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Minimum-variance estimators for the parameter fnl that quantifies local-model non-Gaussianity
can be constructed from the cosmic microwave background (CMB) bispectrum (three-point function)
and also from the trispectrum (four-point function). Some have suggested that a comparison between
the estimates for the values of fnl from the bispectrum and trispectrum allow a consistency test for
the model. But others argue that the saturation of the Cramer-Rao bound, which gives a lower limit
to the variance of an estimator, by the bispectrum estimator implies that no further information
on fnl can be obtained from the trispectrum. Here we elaborate the nature of the correlation
between the bispectrum and trispectrum estimators for fnl. We show that the two estimators
become statistically independent in the limit of large number of CMB pixels and thus that the
trispectrum estimator does indeed provide additional information on fnl beyond that obtained from
the bispectrum. We explain how this conclusion is consistent with the Cramer-Rao bound. Our
discussion of the Cramer-Rao bound may be of interest to those doing Fisher-matrix parameter-
estimation forecasts or data analysis in other areas of physics as well.

PACS numbers:

I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) have confirmed a now ‘standard’ cosmological
model [1]. A key aspect of this model is that primordial
fluctuations are a realization of a Gaussian random field.
This implies that CMB fluctuations are completely char-
acterized by their two-point correlation function C(θ) in
real space, or equivalently, the power spectrum Cℓ in har-
monic space. All higher-order N -point correlation func-
tions with even N can be written in terms of the two-
point function, and all N -point correlation functions with
odd N are zero.

But while the simplest single-field slow-roll (SFSR)
inflationary models assumed in the standard cosmo-
logical model predict departures from Gaussianity to
be undetectably small [2], several beyond-SFSR mod-
els predict departures from Gaussianity to be larger
[3], and possibly detectable with current or forthcom-
ing CMB experiments. While the range of predictions
for non-Gaussianity is large, the local model for non-
Gaussianity [4]—that which appears in arguably the sim-
plest beyond-SFSR models—has become the canonical
model for most non-Gaussianity searches. The non-
Gaussianity is parametrized in these models by a non-
Gaussian amplitude fnl to be defined more precisely be-
low.

Most efforts to measure fnl have relied on an estima-
tor constructed from the CMB bispectrum, the three-
point correlation function in harmonic space. However,

the local model also predicts a non-zero trispectrum (the
harmonic-space four-point function) [5–9], and efforts
have recently been mounted to determine fnl from the
trispectrum [10]. It has been suggested, moreover, that a
comparison of the values of fnl obtained from the bispec-
trum and trispectrum can be used as a consistency test
for the local model [8, 10, 11].

However, it can be shown that the bispectrum estima-
tor for fnl saturates the Cramer-Rao bound, which gives
a lower limit to the variance of an estimator,, and it has
been argued that this implies that no new information
on the value of fnl, beyond that obtained from the bis-
pectrum, can be obtained from the trispectrum [12, 13].
Ref. [13] further outlines the nature of the correlation
between the bispectrum and trispectrum fnl estimators
implied by this conclusion.

Here we show that the trispectrum does provide addi-
tional information on fnl; i.e., it is not redundant with
that from the bispectrum. We show that there is indeed
a correlation between the bispectrum and trispectrum
fnl estimators, elaborating the arguments of Ref. [13].
However, we show with analytic estimates and numerical
calculations that this correlation becomes weak in the
high-statistics limit. We explain, with a simple exam-
ple, how additional information on fnl can be provided
by the trispectrum given that the bispectrum estimator
for fnl saturates the Cramer-Rao bound. Put simply, the
Cramer-Rao inequality bounds the variance with which
a distribution can be measured, but there may be addi-
tional information in a distribution, about a theory or
its parameters, beyond the distribution variance. The
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discussion of the Cramer-Rao bound and the examples
we work out in Section II may be of interest to a much
broader audience of readers than just those interested in
CMB non-Gaussianity.

The outline of this paper is as follows: We begin in
Section II with our discussion of the Cramer-Rao bound.
The aim of the rest of the paper is to illustrate explic-
itly the nature of the correlation between the bispectrum
estimator for fnl and the trispectrum estimator for fnl

2

and to show that the correlation becomes small in the
high-statistics limit. In Section III A we introduce our
conventions for the bispectrum and trispectrum. In Sec-
tions III B and III C we derive the minimum-variance es-
timators for fnl from the bispectrum and trispectrum and
evaluate the noises in each. We also write down approx-
imations for the estimators and noises valid for the local
model. In Section IV we explain the nature of the correla-
tion between the bispectrum and trispectrum estimators
for fnl. We then show that this correlation becomes weak
(scaling with (lnNpix)

−1) as the number Npix of pixels
becomes large. We conclude in Section V. Appendix A
details the correspondence between continuum and dis-
crete Fourier conventions for power spectra, bispectra,
and trispectra, and Appendix B provides describes the
numerical evaluation of the correlation.

II. THE CRAMER-RAO BOUND

In the Sections below we will demonstrate that the esti-
mators for fnl and fnl

2 becomes statistically independent
with sufficiently good statistics. However, the bispec-
trum estimator for fnl saturates the Cramer-Rao bound,
and it has been argued that this saturation implies that
no further information about fnl, beyond that obtained
from the bispectrum, can be obtained from the trispec-
trum [12, 13]. Here we explain that the Cramer-Rao
inequality bounds only the variance with which fnl can
be measured; additional information, beyond the vari-
ance, can be obtained from measurement of fnl

2 from
the trispectrum.

