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We investigate the dark matter and the cosmological baryon asymmetry in a simple theory

where baryon (B) and lepton (L) number are local gauge symmetries that are spontaneously

broken. In this model, the cold dark matter candidate is the lightest new field with baryon

number and its stability is an automatic consequence of the gauge symmetry. Dark matter

annihilation is either through a leptophobic gauge boson whose mass must be below a TeV

or through the Higgs boson. Since the mass of the leptophobic gauge boson has to be below

the TeV scale one finds that in the first scenario there is a lower bound on the elastic cross

section of about 5×10−46 cm2. Even though baryon number is gauged and not spontaneously

broken until the weak scale, a cosmologically acceptable baryon excess is possible. There

can be a tension between achieving both the measured baryon excess and the dark matter

density.

I. INTRODUCTION

In the LHC era, we hope to either verify the standard model or discover the theory that describes

the physics of the weak scale. One of the open issues in the standard model (SM) is the origin of

the accidental global symmetries, U(1)B and U(1)L, where B stands for baryon number and L for

the total lepton number. At the non-renormalizable level in the SM one can find operators that

violate baryon number and lepton number. For example, QQQl/Λ2
B and llHH/ΛL, where ΛB and

ΛL are the scales where B and L are respectively broken [1]. Since the QQQl/Λ2
B operator gives

rise to proton decay [2] the cutoff of the theory has to be very large, ΛB > 1015 GeV. There is no

other reason that the cutoff of the SM has to be that large and so it is worth thinking about the

possibility that both B and L are local gauge symmetries that are spontaneously broken [3] at a
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much lower scale (e.g., the weak scale) and it is these gauge symmetries that prevent proton decay.

Recently, two simple models (denoted model (1) and model (2)) where B and L are local gauge

symmetries have been proposed [3]. In these models all anomalies are cancelled by adding a single

new fermionic generation. One of the theories (model (1)) has an interesting realization of the

seesaw mechanism [4–6] for neutrino masses and they both have a natural suppression of tree-level

flavor changing neutral currents in the quark and leptonic sectors due to the gauge symmetries

and particle content. In model (2), the neutrinos have Dirac masses. In addition, for model (2),

the lightest new field with baryon number is a candidate for the cold dark matter and its stability

is an automatic consequence of the gauge symmetry. It has been shown in Ref. [3] that B and L

can be broken at the weak scale and one does not generate dangerous operators mediating proton

decay. We show how a dark matter candidate can arise in model (1).

In this article we investigate the properties of the cold dark matter candidates in the models

proposed in Ref. [3] and study the implications of spontaneous B and L breaking at the weak scale

for the baryon asymmetry in the Universe. In model (2), the dark matter candidate, X, which has

baryon number −2/3 can either annihilate through the leptophobic ZB present in the theory or

through the Higgs boson. We study the constraints from the relic density and the predictions for

the elastic cross section relevant for direct detection experiments. We discuss the implications of

the gauging of B and L for baryogenesis. In model (2), there is a potential conflict between the

measured baryon excess and dark matter density.

For model (1), we discuss the generation of a baryon excess. We introduce a limit of the theory

where L is broken at a high scale but B is spontaneously broken at the weak scale. In this limit

standard leptogenesis plus a primordial excess in the field responsible for baryon number breaking

can give rise to an acceptable baryon excess and dark matter density even though the baryon

number gauge symmetry is not broken until the weak scale.

This paper is organized as follows: In Section II we discuss the main features of the model. In

Section III we discuss, for model (2), the properties of the dark matter candidate in the theory,

constraints from the relic density and the predictions for the elastic cross section relevant for direct

detection experiments. The properties of the dark matter candidate in model (1) are similar to

cases already discussed in the literature (see for example [7] and [8]). In Section IV we discuss the

implications of the breaking of B and L at the weak scale for baryogenesis. We summarize the

main results in Section V.
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II. SPONTANEOUS B AND L BREAKING

The theory proposed in Ref. [3] is based on the gauge group

SU(3)C
⊗

SU(2)L
⊗

U(1)Y
⊗

U(1)B
⊗

U(1)L.

To fix notation, the particle content of the SM is summarized in Table I. The superscript index

(i) on standard model fermion fields labels the generation. We have added three generations of

right-handed neutrinos to the minimal standard model.

TABLE I: Standard Model Particle Content

Field SU(3) SU(2) U(1)Y U(1)B U(1)L

Q
(i)
L

=





u
(i)
L

d
(i)
L



 3 2 1
6

1
3 0

u
(i)
R

3 1 2
3

1
3 0

d
(i)
R

3 1 − 1
3

1
3 0

l
(i)
L

=





ν
(i)
L

e
(i)
L



 1 2 − 1
2 0 1

ν
(i)
R

1 1 0 0 1

e
(i)
R

1 1 −1 0 1

H =





H+

H0



 1 2 1
2 0 0

When gauging B and L, one can have two different scenarios:

A. Model (1)

In this model the baryonic anomalies are cancelled by adding the new quarks Q
′

L, u
′

R and d
′

R

which transform under the SM gauge group in the same way as the SM quarks but have baryon

number B = −1. At the same time the leptonic anomalies are cancelled if one adds new leptons

l
′

L, ν
′

R and e
′

R with lepton number, L = −3. All anomalies in the SM gauge group are cancelled

since we have added one full new family. The particle content of model (1), beyond that of the

SM, is summarized in the Table II.

