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The gravitational couplings of matter are studied in the presence of Lorentz and CPT violation.
At leading order in the coefficients for Lorentz violation, the relativistic quantum hamiltonian is
derived from the gravitationally coupled minimal Standard-Model Extension. For spin-independent
effects, the nonrelativistic quantum hamiltonian and the classical dynamics for test and source bodies
are obtained. A systematic perturbative method is developed to treat small metric and coefficient
fluctuations about a Lorentz-violating and Minkowski background. The post-newtonian metric and
the trajectory of a test body freely falling under gravity in the presence of Lorentz violation are
established. An illustrative example is presented for a bumblebee model. The general methodology
is used to identify observable signals of Lorentz and CPT violation in a variety of gravitational
experiments and observations, including gravimeter measurements, laboratory and satellite tests of
the weak equivalence principle, antimatter studies, solar-system observations, and investigations of
the gravitational properties of light. Numerous sensitivities to coefficients for Lorentz violation can
be achieved in existing or near-future experiments at the level of parts in 103 down to parts in
1015. Certain coefficients are uniquely detectable in gravitational searches and remain unmeasured
to date.

I. INTRODUCTION

General Relativity (GR) is known to provide an accu-
rate description of classical gravitational phenomena over
a wide range of distance scales. A foundational property
of the gravitational couplings of matter in GR is local
Lorentz invariance in freely falling frames. The realiza-
tion that a consistent theory of quantum gravity at the
Planck scale mP ≃ 1019 GeV could induce tiny man-
ifestations of Lorentz violation at observable scales [1]
has revived interest in studies of Lorentz symmetry, with
numerous sensitive searches for Lorentz violation being
undertaken in recent years [2].

Gravitational signals of Lorentz violation are more
challenging to study than ones in Minkowski spacetime
for several reasons, including the comparative weakness
of gravity at the microscopic level and the impossibility
of screening gravitational effects on macroscopic scales.
Both for purely gravitational interactions and for matter-
gravity couplings, Lorentz violations can be classified and
enumerated in effective field theory [3]. Several searches
for purely gravitational Lorentz violations in this con-
text have recently been performed [4–6] using a treat-
ment in the post-newtonian regime [7]. These results
enlarge and complement the impressive breadth of tests
of GR performed in the context of the parametrized post-
newtonian (PPN) formalism [8].

Although the coupling between matter and gravity has
historically been a primary source of insights into the
properties of the gravitational field, a general study of
matter-gravity couplings allowing for Lorentz violation
in the context of effective field theory has been lacking
to date. In this work, we address this gap in the literature
and investigate the prospects for searches for Lorentz vi-
olation involving matter-gravity couplings. Our goal is
to elucidate both theoretical and experimental aspects
of the subject. We seek a post-newtonian expansion for
the equation for the trajectory of a test body moving un-

der gravity in the presence of Lorentz violation, allowing
also for Lorentz-violating effects from the composition of
the test and source bodies and for effects from possible
additional long-range modes associated with Lorentz vi-
olation. We also seek to explore the implications of our
analysis in a wide variety of experimental and observa-
tional scenarios, identifying prospective measurable sig-
nals and thereby enabling more complete searches using
matter-gravity couplings.

Despite the current lack of a satisfactory quantum
theory of gravity, established gravitational and particle
phenomena at accessible energy scales can successfully
be analyzed using the field-theoretic combination of GR
and the Standard Model (SM). This combination there-
fore serves as a suitable starting point for a comprehen-
sive effective field theory describing observable signals
of Planck-scale Lorentz and CPT violation in gravity
and particle physics [9]. The present paper adopts this
general framework, known as the gravitational Standard-
Model Extension (SME) [3], to analyze Lorentz violation
in matter-gravity couplings. Each term violating Lorentz
symmetry in the SME Lagrange density is a scalar den-
sity under observer general coordinate transformations
and consists of a Lorentz-violating operator multiplied
by a controlling coefficient for Lorentz violation. Under
mild assumptions, CPT violation in effective field theory
comes with Lorentz violation [10], so the SME also de-
scribes general breaking of CPT symmetry. This feature
plays a crucial role for certain signals of Lorentz violation
in what follows.

In this work, our focus is on gravitational Lorentz vi-
olation in matter-gravity couplings, both with and with-
out CPT violation. These couplings introduce operator
structures offering sensitivity to coefficients for Lorentz
violation that are intrinsically unobservable in Minkowski
spacetime. In fact, comparatively large gravitational
Lorentz violation in nature could have remained unde-
tected in searches to date because gravity can provide
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a countershading effect [11], so this line of investigation
has a definite discovery potential. Several searches for
gravitational Lorentz violation have led to constraints on
SME coefficients for Lorentz violation with sensitivities
down to parts in 109 [4–6, 12], and additional constraints
can be inferred by reanalysis of data from equivalence-
principle tests [11].

The nature of the Lorentz violation plays a crucial role
in determining the physics of matter-gravity couplings.
In Riemann geometry, externally prescribing the coef-
ficients for Lorentz violation as fixed background con-
figurations is generically incompatible with the Bianchi
identities and hence problematic [3]. This issue can be
avoided via spontaneous Lorentz breaking [1], in which a
potential term drives the dynamical development of one
or more nonzero vacuum values for a tensor field. This
mechanism implies the underlying Lagrange density is
Lorentz invariant, so the coefficients for Lorentz violation
are expressed in terms of vacuum values and can there-
fore serve as dynamically consistent backgrounds satis-
fying the Bianchi identities. The presence of a potential
driving spontaneous Lorentz violation implies the emer-
gence of massless Nambu-Goldstone (NG) modes [13] as-
sociated with field fluctuations along the broken Lorentz
generators [14]. If the potential is smooth, massive modes
can also appear [15]. Some features of the NG and mas-
sive modes are generic, while others are specific to details
of the model being considered. In any case, the nature of
these modes plays a key role in determining the physical
implications of spontaneous Lorentz violation.

For the purposes of the present work, the presence of
NG modes is particularly crucial because they can cou-
ple to matter and can transmit a long-range force. A
careful treatment of these modes is therefore a prereq-
uisite for studies of Lorentz violation in matter-gravity
couplings. In what follows, we develop a methodology to
extract the dominant Lorentz-violating effects in matter-
gravity couplings irrespective of the details of the un-
derlying model for spontaneous Lorentz violation. In ef-
fect, the NG modes are treated via a perturbation scheme
that takes advantage of symmetry properties of the un-
derlying Lagrange density to eliminate them in favor of
gravitational fluctuations and background coefficients for
Lorentz violation. This treatment allows leading Lorentz-
violating effects from a large class of plausible models to
be handled in a single analysis.

The portion of this paper developing theoretical issues
spans Secs. II-V. It begins in Sec. II with a review of the
SME framework. We present the field-theoretic action,
describe its linearization, and discuss observability issues
for the coefficients for Lorentz violation. We also describe
the two notions of perturbative order used in the subse-
quent analysis, one involving Lorentz and gravitational
fluctuations and the other based on a post-newtonian ex-
pansion. Section III concerns the relativistic and nonrel-
ativistic quantum mechanics arising from the quantum
field theory. One technical issue is extracting a mean-
ingful quantum theory in the presence of gravitational

fluctuations. We resolve this issue via a judicious field
redefinition, which yields a hamiltonian that is hermi-
tian with respect to the usual scalar product for wave
functions and that reduces correctly to known limiting
cases. We construct the relativistic quantum hamilto-
nian at leading order in Lorentz violation and gravity
fluctuations. For the spin-independent terms, we per-
form a Foldy-Wouthuysen transformation to obtain the
nonrelativistic hamiltonian. Section IV treats the classi-
cal dynamics corresponding to the quantum theory. The
point particle action is presented and the structure of test
and source bodies is discussed. The equations of motion
for a test particle and the modified Einstein equations are
derived. We describe the methodology for handling coef-
ficient and metric fluctuations. Combining the results de-
termines the Lorentz-violating trajectory of a test body.
The results are illustrated in Sec. V in the context of a
special class of models of spontaneous Lorentz violation
known as bumblebee models.

The remaining research sections of the paper, Secs.
VI-XI, concern implications of our theoretical analysis
for experiments and observations. Section VI contains
basic facts concerning frame choices and outlines the
canonical Sun-centered frame used for reporting mea-
surements. We also consider the sensitivities to coef-
ficients for Lorentz violation that can be attained in
practical situations. Section VII treats laboratory tests
near the surface of the Earth using neutral bulk mat-
ter, neutral atoms, or neutrons. The theoretical descrip-
tion of these tests is presented to third post-newtonian
order, and some generic features of the test-body mo-
tion are discussed. A wide variety of gravimeter and
equivalence-principle tests is analyzed for sensitivities to
coefficients for Lorentz violation that are presently un-
constrained. Satellite-based searches for Lorentz viola-
tion using equivalence-principle experiments are studied
in Sec. VIII. A generic situation is analyzed, and the
results are applied to major proposed satellite tests. Sec-
tion IX treats gravitational searches using charged par-
ticles, antihydrogen, and particles from the second and
third generations of the SM. Estimated sensitivities in
future tests are provided, and illustrative toy models for
antihydrogen studies are discussed. Searches for Lorentz
violation using solar-system observations are described
in Sec. X. We consider measurements of coefficients for
Lorentz violation accessible via lunar and satellite rang-
ing and via studies of perihelion precession. Section XI
addresses various tests involving the effects of gravita-
tional Lorentz violation on the properties of light. We
analyze the Shapiro time delay, the gravitational Doppler
shift, and the gravitational redshift, and we consider
the implications for a variety of existing and proposed
searches of these types. Finally, in Sec. XII we summa-
rize the paper and tabulate the various estimated actual
and attainable sensitivities to coefficients for Lorentz and
CPT violation obtained in the body of this work.

Throughout the paper, we follow the conventions of
Refs. [3] and [7]. In particular, the Minkowski metric is
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diagonal with entries (−1,+1,+1,+1). Greek indices are
used for spacetime coordinates, while Latin indices are
used for local Lorentz coordinates. Appendix A of Ref.
[3] provides a summary of most other conventions. Note
that parentheses surrounding index pairs in the present
work denote symmetrization with a factor of one half.

II. FRAMEWORK

The focus of this work is the study of relativity viola-
tions in realistic matter-gravity interactions. The basic
field theory of relevance concerns a single fermion field ψ
coupled to dynamical gravity and incorporating Lorentz
and CPT violation. In this section, we summarize the
action for the model, describe the linearization proce-
dure, discuss conditions for the observability of effects,
and present the perturbation scheme developed for the
analysis to follow.

A. Action

The theory of interest is a special case of the gravi-
tationally coupled SME [3]. The action can be written
as

S = SG + Sψ + S′. (1)

The first term in this expression is the action SG contain-
ing the dynamics of the gravitational field, including any
coefficients for Lorentz violation in that sector. The geo-
metric framework is a Riemann-Cartan spacetime, which
allows both the Riemann curvature tensor Rκλµν and the

torsion tensor T λµν . To incorporate fermion-gravity in-

teractions, the vierbein formalism [16] is adopted, with
the vierbein eµa and the spin connection ω ab

µ taken as
the fundamental gravitational objects. In the limit of
zero torsion and Lorentz invariance, SG reduces to the
Einstein-Hilbert action of General Relativity,

SG → 1

2κ

∫
d4x (eR− 2eΛ), (2)

where κ ≡ 8πGN , e is the vierbein determinant, and Λ
is the cosmological constant.