To illustrate, consider, following Ref. [12], the analo-
gous problem of determining fnl and fnl

2 from a one-
dimensional version of the local model. Suppose we have
a random variable X written in terms of a Gaussian ran-
dom variable x of zero mean (〈x〉 = 0) and unit variance
(
〈
x2

〉
= 1) as X = x + ǫ(x2 − 1). Here, ǫ parametrizes

the departure from the null hypothesis ǫ = 0. The PDF
for X , for a given ǫ, is

P (X |ǫ) =
1√
2π

[
e−x2

+/2

1 + 2ǫx+
+

e−x2
−

/2

1 + 2ǫx−

]
, (1)

where

x± =
1

2ǫ

[
±

√
1 + 4ǫ(X + ǫ) − 1

]
. (2)

The logarithm of the PDF can then be Taylor expanded

about ǫ = 0 as

lnP (X |ǫ) = −X2

2
+ ǫI1(X) − ǫ2

2
I2(X) + O(ǫ3), (3)

where I1(X) ≡ X3 − 3X , and I2(X) = 5X4 + 5 − 14X2.
It will be useful below to note that the expectation values
of these quantities in the weakly non-Gaussian limit are
〈I1〉 = 6ǫ + O(ǫ3) and 〈I2〉 = 6 + 272 ǫ2 + O(ǫ4).

Now suppose we have a realization consisting of N data
points Xi, each drawn independently from the distribu-
tion in Eq. (1), and let’s arrange these data points into a
vector X. The PDF for this realization, for a given ǫ, is

lnP (X|ǫ) =
∑

i

[
−X2

i

2
+ ǫI1(Xi)

− ǫ2

2
I2(Xi) + O(ǫ3)

]
. (4)

The Cramer-Rao inequality states that the smallest
variance Var(ǫ̂) ≡

〈
ǫ̂2

〉
− 〈ǫ̂〉2 to an estimator ǫ̂ is

Var(ǫ̂) ≥ 1

F
, (5)

where

F =

∫ [
∂ lnP (X|ǫ)

∂ǫ

]2

P (X|ǫ)dX

≡
〈[

∂ lnP (X|ǫ)
∂ǫ

]2
〉

, (6)

is the Fisher information. Here, the angle brackets denote
an expectation value with respect to the null-hypothesis
(ǫ = 0) PDF. Applying Eq. (6) to Eq. (4), we find

F =
∑

i

〈
[I1(Xi)]

2
〉

= 6N, (7)

from which we infer

Var(ǫ̂) ≥ 1

6 N
. (8)

This model predicts a skewness 〈I1〉 =
〈
X3 − 3X

〉
=

6ǫ, and so we can construct an estimator for ǫ from the
measured skewness as follows:

ǫ̂s =
1

6N

∑

i

(X3
i − 3Xi). (9)

The variance to this estimator is Var(ǫ̂s) = (6N)−1, and
so this estimator saturates the Cramer-Rao bound.

In retrospect, this saturation should come as no sur-
prise. According to Eqs. (4) and (6), the Fisher
information—and thus the minimum variance with which
ǫ can be measured—is determined entirely by the term in
lnP (X|ǫ) linear in ǫ which, in this case, is precisely the
skewness. Thus, the terms in ln P (X|ǫ) that are higher
order in ǫ contribute nothing to the Fisher information.
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FIG. 1: Here we plot two probability distribution functions
that share the same skewness but with two different values
for the kurtosis.

And since the term linear in ǫ multiplies the skewness, ǫ̂s

saturates the Cramer-Rao bound.
But this does not mean that there is no information

about ǫ from these higher-order terms. Consider, for ex-
ample, a more general PDF,

lnPα(X |ǫ, ǫ21) = −X2

2
+ ǫI1(X)

− ǫ21
2

I2(X) + O(ǫ3), (10)

parametrized by ǫ21, in addition to the parameter ǫ. This
PDF differs from the PDF in Eq. (3) in the coefficient
of I2(X). In the weakly non-Gaussian limit, the skew-
ness of this PDF is 〈I1(X)〉 = 6ǫ, and its “kurtosis” is
〈I2(X)〉 = 6 + 846 ǫ2 − 574 ǫ21 + 18(ǫ2 − ǫ21).

1 If we fix
ǫ, we then have a family of PDFs, parametrized by ǫ1,
that all have the same skewness but with different values
of the kurtosis. Fig. 1 shows two PDFs that have the
same skewness but different kurtoses. These are clearly
two very different distributions; qualitatively, the large-
X tails are suppressed as ǫ1 is increased.

The estimator in Eq. (9) once again gives us the op-
timal estimator for ǫ in this new PDF, but we can now
also measure from the data the kurtosis, the expecta-
tion value of I2(X), which provides an estimator for

1 In this paper we use the term “kurtosis” to denote the expecta-
tion value of I2(X). This is qualitatively similar to, but slightly
different, than the usual kurtosis, which is usually defined to be
the expectation value of X

4
− 6X

2 + 3.

846 ǫ2 − 574 ǫ21 + 18(ǫ2 − ǫ21). This can then be used in
combination with the skewness estimator for ǫ to obtain
an estimator for ǫ21. According to the Cramer-Rao in-
equality, the smallest variance to ǫ21 that can be obtained
is

Var(ǫ21) =

{∫ [
∂ lnP (X|ǫ, ǫ21)

∂(ǫ21)

]2

×P (X|ǫ, ǫ21) dX

}−1

=
1

278 N
. (11)

Note that we cannot apply the Cramer-Rao bound to the
parameter ǫ1, rather than ǫ21, as ∂P (X|ǫ, ǫ21)/∂ǫ1 is zero
under the null hypothesis ǫ1 = 0, thus violating one of
the conditions for the Cramer-Rao inequality to apply.
Since ǫ21, not ǫ1, is determined by the data, the distri-
bution function for ǫ21 (not ǫ1) will approach a Gaussian
distribution in the large-N limit.