Let us discuss the main features of this scenario.
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TABLE II: Particle Content Beyond the SM in Model (1)

Field SU(3) SU(2) U(1)Y U(1)B U(1)L

Q′

L
=





u′

L

d′
L



 3 2 1
6 -1 0

u′

R
3 1 2

3 -1 0

d′
R

3 1 − 1
3 -1 0

l′
L

=





ν′

L

e′
L



 1 2 − 1
2 0 -3

ν′

R
1 1 0 0 -3

e′
R

1 1 −1 0 -3

SB 1 1 0 − 8
3 0

SL 1 1 0 0 2

S 1 1 0 − 4
3 0

φ =





φ+

φ0
R

+ iφ0
I



 1 2 1
2

4
3 0

• Quark Sector

In this model the masses for the new quarks are generated through the terms,

−∆L(1)
q′mass = Y

′

U Q
′

L H̃ u
′

R + Y
′

D Q
′

L H d
′

R + h.c.. (1)

Here H̃ = iσ2H
∗. In order to avoid a stable colored quark, the scalar doublet φ has been

added to mediate the decays of the fourth generation of quarks. The following terms occur

in the Lagrange density

−∆L(1)
DM = Y1 Q

′

L φ̃ uR + Y2 QL φ d′R + h.c.. (2)

Here flavor indices on the Yukawa couplings Yi, and the standard model quark fields have

been suppressed. The field φ does not get a vacuum expectation value (VEV) and so there

is no mass mixing between the new exotic generation of quarks and their SM counterparts.

When the real or imaginary component of φ is the lightest new particle with baryon number,
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it is stable. The field φ has flavor changing couplings that cause transitions between quarks

with baryon number −1 and the usual quarks with baryon number 1/3. However, since there

is no mass mixing between these two types of quarks, integrating out the φ does not generate

any tree level flavor changing neutral currents for the ordinary quarks.

These effects first occur at one loop. For example, there are one loop box diagrams (see Fig.

1) that give a contribution to K − K̄ mixing.

FIG. 1: Box diagram leading to a contribution to K − K̄ mixing.

We estimate this mixing to be of order

∆mK ∼
(

f2
KmKY 4

16π2M2

)

, (3)

where Y 4 is a shorthand for something quartic in the Yukawa couplings Y1, Y2. For M = 400

GeV and Yukawas of about 10−2, this mass difference is on the order of 10−15 MeV which

is much smaller than the measured value. A detailed study of the model’s flavor sector is

beyond the scope of this work and will be reserved for a future publication.

• Leptonic Sector

The interactions that generate masses for the new charged leptons are:

−∆L(1)
l = Y

′

E l
′

L H e
′

R + h.c., (4)

while for the neutrinos they are

−∆L(1)
ν = Yν lHνC + Y

′

ν l
′

HN +

+
λa

2
νC SL νC + λb νC S†

L N + h.c., (5)

where SL ∼ (1, 1, 0, 0, 2) is the Higgs that breaks U(1)L, generating masses for the right-

handed neutrinos and the quark-phobic Z
′

L. We introduce the notation νC = (νR)C and

N = (ν ′
R)C . After symmetry breaking the mass matrix for neutrinos in the left handed
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basis, (ν, ν
′
, N, νC), is given by the eight by eight matrix

MN =

















0 0 0 MD

0 0 M
′

D 0

0 (M
′

D)T 0 Mb

MT
D 0 MT

b Ma

















. (6)

Here, MD = YνvH/
√

2 and Ma = λavL/
√

2 are 3 × 3 matrices, Mb = λbv
∗
L/

√
2 is a 1 × 3

matrix, M
′

D = Y
′

νvH/
√

2 is a number and 〈SL〉 = vL/
√

2. Lets assume that the three right-

handed neutrinos νC are the heaviest. Then, integrating them out generates the following

mass matrix for the three light-neutrinos:

Mν = MD M−1
a MT

D . (7)

In addition, a Majorana mass M ′ for the fourth generation right handed neutrino N,

M
′

= MbM
−1
a MT

b , (8)

is generated. Furthermore, suppose that M
′

<< M
′

D, then the new fourth generation

neutrinos ν
′
and N are quasi-Dirac with a mass equal to M

′

D. Of course we need this mass

to be greater than MZ/2 to be consistent with the measured Z-boson width. In this model

we have a consistent mechanism for neutrino masses which is a particular combination of

Type I seesaw.

• Higgs Sector

The minimal Higgs sector needed to have a realistic theory where B and L are both gauged,

and have a DM candidate is composed of the SM Higgs, H, SL, S ∼ (1, 1, 0,−4/3, 0), SB

and φ. SB and SL are the scalars field whose vacuum expectation values break U(1)B and

U(1)L, respectively, generating masses for the gauge bosons coupling to baryon number and

lepton number. Here one introduces the scalar field S in order to have a viable cold dark

matter candidate. In this case the scalar potential of the model must contain the terms

µ1

(

H†φ
)

S + µ2 S†
B S2 + h.c., (9)

in order to generate the effective interaction: c (H†φ)2SB + h.c., which breaks the degen-

eration between the φ0
R and φ0

I . Here S does not get the vev. Then, one of them can be a

dark matter candidate and the mass splitting is given by

M2
φ0

R
− M2

φ0
I

=
√

2
v2
HvBµ2

1µ2

M4
S

. (10)



7

By adjusting the phases of the fields S and φ, the parameters µ1,2 can be made real and

positive. In this case, the imaginary part of the neutral component of φ, denoted φ0
I is the

dark matter candidate. Notice, that this DM scenario is quite similar to the case of the Inert

Higgs Doublet Model since we do not have annihilation through the ZB in the non-degerate

case. It is well-known that if the real and imaginary parts are degenerate in mass one cannot

satisfy the bounds coming from direct detection, therefore one needs a mass splitting. This

dark matter candidate is very similar to that of the Inert Doublet Model (see, for example,

[7] and [8]).

Before concluding the discussion of model (1) one should mention that in this model local U(1)B

and U(1)L are broken by the Higgs mechanism, as explained before, and one gets that in the quark

sector a global symmetry (baryonic) is conserved, while in the leptonic sector the total lepton

number is broken.

B. Model (2)

In this model, the baryonic anomalies are cancelled by adding the new quarks Q′
R, u′

L and d′L

which transform under the SM gauge group the same way as the SM quarks but have opposite

chirality and baryon number B = 1. At the same time the leptonic anomalies are cancelled if one

adds new leptons l′R, ν ′
L and e′L with opposite chirality of their SM counterparts and with lepton

number, L = 3. The particle content of model (2), beyond that of the SM, is summarized in the

Table III.