The second term in Eq. (1) is the action Sψ for the
fermion sector of the SME. In this work, we limit at-
tention to terms in this sector with no more than one
derivative, which is the gravitationally coupled analogue
of the minimal SME in Minkowski spacetime. In this
limit, the action Sψ for a single Dirac fermion ψ of mass
m can be written as

Sψ =

∫
d4x(1

2 iee
µ
aψΓa

↔

Dµ ψ − eψMψ). (3)

In the present context, the action of the covariant deriva-
tive Dµ on ψ is

Dµψ ≡ ∂µψ + 1
4 iω

ab
µ σabψ. (4)

It is convenient to introduce the symbol

(ψDµ) ≡ ∂µψ − 1
4 iω

ab
µ ψσab (5)

for the action of the covariant derivative on the Dirac-
conjugate field ψ. The action (3) contains the covariant
derivative in a combination defined by

χΓa
↔

Dµ ψ ≡ χΓaDµψ − (χDµ)Γ
aψ. (6)

The symbols Γa and M appearing in the action (3) are
defined by

Γa ≡ γa − cµνe
νaeµbγ

b − dµνe
νaeµbγ5γ

b

−eµeµa − ifµe
µaγ5 − 1

2gλµνe
νaeλbe

µ
cσ
bc (7)

and

M ≡ m+ aµe
µ
aγ

a + bµe
µ
aγ5γ

a + 1
2Hµνe

µ
ae
ν
bσ
ab. (8)

The first term of Eq. (7) leads to the usual Lorentz-
invariant kinetic term for the Dirac field, while the first
term of Eq. (8) leads to a Lorentz-invariant mass. A term
of the form im5γ5 could also appear in M , but here we
suppose it is absorbed into m via a chiral field redefini-
tion. The coefficient fields for Lorentz violation aµ, bµ,
cµν , dµν , eµ, fµ, gλµν , Hµν typically vary with space-
time position. The coefficient field Hµν is antisymmet-
ric, while gλµν is antisymmetric in λµ. Note the use of
an uppercase letter for Hµν , which avoids confusion with
the metric fluctuation hµν . The CPT-odd operators for
Lorentz violation are associated with the coefficient fields
aµ, bµ, eµ, fµ, and gλµν .

The form of the action (3) implies the torsion T λµν
enters the fermion action only via minimal coupling. This
coupling has the same form as that of the coefficient field
bµ, so the effects of minimal torsion can be incorporated
into a matter-sector analysis by replacing bµ with the
effective coefficient field

(beff)µ ≡ bµ + 1
8T

αβγǫαβγµ. (9)

Note that nonminimal torsion couplings can be incorpo-
rated into the more general coefficient fields appearing
in the full SME. Nonminimal torsion couplings and their
experimental constraints are discussed in Ref. [17].

The final term in Eq. (1) is the action S′ containing the
dynamics associated with the coefficient fields for Lorentz
violation. Addressing possible contributions from this
sector is the subject of Sec. IVC.

B. Linearization

For the purposes of this work, it suffices to consider
weak gravitational fields in a Minkowski-spacetime back-
ground. Under these circumstances, the Latin local in-
dices can be replaced with Greek spacetime indices, so
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the weak-field forms of the metric, vierbein, and spin
connection can be written as

gµν = ηµν + hµν ,

eµν = ηνσe
σ
µ ≈ ηµν + 1

2hµν + χµν ,

ωλµν = ηµρηνσω
ρσ
λ

≈ ∂λχµν − 1
2∂µhλν + 1

2∂νhλµ

+ 1
2 (Tλµν + Tµλν − Tνλµ) . (10)

The quantities χµν contain the six Lorentz degrees of
freedom in the vierbein.

The coefficient fields for Lorentz violation are expected
to acquire vacuum values through spontaneous Lorentz
breaking. An arbitrary coefficient field tλµν... can there-
fore be expanded about its vacuum value tλµν...,

tλµν... = tλµν... +
7̃
tλµν..., (11)

where the fluctuation
7̃
tλµν... includes massless Nambu-

Goldstone (NG) modes and massive modes [14, 15]. The
vacuum value tλµν... ≡ 〈tλµν...〉 is called the coefficient
for Lorentz violation. One can instead choose to expand
the contravariant coefficient field tλµν...,

tλµν... = t
λµν...

+ t̃λµν..., (12)

where t
λµν...

is related to tλµν... by raising with ηµν . The

reader is cautioned that the relation between
7̃
tλµν... and

the index-lowered version t̃λµν... of t̃λµν... involves terms
containing contractions of tλµν... with hµν . This paper
uses the expansion (11) and gives expressions in terms of7̃
tλµν....

To provide a smooth match between our analysis and
previous work on the matter sector of the SME in
Minkowski spacetime and on the gravitational sector in
asymptotically Minkowski spacetime, we make two as-
sumptions about the coefficients for Lorentz violation.
First, we assume they are constant in asymptotically in-
ertial cartesian coordinates,

∂αtλµν... = 0. (13)

This preserves translation invariance and hence
energy-momentum conservation in the asymptoti-
cally Minkowski regime. It also ensures that our barred
coefficients correspond to the usual coefficients for
Lorentz and CPT violation investigated in the minimal
SME in Minkowski spacetime [18]. Second, we assume
that the vacuum values tλµν... are sufficiently small to be
treated perturbatively. This is standard and plausible,
since any Lorentz violation in nature is expected to
be small. These two assumptions suffice for most
of the analysis that follows. To obtain the leading
Lorentz-violating corrections to hµν without specifying
a dynamical model for the coefficient fields for Lorentz
violation, one further assumption is required, which is
presented in Sec. IVC.

C. Observability

A given coefficient for Lorentz violation can lead to
observable effects only if it cannot be eliminated from
the Lagrange density via field redefinitions or coordinate
choices [3, 18–25]. In this subsection, we outline some
implications of this fact relevant to the present work.

1. Field redefinitions

One result of key interest here is that matter-gravity
couplings can obstruct the removal of some coefficients
that are unphysical in the Minkowski-spacetime limit.
For example, in the single-fermion theory in Minkowski
spacetime, the coefficient aµ ≡ aµ for Lorentz and CPT
violation in Eq. (8) is unobservable because it can be
eliminated by the spinor redefinition

ψ(x) → exp[if(x)]ψ(x) (14)

with f(x) = aµx
µ. However, in Riemann or Riemann-

Cartan spacetimes we have aµ ≡ aµ + 7̃aµ, so this redefi-
nition typically leaves the four components of the fluctu-
ation 7̃aµ in the theory. Instead, the redefinition (14) with
an appropriate f(x) can be used to move one component
of the coefficient field aµ into the other three, unless aµ is
constant or the total derivative of a scalar [3]. Note that
in the presence of gravity this freedom may be insufficient
to eliminate any components of the coefficient aµ because
the components of the fluctuation 7̃aµ can depend on all
four components of aµ through the equations of motion.
This line of reasoning shows that gravitational couplings
provide a unique sensitivity to the coefficient aµ, which
can be exploited in various experiments [11].

Another type of field redefinition can be written in the
generic form [3]

ψ(x) → [1 + v(x) · Γ]ψ(x), (15)

where Γ represents one of γa, γ5γ
a, σab and v(x) is a

complex function carrying the appropriate local Lorentz
indices. This can be viewed as a position-dependent com-
ponent mixing in spinor space. Field redefinitions of this
type can be used to demonstrate the leading-order equiv-
alence of observable physical effects due to certain coeffi-
cients for Lorentz violation. An example relevant in the
present context is a redefinition involving a real vector
va(x). Together with assumption (13), this redefinition
can be used to show that at leading order in Lorentz vi-
olation the coefficients aµ and eµ always appear in the
combination

(aeff)µ ≡ aµ −meµ, (16)

up to derivatives of fluctuations. Combining this result
with the above discussion of the redefinition (14) shows
that observables involving gravitational couplings offer
the prospect of measuring (aeff)µ.
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Related ideas can be used to simplify the weak-field
limit of the theory (3). In particular, the antisymmet-
ric part χµν of the vierbein can be removed everywhere
except for possible contributions to fluctuations of the
coefficient fields, by applying the field redefinition

ψ(x) → exp[− 1
4 iχµν(x)σ

µν ]ψ(x)

≈
(
1 − 1

4 iχµνσ
µν − 1

32χµνχαβσ
µνσαβ

)
ψ(x).

(17)

Note that this redefinition takes the form of a Lorentz
transformation on ψ but that the other fields in the La-
grange density remain unaffected. Note also that in the
absence of Lorentz violation χµν can be removed entirely,
a fact compatible with the interpretation in Ref. [14] of
the role of χµν in Lorentz-violating theories. In the re-
mainder of this work, we assume the redefinition (17) has
been performed on the Lagrange density, so that quan-
tities such as Γa, M , and eµa are understood to acquire
no contributions from χµν except possibly through the
fluctuations of the coefficient fields for Lorentz violation.

2. Coordinate choices

The observability of certain combinations of coeffi-
cients for Lorentz violation is also affected by the freedom
to make coordinate choices. Intuitively, the key point is
that any one sector of the SME can be used to define the
scales of the four coordinates, to establish the meaning
of isotropy, and to set the synchronization scheme. The
freedom therefore exists to choose the sector in which the
effective background spacetime metric takes the form of
the Minkowski metric ηµν . This implies that in any ex-
perimental configuration there are always 10 unobserv-
able combinations of coefficients for Lorentz violation.

As an illustration, consider the SME restricted to the
single-fermion and photon sectors [18, 22]. In the fermion
sector, the 10 relevant coefficient components are the vac-
uum values cµν of the coefficient fields cµν in Eq. (7) be-
cause these coefficients enter Sψ in the same way as the
metric. In the photon sector, the SME Lagrange density
contains a term

Lphoton ⊃ − 1
4e(kF )κλµνF

κλFµν , (18)

and the 10 relevant coefficient components can be shown
to be the trace (kF )αµαν . At leading order, the coordi-
nate transformation

xµ → xµ
′

= xµ − 1
2 (kF )αµανx

ν (19)

redefines the background metric to take the form ηµν in
the photon sector. The effective metric in the fermion
sector is then also changed, with the observable coeffi-
cient combination becoming cµν + (kF )αµαν/2. The or-

thogonal combination 2cµν − (kF )αµαν is thus unobserv-
able in any experiments involving only these two sectors.

Alternatively, one could perform the coordinate transfor-
mation

xµ → xµ
′

= xµ + cµνx
ν , (20)

which instead redefines the fermion-sector background
metric to be ηµν and at leading order produces the ef-

fective photon-sector coefficient 2cµν + (kF )αµαν . This
coordinate choice is equally valid for analysis, and as be-
fore the orthogonal combination 2cµν − (kF )αµαν is un-
observable.

Similar results apply for experimental searches for
Lorentz violation involving comparisons of different
fermion species. Labeling the species by w, each has
a coefficient cwµν . Then, for example, the effective metric
for any one species X can be reduced to ηµν by a co-
ordinate transformation with cXµν of the form (20). The
resulting effective coefficients for the remaining species
involve the differences cwµν−cXµν , which in this coordinate
scheme become the relevant observable combinations of
coefficients.

In the gravity sector, the situation is more involved
because a geometrically consistent treatment of Lorentz
violation generically requires the incorporation of effects
from the NG modes to ensure the Bianchi identities are
satisfied [3]. It turns out that the 10 relevant coefficient
components in the gravity sector are the vacuum values
sµν of the coefficient fields sµν in the gravity-sector SME
Lagrange density

Lgravity ⊃ 1

16πGN
esµνRµν . (21)

We find that at leading order the transformation (19)
generates an accompanying shift sµν → sµν − (kF )αµαν ,
while the transformation (20) produces the shift sµν →
sµν + 2cµν .