The covariance between ǫ and ǫ21 is zero, as the for-
mer is odd in X and the latter even. Still, this does
not necessarily imply that the two are statistically in-
dependent, as there is still a covariance between ǫ2

and ǫ21. However, this becomes small as N becomes
large. The correlation coefficient in this example is
r ≡ Cov(ǫ2, ǫ21)/

√
Var(ǫ2)Var(ǫ21) ≃ 6 N−1/2. Thus, for

large N , ǫ and ǫ21 are two statistically independent quan-
tities that can be obtained from the data and then com-
pared with the local-model prediction that ǫ21 = ǫ2. In
brief, the skewness and kurtosis are two different quanti-
ties that can be obtained from a measured distribution.
In the limit of large N , no measurement of the skewness,
no matter how precise, can tell us anything about the
kurtosis, and vice versa.

In this example, a one-sigma excursion in ǫ from a mea-

surement with N data points is Var1/2(ǫ) = (6N)−1/2,

and this is smaller than Var1/4(ǫ21) = (278 N)−1/4, the
square root of the one-sigma excursion in ǫ21, for any
N & few. Thus, the skewness will provide better sensi-
tivity if we are simply trying to detect a departure from
the null hypothesis ǫ = 0; measurement of ǫ21 will not add
much in this case. Still, if ǫ is measured with high statis-
tical significance from the skewness, then measurement
of ǫ21 can, with sufficient statistics, provide a statistically
independent determination of ǫ2 and/or an independent
test of the theory.

Now consider another PDF,

lnPsmall(X |ǫ) = −X2

2
+ 10−2ǫI1(X)

− ǫ2

2
I2(X) + O(ǫ3), (12)

that differs from the local-model PDF in the suppres-
sion we have inserted for the term linear in ǫ, which thus
suppresses the skewness. Application of the Cramer-Rao
inequality in this case tells us that the smallest value
of ǫ that can be distinguished from the null hypothesis
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(ǫ = 0) is 102/
√

6N , and we know from the discussion
above that this variance is obtained via measurement of
the skewness. However, ǫ2, the coefficient of the second
term in the expansion—that obtained from measurement
of the kurtosis—can be obtained with the variance given
above. Thus, in this case, estimation of ǫ2 via measure-
ment of the kurtosis, provides a more sensitive probe of
a departure from the null hypothesis ǫ = 0 than does es-
timation of ǫ from measurement of the skewness, as long
as N . 107. Note that the Cramer-Rao bound is not
violated in this case, as measurement of ǫ2, which does
not discriminate between positive and negative values of
ǫ, does not provide any further information on Var(ǫ).
The apparent violation of the Cramer-Rao bound arises
in this case because one of the conditions for the validity
of the Cramer-Rao bound—that ∂ lnP/∂ǫ be non-zero at
ǫ = 0 (under the null hypothesis)—is becoming invalid
as the numerical coefficient of ǫ in lnP is made smaller.
Had we chosen that coefficient to be zero, rather than
10−2, then the Cramer-Rao inequality would have given
a nonsensical bound for Var(ǫ).

A. Another example

Here we provide another example where statistically-
independent information can be provided for estimators
for ǫ and ǫ2, where ǫ is a parameter that quantifies a
departure from a null hypothesis. Suppose we want to
test a theory in which the decay product from a polar-
ized particle is predicted to have an angular distribution
P (θ) ∝ P0(θ) + ǫP1(θ) + ǫ2P2(θ), where Pn are Legen-
dre polynomials, and ǫ parametrizes the departure from
the null hypothesis. In this case, measurement of the
dipole, the mean value of P1(x), provides an estimator
for ǫ, and measurement of the quadrupole, the mean
value of P2(x), provides a statistically-independent (with
sufficiently high statistics) estimator for ǫ2. Thus, mea-
surement of both the dipole and quadrupole can be used
to test the data, even though the Cramer-Rao inequal-
ity tells us that Var(ǫ) is bounded by the value obtained
from the dipole.

B. Summary

To summarize, suppose we have a theory that predicts
new effects parametrized by a quantity ǫ, with ǫ = 0 rep-
resenting the null hypothesis. A general PDF for the data
X given ǫ (or likelihood for ǫ for given data X) can be ex-
panded in ǫ as ln P (X |ǫ) = lnP0(X)+ ǫg(X)+ ǫ2h(X)+
· · · , where P0(X) is the PDF under the null hypothesis
ǫ = 0 and g(X) and h(X) are functions that describe the
theory. Estimation of ǫ can be obtained through mea-
surement of the mean value of g(X), and an independent
estimation of ǫ2 can, with sufficiently good statistics, be
obtained from measurement of the mean value of h(X).

If
〈
[g(X)]2

〉2
&

〈
[h(X)]2

〉
, where the expectation value

is with respect to P0, then measurement of the mean
value of g(X) will provide a more sensitive avenue for
detection of a value of ǫ that departs from the null hy-
pothesis than measurement of the mean value of h(X). If〈
[g(X)]2

〉2
.

〈
[h(X)]2

〉
, then measurement of the mean

value of h(X) will provide a more sensitive test for detec-
tion of a value of ǫ that departs from the null hypothesis.
If the two are comparable, then both tests will be compa-
rable. In the case of a statistically-significant detection,
there may be, given sufficient statistics, independent in-
formation on the values of ǫ and ǫ2 from measurement
of both moments. Care must be taken in interpreting
results of measurement of ǫ2 from h(X), to note that the
distribution of the h(X) estimator for ǫ2 is Gaussian in
ǫ2, not ǫ.