• Quark Sector

In this model the masses for the new quarks are generated through the terms,

−∆L(2)
q′mass = Y

′

U Q
′

R H̃ u
′

L + Y
′

D Q
′

R H d
′

L + h.c.. (11)

As in the previous model, one has to avoid a stable colored quark. For this reason, we add

the scalar field X to mediate the decays of the fourth generation of quarks. The following

terms occur in the Lagrange density

−∆L(2)
DM = λQ X QL Q

′

R + λU X uR u
′

L + λD X dR d
′

L + h.c.. (12)

Here flavor indices on the Yukawa couplings Y , λ and the standard model quark fields have

been suppressed. The field X does not get a vacuum expectation value (VEV) and so there
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TABLE III: Particle Content Beyond the SM in Model (2)

Field SU(3) SU(2) U(1)Y U(1)B U(1)L

Q′

R
=





u′

R

d′
R



 3 2 1
6 1 0

u′

L
3 1 2

3 1 0

d′
L

3 1 − 1
3 1 0

l′
R

=





ν′

R

e′
R



 1 2 − 1
2 0 3

ν′

L
1 1 0 0 3

e′
L

1 1 −1 0 3

SB 1 1 0 nB 0

SL 1 1 0 0 2

S′

L
1 1 0 0 nL

X 1 1 0 − 2
3 0

is no mass mixing between the new exotic generation of quarks and their SM counterparts.

When X is the lightest new particle with baryon number, it is stable. This occurs because

the model has a global U(1) symmetry where the Q′
R, u′

L, d′L and X get multiplied by a

phase. This U(1) symmetry is an automatic consequence of the gauge symmetry and the

particle content. Notice that the new fermions have V + A interactions with the W-bosons.

The field X has flavor changing couplings that cause transitions between quarks with baryon

number 1 and the usual quarks with baryon number 1/3. However, since there is no mass

mixing between these two types of quarks, integrating out the X does not generate any tree

level flavor changing neutral currents for the ordinary quarks. Those first occur at the one

loop level (see the discussion concerning such flavor changing effects in model (1)).

• Leptonic Sector
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The interactions for the new leptons are

−∆L(2)
l = Y

′

E l
′

R H e
′

L + λe ēR S†
Le′L +

+ Yν lL H̃ νR + Y
′

ν l
′

R H̃ ν
′

L +
λa

2
νT

R C S†
L νR

+ λb νR S†
L ν

′

L + λl l
′

R SL lL + h.c.. (13)

The neutrinos are Dirac fermions with masses proportional to the vacuum expectation value

of the SM Higgs boson. Here SL must be introduced to evade the experimental constraints

on heavy stable Dirac neutrino from dark matter direct detection and collider bounds. In

order to avoid flavor violation in the leptonic sector we assume that SL does not get a vacuum

expectation value.

• Higgs Sector

The minimal Higgs sector needed to have a realistic theory where B and L are both gauged,

and have a DM candidate is composed of the SM Higgs, H, SL, S′
L, SB and X. SB and S′

L

are the scalars field whose vacuum expectation values break U(1)B and U(1)L, respectively,

generating masses for the gauge bosons coupling to baryon number and lepton number. The

scalar potential of the model is given by:

V
(2)
BL =

∑

Φi=H,SL,S
′

L
,SB,X

M2
Φi

Φ†
iΦi +

∑

ΦiΦj

λΦiΦj

(

Φ†
iΦi

)(

Φ†
jΦj

)

. (14)

In this theory one has five physical CP-even neutral Higgses {H0, S0
L, S′

L
0, S0

B,X0
R}, and two

CP-odd neutral Higgses X0
I and S0

I . Here, X0
R and X0

I have the same mass and they are

cold dark matter candidates.

In this model one should notice that the local symmetries U(1)B and U(1)L are broken and after

symmetry breaking one has a baryonic and leptonic global symmetries. Therefore, the proton is

stable and the neutrinos are Dirac fermions.

These are the main features of the two models that are needed to investigate the implications

and/or constraints coming from cosmological observations.

III. X AS A CANDIDATE FOR THE COLD DARK MATTER IN MODEL (2)

As we have mentioned before, the lightest new field with baryon number, X, is a cold dark matter

candidate in model (2). In this section we study in detail the possible cosmological constraints and
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the predictions for elastic dark matter-nucleon cross section relevant for direct searches of dark

matter. Some of this material is standard and has been discussed in the literature in the context

of other dark matter candidates; however, we include it for completeness.

A. Constraints from the Relic Density

There are two main scenarios for the study of the relic density. In the first case X annihilates

through the leptophobic ZB gauge boson, while in the second case X annihilates through the SM

Higgs. The properties of a SM singlet scalar dark matter candidate that annihilates through the

Higgs have been investigated in many previous studies [9–13]; however, the case of annihilation

through the ZB is more specific to the model we are currently examining.

• XX† → Z∗
B → qq̄:

We begin by studying the case where X annihilation through the baryon number gauge

boson ZB, i.e. XX† → Z∗
B → qq̄, dominates the annihilation cross section. Here we include

all the quarks that are kinematically allowed. Of course the heavy fourth generation quarks

must be heavier than the X so that they do not occur in the final state. This also limits

the upper range of X masses since the theory is not perturbatively unitary if the fourth

generation Yukawa’s are too large.

The annihilation cross section through intermediate ZB in the non-relativistic limit with a

quark-antiquark pair in the final state is given by

σZB
v =

2 g4
B

81π

M2
X

M4
ZB

v2

(

1 − 4
M2

X

M2
ZB

)2

+
Γ2

ZB

M2
ZB

∑

q

Θ

(

1 − mq

MX

)

(

1 +

(

m2
q

2M2
X

))
√

1 −
m2

q

M2
X

(15)

where Θ is the unit step function and ΓZB
is the width of the ZB. The width of the

leptophobic gauge boson is given by

ΓZB
=
∑

q

g2
BMZB

36π

(

1 − 2
m2

q

M2
ZB

)(

1 − 4
m2

q

M2
ZB

)1/2

Θ

(

1 − 4
m2

q

M2
ZB

)

. (16)

• XX† → H∗ → SMSM :

In the case where X annihilates into massive SM fields, through an intermediate H, we find
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that the annihilation cross section (in the non-relativistic limit) is