One way to obtain these results is to consider the
leading-order effect of a metric shift on the equations of
motion, and then to match to the known results [7] for
observable effects in a post-newtonian expansion. Con-
sider, for example, the restriction of the SME to the
Einstein-Hilbert action and the single-fermion action Sψ
with nonzero cµν only. At leading order, the coordinate
transformation (20) removes cµν from the fermion action
at the cost of introducing a metric shift gµν → gµν−2cµν
in the Einstein-Hilbert term. The resulting equations
of motion involve the Einstein tensor Gµν(g − 2c) with
shifted argument, which can be written in terms of the
Einstein tensor Gµν(g) for the original metric and an ef-
fective energy-momentum tensor φcµν . We find

Gµν(g − 2c) = Gµν(g) − φcµν ,

φcµν ≈ 2(ηµνc
αβRαβ − 2cα(µRν)α + 1

2cµνR

+cαβRαµνβ). (22)

The trace-reversed form Φcµν of φcµν matches the post-

newtonian term Φsµν arising from Eq. (21) and given
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explicitly as Eq. (24) of Ref. [7] with the combination
sµν replaced by 2cµν . The transformation (20) there-
fore produces the shift sµν → sµν + 2cµν , as claimed.
A similar line of reasoning verifies the claimed shift
sµν → sµν − (kF )αµαν for the coordinate transformation
(19).

To keep expressions compact throughout this work, we
choose to work with coordinates satisfying

(kF )αµαν = 0. (23)

To obtain results valid for arbitrary coordinate choices,
the following substitutions can be applied throughout:

cwµν → cwµν + 1
2 (kF )αµαν ,

sµν → sµν − (kF )αµαν . (24)

We emphasize that all coordinate choices are equivalent
for theoretical work or for data analysis, with the choice
(23) adopted here being purely one of convenience.

D. Perturbation scheme

In this work, we are interested in experimental searches
for Lorentz violation involving gravitational effects on
matter. Many of these searches involve test particles
moving in background solutions to the equations of mo-
tion for gravity and for the coefficient fields. Since the
gravitational fields involved are weak and since no com-
pelling evidence for Lorentz violation exists to date, any
effects are expected to be small. We can therefore focus
attention on perturbative modifications to the behavior
of test particles. This subsection describes the scheme we
use to track perturbative orders in the construction of the
relativistic quantum hamiltonian and in the subsequent
developments.

Perturbative effects on physical observables can arise
through modifications to the background coefficient fields
tλµν... for Lorentz violation and to the background gravi-
tational field gµν , or directly through modifications to the
equation of motion for the test particle. The analysis of
these effects is simplified by introducing an appropriate
notion of perturbative order. Several ordering schemes
are possible. In this work, we adopt a scheme that tracks
the orders in the coefficients for Lorentz violation tλµν...
and in the metric fluctuation hµν . The overall pertur-
bative order of a given term in an equation is denoted
as O(m,n), where m represents the order in tλµν... and
n the order in hµν . Within this scheme, the fluctua-

tions
7̃
tλµν... of the coefficient fields for Lorentz violation

are viewed as secondary quantities that are determined
via their equations of motion in terms of the coefficients
for Lorentz violation and the gravitational field. There is
also a subsidiary notion of order associated with the usual
post-newtonian expansion of hµν itself. We denote a pth-
order term in this latter expansion as PNO(p). However,
performing an explicit post-newtonian expansion at the

initial stage would complicate the ensuing analysis, so in
what follows we often write results in terms of hµν while
commenting as needed on the post-newtonian counting.

To preserve a reasonable scope, this work focuses on
dominant perturbative effects involving both Lorentz vi-
olation and gravity. We next discuss the relevant pertur-
bative orders required to achieve this goal.

Consider first contributions from the fluctuation
7̃
tλµν...

of the coefficient fields. The detailed structure of
7̃
tλµν...

depends on the nature of the action S′ in Eq. (1). In the

scheme adopted here,
7̃
tλµν... can be viewed as a series in

tλµν... and hµν of the form

7̃
tλµν... =

7̃
t
(0,0)
λµν... +

7̃
t
(0,1)
λµν... +

7̃
t
(1,0)
λµν... +

7̃
t
(1,1)
λµν... + . . . . (25)

For spontaneous Lorentz breaking,
7̃
tλµν... includes mas-

sive modes and massless NG modes [15, 26]. In this work,
we suppose the massive modes either are frozen or have
negligible degree of excitation. Incorporating their possi-
ble effects into the analysis of matter-gravity phenomena
would be of potential interest but lies beyond our present
scope. In contrast, the massless NG modes play a key
role in what follows. Their fate can include identification
with the photon in Einstein-Maxwell theory [14], with the
graviton in GR [27, 28], or with a new force [11, 29, 30],
or they can be absorbed in the torsion via the Lorentz-
Higgs effect [14]. In some models the NG modes can be
interpreted as composite photons [31] or gravitons [32].
We consider below the perturbative orders required for
the various possibilities.

Suppose first the NG modes correspond to photons, or
more generally to a known force field other than grav-

ity. The term
7̃
t
(0,0)
λµν... then contains conventional Lorentz-

invariant terms describing this field in Minkowski space-

time, while
7̃
t
(0,1)
λµν... contains conventional leading-order

gravitational interactions with the field. Effects from
both these terms are therefore part of the conventional

description of the force. The term
7̃
t
(1,0)
λµν... describes possi-

ble Lorentz violations in Minkowski spacetime involving
the known field, many of which are tightly constrained by
experiments [2]. For the purposes of this work, which fo-
cuses on Lorentz violation involving gravity, we can take
this term as experimentally negligible. The dominant

term of interest is therefore
7̃
t
(1,1)
λµν..., which lies at O(1,1).

If the NG modes correspond to gravitons as, for ex-
ample, in the cardinal model [27], then the expansion

(25) contains no terms at O(m,0). The term
7̃
t
(0,1)
λµν... cor-

responds to the gravitational fluctuations hµν , and its
effects are part of the conventional description of gravity.

The dominant term of interest is therefore again
7̃
t
(1,1)
λµν....

If instead the NG modes correspond to a presently un-

observed force field, then
7̃
t
(0,0)
λµν... and

7̃
t
(0,1)
λµν... describe un-

observed Lorentz-invariant effects in Minkowski space-
time and in leading-order gravitational couplings. These
modes must therefore be eliminated from the analy-
sis prior to interpretation of observations, via solving
the equations of motion or otherwise. In what follows,
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we suppose this elimination has been performed where

needed. The term
7̃
t
(1,0)
λµν... describes possible Lorentz vi-

olation in Minkowski-spacetime involving the unknown
field. For present purposes, we take this term to be exper-
imentally negligible, although in principle it might offer a
novel way to access certain types of presently unobserved
interactions at exceptional sensitivities. The remaining

term
7̃
t
(1,1)
λµν... displayed in Eq. (25) describes the dominant

Lorentz-violating gravitational effects involving the un-
known interaction. As discussed in Sec. II C 1, certain
Lorentz-violating effects are observable only in the pres-
ence of gravity, and so under suitable circumstances ob-

servable experimental signals from
7̃
t
(1,1)
λµν... could arise [11]

despite the tight existing experimental constraints [35]
on the direct observation of additional interactions due
to the lower-order terms

7̃
t
(0,0)
λµν... and

7̃
t
(0,1)
λµν.... In scenarios

with an unobserved force, we must therefore also allow

for O(1,1) effects involving
7̃
t
(1,1)
λµν....

The remaining possibility is that NG modes are ab-
sorbed into the torsion. To handle this case, note that
the matter-sector role of minimal torsion can be treated
in parallel with the coefficient field bµ for Lorentz vio-
lation according to Eq. (9). Existing experimental con-
straints on minimal torsion components are tight, lying
below 10−27-10−31 GeV [17, 33, 34], so effects involving
minimal torsion can be treated in the same way as those
corresponding to a presently unobserved force field. We
can therefore limit attention to O(1,1) effects as before.
In principle, any nonminimal torsion components can be
treated in a similar fashion because they play a role anal-
ogous to coefficient fields in the nonminimal SME, but
effects of this type lie beyond our present scope.

Consider next the metric fluctuation hµν . For appli-
cations to gravitational tests with matter, hµν can be
treated as a background field obtained by solving the
appropriate equation of motion, which is the modified
Einstein equation in the presence of Lorentz violation. It
can therefore be viewed as the sum of a Lorentz-invariant
piece h

(0,1)
µν with a series of corrections of increasing per-

turbative order in tλµν...,

hµν = h(0,1)
µν + h(1,1)

µν + h(2,1)
µν + . . . . (26)

When we specify the perturbative order of an expression
containing hµν in what follows, it is understood that the
correct terms from the above series are included.

For a given expression, establishing the relevant per-
turbative order for our analysis typically involves a com-
bination of experimental restrictions and theoretical con-
siderations. As an illustration, we outline here the rea-
soning establishing the appropriate perturbative orders
in the construction of the relativistic quantum hamilto-
nian. First, note that terms quadratic in hµν involve
PNO(4) and higher. Since the sensitivity of current lab-
oratory and solar-system tests lies at the PNO(4) level,
we must keep these terms but can discard terms cu-
bic in hµν and ones involving the product of coefficients
for Lorentz violation with terms quadratic in hµν . The

Lorentz-invariant part of the hamiltonian can therefore
be truncated at O(0,2), while the Lorentz-violating part
can be truncated at O(1,1). To maintain consistent post-
newtonian counting, the O(0,2) terms must be limited to
PNO(5), while the O(1,1) terms are limited to PNO(3).
Next, note that for laboratory and solar-system tests
the variations in hµν over the experimental scale L are
small compared to hµν , |∂αhµν | ≪ |hµν/L|. For exam-
ple, the typical value of the gravitational acceleration on
the surface of the Earth is g ≃ 10−32 GeV, which is
tiny compared to the ratio of the gravitational poten-
tial |hµν | ≃ 10−9 and the size of a typical laboratory
experiment L ≃ 1015 GeV−1. Terms in the relativis-
tic hamiltonian proportional to derivatives of hµν can
therefore be limited to O(0,1). Finally, note that prod-
ucts of Lorentz-violating terms lead to higher-order ef-
fects with operator structures matching ones already ap-
pearing in the fermion sector of the Minkowski-spacetime
SME. These are already accessible in nongravitational ex-
periments. It therefore suffices for our purpose to restrict
attention to terms at leading order in Lorentz violation.
To summarize, the construction of the perturbative rela-
tivistic quantum-mechanical hamiltonian can be limited
to terms at perturbative orders O(0,1), O(1,0), O(1,1),
and O(0,2), except for terms involving derivatives of the
gravitational fields, which can be limited to O(0,1).

III. QUANTUM THEORY

This section studies the quantum mechanics associated
with the fermion action Sψ in Eq. (3). We begin in Sec.
III A by addressing the issue of the unconventional time
dependence arising from the Dirac equation derived from
Sψ. The relativistic quantum-mechanical hamiltonian H
is then obtained in Sec. III B, and the relevant parts of
the nonrelativistic limit HNR are extracted in Sec. III C.