III. LOCAL-MODEL BISPECTRUM AND

TRISPECTRUM

The arguments made in the preceding section apply,
mutatis mutandis, to measurement of the bispectrum and
trispectrum, generalizations of the skewness and kurto-
sis: the estimator for fnl obtained from the bispectrum
is statistically independent (for sufficiently large Npix)

from the estimator for fnl
2 obtained from the trispec-

trum. If the variance to fnl obtained from the bispec-
trum is comparable to the square root of the variance
to fnl

2 obtained from the trispectrum [6, 8], both will
have roughly comparable sensitivities toward detection
of a departure from the null hypothesis fnl = 0. If there
is a statistically significant detection, both can provide,
with sufficiently good statistics, independent information
on fnl and fnl

2, even if the bispectrum estimator for fnl

saturates the Cramer-Rao bound. We stop short of ver-
ifying these claims with the full likelihood for the local
model. However, the arguments given explicitly for the
one-dimensional analog above also apply to the skewness
and kurtosis in the local model, the three- and four-point
functions at zero lag, respectively. While the skewness
and kurtosis are not optimal estimators for fnl or fnl

2,
they are statistically independent quantities that are de-
rived from the bispectrum and trispectrum, respectively.

We now review how to measure fnl from the bispec-
trum and the trispectrum. To keep our arguments clear
(and since the current goal is simply detection of a de-
parture from non-Gaussianity, rather than precise eval-
uation of fnl), we assume the null hypothesis fnl = 0 in
the evaluation of noises and construction of estimators.
The generalization to nonzero fnl is straightforward [13].

A. Definitions and Conventions

We have argued above that the bispectrum estimator
for fnl and the trispectrum estimator for fnl

2 may pro-
vide statistically independent information. The aim of
the rest of the paper will be to evaluate explicitly the
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correlation between the bispectrum estimator for fnl and
the trispectrum estimator for fnl

2. We will find that it
is nonzero, but that it becomes small in the large-lmax

limit.
We assume a flat sky to avoid the complications

(e.g., spherical harmonics, Clebsch-Gordan coefficients,
Wigner 3j and 6j symbols, etc.) associated with a spheri-
cal sky, and we further assume the Sachs-Wolfe limit. We
denote the fractional temperature perturbation at posi-

tion ~θ on a flat sky by T (~θ), and refer to it hereafter
simply as the temperature.

The temperature in the local model is written,

T (~θ) = t(~θ) + fnl[t(~θ)]2, (13)

in terms of a Gaussian random field t(~θ). Note that our
fnl is three times the definition, in terms of the gravita-
tional potential, used in most of the literature. We use
this alternative definition to simplify the equations, but
the difference should be noted if comparing our quan-

titative results with others. The field t(~θ) has a power
spectrum Cl given by

〈
t~l1t~l2

〉
= Ωδ~l1+~l2,0Cl, (14)

where Ω = 4πfsky is the survey area (in steradian), t~l is

the Fourier transform of t(~θ), and δ~l1+~l2,0 is a Kronecker

delta that sets ~l1 = −~l2. In the limit fnlT ≪ 1 (cur-
rent constraints are fnlT . 10−3), Cl is also the power

spectrum for T (~θ).
The bispectrum B(l1, l2, l3) is defined by

〈
T~l1

T~l2
T~l3

〉
= Ωδ~l1+~l2+~l3,0B(l1, l2, l3). (15)

The Kronecker delta insures that the bispectrum is de-

fined only for ~l1 + ~l2 + ~l3 = 0; i.e., only for triangles in
Fourier space. Statistical isotropy then dictates that the
bispectrum depends only on the magnitudes l1, l2, l3 of
the three sides of this Fourier triangle. The bispectrum
for the local model is,

B(l1, l2, l3) = 2fnl[Cl1Cl2 + Cl1Cl3 + Cl2Cl3 ]. (16)

Likewise, the trispectrum is defined by
〈
T~l1

T~l2
T~l3

T~l4

〉
= Ωδ~l1+~l2+~l3+~l4,0T (~l1,~l2,~l3,~l4), (17)

and for the local model,

T (~l1,~l2,~l3,~l4) = fnl
2
[
P l1l2

l3l4
(|~l1 +~l2|)

+ P l1l3
l2l4

(|~l1 +~l3|) + P l1l4
l2l3

(|~l1 +~l4|)
]
,

(18)

where

P l1l2
l3l4

(|~l1 +~l2|) = 4C|~l1+~l2|
[Cl1Cl3 + Cl1Cl4

+Cl2Cl3 + Cl2Cl4 ] . (19)

Again, the trispectrum is nonvanishing only for ~l1 +~l2 +
~l3 + ~l4 = 0, that is, only for quadrilaterals in Fourier
space.

B. The bispectrum

From Eqs. (15) and (16), each triangle ~l1 +~l2 +~l3 = 0
gives an estimator,

(f̂nl
b)123 =

T~l1
T~l2

T~l3

ΩB(l1, l2, l3)/fnl
, (20)

with variance [using Eq. (14)],2

Ω3Cl1Cl2Cl3

[ΩB(l1, l2, l3)/fnl]
2 . (21)

The minimum-variance estimator is constructed by
adding all of these estimators with inverse-variance
weighting. It is

f̂nl
b = σ2

b

∑ T~l1
T~l2

T~l3
B(l1, l2, l3)/fnl

Ω2Cl1Cl2Cl3

, (22)

and it has inverse variance,

σ−2
b =

∑ [B(l1, l2, l3)/fnl]
2

ΩCl1Cl2Cl3

. (23)

The sums in Eqs. (22) and (23) are taken over all distinct

triangles with ~l1+~l2+~l3 = 0. We may then take ~L ≡ ~l3 to
be the shortest side of the triangle—i.e., l1, l2 > L—and
re-write the estimator as,

f̂nl
b =

1

2
σ2

b

∑

~L

1

CL

×
∑

~l1+~l2=−~L, l1,l2>L

T~l1
T~l2

T~LB(l1, l2, L)/fnl

Ω2Cl1Cl2

,

(24)

and the inverse-variance as

σ−2
b =

1

2

∑

~L

1

CL

∑

~l1+~l2=−~L, l1,l2>L

[B(l1, l2, L)/fnl]
2

ΩCl1Cl2

.