σHv =
∑

f

(

λ2
1N

f
c

4πM2
H

)

(

mf

MH

)2 Θ
(

1 − mf

MX

)

(

1 −
(

mf

MX

)2
)3/2

(

1 − 4
M2

X

M2
H

)2
+

Γ2
H

M2
H

+

+

(

λ2
1

2πM2
H

) Θ
(

1 − MW

MX

)

(

1 −
(

MW

MX

)2
)1/2

(

1 − 4
M2

X

M2
H

)2
+

Γ2
H

M2
H

(

1 +
3M4

W

4M4
X

− M2
W

M2
X

)

+ (17)

+

(

λ2
1

4πM2
H

) Θ
(

1 − MZ

MX

)

(

1 −
(

MZ

MX

)2
)1/2

(

1 − 4
M2

X

M2
H

)2
+

Γ2
H

M2
H

(

1 +
3M4

Z

4M4
X

− M2
Z

M2
X

)

+

+

(

λ2
1

64πM2
X

)

(

1 −
(

MH

MX

)2
)1/2

Θ

(

1 − MH

MX

)

∣

∣

∣

∣

∣

∣

1 +
3

(

4M2
X

M2
H

− 1
)

+ i ΓH

MH

∣

∣

∣

∣

∣

∣

2

, (18)

where Nf
c is the number of colors of the particular species of fermion, MW,Z are the W and

Z boson masses. Included in the width, where kinematically allowed, is the invisible decay

to dark matter. We have ignored corrections to this formula that come from annihilation

into two standard model massless gauge bosons. For previous studies of this type of scenario

see [9–13].

Using these results, we are ready to compute the approximate freeze-out temperature xf = MX/Tf

assuming that one of the two annihilation channels dominates the annihilation of the dark matter.

Writing the thermally averaged annihilation cross section as 〈σv〉 = σ0(T/MX )n, then the freeze-

out temperature is given by,

xf = ln

[

0.038(n + 1)

(

g√
g∗

)

MP lMXσ0

]

−
(

n +
1

2

)

ln

[

ln

[

0.038(n + 1)

(

g√
g∗

)

MP l MXσ0

]]

(19)

where MP l is the Planck mass, g is the number of internal degrees of freedom and g∗ is the effective

number of relativistic degrees of freedom evaluated around the freeze-out temperature1.

The present day energy density of the relic dark matter particles X is given by,

ΩXh2 =
1.07 × 109

GeV

(

(n + 1)xn+1
f√

g∗σ0MP l

)

(20)

1 See, for example, [14].
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where we have used the fact that g∗,S(T ) = g∗(T ) in our case (all particle species have a common

temperature). The WMAP team recently gave a seven year fit [15] and found the present day dark

matter energy density to be ΩDMh2 = 0.1109 ± 0.0056.

Using the experimental constraints on the relic density of the cold dark matter and the anni-

hilation cross sections calculated above, we plot in Figure 2 (left panel) the allowed values for the

gauge coupling gB and the mass of X when the annihilation occurs through an intermediate ZB

boson. Here we use as input parameter the mass of ZB , MZB
= 500 GeV. In order to understand

the behavior of the numerical solutions close to resonance, we show the results in Figure 2 (right

panel), where the mass region MX ≈ MZB
/2 is focussed on. In the second scenario when the an-

MZB
= 500 GeV

MX HGeVL

log10HgBL

100 150 200 250 300 350 400
-2.0

-1.5

-1.0

-0.5

0.0

CDMS II Upper Limit

MZB
= 500 GeV

MX HGeVL

log10HgBL

240 245 250 255 260
-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

FIG. 2: In these figures, we plot the values of the (logarithm of the) coupling gB and dark matter mass

MX that lead to the value of the dark matter relic abundance measured by WMAP assuming annihilation

through intermediate ZB is dominant. We use MZB
= 500 GeV for these plots. The plot on the right is

an enlarged version of the left plot around the region near the resonance. For dark matter masses around

250 GeV, CDMS II excludes dark matter-nucleon elastic scattering cross sections larger than 6× 10−44cm2.

The region below the dashed line is allowed by CDMS II [16].

nihilation takes place through the SM Higgs boson one can display similar results. Assuming only

annihilation at tree level into SM fermions and gauge bosons for simplicity, we show in Figure 3 the

allowed parameter space after imposing the constraints on the relic density when MH = 120 GeV.

It is important to note that using the perturbative limit on the Yukawa couplings for the new

fermions, |Y ′ | < 2
√

π, the masses of the new quarks, Mq′ = Y
′
vH/

√
2, are smaller than 500 GeV

(since the VEV of the SM Higgs, vH , is 246 GeV). In order to achieve the right value for the relic

density, MX has to be close to the MZB
/2. Hence, in the first scenario MZB

must be below a TeV

if X annihilates primarily through the ZB and is the dark matter. This is an acceptable kinematic

range for discovery at the LHC. Next, we study the constraints coming from the direct detection
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XENON100 Upper Limit

CDMS II Upper Limit

XENON100 Projected Upper Limit

log10HΛ1L

MXHGeVL

MH = 120 GeV

100 200 300 400 500

-1.5

-1.0

-0.5

FIG. 3: In these figures, we plot the values of the (logarithm of the) coupling λ1 and dark matter mass

MX that lead to the value of the dark matter relic abundance measured by WMAP assuming annihilation

through intermediate Higgs is dominant. We use MH = 120 GeV for this plots.

experiments (which have already been used in the right panels of Figures 2 and 3).