A. Time dependence

In the weak-field limit, the Lagrange density Lψ for
the action (3) takes the schematic form

L = 1
2 i[ψ(γµ+Cµ)∂µψ−(∂µψ)(γµ+Cµ)ψ]−ψDψ, (27)

where Cµ and D represent spacetime-dependent opera-
tors without derivatives acting on ψ. These operators
satisfy the conditions

(γ0Cµ)† = γ0Cµ, (γ0D)† = γ0D, (28)

and Cµ is perturbative.
The Euler-Lagrange equations obtained from Eq. (27)

yield a Dirac equation with unconventional time depen-
dence,

i(γ0 +C0)∂0ψ = [−i(γj +Cj)∂j − 1
2 i∂µC

µ +D]ψ. (29)
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This equation differs from the standard Dirac form by
the presence of C0, which impedes the interpretation of
the operator acting on ψ on the right-hand side as the
hamiltonian. In this subsection, two approaches address-
ing this issue at first order in Cµ are discussed.

1. Field-redefinition method

One method for constructing the hamiltonian has been
developed in the context of the SME in Minkowski space-
time [36–38]. It uses an appropriate field redefinition
at the level of the action to ensure the Dirac equation
emerges with conventional time dependence. In typical
applications, the field redefinition is defined perturba-
tively at the desired order in Cµ.

For present purposes, it suffices to work at first order
in Cµ. The appropriate field redefinition is

ψ = Aχ, A ≡ 1 − 1
2γ

0C0. (30)

The resulting hamiltonian can be written as

Hχ = H(0) +H(1)
χ , (31)

whereH(0) is the hamiltonian in the absence of Cµ, given
by

H(0) = −iγ0γj∂j + γ0D. (32)

The correction H
(1)
χ is first-order in Cµ and takes the

form

H(1)
χ = −iγ0(Cj − 1

2C
0γ0γj + 1

2γ
0γjC0)∂j

− 1
2 i(γ

j∂jC
0 + γ0∂jC

j)

− 1
2γ

0(C0γ0D +Dγ0C0). (33)

The subscript χ serves as a reminder that the operator
acts on the spinor χ. Note that the hamiltonian Hχ is
hermitian with respect to the usual scalar product in flat
space,

〈χ1, χ2〉f =

∫
d3x χ†

1χ2. (34)

This implies, for example, that energies can be calculated
in the usual way.

Some physical insight into the field-redefinition method
is obtained by noting that the combination γµ+Cµ takes
the generic form

γµ + Cµ = Eµaγ
a, (35)

where Eµa can be interpreted as an effective inverse vier-
bein. It reduces to the conventional inverse vierbein eµa
in the purely gravitational case but includes coefficients
for Lorentz violation when Lorentz symmetry is broken.
This suggests that the field-redefinition method can be
interpreted as transforming the problematic situation of
a fermion on an effective manifold with vierbein com-
ponents E0

a into the physically equivalent but tractable
theory of a different fermion field on a manifold with vier-
bein components E0

a = δ0a, in which the hamiltonian is
hermitian with respect to a conventional scalar product.

2. Parker method

Another method has been presented by Parker [39] in
the context of field theory in curved spacetime. It in-
volves multiplying the Dirac equation by a suitable fac-
tor that removes the unconventional time dependence to
the desired order in Cµ. The resulting hamiltonian is
hermitian with respect to a modified scalar product.

Applying this method at first order in Cµ requires left-
multiplying both sides of Eq. (29) with γ0(1−C0γ0). The
ensuing hamiltonian can be written as

Ĥψ = H(0) +H
(1)
ψ , (36)

where H(0) is given in Eq. (32) and the first-order corre-
tion in Cµ is

H
(1)
ψ = −iγ0Cj∂j+iγ

0C0γ0γj∂j− 1
2 iγ

0∂µC
µ−γ0C0γ0D.

(37)
The subscript ψ indicates an operator acting on the orig-
inal spinor ψ.

In this method, the modified Dirac equation implies a
modified continuity equation and hence requires a mod-
ified scalar product. At first order in Cµ, the continuity
equation is

∂0[ψ
†(1 + γ0C0)ψ] + ∂j [ψ

†γ0(γj + Cj)ψ] = 0, (38)

and the probability density can be identified as the com-
bination ψ†(1+γ0C0)ψ. The corresponding scalar prod-
uct is

〈ψ1, ψ2〉P =

∫
d3x ψ†

1(1 + γ0C0)ψ2. (39)

Provided H
(1)
ψ is time independent, the hamiltonian Ĥψ

is hermitian with respect to this modified scalar prod-
uct and so quantum-mechanical calculations can proceed.
When C0 is time dependent, hermiticity with respect to
the product (39) can be restored by adding an extra term
[40]. We thereby obtain the hermitian hamiltonian

Hψ = 1
2 iγ

0∂0C
0 + Ĥψ (40)

at first order in C0.

3. Comparison

The hamiltonians Hχ in Eq. (31) and Hψ in Eq. (40)
typically have different forms. For our present purposes,
however, they are physically equivalent because they give
rise to the same eigenenergies at first order.

To demonstrate this, first note that the difference ∆H
between the two hamiltonians can be written as

∆H = H(1)
χ −H

(1)
ψ = H(0)A−AH(0), (41)

where A is given by Eq. (30). This can be shown by ma-
nipulation of the field redefinition and the Dirac equation
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or verified by direct calculation. The physical quantities
of interest are the eigenenergies. These are obtained as

perturbations E
(1)
χ,ψ to the unperturbed values E(0), cal-

culable at first order as

E
(1)
ψ,χ = 〈ψ(0), H

(1)
ψ,χψ

(0)〉f , (42)

where ψ(0) are solutions to the unperturbed Schrödinger
equation H(0)ψ(0) = E(0)ψ(0). However, the expectation
value of ∆H is zero in this scalar product, so the first-
order perturbations to the energies are identical for both
hamiltonians.

The above first-order result suffices for the present
work, although we anticipate equivalence also holds at
higher orders in a complete analysis. For our purposes,
the field-redefinition method proves technically and con-
ceptually easier because the hamiltonian is hermitian
with respect to the usual scalar product. We therefore
adopt the field-redefinition method in the remainder of
this work, and all references to H implicitly refer to Hχ.

B. Relativistic hamiltonian

The relativistic hamiltonian for the action Sψ in Eq.
(3) can be obtained via the field-redefinition method. At
the appropriate perturbative order, we find the operator
A of Eq. (30) takes the form

A = 1 − 1
2γ

0
[
ee0aΓ

a − γ0 − 3
4e

(0,1)e(0,1)γ0

− 3
4e

(0,1)h0µγ
µ − 3

16h0µh0νγ
µγ0γν

− 3
2e

(0,1)Γ0 − 3
8h0µ

(
Γ0γ0γµ + γµγ0Γ0

) ]
.

(43)

Implementing the field redefinition and varying the trans-
formed Lagrange density results in a Dirac equation from
which the hamiltonian H can be identified.

The hamiltonian H can be split into pieces according
to perturbative order,

H = H(0,0) +H(0,1) +H(1,0) +H(1,1) +H(0,2). (44)

The component H(0,0) is the conventional hamiltonian
for the Lorentz-invariant Minkowski-spacetime limit of
the theory. The first-order Lorentz-invariant piece is

H(0,1) = 1
2 i(hjk + h00ηjk)γ

0γk∂j + ihj0∂
j − 1

2mh00γ
0

+ 1
4∂

jh0kǫjklγ5γ
0γl + 1

2 i∂
jhj0

+ 1
4 i(∂jh00 + ∂khjk)γ

0γj. (45)

It represents the first-order correction to the conventional
hamiltonian H(0,0) arising from gravitational and inertial
effects.

The first-order correction to the conventional hamilto-
nian H(0,0) arising from Lorentz violation can be written

H(1,0) = a0 −me0 + 2ic(j0)∂
j − (mc00 − iej∂

j)γ0

−f j∂jγ0γ5 + [aj + i(c00ηjk + cjk)∂
k]γ0γj

+(−b0 − 2id(j0)∂
j)γ5 + (iH0j + 2gj(k0)∂

k)γj

−[bj + i(djk∂
k + d00∂j) − 1

2mg
kl0ǫjkl]γ5γ

0γj

−(1
2H

klǫjkl +mdj0)γ5γ
j

−iǫjlm(gl00ηkm + 1
2g
lmk)∂kγ5γ

j . (46)

This result matches the one previously obtained for the
SME in Minkowski spacetime [37] when the change in
metric signature is incorporated. When minimal torsion
is included in the analysis, its background value enters
Eq. (46) through the replacement bµ → (beff)µ specified
by Eq. (9). It can be constrained through a reinterpreta-
tion of experiments searching for nonzero bµ [17, 33, 34].

An interesting issue is the extent to which the gravita-
tional and inertial effects in Eq. (45) mimic the Lorentz-
violating effects in Eq. (46). For example, in a rotat-
ing frame of reference the term ∂jh0kǫjklγ5γ

0γl/4 in Eq.
(45) contains a coupling of the rotation to the spin of
the particle with the same operator structure as the
term −bjγ5γ

0γj in Eq. (46). At this order, a frame
rotation can therefore mimic potential signals arising
from a nonzero coefficient bj for Lorentz and CPT vi-
olation. This effect has been observed in tests with a
spin-polarized torsion pendulum [41]. The same term in
Eq. (45) also contains gravitomagnetic effects that are in
principle observable in tests searching for bµ if sufficient
sensitivity is reached. Certain Lorentz-violating effects
can be separated from gravitational and inertial effects
because the former generate time-varying signals due to
the motion of the Earth and can have flavor dependence,
but a complete separation may be problematic.

The O(1,1) contribution to H can be separated as

H(1,1) = H
(1,1)
h +H(1,1)

a +H
(1,1)
b +H(1,1)

c +H
(1,1)
d

+H(1,1)
e +H

(1,1)
f +H(1,1)

g +H
(1,1)
H . (47)

Here, the term H
(1,1)
h arises from Lorentz-violating cor-

rections to the metric fluctuation hµν . It is given by

H
(1,1)
h = ih

(1,1)
j0 ∂j − 1

2mh
(1,1)
00 γ0

+ 1
2 i(h

(1,1)
jk + h

(1,1)
00 ηjk)γ

0γk∂j. (48)

The other terms in H(1,1) are labeled according to the
type of coefficient for Lorentz violation involved. The
contributions involving the four-component coefficients
aµ and bµ of mass dimension one are

H(1,1)
a = 7̃a0 − ajhj0 +

( 7̃aj − 1
2ajh00 − 1

2a
khjk

)
γ0γj

(49)

and

H
(1,1)
b =

(
− 7̃
b0 + bjhj0

)
γ5

+
( 7̃
bj − 1

2bjh00 − 1
2b
khjk

)
γ0γ5γ

j , (50)
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respectively. In the latter equation, effects from minimal
torsion are included via the replacement bµ → (beff)µ
given in Eq. (9).