(25)
The factor of 1/2 is included to account for double count-

ing of identical triangles, those with ~l1 ↔ ~l2.

1. Approximation to the Bispectrum Estimator

Now consider the variance σ2
b with which fnl can be

measured from the bispectrum. Take Cl = A/l2 for the

2 Here we ignore the negligible contributions from triangles and
for the trispectrum below, quadrilaterals, where two sides have
the same length. We do, however, include these configurations in
the numerical analysis described in Appendix B and verify that
this assumption is warranted.
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power spectrum, where A ≃ 6 × 10−10 is the power-
spectrum normalization. The bispectrum in Eq. (16) is
maximized for squeezed triangles, those with L ≪ l1, l2,
and thus with l1 ≃ l2. In this limit, the bispectrum
can be approximated B(l1, l2, L) ≃ 4A2fnlL

−2l−2
1 . Then,

from Eq. (25) the inverse variance (and thus the signal-
to-noise) is dominated by squeezed triangles, and it is fur-
thermore dominated by those triangles with the modes
~L of the smallest magnitudes L.

FIG. 2: Three triangles that all share a shortest side ~L.

More precisely, let us evaluate the contribution (σ−2
b )~L

to the inverse variance obtained from all triangles that

share the same shortest side ~L, as shown in Fig. 2. Since

this contribution is dominated by modes with ~l1 ≃ ~l2,
the inverse-variance from these triangles is,

(σ−2
b )~L ≃ 1

2Ω

L2

A

∑

~l1

(4CLCl1)
2

C2
l1

=
8A

ΩL2

∑

~l

1

≃ 8A

L2

1

2π

∫ lmax

L

l dl ≃ 2A

πL2
l2max, (26)

where we have used
∑

~l = Ω
∫

d2l/(2π)2 in the last line.

The full estimator then sums over all ~L as in Eq. (24).
The full inverse-variance is then

σ−2
b =

∑

~L

(σ−2
b )~L = Ω

∫
d2L

(2π)2
(σ−2

b )~L

≃ AΩ

π2
l2max ln

Lmax

Lmin

≃ 4Afskyl
2
max

π
ln

Lmax

Lmin
, (27)

in agreement with Ref. [14] and where Lmax is the max-
imum value of the shortest side of the triangle.

To summarize: (1) the signal-to-noise is greatly dom-
inated by triangles with one side much shorter than the
other two. (2) The signal-to-noise is dominated primarily
by those with the smallest short side. (3) The contribu-
tion to the full signal-to-noise is equal per logarithmic
interval of L, the magnitude of the smallest mode in the
triangle. (4) Even if there is a huge number of triangles
that enter the estimator, the error in the estimator is
still dominated by the cosmic variance associated with

the values of T~L for the ~L modes of the smallest L.
Since the variance is dominated by squeezed trian-

gles (i.e., |~L| ≪ |~l|), we can approximate the estimator,
Eq. (24), as

f̂nl

b
=

2σ2
b

AΩ2

∑

~L

T~LX~L, (28)

where

X~L ≡
∑

~l

T~lT−~L−~ll
2. (29)

Note that the fnl used here is three times the standard
fnl used in most of the literature.

C. The trispectrum

Now consider the trispectrum. Each distinct quadri-

lateral ~l1 + ~l2 + ~l3 + ~l4 = 0 gives an estimator for the
trispectrum with some variance. Adding the individ-
ual estimators with inverse-variance weighting gives the
minimum-variance estimator,3

̂(fnl
2)t = σ2

t

∑ T~l1
T~l2

T~l3
T~l4

T (~l1,~l2,~l3,~l4)/fnl
2

Ω3Cl1Cl2Cl3Cl4

, (30)

and the inverse variance,

σ−2
t =

∑
[
T (~l1,~l2,~l3,~l4)/fnl

2
]2

Ω2Cl1Cl2Cl3Cl4

. (31)

The sums here are over all distinct quadrilateral ~l1 +~l2 +
~l3 + ~l4 = 0, and we again neglect quadrilaterals where
two or more sides are the same.

Each quadrilateral will have a smallest diagonal, which

we call ~L. The quadrilateral is then described by two

triangles that each share their smallest side ~L; the two

sides of the first triangle will be ~l1 and ~l2 and the two

3 Strictly speaking, one must subtract the connected part of the
trispectrum. We omit this term to keep our expression compact,
but it is included in the analytic and numerical calculations of
the variances and covariances discussed below.
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sides of the second triangle will be ~l3 and ~l4. We can
then re-write the sums in Eqs. (30) and (31) as

∑

~L

∑

~l1+~l2=~L

∑

~l3+~l4=−~L

. (32)

The sum here is only over combinations of {~l1,~l2,~l3,~l4}
where the lengths of the two other diagonals, |~l1 +~l4| =

|~l2 +~l3| and |~l2 +~l4| = |~l1 +~l3|, are both > L, so that L
is the shortest diagonal [cf. Eq. (18)].