A more precise calculation of the dark matter relic density is required when annihilation proceeds

near resonance. This is because the expansion of the annihilation cross section in terms of a

polynomial in the temperature breaks down near the resonance [17]. Generalizing Eq. (15) and

Eq.(18) for general relative velocities, we determine the relic abundance near the resonance using

the more precise calculation described below. The freeze-out temperature can be determined

iteratively from the following equation,

xf = ln

[

0.038gMXMP l 〈σv〉
√

g∗xf

]

, (21)

where the thermally-averaged annihilation cross section is determined numerically by

〈σv〉 =
x3/2

2π1/2

∫ ∞

0
v2(σv)e−xv2/4dv. (22)

The relic density is then given by,

Ωh2 =
1.07 × 109

GeV

(

1

J
√

g∗MP l

)

, (23)

where

J =

∫ ∞

xf

〈σv〉
x2

dx, (24)

takes into account the annihilations that continue to occur, but become less effective, after the

freeze-out temperature.
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In Fig. 4, we show the contour that leads to the observed relic abundance of dark matter

assuming annihilation through an intermediate ZB with mass of 500 GeV is dominant. After

comparing this plot to the right panel in Fig. 2, it is clear that one needs to take into account the

precise thermal averaging when annihilation proceeds near resonance. The thermal averaging works

to widen the contour and move the minimum below MZB
/2. This is because at finite temperatures,

the effective mass of the dark matter candidate is higher and therefore the minimum of the contour

is shifted to lower dark matter masses.

Similarly, in Fig. 5, we show the contour that leads to the observed relic abundance of dark

matter assuming annihilation through an intermediate Higgs with mass of 120 GeV is dominant.

CDMS II  Upper Limit

MZB
= 500 GeV

MX HGeVL

log10HgBL

230 235 240 245 250

-1.4

-1.3

-1.2

-1.1

-1.0

-0.9

-0.8

FIG. 4: In this figure, we plot the results of the numerical relic abundance calculation with the correct

thermal averaging around the resonance. The contour plotted shows the values of the (logarithm of the)

coupling gB and dark matter mass MX that lead to the value of the dark matter relic abundance measured

by WMAP assuming annihilation through an intermediate ZB is dominant. We use MZB
= 500 GeV for

this plot.

B. Constraints from Direct Detection

In this section we present the cross sections for elastic scattering of our dark matter candidate

off of nucleons. These cross sections are very tightly constrained by the Cryogenic Dark Matter

Search (CDMS) for dark matter masses in above approximately 100 GeV and XENON100 for dark

matter masses below approximately 100 GeV [16, 18].

In the first scenario discussed above we need the constraints coming from direct detection when

the scattering is through the U(1)B gauge boson. In the non-relativistic limit, the cross section for
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XENON100 Upper Limit

XENON100 Projected Upper Limit

MH = 120 GeV

MXHGeVL

log10HΛ1L

45 50 55 60 65

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

FIG. 5: In this figure, we plot the results of the numerical relic abundance calculation with the correct

thermal averaging around the resonance. The contour plotted shows the values of the (logarithm of the)

coupling λ1 and dark matter mass MX that lead to the value of the dark matter relic abundance measured

by WMAP assuming annihilation through an intermediate Higgs is dominant and taking MH = 120 GeV.

elastic scattering of dark matter off of nucleons through an intermediate ZB is given by,

σB
SI =

4g4
B

9π

(

µ2

M4
ZB

)

(25)

where µ = MNMX/(MN + MX) is the reduced mass of the dark matter-nucleon final state and

MN is the nucleon mass. Putting in the numbers, this cross section can be written as

σB
SI = (8.8 × 10−40cm2)g4

B

(

500 GeV

MZB

)4 ( µ

1 GeV

)2
. (26)

From the CDMS II upper limits on the spin-independent cross-section in [16], one can conclude

that if we want the correct relic abundance then 235 GeV . MX . 250 GeV and gB . 10−1, for

MZB
≈ 500 GeV. For the relevant region of parameter space, see Figure 4.

If MZB
is near its 1 TeV upper bound, the direct detection limits on the coupling gB are the

weakest and the required range is 0.06 . gB . 0.2. Using the plot in Fig. 4 and Eq. (26), we set

a lower limit on the dark matter-nucleon scattering cross section of about σB
SI & 5 × 10−46 cm2.

For the second case when the elastic scattering of the dark matter off of nucleons is via the Higgs

exchange, we need the effective coupling of the Higgs to nucleons. For this purpose, we follow [19]

and we find this effective coupling appropriate for at rest nucleon matrix element to be

L = −h

v

(

∑

l

mlq̄lql +
∑

h

mhq̄hqh

)

→ −h

v

(

10

27
+

17

27
χ̂+

)

MN (p̄p + n̄n) . (27)

Using the leading order chiral perturbation theory result in the appendix of [19] and the ΣπN term

from [20] we obtain χ̂+ = 0.55 ± 0.18 where the errors are indicative of a 30% violation of SU(3)
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flavor symmetry. This value of χ̂+ gives,

L = −h

v
(0.72) MN (p̄p + n̄n) . (28)

With the three generations of the SM, one would have expected a number 2/9 + 7/9(0.55) = 0.65

instead of 0.72. This is consistent with the 0.56 ± 0.11 number quoted in references [21] and [22].

One can use this result to compute the elastic scattering cross section,

σH
SI =

λ2
1

4π

(

10

27
+

17

27
χ̂+

)2( µ2M2
N

M2
XM4

H

)

. (29)

Plugging in the numbers, this cross section can be written as (using χ̂+ = 0.55)

σH
SI = (3.0 × 10−41cm2)λ2

1

(

120 GeV

MH

)4 ( µ

1 GeV

)2
(

50 GeV

MX

)2

. (30)

In order to satisfy the direct detection bounds from XENON100 [18] for elastic scattering of dark

matter off of nucleons, 51 GeV . MX . 63 GeV with λ1 . 10−1.5, for a 120 GeV Higgs. This gives

us a narrow region of parameter space that is not yet ruled out by the XENON100 experiment and

that also leads to the correct dark matter relic abundance. See Figure 5 for a plot of the allowed

region. For a 120 GeV Higgs, the dark matter-nucleon elastic cross section has a lower bound of

about σH
SI & 10−48 cm2.

One can see from Figure 3 that if XENON100 reaches its projected sensitivity without detecting

DM, the scenario where annihilation proceeds through the Higgs will be all but ruled out. The

only region that will be allowed from this future experiment will be the region in Figure 5. For

dark matter masses at the lower end of this region, the decay of the SM Higgs is dominated by the

invisible decay into dark matter.

