurvature per-
turbations, and we discussed how the general features
of their evolution can largely be inferred from the back-
ground kinematics and the field manifold. For example,
a large turn rate rate produces strong sourcing of cur-
vature modes by isocurvature modes, leading to a large
boost in the amplitude of curvature modes at the expense
of a dramatic suppression of isocurvature modes.

Thereafter, in Section II B, we calculated and inter-
preted the power spectra. To do so, we quantized the
field perturbations, solved the field perturbation equation
in the three standard regimes of interest, and matched
the solutions across the boundaries. After rotation to
the kinematical basis, we calculated the power spectra at
horizon exit, and then used the transfer matrix formalism
[67, 68] to derive compact expressions for the curvature,
isocurvature, and cross spectra to second-order in the
SRST limit. We found that to lowest order, the spec-
tra depend on just four functions (H , ǫ, TSS , and TRS),
which means that all features of the power spectra can
be traced back to five fundamental kinematical param-
eters: H , ǫ,

η‖

v , η⊥

v , and µ⊥, which together are simply

related to the value, gradient, and Hessian of V (along
with corrections from any trivial geometry of the field
manifold. We discussed how exactly these background
kinematics and the curvature of the field manifold are
reflected in the general features and relative sizes of the
spectra. For example, for models with large turn rates,
the curvature power spectrum will be boosted and the
cross and isocurvature spectra will be several orders of
magnitude smaller, with profiles that reflect the scale-
dependence of the turn rate, among other quantities. We
also provided conditions for when a two-field inflationary
scenario effectively behaves like a single-field inflationary
scenario. Thereafter, we presented compact expressions
for the tensor-to-scalar ratio, spectral indices, and run-
nings of the spectral indices, and a consistency relation
among them, and we showed how can work backwards to
reconstruct the background kinematics from these spec-
tral observables.

Finally, we illustrated for the first time how to rigor-
ously test two-field inflationary models against observa-
tional data by incorporating initial conditions. We tested
four classes of inflationary models, varying both their ini-
tial conditions and a characteristic Lagrangian parameter
in order to test tens of thousands of possible scenarios to
determine the types of kinematical behaviors and power
spectra they produce. The four classes of models we con-
sidered covered all three limits for the relative ratio of
the turn rate to the speed up rate, both distributed and
abrupt rolling and turning behavior, and non-canonical
kinetic terms. For our three classes of models with canon-
ical kinetic terms, we found that certain combinations of
the initial conditions and Lagrangian parameter for the
multiplicative double polynomial and double quadratic
potentials are consistent with observational constraints
on rT and ns, but that double quartic models are com-
pletely ruled out, as is the corresponding single-field po-
tential. The double multiplicative models mostly pro-
duce scenarios in which one of the fields dominates the
dynamics and hence primarily determines the observables
rT and ns, so the power to which the dominant field is
raised determines whether the scenario is consistent with
observations. The double quadratic and double quar-
tic models produce mostly scenarios in which either the
fields co-dominate or one field dominates the dynamics,
then followed by the second field dominating. The latter
scenarios possess large turn rates around the transition
between phases, so if the transition occurs around the
pivot scale, these scenarios tend to be ruled out. The
double quartic models, however, are ruled out regardless
of the initial conditions and coupling constants, due to
their larger values for rT and smaller values for ns. In-
terestingly, the addition of non-canonical kinetic terms
to an otherwise viable double quadratic model creates a
far richer landscape of potential background kinematics
and power spectra, resulting in a wide range of values
for the spectral observables, some of which are consis-
tent with observations and some are not. Of note, cer-
tain choices of the field metric produce distributed turn-
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ing with η⊥

v ≫ η‖

v , making the curvature power spec-
trum more scale-independent than in the equivalent case
with canonical kinetic terms. This means that the ad-
dition of the non-canonical kinetic terms may provide a
mechanism for fine-tuning models to match observations.
Lastly, in the vast majority of scenarios for all models
tested, the isocurvature and cross spectra were at least
an order of magnitude or two smaller than the curvature
spectrum.

B. Outlook

As mentioned in the introduction, there are compelling
theoretical reasons to consider multi-field inflation. This
paper provides a complete theoretical framework and set
of tools for parsing and analyzing two-field models of in-
flation, making it easier to calculate the power spectra
and to understand what features a two-field model needs
to possess in order to be consistent with observational
constraints.

However, there are many outstanding issues that merit
further consideration. Particularly important is the issue
of initial conditions. How should we weigh the initial con-
ditions? Since many inflationary models have attractor-
like solutions, specifying initial conditions 60 e-folds be-
fore the end of inflation rather than at the beginning of
inflation may correspond to a radically different measure
on the space of trajectories and hence predicted spectra.
Also important are the nature of the end of inflation and
reheating. Some models predict further post-inflationary

suppression of isocurvature perturbations, while others
do not, complicating the use of observational isocurva-
ture bounds for constraining inflationary models. It is
therefore important to make further progress in these ar-
eas in order to place tighter constraints on inflationary
models.

As for the observational constraints themselves, we
have seen that the combination of scalar and tensor power
spectra alone have the potential to constrain or rule out
large classes of multi-field inflation models. Since the
rapid progress in cosmic microwave background measure-
ment precision is likely to continue for some time—with
perhaps measurements such as the isocurvature frac-
tion or the correlation angle placing useful constraints
on multi-field models in the near future—it is there-
fore timely to investigate multi-field phenomenology in
greater detail.
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