FIG. 3: An example of an elongated quadrilateral with a
shortest diagonal ~L. Note that it is equivalent to two elon-
gated triangles that share the same shortest side ~L.

Let’s now consider the local-model trispectrum given
in Eqs. (18) and (19). The three terms in Eq. (18) sum
over the three diagonals of the quadrilateral. Eq. (19)
then shows that each of these terms is the product of
the power spectrum CL evaluated for the diagonal (e.g.,
~L = ~l1 + ~l2 = −~l3 − ~l4) times a sum of products of
power spectra evaluated for each of the quadrilateral
sides. The quadrilateral is thus maximized for highly
elongated quadrilaterals, those with li ≫ L, with one
short diagonal, as shown in Fig. 3. The trispectrum for
these elongated quadrilaterals may be approximated as

T (~l1,~l2,~l3,~l4) ≃ 16fnl
2CLCl1Cl3 .

Now consider the contribution (σ−2
t )~L to the inverse

variance from all quadrilaterals that share the same

shortest diagonal ~L. Using Eq. (31) and approximating
the trispectrum by the squeezed limit, this is

(σ−2
t )~L ≃ 1

8

∑

~l1

∑

~l3

(16CLCl1Cl3)
2

Ω2(Cl1Cl3)
2

=
32 A2

Ω2L4


∑

~l

1




2

=
2

π2

A2

L4
l4max. (33)

The factor 1/8 in the first line accounts for the ~l1 ↔ ~l2
and ~l3 ↔ ~l4 symmetries and the symmetry under inter-

change of the (~l1,~l2) and (~l3,~l4) triangles. Again, the full

variance is obtained by summing over ~L modes. Thus,

σ−2
t ≃ 2fsky

π2

A2

L2
min

l4max. (34)

Note that we obtain the l−4
max scaling of the variance noted

in Ref. [8]. Recall that σ2
t is a variance to fnl

2 (rather

than fnl). Thus, the ratio of the smallest fnl detectable
via the trispectrum to the smallest detectable via the bis-

pectrum is
√

σt/σ2
b ≃ 1.7 f

1/4
sky [Lmin ln(Lmax/Lmin)]

1/2
.

For reasonable values of Lmin and Lmax, the smallest fnl

detectable with the bispectrum is smaller, by a factor of
order a few, than that detectable with the trispectrum
[6–8].

We can now derive an approximation for ̂(fnl
2)t not-

ing that the variance, and thus the signal-to-noise, is

dominated by squeezed triangles (i.e., |~L| ≪ |~l|). From
Eq. (30), and using the squeezed limit for the trispec-
trum, we find,

̂(fnl
2)t =

2

3
σ2

t

∑

~L

1

L2
X2

~L
, (35)

where X~L is the quantity given in Eq. (29). Note that
the fnl used here is three times the standard fnl used in
most of the literature. Comparing with the estimator,
Eq. (28), we see that this estimator is constructed from

precisely the same sums of triangles as the bispectrum

estimator. Strictly speaking, the bispectrum estimator
for fnl involves a sum over a huge number of triangles;
the number of such triangles scales as N2

pix/6 with the
number of pixels in the map. Likewise, the trispectrum
estimator for fnl

2 involves a sum over all quadrilaterals,
and the number of these scales as N3

pix/24. Thus, one
naively expects the correlation between the estimators to
be extremely weak, given the huge number of bispectrum
and trispectrum configurations. Eqs. (28) and (35) show,
however, that the quadrilateral configurations that dom-
inate the trispectrum estimator for fnl

2 are very closely
related to the triangle configurations that dominate the
bispectrum estimator for fnl.

IV. CORRELATION BETWEEN BISPECTRUM

AND TRISPECTRUM ESTIMATORS FOR fnl

Since the bispectrum and trispectrum estimators for
fnl are both constructed from the same CMB map, it
is expected that there should be some correlation be-
tween the two estimators. Eqs. (28) and (35) help clarify
the nature of the correlation. Clearly, if we use for the
bispectrum estimator only triangles that share a single

shortest side ~L and for the trispectrum estimator only

quadrilaterals with the same ~L as the shortest diagonal,
then the two estimators provide the same quantity, mod-
ulo the difference between the magnitude |T~L|2 (from the
bispectrum estimator) and its expectation value A/L2

(from the trispectrum estimator).
However, we have not only triangles/quadrilaterals

from a single ~L shortest side/diagonal, but those con-

structed from many ~L’s. The correlation between the
bispectrum and trispectrum estimators should thus de-

crease as the number of ~L modes increases in the same
way that the means 〈x〉 and

〈
x2

〉
measured with a large
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number N of data points xi will become uncorrelated as
N becomes large.

Of course since f̂nl
b is linear in T~L, the covariance be-

tween f̂nl
b and ̂(fnl

2)t will be zero. However, the correla-

tion between (f̂nl
b)2 and ̂(fnl

2)t will be nonzero. We thus
now estimate the magnitude of the correlation coefficient,
which we define as

r ≡

〈
∆

(
(f̂nl

b)2
)

∆

(
̂(fnl

2)t

)〉

〈[
∆

(
(f̂nl

b)2
)]2

〉1/2 〈[
∆

(
̂(fnl

2)t

)]2
〉1/2

, (36)

where ∆(Q) ≡ Q − 〈Q〉. To simplify the equations, we
can drop the prefactors in Eqs. (28) and (35) and deal
with quantities,

F ≡
∑

~L

T~LX~L, G ≡
∑

~L

A

L2
X2

~L
. (37)

The desired correlation coefficient is then

r =

〈
∆(F 2)∆G

〉
〈
[∆(F 2)]