The contributions involving the dimensionless coeffi-
cients cµν and dµν are

H(1,1)
c = i

[ 7̃c00ηjk + 7̃ckj + 1
2c00 (h00ηjk − hjk)

+ 2c(l0)h
l0ηjk + 1

4ck0hj0 − 1
4cj0hk0

− 1
2clj

(
h00η

l
k + hlk

)
− cklh

l
j

]
γ0γk∂j

−2i
( 7̃c(j0) + c(k0)h

jk + cjkhk0
)
∂j

−m
( 7̃c00 + 1

2c00h00 + 2c(j0)h
j0
)
γ0 (51)

and

H
(1,1)
d = 2i

( 7̃
d(j0) + d(k0)h

jk + d(jk)hk0
)
γ5∂j

+i
( 7̃
d00 + 1

2d00h00 + 2d(k0)h
k0
)
γ0γ5γ

j∂j

+i
[ 7̃
dkj + 1

4dk0hj0 − 1
4dj0hk0 − 1

2d00hjk

− 1
2dlj

(
h00η

l
k + hlk

)
− dklh

l
j

]
γ0γ5γ

k∂j

+m
( 7̃
dj0ηjk − 1

2d
j0hjk − dkjh

j0
)
γ5γ

k

− 1
4 imd

j0hk0ǫjklγ
l, (52)

respectively. The dimensionless four-component coeffi-
cients eµ and fµ generate the expressions

H(1,1)
e = i

( 7̃ej + 1
4e0hj0 − 1

2ejh00 − ekhjk
)
γ0∂j

−m 7̃e0 +mejhj0 + 1
4me0hj0γ

0γj (53)

and

H
(1,1)
f = −

( 7̃
f j + 1

4f0hj0 − 1
2f jh00 − fkhjk

)
γ0γ5∂

j ,

(54)

while the dimensionless coefficient gλµν leads to

H(1,1)
g =

(
2 7̃gk(j0) − 1

4gl00h
l0ηjk − gl(j0)h

l
k − 2gk(l0)h

l
j

+ 2gk(jl)h
l0
)
γk∂j

+i
[ 7̃gl00ηjk − 1

2
7̃gklj − 1

2g
k00
(
h00η

jl − hjl
)

− 1
2gn00h

lnηjk − 1
4g
jk0hl0

+ 2gl(n0)hn0η
jk − 1

8g
kl0hj0 + 1

4g
kljh00

+ 1
2g
klnhjn − 1

2g
knjhln

]
ǫklmγ5γ

m∂j

− 1
2m
( 7̃gjk0 + gkm0hjm + gjkmhm0

)
ǫjklγ

0γ5γ
l

+ 1
2migjk0h

k0γ0γj + 1
8mg

jk0hl0ǫjklγ5. (55)

Finally, the antisymmetric coefficientHµν of mass dimen-
sion one contributes

H
(1,1)
H = − 1

2

( 7̃
Hjk −Hjmhkm − 1

2H
jkh00

)
ǫjklγ5γ

l

−i
( 7̃
Hj0 + 1

2H
k0hjk +Hjkh

k0
)
γj. (56)

In the above expressions, the fluctuations of the various
coefficient fields appear in H only at perturbative order

O(1,1). For most purposes, it is necessary to find expres-
sions for these fluctuations prior to using the hamiltonian
H in a given analysis. This issue is addressed further in
Sec. IVC, where the spin-independent coefficient fluctu-
ations ( 7̃aeff)µ and 7̃cµν are considered in more detail.

The remaining piece of the hamiltonian H lies at per-
turbative order O(0,2) and represents the second-order
Lorentz-invariant contribution from gravitational and in-
ertial effects. It takes the form

H(0,2) = i
(

1
8h00h00ηjk + 1

2hl0h
l0ηjk − 1

4h00hjk

− 3
8hjlh

l
k

)
γ0γk∂j − ihk0h

jk∂j

−m
(

1
8h00h00 + 1

2hj0h
j0
)
γ0. (57)

C. Nonrelativistic hamiltonian

Most experimental tests of interest in this work
are nonrelativistic. In this section, we use a Foldy-
Wouthuysen transformation [42] to extract from the rel-
ativistic hamiltonian H the parts of the nonrelativistic
hamiltonian HNR relevant for the subsequent analyses.

The Foldy-Wouthuysen transformation is a system-
atic procedure for determining the nonrelativistic content
of certain relativistic quantum-mechanical hamiltonians.
For a massive four-component Dirac fermion, the trans-
formation generates a series expansion in powers of the
fermion momentum. In the present case, the transfor-
mation can be implemented as usual, but care must be
taken to keep track of both the order in momentum and
the perturbative order O(m,n) in coefficients for Lorentz
violation and in gravitational fluctuations.

Performing the Foldy-Wouthuysen transformation for
the complete hamiltonian H of Eq. (44) is cumbersome
and also unnecessary for our scope because most attained
sensitivities to spin couplings are unlikely to be improved
by studying the suppressed effects from gravitational cou-
plings. However, only limited sensitivity currently exists
to spin-independent effects controlled by the coefficients
aµ and eµ because these are unobservable for baryons and
charged leptons in Minkowski spacetime. In the remain-
der of this work we focus on general spin-independent ef-
fects, which are associated with the coefficients aµ, cµν ,
and eµ. Since the minimal torsion coupling also involves
spin, this focus implies also disregarding nonrelativistic
effects due to torsion, effectively restricting attention to
the limiting Riemann geometry. Although beyond our
current scope, a Foldy-Wouthuysen analysis incorporat-
ing spin-dependent effects could lead to additional tor-
sion sensitivities beyond those obtained via searches for
bµ [3, 17, 33, 43].

In the relativistic quantum theory, the upper two com-
ponents of the four-component wave function describe
the particle while the lower two describe the antiparti-
cle. The hamiltonian H can be separated into an odd
part O containing terms that mix the upper and lower
components and an even part E that involves no mix-
ing. The idea of the Foldy-Wouthuysen method is to
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find a momentum-dependent unitary transformation S
in the Hilbert space such that the 4 × 4 hamiltonian

H̃ = eiSHe−iS is 2 × 2 block diagonal. The leading

2 × 2 block of H̃ then represents the desired nonrela-
tivistic hamiltonian HNR. The full transformation S is
obtained at the desired level of accuracy via an iterated
series of incremental transformations reducing the off-
diagonal content to the appropriate order.

We proceed by separating the hamiltonian H into an

odd part O(m,n)
0 and an even part E(m,n)

0 at each per-
turbative order O(m,n). A subscript is used to specify
the iteration number of the transformation, with 0 corre-
sponding to the zeroth iteration. The relativistic hamil-
tonian H can therefore be written as

H0 ≡ H = mγ0 + O(0,0)
0 + O(0,1)

0 + O(1,0)
0 + O(1,1)

0

+E(0,0)
0 + E(0,1)

0 + E(1,0)
0 + E(1,1)

0 . (58)

The Foldy-Wouthuysen sequence is then defined itera-
tively as

Hn+1 = eiSHne
−iS

=
∞∑

k=0

1

k!
[iSn, [iSn, · · · [iSn,︸ ︷︷ ︸

k commutations with iSn

H0] · · · ]], (59)

where

Sn =
−iγ0On

2m
. (60)

At each stage, the sum on k is truncated once the ap-
propriate order in momentum and small quantities is
reached. The iteration continues until the hamiltonian
is even at the desired order. Here, we proceed to O(1,1)
in the small quantities and to second order in the momen-
tum, which requires three iterations and yields a hamil-
tonian H3.

The desired spin-independent contributions to the non-
relativistic hamiltonian HNR can be separated according
to perturbative order and origin as

HNR ≡ H3

= H
(0,0)
NR +H

(0,1)
NR +H

(1,0)
NR

+H
(1,1)
NR,aeff

+H
(1,1)
NR,c +H

(1,1)
NR,h +H

(0,2)
NR . (61)

Here, H
(0,0)
NR is the conventional Minkowski-spacetime

hamiltonian. The conventional Lorentz-invariant contri-
butions H

(0,1)
NR due to the metric fluctuation can be writ-

ten as

H
(0,1)
NR = − 1

2mh
(0,1)
00 − h

(0,1)
0k pk − 1

4m
h

(0,1)
00 p2

− 1

2m
h

(0,1)
jk pjpk. (62)

The leading-order perturbation H
(1,0)
NR due to Lorentz

violation and independent of hµν is identical to the
Minkowski-spacetime result given as Eq. (4) of Ref. [37].

The corrections of primary interest for our purposes lie
at perturbative order O(1,1). The contribution from aµ
and eµ can be written in terms of the effective coefficient
(aeff)µ introduced in Eq. (16), and it takes the form

H
(1,1)
NR,aeff

= ( 7̃aeff)0 + (aeff)kh
0k − 1

m
(aeff)jhjkp

k

+
1

m

(
( 7̃aeff)j − 1

2 (aeff)jh00

)
pj . (63)

The O(1,1) contribution from cµν can be written

H
(1,1)
NR,c = −m

( 7̃c00 + 1
2c00h00 + 2c(k0)h

0k
)

−2
( 7̃c(j0) + c(jk)h

0k − c(0k)h
k
j

)
pj

− 1

m

(
1
2
7̃c00ηjk + 7̃cjk + 1

4c00h00ηjk + c(l0)h
0lηjk

− 1
2cjkh00 − 1

2c00hjk − 2c(jl)h
l
k

)
pjpk,

(64)

while the O(1,1) contribution from Lorentz-violating ef-
fects on the metric fluctuation is

H
(1,1)
NR,h = − 1

2mh
(1,1)
00 − h

(1,1)
0k pk − 1

4m
h

(1,1)
00 p2

− 1

2m
h

(1,1)
jk pjpk. (65)

The remaining contribution to HNR is the O(0,2) con-
tribution involving quadratic products of hµν . This can
be written as

H
(0,2)
NR = − 1

2m
(
h0jh

0j + 1
4h00h00

)
+ h0jh

jkpk

− 1

m

(
1
16h00h00ηjk + 1

4h0lh
0lηjk

− 1
4h00hjk − 1

2hjlh
l
k

)
pjpk. (66)

IV. CLASSICAL THEORY

For many analyses of Lorentz violation in matter-
gravity couplings, a classical description suffices. This
section considers the classical limit of the quantum the-
ory discussed above, focusing on the limit involving the
coefficient fields (aeff)µ and cµν . A suitable classical rela-
tivistic action for a point particle is presented, and its ap-
plication to modeling test and source bodies is described.
The modified Einstein equation and the equation for the
trajectory of a test body are obtained. We also discuss
the treatment of the coefficient fluctuations ( 7̃aeff)µ,

7̃cµν
and the procedure for determining the background grav-
itational field in the presence of Lorentz violation.

A. Particle action

The classical action Sc corresponding to the action S
of Eq. (1) can be written as

Sc = SG + Su + S′. (67)
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As before, SG describes the gravitational dynamics, while
S′ contains the dynamics associated with the coefficient
fields for Lorentz violation. The partial action Su is the
classical relativistic point-particle limit of the action Sψ
for the fermion sector. In this subsection, we discuss Su
and extend it to describe test and source bodies.

1. Point particle

At leading order in Lorentz violation, we find

Su =

∫
dλ

(
−m

√
−(gµν + 2cµν)uµuν − (aeff)µu

µ

)
.

(68)
In this expression, the particle path xµ = xµ(λ) is
parametrized by λ, and uµ = dxµ/dλ is the four-velocity
of the particle. As usual, a gauge choice for λ is required
to fix the path-reparametrization invariance and to de-
fine the proper time of the particle on shell. We adopt
here the conventional proper-time interval

dτ =
√
−gµνdxµdxν . (69)

The leading-order form (68) of the classical action can
be deduced in several ways. At the intuitive level, the
term involving (aeff)µ has the same structure as the usual
coupling of a classical relativistic particle to an electro-
magnetic 4-potential, and this is consistent with the cou-
pling of aµ in the field-theory action (3). Similarly, the
coefficient cµν enters Eq. (68) as a shift in the metric,
which is compatible with the way it appears in the field
theory (3). In a different vein, the contributions from cµν
to the relativistic particle action have previously been
discussed in the context of the photon sector [22], where
the appearance of cµν as a metric shift is related to the
coordinate choices discussed in Sec. II C 2. The valid-
ity of the action (68) can also be verified by extracting
the leading-order terms from the all-orders expression ob-
tained by construction of the exact relativistic dispersion
relation [44]. In the present context, we can demonstrate
explicitly that the action (68) reproduces the correspond-
ing terms in the nonrelativistic hamiltonian HNR gener-
ated from the Foldy-Wouthuysen transformation as Eq.
(61). This involves expanding the action (68) to the
appropriate orders in velocities and Lorentz violation,
extracting the conjugate 3-momentum, constructing the
corresponding hamiltonian, and matching it to HNR in
Eq. (61). These methods all confirm that Eq. (68) is
the correct leading-order form of the relativistic classical
action.