In a more generic context, this model is different from the literature in that the dark matter

mass has an upper bound (since it facilitates the decay of the fourth generation quarks and these

quarks should have mass below about 500 GeV if perturbative unitarity holds). Most models of

scalar dark matter do not have an upper limit on the dark matter mass and therefore a wider

region of masses are allowed at the TeV scale.

We need to also consider the limits direct detection experiments place on dark matter scattering

off of nucleons from the interactions λXq̄q′. To fix notation, the interactions in Eq. (12) are

−∆LDM = λ̃Q X ū

(

1 + γ5

2

)

u′ + λ̃U X ū

(

1 − γ5

2

)

u′

+ λ′
Q X d̄

(

1 + γ5

2

)

d′ + λ′
d X d̄

(

1 − γ5

2

)

d′ + h.c., (31)
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where {u, d} ({u′, d′}) are the Dirac spinors corresponding to the standard model (fourth genera-

tion) quarks and (λ̃Q)i = U †(u,L)i
j(λQ)j and (λ′

Q)i = U †(d, L)i
j(λQ)j are the coefficients in Eq.

(12) after rotating to the mass eigenstate basis. We find the effective low energy interaction of

the dark matter with the standard model quarks by integrating out the heavy fourth generation

quarks. Then, the effective interactions for non-relativistic X is given by,

−Leff =

(

X†XMX

2M2
u′

)

(

|(λ̃Q)i|2 + |(λ̃u)i|2
)

(u†)iui +

(

X†X

2Mu′

)

(

(λ̃Q)i (λ̃∗
u)i + (λ̃Q)i (λ̃∗

u)i
)

ūiui

+

(

X†XMX

2M2
d′

)

(

|(λ′
Q)i|2 + |(λ′

d)i|2
)

(d†)idi +

(

X†X

2Md′

)

(

(λ′
Q)i (λ′

d
∗)i + (λ′

Q)i (λ′
d
∗)i
)

d̄idi

(32)

where the flavor index i should be summed over. To get the effective interaction with nucleons,

we need the nucleon matrix elements < N |q†q|N > and < N |q̄q|N > when q = u, d. We truncate

the sum over flavors to the light up and down flavors. The former simply counts the number of

individual valence quarks in the nucleon and the latter matrix element is related by the coefficients

fTq to the former matrix elements. This gives the effective interactions appropriate for the nucleon

matrix elements,

−Leff →
(

X†XMX

2M2
u′

)

(

|(λ̃Q)1|2 + |(λ̃u)1|2
)

(2p̄p + n̄n)

+

(

X†X

2Mu′

)

(

(λ̃Q)1 (λ̃∗
u)1 + (λ̃Q)1 (λ̃∗

u)1
)

fTu(2p̄p + n̄n)

+

(

X†XMX

2M2
d′

)

(

|(λ′
Q)1|2 + |(λ′

d)1|2
)

(p̄p + 2n̄n)

+

(

X†X

2Md′

)

(

(λ′
Q)1 (λ′

d
∗)1 + (λ′

Q)1 (λ′
d
∗)1
)

fTd(p̄p + 2n̄n). (33)

To get an order of magnitude estimate of the size of the couplings involved, we represent the various

Yukawa couplings by λ assuming they are all the same order of magnitude. The cross section for

DM scattering off of nucleons will be small enough to evade the direct detection bounds if the

Yukawa couplings, λ are on the order of 10−1 assuming the masses of the fourth generation quarks

are a few hundred GeV. Similar constraints hold for Y1,2 in model (1) where φ0
I is the dark matter

candidate.

IV. COSMOLOGICAL BARYON NUMBER

It may be difficult to generate the observed cosmological baryon density since baryon and lepton

number are gauge symmetries in the model we are considering. Here we study this issue following
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closely the approach of Harvey and Turner [23]. Assuming, µ ≪ T , one can write the excess of

particle over antiparticle as

n+ − n−

s
=

15g

2π2g∗

µ

T
, (34)

for bosons and in the case of fermions one has

n+ − n−

s
=

15g

4π2g∗

µ

T
, (35)

where µ is the chemical potential of the particle species, g counts the internal degrees of freedom,

s = 2π2g∗T
3/45 is the entropy density, and g∗ counts the total number of relativistic degree of

freedom.

For each of the fields, we associate a chemical potential. Since the chemical potential of the

gluons vanishes, all colors of quarks have the same chemical potential. Furthermore, we assume

mixing between the quarks and amongst the leptons is efficient. This reduces the number of

chemical potentials to a chemical potential for each chirality of usual leptons {µeL
, µeR

, µνL
, µνR

}
and quarks {µuL

, µuR
, µdL

, µdR
} as well as the fourth-generation leptons {µe′

L
, µe′

R
, µν′

L
, µν′

R
}

and fourth-generation quarks {µu′
L
, µu′

R
, µd′

L
, µd′

R
}. We also have a chemical potential for each

of the scalars SL and SB (denoted as µSL
and µSB

, respectively), a chemical potential for µ− for

the charged field in the Higgs doublet, µ0 for the neutral Higgs field. At temperatures above the

electroweak phase transition (T & 300 GeV), we set the third component of the gauged weak isospin

to zero. This condition implies that the chemical potential for the charged W bosons vanishes and

leads to the conditions

µuL
= µdL

and µeL
= µνL

, (36)

for the SM quark and lepton fields and

µu′
L(R)

= µd′
L(R)

and µe′
L(R)

= µν′
L(R)

(37)

in model 1 (2) for the fourth generation quark and lepton fields.