2
〉1/2

〈(∆G)2〉1/2
. (38)

We begin by noting that X~L is a random variable with
zero mean. In the large-lmax limit, it will be well approx-
imated by a Gaussian random variable, in which case〈
X4

~L

〉
= 3

〈
X2

~L

〉2

. Some other useful relations include,

〈
F 2

〉
=

∑

~L1,~L2

〈
T~L1

T~L2
X~L1

X~L2

〉
= Ω

∑

~L

A

L2

〈
X2

~L

〉
,

(39)

〈G〉 =
∑

~L

A

L2

〈
X2

~L

〉
=

〈
F 2

〉
/Ω, (40)

〈
G2

〉
=

∑

~L1,~L2

A2

L2
1L

2
2

〈
X2

~L1
X2

~L2

〉
= 〈G〉2+2

∑

~L

A2

L4

〈
X2

~L

〉2

,

(41)

〈
F 2G

〉
=

∑

~L1

∑

~L2

∑

~L3

A

L2
1

〈
T~L2

T~L3

〉 〈
X2

~L1
X~L2

X~L3

〉

= Ω
∑

~L1,~L2

A

L2
1

A

L2
2

〈
X2

~L1
X2

~L2

〉
= Ω

〈
G2

〉
. (42)

Also, since F is a sum over (approximately) Gaussian
random variables, it is also well approximated by a Gaus-

sian random variable, and so
〈
F 4

〉
≃ 3

〈
F 2

〉2
.

From these relations, it follows that

〈
∆(F 2)∆G

〉
=

〈
F 2G

〉
−

〈
F 2

〉
〈G〉 = Ω

[〈
G2

〉
− 〈G〉2

]
,

(43)

and thus that

r ≃ Ω
〈
(∆G)2

〉1/2

√
2 〈F 2〉

=

(∑
~L L−4

)1/2

∑
~L L−2

=
[
2
√

πfskyLmin ln (Lmax/Lmin)
]−1

. (44)

Thus, if Lmax is small, then the correlation will be
large. However, the correlation coefficient decreases as
[ln(Lmax)]

−1, and it will become negligible in the limit
that Lmax is large.

Strictly speaking, the X~L are not entirely statistically
independent, as we have assumed here, as many are con-
structed from the same measurements. They are also
not perfectly Gaussian, as we have assumed. However,
as we discuss in Appendix B, we have checked with a full
numerical calculation of the correlation coefficient that
the basic conclusions—and particularly the scaling of the
correlation coefficient r with Lmax—are sound.

V. CONCLUSIONS

A large body of recent work has focused on tests of the
local model for non-Gaussianity that can be performed
with measurement of the CMB trispectrum and bispec-
trum. Here we have clarified how the bispectrum and
trispectrum may provide statistically independent infor-
mation on the local-model non-Gaussianity parameter
fnl, even if the bispectrum estimator for fnl saturates the
Cramer-Rao bound. The basic point is that the Cramer-
Rao inequality puts a lower limit to the variance with
which a given parameter can be measured. If the likeli-
hood function is precisely Gaussian, then the likelihood
is described entirely by the variance. However, if the like-
lihood function is not precisely Gaussian, then there is
more information in the likelihood beyond the variance
(see, e.g., Section VI in Ref. [15]). In the current prob-
lem, this is manifest in that a statistically-independent
measurement of fnl

2 can be obtained from the trispec-
trum without contributing to the variance of fnl.

We then built on an observation of Ref. [13] to illus-
trate the nature of the correlation between the bispec-
trum estimator for fnl and the trispectrum estimator of
fnl

2. This analysis demonstrates that the two estima-
tors do indeed become statistically independent in the
large-lmax limit.

Throughout we have made the null hypothesis fnl = 0
to estimate the variances with which fnl can be mea-
sured from the bispectrum and with which fnl

2 can be
measured from the trispectrum. This is suitable if one
is simply searching the data for departures from the null
hypothesis. However, as emphasized by Ref. [13], the
minimum-variance estimators constructed under the null
hypothesis are no longer optimal if there is a strong sig-
nal. If so, then forecasts of signal-to-noise made with
the null hypothesis are no longer valid in the limit of
large signal-to-noise, and this calls into question claims
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[8] that the trispectrum will provide a better probe of
the local model in the large-S/N limit. In this limit, a
new bispectrum estimator can be constructed to saturate
the Cramer-Rao bound [13], and an analogous optimal
trispectrum estimator can in principle be found. Still,
the observation that the bispectrum and trispectrum es-
timators in the local model are constructed from the same
sums of triangles suggests that the precisions with which
fnl can be measured, in the high-S/N limit, from the bis-
pectrum and trispectrum will be roughly comparable.

Although we assumed the null hypothesis to argue that
the bispectrum and trispectrum estimators for fnl are in-
dependent, the same arguments should also apply in the
high-S/N limit. For example, if the bispectrum estima-
tor finds fnl to be different from zero, with best-fit value
f̄nl, then the likelihood can be re-parametrized in terms
of a quantity ǫ = fnl − f̄nl that quantifies the departure
from the new null hypothesis fnl = f̄nl. Measurement
of ǫ with the trispectrum can then be used to provide a
statistically independent consistency check of the model.
Or, in simpler terms, the skewness and kurtosis are still
two statistically independent quantities that can be ob-
tained from a measured distribution, even if the skewness
(or kurtosis) of that distribution is nonzero.