The energy-momentum tensor T µνu for the point parti-
cle can be derived from the action (68) by variation with
respect to the metric, as usual. We obtain

T µνu = −
∫
dτ
muµuνδ4(x− x′(τ))
√
g
√

1 − 2cαβuαuβ
, (70)

where the proper-time interval is given by Eq. (69). Note
that no contributions from (aeff)µ appear in this expres-

sion. This follows from the adoption of (aeff)µ with lower
index as the coefficient field, which implies that the con-
traction (aeff)µu

µ in Eq. (68) contains no metric. Work-
ing with (aeff)µ instead is possible but less convenient.
It would produce a contribution to T µνu along with cor-
responding changes in the contributions to the energy-
momentum tensor T ′µν associated with S′, leading to
the same physical results.

2. Test and source bodies

The experiments and observations considered in this
work involve bodies B acting as test bodies T or as
sources S. Many of these bodies consist of atoms or
macroscopic matter rather than individual particles. It is
therefore useful to extend the point-particle action (68)
to an action SB

u for a body B. This requires consideration
of several issues.

One issue arises because the interactions involved in
binding electrons, protons, and neutrons into atoms
and macroscopic matter contribute additional Lorentz-
violating effects. This issue appears also in the study
of fermion-sector SME coefficients in the Minkowski-
spacetime limit [45]. However, for the gravitational tests
of interest here, it is reasonable to assume that these in-
teraction effects are small compared to the propagation
effects.

Another issue arises from the spacetime dependence
of the coefficient fields (aeff)µ and cµν , which implies
Lorentz-violating effects may vary over the region filled
by the body. Most of the test bodies we consider are
small, so it is reasonable to approximate the coefficient
fields as constant across the extent of the body. This
corresponds to the usual approximation of constant met-
ric fluctuation hµν across a test body. However, some of
the source bodies we consider are comparatively large, so
some variation of the coefficient fields over the source is
plausible. This could produce Lorentz-violating effects of
various types, including possible dependence on the mass
moments of the body. In what follows, we suppose that
the variation of the coefficient fields is sufficiently mild
and smooth that these effects can be neglected for the
bodies we consider. A more comprehensive treatment of
this issue would be of potential interest but lies outside
our present scope.

With the above assumptions and for most purposes in
this work, a given body B can be modeled as a composite
particle with constituents located at a single spacetime
point and having the same 4-velocity, held together by
binding energy. The body B can then be assigned an
effective mass mB, expressed in terms of its constituent
particles as

mB =
∑

w

Nwmw +m′B. (71)

Here, w ranges over the particle species forming the body
B. For example, w can be taken to include the electron e,
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the proton p, and the neutron n whenever B is an atom or
made of ordinary macroscopic matter. The symbol Nw

denotes the number of particles of type w in the body,
and m′B represents the contribution to the mass from the
binding energy. In practice, the exact values of Nw are
readily obtained for test bodies on the atomic or molec-
ular scale, while estimating Nw for macroscopic test and
source bodies in the laboratory is straightforward. When
considering the Earth as the source body, we adopt the
estimates Ne

⊕ = Np
⊕ ≈ Nn

⊕ = 1.8 × 1051 based on recent
studies of the bulk Earth composition [46]. The differ-
ence Nn

⊕ −Np
⊕ ≃ 1049 is primarily due to the iron core.

The radial variation in neutron content is neglected in
what follows, although it might be of interest in more
detailed studies.

Similarly, the Lorentz-violating properties of B can
be represented via effective coefficient fields (aB

eff)µ and
(cB)µν for the body. These can be viewed as the sum of
vacuum values and coefficient fluctuations,

(aB
eff)µ = (aB

eff)µ + ( 7̃aB
eff)µ, (cB)µν = (cB)µν + ( 7̃cB)µν ,

(72)
in parallel with the point-particle case. The form of the
action (68) implies that the coefficient field (aB

eff)µ takes
the form

(aB
eff)µ =

∑

w

Nw(aweff)µ + (a′Beff)µ, (73)

where (a′Beff)µ is a possible coefficient field associated with
the binding energy that contributes to (aB

eff)µ. Also, ex-
panding the action Su for small Lorentz violation shows
that at leading order the body coefficient field (cB)µν can
be taken as

(cB)µν =
1

mB

(
∑

w

Nwmw(cw)µν +m′B(c′B)µν

)
, (74)

where (c′B)µν is associated with the binding energy.
The two contributions (a′Beff)µ and (c′B)µν describe

Lorentz violation arising from the particles associated
with the forces binding together the body B. These par-
ticles are primarily gravitons, gluons, or photons and are
associated with boson fields, for which the CPT-violating
terms are expected to be small or zero. In the mini-
mal SME, no such terms exist for gravitons, while for
photons and gluons they can reasonably be assumed to
vanish [3]. Also, the relevant photon coefficient (kAF )µ

is constrained well below levels relevant for this work [2].
Possible CPT-violating contributions from other sea par-
ticles largely cancel due to particle-antiparticle pairings
or are suppressed in loops involving weak interactions.
We therefore approximate the contributions from (a′Beff)µ
as negligible,

(a′Beff)µ ≃ 0, (75)

in this work. In contrast, all the force fields have CPT-
even terms that can be expected to contribute to (c′B)µν ,

so the resulting size of (c′B)µν may well be of the same
order as (cw)µν and cannot be neglected.

Given the above discussion, we conclude that the
leading-order approximation to the classical action SB

u

for a body B can be written in the simple form

SB
u ≈

∫
dλ
(
−mB

√
−(gµν + 2(cB)µν)uµuν

−(aB
eff)µu

µ
)
, (76)

where mB, (aB
eff)µ, and (cB)µν are given by Eqs. (71),

(73), and (74), respectively. In this expression, uµ is
the 4-velocity of the body B, which follows a world line
parametrized by λ. This form is convenient for calcula-
tional purposes. Note, however, that the derivation es-
tablishes validity of this form of the action only at leading
order in (cB)µν .

The model action (76) for a body B suffices for most
situations of interest in this work. In a few cases where
the body acts as a gravitational source S, it is also useful
to incorporate dominant effects arising from its rotation.
For this purpose, we treat S as rigid at leading order and
assume that the distribution of electrons, protons, and
neutrons is approximately uniform throughout it. For the
bodies we consider, this assumption is good to within an
order of magnitude. The density ρ of S can be taken as
the mass per unit volume and approximated as uniform.
For large source bodies such as the Earth, some results
could in principle also depend on spherical moments of
inertia [7], but these effects are neglected here. The an-
gular velocity ~ω of rotation is defined in the frame at rest
relative to S with origin at the center of mass, which can
be identified with the location of S.

B. Equations of motion

The primary experimental observables arising from the
classical theory involve the relative motion of particles.
To investigate the motion of a test particle in the pres-
ence of gravitational sources, the modified Einstein equa-
tion must be solved for the background metric and the
equation for the particle trajectory must be found. In
this subsection, we derive the equations of motion from
the action (67) in terms of the metric fluctuation hµν
and the coefficient fluctuations ( 7̃aB

eff)µ, ( 7̃cB)µν . The issue
of expressing these fluctuations in terms of the vacuum
values (aB

eff)µ, (cB)µν for a given distribution of matter
is addressed in the following subsection, Sec. IVC. We
conclude the present subsection with comments about
the implications of Lorentz violation for the equivalence
principle.
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1. Modified Einstein equation

Varying the action (67) in Riemann spacetime with re-
spect to the metric yields the modified Einstein equation

Gµν = T µνG + κT µνu + κT ′µν , (77)

where Gµν is the Einstein tensor and the terms on the
right-hand side form the energy-momentum tensor. The
contribution T µνG arises from Lorentz violation in the
pure-gravity sector. The energy-momentum tensor T µνu
for the matter is given in Eq. (70). The remaining energy-
momentum contribution T ′µν arises from the dynamics
of the coefficient fields for Lorentz violation and is deter-
mined by S′.

Taking the covariant divergence of Eq. (77) and us-
ing the Bianchi identities shows that the geometry re-
quires the total energy-momentum tensor to be locally
conserved. The theory can be consistent only if this re-
sult is compatible with the explicit form of the energy-
momentum tensor. This requires careful accounting of
contributions from the massless NG modes arising from
the spontaneous Lorentz breaking [3]. In the general case,

these modes are contained in the fluctuations
7̃
tλµν....

For the pure-gravity sector, the relevant analysis is
given in Refs. [3, 7] and can be subsumed as needed
in the present context. For the matter sector, the NG
modes produce no relevant contribution to the energy-
momentum tensor T µνu at the post-newtonian order ap-
propriate for the tests considered here. The key point
is that the leading Lorentz-violating effects of coefficient

fluctuations
7̃
tλµν... arise at PNO(2) or beyond, as shown

in Sec. II D. Since these fluctuations are accompanied
by an additional factor of GN in the modified Einstein
equation (77), they affect the metric only at PNO(4) or
beyond. However, for the tests considered below it suf-
fices to work at PNO(3) for Lorentz-violating terms, so
the coefficient fluctuations ( 7̃aB

eff)µ and ( 7̃cB)µν appearing
in T µνu can be neglected in Eq. (77).

In contrast, the contributions to T ′µν arising from the

dynamics of the coefficient fluctuations
7̃
tλµν... are of po-

tential relevance in solving the modified Einstein equa-
tion for the metric. The specific effects associated with
the coefficients ( 7̃aB

eff)µ and ( 7̃cB)µν are derived in Sec.
IVC.

2. Particle trajectory

The equation of motion for a classical test particle T is
obtained by varying the action (67) with respect to the
particle position 4-vector xµ. In the absence of Lorentz
violation, this is the geodesic equation. However, in the
presence of Lorentz violation, the trajectories of test par-
ticles T no longer match the geodesics of the spacetime.

Expanding to O(1,1), the equation of motion can be

written as

ẍµ = −Γ
µ

(0,1) αβ
uαuβ

−Γ
µ

(1,1) αβ
uαuβ + 2ηµγ(cT)(γδ)Γ

δ

(0,1) αβu
αuβ

+2(cT)(αβ)Γ
α

(0,1) γδ
uβuγuδuµ + ∂µ( 7̃cT)αβu

αuβ

−2ηµγ∂α( 7̃cT)(γβ)u
αuβ − ∂γ(

7̃cT)(αβ)u
αuβuγuµ

− 1

mT
[∂µ( 7̃aT

eff)α − ηµβ∂α( 7̃aT
eff)β ]u

α, (78)

where each dot on xµ represents a derivative using the
proper-time interval (69). The superscript T denotes
quantities associated with the test particle. The first
term on the right-hand side is the usual geodesic contri-

bution, where Γ
µ

(0,1) αβ
is the linearized Christoffel sym-

bol. A Christoffel symbol with subscript (1,1) also ap-
pears in Eq. (78). It is defined as the linearized Christof-

fel symbol with hµν replaced by h
(1,1)
µν . This introduces

matter-sector coefficients associated with the gravita-
tional source, along with any gravity-sector coefficients
that may be included in the analysis.