A. Model (1)

In model (1), we also need a chemical potential for the scalar S, denoted µS, a chemical potential

for the charged field in the doublet φ, denoted µφ+, and a chemical potential for the neutral

component of the φ doublet, denoted µφ. Again, since the chemical potential for the charged W

bosons vanishes, µφ = µφ+.
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Before study the possibility to have a baryon asymmetry let us discuss the different conditions

we must satisfy. Using Eqs. (1), (4), (5) and (9) one obtains

µ0 = µu
′

R

− µu
′

L

, µ0 = µd
′

L

− µd
′

R

, (38)

µ0 = µνR
− µνL

, µ0 = µ
ν
′

R

− µ
ν
′

L

, (39)

µSL
= 2µνR

, µ0 = µ
e
′

L

− µ
e
′

R

, (40)

µ0 = µφ + µS , µSB
= 2µS , (41)

and

µSL
= −µνR

− µν
′

R
. (42)

Yukawa interactions with the Higgs boson in the SM imply the following relations,

µ0 = µuR
− µuL

, − µ0 = µdR
− µdL

, (43)

−µ0 = µeR
− µeL

, µ0 = µνR
− µνL

. (44)

Now, we using these relations to write the baryon number density (B), lepton number density

(L) and electric charge density (Q). We find the following expressions for these comoving number

densities,

B(1) ≡ nB − nB̄

s
=

15

4π2g∗T

(

12µuL
− 12µ

u
′

L

− 20

3
µSB

+
16

3
µφ

)

, (45)

L(1) ≡ nL − nL̄

s
=

15

4π2g∗T

(

20µνL
− 12µν

′

L
+ 8µφ + 4µSB

)

, (46)

Q(1) ≡
nQ − nQ̄

s
=

15

4π2g∗T

(

20µφ + 9µSB
+ 6µuL

+ 2µu
′

L

− 6µνL
− 2 µν′

L

)

. (47)

See Tables I and II for the leptonic and baryonic charges. At high temperatures, each of the charge

densities in Eqs. (45), (46) and (47) must vanish. These three conditions, along with the sphaleron

condition

3(2µuL
+ µdL

+ µeL
) + (2µu′

L
+ µd′

L
+ µe′

L
) = 9µuL

+ 3µνL
+ 3µu

′

L
+ µν

′

L
= 0. (48)

give us four equations. Unfortunately, in the general case we do not have a symmetry which

guarantees the conservation of a given number density. We analyze the small λb limit.2 In this

limit, we have the following approximate global symmetries:

2
λb must be small enough so that the mixing between the ordinary right-handed neutrinos and the fourth generation
right-handed neutrino can be neglected in the early Universe, but large enough so that the fourth generation right-
handed neutrino can decay.
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(B−L)1: (QL, uR, dR, φ) → eiα/3(QL, uR, dR, φ), (lL, eR, νR) → e−iα(lL, eR, νR), SL → e−2iαSL,

S → e−iα/3S, SB → e−2iα/3SB,

and

(B − L)2: (Q′
L, u′

R, d′R, S) → e−iα(Q′
L, u′

R, d′R, S), (l′L, e′R, ν ′
R) → ei3α(l′L, e′R, ν ′

R), φ → eiαφ,

SB → e−2iαSB.

Both of these approximate global symmetries are anomaly free and not-gauged. The corre-

sponding charge densities are given by

(B − L)1 =
15

4π2g∗T

(

12µuL
+

4

3
µφ − 12µνL

− 4µSL
− 2

3
µS − 4

3
µSB

)

, (49)

and

(B − L)2 =
15

4π2g∗T

(

−12µu′
L
− 2µS + 12µν′

L
+ 2µφ − 4µSB

)

. (50)

The baryon number density at late times will include the contribution of the ordinary quarks and

the contribution from the decay of the fourth generation quarks. In ordinary quarks we have

1

3
(3)(3) (µuL

+ µuR
+ µdL

+ µdR
) = 12µuL

. (51)

The contribution from the fourth-generation quarks (Q′ → φ + uR and d′R → φ + QL) gives

1

3
(3)
(

µu′
L

+ µd′
L

+ 2µd′
R

)

= 4µu′
L
− 2µφ − µSB

. (52)

Then,

B
(1)
f =

15

4π2g∗T

(

12µuL
+ 4µu′

L
− 2µφ − µSB

)

=
269

1143
(B − L)1 −

13

381
(B − L)2. (53)

Depending on the initial charge densities, it is possible to simultaneously explain the DM relic

density and the baryon asymmetry in this scenario. Notice that one can have leptogenesis at the

high-scale if the symmetry breaking scale for U(1)L is much larger than the electroweak scale.

B. Model (2)

In model (2), we must introduce a chemical potential for the scalar S′
L, denoted µS′

L
, and a

chemical potential for the dark matter candidate X, denoted µX .

The action is invariant under the transformations SB → eiαB SB and S′
L → eiαLS′

L. These auto-

matic U(1) symmetries are anomaly free, since no fermions transform under them. The symmetries
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are spontaneously broken by the vacuum expectation values of SB and S′
L, respectively; however,

at high temperatures the symmetry is restored. We begin by assuming that in the early Universe

a non-zero SB and S′
L asymmetry is generated. This could occur for example from the decay of

the inflaton after inflation. We examine if this can lead to the observed baryon excess.

We assume that lepton number and baryon number are spontaneously broken at the weak scale.

In this case we have the following relations, assuming that the coupling constants {λa, λb, λl, λe}
are large enough to preserve thermal equilibrium when T & 300 GeV,

µSL
= 2µνR

, (54)

µSL
= µν′

L
− µνR

, (55)

µSL
= µe′

R
− µeL

, (56)

µSL
= µe′

L
− µeR

. (57)

Interactions with the Higgs boson imply the following relations,

µ0 = µu′
L
− µu′

R
, − µ0 = µd′

L
− µd′

R
, (58)

−µ0 = µe′
L
− µe′

R
, µ0 = µν′

L
− µν′

R
. (59)

We also have the following equations relating the chemical potentials of the fourth generation

quarks, ordinary quarks and the dark matter

µX = µuL
− µu′

R
, µX = µuR

− µu′
L
, (60)

µX = µdL
− µd′

R
, µX = µdR

− µd′
L
, (61)

assuming the couplings in Eq. (12) are large enough that these interactions are in thermal equi-

librium at high temperatures.