Throughout, we have made approximations and sim-
plifications to make the basic conceptual points clear,
and we have restricted our attention simply to the lo-
cal model, which we have here defined to be Φ = φ +
fnl(φ

2 −
〈
φ2

〉
). However, inflationary models predict a

wider range of trispectra [16]. Likewise, analysis of real
data will introduce a number of ingredients that we have
excised from our simplified analysis. Still, we hope that
the points we have made here may assist in the inter-
pretation and understanding of experimental results and
perhaps elucidate statistical tests of other, more general,
non-Gaussian models.
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Appendix A: The continuum-discretuum connection

In this paper we have chosen to work with discrete
Fourier transforms where the calculations of variances
and covariances are more straightforward. Here we show
how to derive the expressions for power spectra, bispec-
tra, and trispectra for this discrete formalism to the con-
tinuum analysis discussed in most of the theoretical lit-
erature.

Following Ref. [13], we note that

T~l =

∫
d2~θ e−i~l·~θT (~θ) ≃ Ω

Npix

∑

~θ

e−i~l·~θT (~θ), (A1)

where Ω = 4πfsky is the area of sky (in steradians) sur-
veyed, from which we infer the correspondence

∑
~θ ⇔

(Npix/Ω)
∫

d2~θ. Likewise,

T (~θ) =

∫
d2~l

(2π)2
ei~l·~θT~l ≃

1

Ω

∑

~l

ei~l·~θT~l, (A2)

from which we infer the correspondence
∑

~l ⇔
Ω

∫
d2~l/(2π)2. The Dirac delta function is then written

in the discrete formalism as a Kronecker delta as follows:

(2π)2δ(~l−~l′) =

∫
d2~θei~θ·(~l−~l′) ≃ Ω

Npix

∑

~θ

ei~θ·(~l−~l′) = Ωδ~l,~l′ .

(A3)
The definitions in Section III A of the power spectrum,
bispectrum, and trispectrum follow from this relation.

One advantage of this formulation is that equations
can be checked for consistency using dimensional analy-
sis. Recalling that θ has units [θ2] =sterad and that tem-

perature has units [T (~θ)]=K, it follows, for example, that
[T~l] =K-sterad, [Cl] =K2-sterad, [fnl] =K−1, [B] =K3-

sterad2, and [T ] =K4-sterad3. As another check, the
variance and covariances should have an appropriate scal-
ing with fsky if factors of Ω are carried properly through
the calculation.

Appendix B: Full correlation between trispectrum

and bispectrum estimators

As discussed in the text, the minimum-variance bis-
pectrum and trispectrum estimators for fnl are given by

f̂nl
b = σ2

b

∑

~l1+~l2+~l3=0

B(l1, l2, l3)

3!Ω2Cl1Cl2Cl3

T~l1
T~l2

T~l3
,(B1)

̂(fnl
2)t = σ2

t

∑

~l1+~l2+~l3+~l4=0

T (~l1,~l2,~l3,~l4)

4!Ω3Cl1Cl2Cl3Cl4

(B2)

× T~l1
T~l2

T~l3
T~l4

.

where σ2
b,t are the variances of the bispectrum and

trispectrum estimator. Here we sum over all triangles
and quadrilaterals (not just those with no equal sides),
and the factors of 3! and 4! take into account double
counting of degenerate terms in the sum and permuta-
tion factors for triangles and quadrilaterals with equal
sides. In Sec. IV we used the squeezed-limit approx-
imation to estimate the correlation coefficient between

(f̂nl
b)2 and ̂(fnl

2)t. In this Appendix we derive the full
expression for this correlation coefficient and verify that
the approximations made in Sec. IV are valid.
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The covariance will consist of a weighted sum of the 10-
point function. However, because of the fact that no two
indices in the trispectrum or each bispectrum estimator
can add to zero we know that two of the bispectrum
indices must combine. The rest of the covariance will
then be diagonal leading to

〈
(f̂nl

b)2 ̂(fnl
2)t

〉
=

σ4
bσ2

t

4

×
∑

~l1+~l2=−~L,~l3+~l4=~L

B(L, l1, l2)B(L, l3, l4)T (~l1,~l2,~l3,~l4)/fnl
4

Ω2CLCl1Cl2Cl3Cl4

.

(B3)

Finally, we need to compute the variance of (f̂nl
b)2. To

do this we must compute the 12-point function

〈
T~l1

T~l2
T~l3

|T~l4
T~l5

T~l6
|T~t1

T~t2
T~t3

|T~t4
T~t5

T~t6

〉
, (B4)

where all temperatures within each group of three sepa-
rated by a ‘|’ have zero covariance. The variance takes
the form

〈(
(f̂nl

b)2
)2

〉
= 3σ4

b (B5)

+ σ8
b

∑

{~l,~t}

B~l1~l2~l3
~t1~t2~t3

Ω2Cl1Cl2Cl3Ct1Ct2Ct3

,

where

B~l1~l2~l3
~t1~t2~t3

≡ B(l1, l2, l3)B(l1, t1, t2)B(l2, t1, t3)B(l3, t2, t3)

× δ~l1+~l2+~l3,0δ−~l1+~t1+~t2,0δ−~l2−~t1+~t3,0δ~l3+~t2+~t3,0

+
3

2
B(l1, l2, l3)B(l1l2t1)B(t2, t3, l3)B(t2, t3, t1)

× δ~l1+~l2+~l3,0δ−~l1−~l2+~t1,0δ~t2+~t3−~l3,0δ~t1+~t2+~t3,0.

(B6)

Numerically evaluating the sum in Eq. (B6) shows that
for lmax & 100 the second (non-Gaussian) term con-

tributes less than 1% to the variance of (f̂nl
b)2. We have

moreover numerically evaluated the exact expression for
the correlation coefficient and verified that, as our es-
timates indicate, the correlation is of order . 10% for
lmin = 2 and lmax & 100.
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