Once the forms of hµν , ( 7̃aeff)µ, and 7̃cµν are established,
Eq. (78) can be used to determine to O(1,1) the motion of
a classical test particle in a curved but asymptotically flat
spacetime with nonzero coefficients for Lorentz violation
aµ, eµ, and cµν . Obtaining expressions for hµν , ( 7̃aeff)µ,
and 7̃cµν is the subject of Sec. IVC.

Although unnecessary for the present work, we can
comment in passing about the effects of nongravitational
interactions on the particle trajectory. Any such interac-
tions can be viewed as introducing an additional contri-
bution αµ to the right-hand side of Eq. (78). Using the
perturbation scheme of Sec. II D, this additional acceler-
ation αµ can be expanded as a sum over terms αµ(m,n),

one at each perturbative order O(m,n). Notice that, al-
though the interaction itself is nongravitational, contri-
butions to αµ(m,n) with n 6= 0 can be induced from grav-

itational couplings in the interaction sector. Similarly,
Lorentz-violating contributions to αµ(m,n) can originate

from coefficients for Lorentz violation in the interaction
sector. If we also expand ẍµ as

ẍµ = ẍµ(0,0) + ẍµ(0,1) + ẍµ(1,0) + ẍµ(1,1) + . . . , (79)

then we obtain the following additional terms for the par-
ticle 4-acceleration ẍµ:

ẍµ(0,0) ⊃ αµ(0,0),

ẍµ(0,1) ⊃ αµ(0,1),

ẍµ(1,0) ⊃ αµ(1,0) − 2ηµα(cT)(αβ)α
β

(0,0)

−2(cT)(αβ)α
α
(0,0)u

βuµ,

ẍµ(1,1) ⊃ αµ(1,1) − 2ηµα(cT)(αβ)α
β

(0,1)

−2(cT)(αβ)α
α
(0,1)u

βuµ + 2hµα(cT)(αβ)α
β

(0,0)

−2ηµα( 7̃cT)(αβ)α
β

(0,0). (80)
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The trajectory at O(1,n) is affected both directly by
αµ(1,n) and indirectly by combinations of αµ(0,n) with the

coefficients for Lorentz violation. The origin of the indi-
rect terms can be traced to the additional factor of 2cµν
in the action (68) relative to the conventional proper-time
interval (69).

3. Implications for the equivalence principle

The deviations from geodesic motion implied by Eq.
(78) can be species dependent because the couplings to
the coefficient fields (aeff)µ and cµν can vary with parti-
cle flavor. This leads to apparent violations of the weak
equivalence principle (WEP), which stipulates that the
motion of uncharged test particles is independent of in-
ternal structure or composition [8].

One implication of this observation is that experiments
designed to test the WEP are also sensitive to (aeff)µ and
cµν . Since all the WEP violations implied by Eq. (78)
are accompanied by effects associated with the breaking
of rotation and boost symmetries, the experimental sig-
natures associated with (aeff)µ and cµν typically differ
from those in other scenarios for violations of the WEP.
The latter portion of this work discusses in some detail
the role that experiments testing the WEP can play in
searches for Lorentz violation.

The flavor dependence of the coefficient couplings leads
to the philosophical question of whether spontaneous
Lorentz violation in the matter sector violates the WEP
or merely mimics violations of the WEP. The issue hinges
on the interpretation of the term ‘uncharged test parti-
cle.’ In models with spontaneous Lorentz violation in
the matter sector, the NG modes couple to test parti-
cles and so mediate an interaction. This interaction can
be identified with Einstein-Maxwell electrodynamics [14],
GR gravity [27], an effect on torsion [14], or a new force
[11, 29, 30]. If the term ‘uncharged’ is taken in the re-
strictive sense to mean that the test particle is unaffected
by standard forces such as electrodynamics, then the tra-
jectory deviations of ‘uncharged’ test particles caused by
nonzero (aeff)µ and cµν coefficients represent violations
of the WEP. If instead the term ‘uncharged’ indicates
the test particle cannot have nongravitational couplings
of any kind, then no violations of the WEP occur. How-
ever, in this latter case ‘uncharged’ test particles may
be nonexistent in the matter sector of the SME, where
generically all particles experience nonzero (aeff)µ and
cµν coefficients. We emphasize that the above discussion
is a matter of philosophical classification only, without
impact on the practical issue of using tests of the WEP
to search for Lorentz violation via the deviations from
geodesic motion described by Eq. (78).

The WEP is subsumed in certain other equivalence
principles, such as the Einstein equivalence principle or
the strong equivalence principle. These incorporate also
aspects of local Lorentz invariance and local position
invariance. Since nonzero coefficients (aeff)µ, cµν cor-

respond directly to local Lorentz violation, and since
Lorentz violation can be position dependent, the devia-
tions from geodesic motion described by Eq. (78) can rep-
resent violations of these broader equivalence principles
arising in more than one way. Several related philosoph-
ical issues remain open, including classifying violations
of various equivalence principles according to properties
of the coefficients for Lorentz violation and identifying
implications for relations such as the Schiff conjecture
[8, 47]. We note also in passing that comments analo-
gous to those above bear on the philosophical issue of
whether theories with matter-sector couplings to spon-
taneous Lorentz violation constitute metric theories of
gravity.

C. Coefficient and metric fluctuations

To solve the equation of motion (78) for the trajectory
of a test particle, explicit expressions for the metric fluc-
tuation hµν and the coefficient fluctuations ( 7̃aeff)µ,

7̃cµν
are required. Within a specific model with known ac-
tion S′ for the coefficient fields, these expressions can be
obtained by direct calculation. An illustration of this is
provided in Sec. V. However, in the interest of general-
ity, it is useful to establish results valid for a large class
of models. In this subsection, we outline a procedure to
obtain expressions for hµν and for the generic coefficient

fluctuations
7̃
tλµν... when S′ is largely unknown, and we

obtain explicit results for hµν , ( 7̃aeff)µ, and 7̃cµν applicable
to the equation of motion (78). These results are used
in later sections of this work in establishing experimental
signatures for Lorentz violation.

1. Methodology

Consider first the metric fluctuation hµν . In the per-
turbation scheme of Sec. II D, the expansion of hµν takes
the form (26). To determine the test-particle trajectory
at order O(1,1) via Eq. (78), it is necessary to obtain

explicit expressions for h
(0,1)
µν and h

(1,1)
µν .

The Lorentz-invariant contribution h
(0,1)
µν can be ob-

tained in the usual way as the leading-order solution
of the Einstein equation, taking the Lorentz-invariant
part of the energy-momentum tensor as the source. To
PNO(3), the standard solution can be written in har-
monic coordinates as

h
(0,1)
00 = 2U, h

(0,1)
0j = −4V j , h

(0,1)
jk = 2Uδjk, (81)

where U and V j are the usual post-newtonian potentials
defined as

U = GN

∫
d3x′

ρ(~x′, t)

|~x− ~x′| ,

V j = GN

∫
d3x′

ρ(~x′, t)vj(~x′, t)

|~x− ~x′| . (82)
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In these expressions, the density ρ(~x′, t) and the 3-
velocity vj(~x′, t) are properties of the source in the chosen
asymptotic inertial frame. As described in Sec. IVA2, it
suffices in this work to use the approximation (76) for the
source-body action SBu , so the energy-momentum tensor
takes the generic form (70).

The Lorentz-violating component h
(1,1)
µν can conve-

niently be viewed as a sum over individual contributions
arising from each coefficient field for Lorentz violation,

h(1,1)
µν = (h(1,1)

a )µν + (h
(1,1)
b )µν + ...+ (h

(1,1)
H )µν . (83)

This means each coefficient can be treated in turn. How-
ever, the procedure for determining a particular contri-
bution can take different paths depending on the type of
gravitational coupling of the coefficient field.

A simple case arises for any coefficient field tλµν... that
is minimally coupled to gravity. Then, only the vac-
uum values tλµν... in the expansion (11) contribute to the
energy-momentum tensor T µνu of the source at the rele-

vant order. The key point is that the solution for h
(1,1)
µν

at PNO(3) arises from the combination κT µνu , which it-
self already lies at PNO(2). However, as discussed in
Sec. II D, the coefficient fluctuations of interest here are7̃
t
(1,1)
λµν... and also lie at PNO(2). These fluctuations there-

fore cannot contribute to h
(1,1)
µν below PNO(4). As a re-

sult, h
(1,1)
µν can be found directly by solving the modified

Einstein equation with attention limited to the vacuum
values tλµν....

We note in passing that this procedure is consistent
with the no-go result for explicit Lorentz violation in
gravity [3] even though tλµν... can be interpreted as a
coefficient for explicit breaking. This is because we are
working to O(1,1) and PNO(3), for which Dαtλµν... ∼
O(ht) ∼ O(1,1). As a result, the covariant deriva-
tive of κT µνu is compatible with the Bianchi identities
DµG

µν = 0 at this perturbative order. In effect, the
comparatively low perturbative order implies that a con-
stant vacuum value remains consistent with the geometry
of spontaneous Lorentz breaking. It is also noteworthy
that an independent contribution from T ′µν may exist
that satisfies local conservation and hence is compatible
with the Bianchi identities to the relevant perturbative
order. This would also represent a consistent theory, al-
beit a different one. The two theories involving the co-
efficient field (aeff)µ with minimal and with nonminimal
gravitational couplings provide an illustration of this, as
is discussed in the next subsection.

In the simple case with minimal coupling, once h
(1,1)
µν

has been found, it remains only to determine the direct
contributions to the equation of motion (78) arising from

the fluctuations
7̃
t
(1,1)
λµν.... For this purpose, we can apply

the requirement that the system of the source S and the
test body T conserves the total 4-momentum Pµ. For a
two-body system, this implies the force law must be an-
tisymmetric upon exchange of S and T. Otherwise, the
forces on each body due to the other would violate New-
ton’s third law, and the system would self-accelerate.

At PNO(2) and in the absence of Lorentz violation,
the relevant force between S and T can be directly iden-
tified as mẍj . At higher order and in the presence of
Lorentz violation, it is simpler to impose conservation of
the total 4-momentum, dPµ/dt = 0. In principle, Pµ can
be found by adding the conjugate momenta of S and T
obtained from the two-body action. In practice, for the
perturbative order to which we work, it suffices to obtain
the conjugate momentum for T alone and require anti-
symmetry of its time derivative under the exchange of S

and T. The constraints fixing the fluctuations
7̃
t
(1,1)
λµν... arise

from the µ = j components of dPµ/dt = 0, all at PNO(3)
except for terms at PNO(4) involving the velocities of
both S and T. We remark in passing that extending this
treatment to higher perturbative orders requires also in-
corporating back-reaction effects on the metric, including
gravitational radiation.

The above procedure holds for coefficient fields that
are minimally coupled to gravity. If nonminimal curva-
ture couplings also occur in S′, then additional terms
involving the coefficient fields tλµν... can appear in the
energy-momentum tensor and hence can affect the mod-
ified Einstein equation. The curvature couplings inter-

twine the kinetic contributions from hµν and
7̃
tλµν..., so

7̃
tλµν... can contribute to the solution for h

(1,1)
µν at PNO(3).

To proceed without specifying S′, we therefore need ad-

ditional information about
7̃
tλµν....