We use these relations to write the baryon number density (B), lepton number density (L) and

electric charge density (Q) in terms of {µuL
, µ0, µSL

, µS′
L
, µSB

, µX}. We find the following

expressions for these comoving number densities,

B(2) =
15

4π2g∗T

(

24µuL
+ 2nBµSB

− 40

3
µX

)

, (62)

L(2) =
15

4π2g∗T

(

28µSL
− 24µ0 + 2nLµS′

L

)

, (63)

Q(2) =
15

4π2g∗T
( 8µuL

+ 26µ0 − 6µSL
− 2µX) , (64)

see Tables I and III for the leptonic and baryonic charges. At high temperatures, each of these

charge densities in Eqs. ((62)), ((63)) and ((64)) must vanish. These three conditions, along with
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the sphaleron condition

3(2µuL
+ µdL

+ µeL
) − (2µu′

R
+ µd′

R
+ µe′

R
) = 6µuL

− 2µ0 + 3µX = 0. (65)

give us four equations and six unknowns. We solve this system of equations in terms of the chemical

potentials µSB
and µS′

L
since these are the chemical potentials corresponding to the conserved

charges in the transformation laws SB → eiαBSB and S′
L → eiαLS′

L.

We find that in thermal equilibrium the following relations amongst the chemical potentials,

µ0 =
9

8630

(

21nBµSB
− 19nLµS′

L

)

, µSL
=

1

8630

(

162nBµSB
− 763nLµS′

L

)

,

µX =
3

8630

(

247nBµSB
− 18nLµS′

L

)

, µuL
= − 3

3452

(

41nBµSB
+ 4nLµS′

L

)

. (66)

Using these equilibrium relations, we find what is called the baryon number density at late times.

The baryon number density at late times will include the contribution of the ordinary quarks and

the contribution from the decay of the fourth generation quarks. In ordinary quarks we have

1

3
(3)(3) (µuL

+ µuR
+ µdL

+ µdR
) = 12µuL

. (67)

The contribution from the fourth-generation quarks (Q′ → X† + q) gives

1

3
(3)
(

µu′
L

+ µu′
R

+ µd′
L

+ µd′
R

)

= 4 (µuL
− µX) . (68)

The observed baryon excess is the sum of these two contributions and is given by

B
(2)
f =

15

4π2g∗T
(12µuL

+ 4 (µuL
− µX)) (69)

=
15

4π2g∗T
(4 (4µuL

− µX)) = −1971

4315

(

15nB

2π2g∗

(µSB

T

)

)

− 66

4315

(

15nL

2π2g∗

(

µS′
L

T

))

≃ −0.46

(

15nB

2π2g∗

(µSB

T

)

)

− 0.02

(

15nL

2π2g∗

(

µS′
L

T

))

. (70)

Since X is the cold dark matter candidate in the theory one has to check the prediction for the

ratio between the DM density and the baryon asymmetry. The DM asymmetry is given by

nX − nX̄

s
=

15

2π2g∗T

(

µX − 3

2

(

µu
′

L

+ µd
′

L

+ µu
′

R

+ µd
′

R

)

)

=
15

2π2g∗T
(7µX − 6µuL

) . (71)

Therefore, in this case using Eq. (66) one finds

nX − nX̄

s
=

15

2π2g∗T

(

3516

4315
nBµSB

− 99

4315
nLµS′

L

)

. (72)



23

One can find an upper bound on MX using the constraint |nX − nX̄ | ≤ nDM . This gives the

constraint

ΩDM/MX

ΩB/Mp
≥
∣

∣3516∆SB − 99∆S′
L

∣

∣

1971∆SB + 66∆S′
L

, (73)

where Mp ≃ 1 GeV is the proton mass and the observed ratio ΩDM ≃ 5Ωb. So in this scenario the

dark matter mass must be in the range,

MX ≤ Mp

(

ΩDM

ΩB

)

1971∆SB + 66∆S′
L

∣

∣3516∆SB − 99∆S′
L

∣

∣

. (74)

The work in Section III shows that the dark matter mass must be at least 50 GeV to obtain the

correct dark matter relic density while evading direct detection limits. Depending on the initial

charge densities, it is possible to simultaneously explain the DM relic density and the baryon

asymmetry in this scenario. Eq. (74) shows that this requires a somewhat awkward fine-tuning

between the initial charge densities of the global symmetries SB → eiαBSB and S′
L → eiαLS′

L.

In model (2) one can have a non-zero baryon asymmetry (even if B and L are broken at the

low scale) if there is a primordial asymmetry in the scalar sector; however, we need physics beyond

what is in model (2) to explain how this primordial asymmetry is generated.

V. SUMMARY

We have investigated the cosmological aspects of two simple models, denoted (1) and (2), in

which baryon number (B) and lepton number (L) are local gauge symmetries that are sponta-

neously broken around the weak scale. In these models, the stability of our scalar dark matter

candidate is a consequence of the gauge symmetry.

In model (2), we studied the possible dark matter annihilation channels and found what values

of the masses and couplings lead to the observed relic abundance of dark matter. In the case where

the s-wave annihilation through an intermediate Higgs dominates, we find that, for MH = 120 GeV,

in order to evade the direct detection bounds the coupling between the Higgs and the dark matter

must be less than 10−1.5 and 51 GeV . MX . 63 GeV. In the case where the p-wave annihilation

through an intermediate leptophobic gauge boson dominates, we find that the coupling between

the leptophobic ZB and the dark matter must be less than 0.1 and 235 GeV . MX . 250 GeV

when MZB
= 500 GeV. In this case the leptophobic gauge boson has to be below the TeV scale

and one finds a lower bound on the elastic cross section σB
SI & 5× 10−46 cm2. In both cases, direct

detection experiments constrain the annihilation to proceed close to resonance in order to evade
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direct detection and to produce the observed relic abundance of dark matter. We have shown that

even though baryon number is gauged and spontaneously broken at the weak scale it is possible

to generate a cosmological baryon excess. A modest fine-tuning is needed to achieve both the

measured dark matter relic abundance and baryon excess.

In model (1), we introduced a simple mechanism to split the masses of the real of the imaginary

part of the neutral component of the new scalar doublet to evade direct detection limits. We

showed that one can simultaneously achieve both the observed baryon asymmetry of the Universe

and the dark matter relic abundance. In particular, when L is broken at the high scale but B is

spontaneously broken at the weak scale, standard leptogenesis can be applied.
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