In the present work, the necessary information can
be extracted from the general structure of the equation
of motion for tλµν... and the symmetries of the theory.
When linearized, this equation of motion can be writ-

ten as the sum of a differential operator acting on
7̃
tλµν...

and a source term at most linear in hµν . The differential
operator can involve arbitrary powers of tλµν... but is in-

dependent of hµν . The contributions
7̃
t
(1,1)
λµν... of interest are

at O(1,1) and hence are linear in both tλµν... and hµν . At

this order, the solution for
7̃
t
(1,1)
λµν... can therefore be writ-

ten as a sum of terms, each containing up to one power
of hµν along with some number n of powers of tλµν... in
the numerator and n− 1 powers of tλµν... in the denom-

inator. This expansion of
7̃
t
(1,1)
λµν... in terms of tλµν... and

hµν is constrained by two requirements. One arises from

the restriction of
7̃
tλµν... to NG modes, which must main-

tain the extremum of the action. The solution for
7̃
t
(1,1)
λµν...

must therefore obey the NG conditions at O(1,1). The

second is the requirement that
7̃
tλµν... must transform as

expected under diffeomorphisms, as a consequence of the
spontaneous nature of the symmetry breaking and the re-
quirement of observer general coordinate invariance [48].
It turns out that these two restrictions suffice to express7̃
t
(1,1)
λµν... in terms of tλµν... and hµν in the cases of interest

here.

Once the expression for
7̃
t
(1,1)
λµν... has been found, hµν can

be obtained by combining information from the modi-
fied Einstein equation and the trajectory equation. The
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modified Einstein equation yields directly the piece of
hµν arising from tλµν... in the energy-momentum tensor.

Inserting this result and the expression for
7̃
t
(1,1)
λµν... in the

trajectory equation and imposing conservation of the to-
tal 4-momentum of the source and test body as before

determines the missing piece of hµν arising from
7̃
t
(1,1)
λµν....

In both minimal and nonminimal cases, the net re-
sult of the above procedure is a form of the trajectory

equation in which hµν and
7̃
tλµν... can be replaced with

specified gravitational potentials and the vacuum values
tλµν.... The solution of the trajectory equation can then
proceed. In the next two subsections, we apply these
methods to obtain the relevant contributions to the fluc-
tuations from the coefficient fields (aeff)µ and cµν .

2. Fluctuations and cµν

The treatment of the coefficient field cµν provides an
example involving the comparatively simple case of min-
imal coupling to gravity. Although nonminimal curva-
ture couplings to cµν could be considered, these are of
lesser interest in the context of searches for Lorentz vi-
olation because direct signals from cµν already appear
for minimal coupling. We therefore neglect nonminimal
couplings to cµν here. In this subsection, the relevant

contributions to the metric fluctuation (h
(1,1)
c )µν are ob-

tained to third post-newtonian order, and effects from7̃cµν at O(1,1) are considered.
Following the procedure outlined in the previous sub-

section, we begin with the modified Einstein equation
(77). The relevant energy-momentum tensor for the
source S is given by the expression (70) expanded to lead-
ing order in Lorentz violation and with cµν replaced by
(cS)µν . Solving for the metric fluctuation to PNO(3), we
obtain in harmonic gauge

(h(1,1)
c )00 = 2(cS)00U + 4(cS)(j0)V

j ,

(h(1,1)
c )0j = −4(cS)00V

j ,

(h(1,1)
c )jk = 2(cS)00Uδ

jk. (84)

A consistent expansion to PNO(3) requires only PNO(1)

terms in (h
(1,1)
c )0j and none in (h

(1,1)
c )jk, but we dis-

play PNO(3) terms in (h
(1,1)
c )0j and PNO(2) terms in

(h
(1,1)
c )jk because they are useful in part of the analysis

to follow.
The next step is to examine the contributions to the

equation of motion (78) from 7̃cµν at O(1,1). The conju-
gate momentum can be extracted from the action (68)
with (aeff)µ set to zero. Conservation of the total 4-
momentum Pµ of the system is ensured by the require-
ment that its time derivative be antisymmetric under the
exchange of the source S and the test body T. We find
that Pµ is conserved to PNO(3) without contributions
from 7̃cµν . This establishes the PNO(3) result

∂λ
7̃c(1,1)µν = 0, (85)

showing that the NG modes associated with 7̃cµν play no
role at this perturbative order.

The results (84) and (85) complete the determination
of the trajectory equation for the coefficient field cµν .
For a given source S, the potentials U and V j can be
calculated explicitly. The effects of (cS)µν and (cT)µν
on the trajectory of the test body T can therefore be
investigated in various regimes of experimental interest.
This line of reasoning is pursued beginning in Sec. VI.

3. Fluctuations and (aeff)µ

For the coefficient field (aeff)µ, the case of minimal cou-
pling to gravity is of lesser interest. The modified Ein-
stein equation is unaffected because (aeff)µ is absent from
the energy-momentum tensor (70). Also, only ( 7̃aeff)µ en-
ters the trajectory equation. Since it is indistinguishable
from an electromagnetic field, it provides no relevant con-
tributions at O(1,1). We therefore expand the treatment
to the case of nonminimal curvature couplings, for which
(aeff)µ becomes measurable [11]. In effect, the fluctua-
tions ( 7̃aeff)µ become observable by virtue of their non-
minimal gravitational couplings.

Following the procedure of Sec. IVC1, the first step

is to obtain an expression for the fluctuations ( 7̃aeff)
(1,1)
µ

originating from the source S using the NG condition
and the requirement of diffeomorphism covariance. At
O(1,1), the NG condition can be written as

( 7̃aeff)(1,1)µ (aB
eff)µ = 1

2 (aB
eff)µh

µν(aB
eff)ν . (86)

We find that the contributions to ( 7̃aeff)
(1,1)
µ consistent

with this equation and with diffeomorphism covariance
take the form

( 7̃aeff)(1,1)µ = 1
2αhµν(a

B
eff)ν − 1

4α(aB
eff)µh

ν
ν + ∂µΨ (87)

in harmonic coordinates. Here, the constant α is calcu-
lable but varies with the specifics of the theory, typically
being determined in terms of the coupling constants that
control the nonminimal couplings. The function Ψ con-
tains effects proportional to hµν and (aS

eff)µ that are un-
physical by virtue of the discussion in Sec. II C 1, so it is
disregarded in what follows.

At this stage, the result (87) can be combined with the
modified Einstein equation and the trajectory equation

to determine the contributions to h
(1,1)
µν proportional to

(aS
eff)µ. Working at PNO(3), we find these contributions

can be written in harmonic gauge as

(h(1,1)
a )00 =

2

m
[2α(aS

eff)0U + α(aS
eff)jV

j − α(aS
eff)jW

j],

(h(1,1)
a )0j =

1

m
[α(aS

eff)jU + α(aS
eff)kU

jk

−α(aS
eff)0V

j − α(aS
eff)0W

j ],

(h(1,1)
a )jk =

2

m
[−α(aS

eff)0Uδ
jk + α(aS

eff)0U
jk]. (88)



18

Paralleling the case of the coefficient field cµν , we have

kept here PNO(3) terms in (h
(1,1)
a )0j and PNO(2) terms

in (h
(1,1)
a )jk as a convenience for the analysis to follow.

In Eq. (88), U and V j are the post-newtonian potentials
defined in Eq. (82). Additional potentials U jk and W j

also appear, defined by

U jk = GN

∫
d3x′

ρ(~x′, t)(~x− ~x′)j(~x− ~x′)k

|~x− ~x′|3 ,

W j = GN

∫
d3x′

ρ(~x′, t)vk(~x
′, t)(~x − ~x′)j(~x− ~x′)k

|~x− ~x′|3 .

(89)

The results (87) and (88) fix the form of the contribu-
tions involving the coefficient field (aeff)µ to the equation
of motion (78). Modifications of the trajectory of a test
body T arising from nonzero values of the coefficients
(aS

eff)µ and (aT
eff)µ can therefore be studied at third post-

newtonian order. The resulting experimental signals are
discussed starting in Sec. VI.

V. EXAMPLE: BUMBLEBEE MODEL

In this section, we examine a specific model and
demonstrate how it fits into the general theory developed
above. This discussion is included solely for illustrative
purposes and is inessential to the development of the pa-
per. In particular, the analyses of experimental signals
in subsequent sections are independent of this specific
model, so the reader can proceed directly to Sec. VI if
desired.

A. Bumblebee model

Bumblebee models are theories in which spontaneous
Lorentz violation is induced by a potential V (Bµ) for a
vector field Bµ [49]. As an illustration of the general the-
oretical treatment of Sec. IV, we consider here a specific
and comparatively simple bumblebee model and study its
matter-gravity couplings. A discussion of generic mod-
els of vacuum-valued vectors coupled to gravity including
references to the substantial early literature can be found
in Sec. III A of Ref. [15], while some more recent papers
are listed in Ref. [50]. Discussions of various stability
issues with these models are given in Ref. [51].

The action SB for the specific bumblebee model of in-
terest here can be written as

SB = SG + SBu + S′
B

=

∫
d4x eLG +

∫
dτ LBu +

∫
d4x eL′

B.

(90)

The form of this action corresponds to that of the general
action (67). The term SG is the usual Einstein-Hilbert

action (2), with cosmological constant chosen as Λ = 0
for this illustrative case. The term SBu represents the
matter-bumblebee coupling, while S′

B contains the bum-
blebee dynamics, including the potential V triggering
spontaneous Lorentz violation.

For the classical lagrangian LBu describing the matter-
bumblebee coupling, we choose the expression

LBu = −m
√
−(gµν + 2ζ2BµBν)uµuν + ζ1Bµu

µ.

(91)

Here, ζ1 and ζ2 are coupling constants that can vary with
the particle species. Where needed in what follows, we
distinguish the coupling constants for a source body S
and a test particle T by superscripts: ζS

1 , ζT
1 , ζS

2 , ζT
2 .

Note that the lagrangian (91) could be viewed as the
point-particle limit of a quantum field theory, in parallel
with the derivation for the general theory (68).

For the Lagrange density eL′
B determining the dynam-

ics of the bumblebee field, we take

eL′
B = − 1

4eB
µνBµν − eV + σ1eB

µBνRµν , (92)

where the field strength is Bµν = ∂µBν − ∂νBµ. The
coupling constant σ1 is sometimes written σ1 = ξ/2κ in
the literature [3, 15]. The potential V has the form

V = V (BµBµ ± b2), (93)

where b2 is a real number. Where a definite form is
needed in the calculations to follow, we adopt for sim-
plicity the smooth quadratic potential

V = λ(BµBµ ± b2)2/2. (94)

In any event, the potential is assumed to induce a nonzero
vacuum expectation value for the bumblebee field, which
we denote by bµ ≡ 〈Bµ〉 following standard usage, where
bµbµ = ∓b2. Denoting the bumblebee fluctuation about

the vacuum value by
7̃
Bµ, we can expand

Bµ = bµ +
7̃
Bµ (95)

in parallel with Eq. (11).
A match can be made between the bumblebee action

(90) and the general action (67) by identifying the various
coefficient fields for Lorentz violation with specific com-
binations of the bumblebee field. The term LBu corre-
sponds to nonzero coefficient fields (aeff)µ and cµν , given
by

(aeff)µ = ζ1Bµ

cµν = ζ2(BµBν − 1
4gµνBαB

α). (96)

It is also necessary to introduce an additional scalar field
k, defined as

k = 1
2ζ2BαB

α, (97)
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which normally can be disregarded in the SME context
because it is Lorentz invariant. In the presence of k, the
general action (68) is slightly modified, with lagrangian
now given by the expression

Lu = −m
√
−(gµν + kgµν + 2cµν)uµuν + (aeff)µu

µ.

(98)

The term L′
B yields nonzero coefficients fields sµν and u

in the pure-gravity sector, given by [7]

sµν = ξBµBν − 1
4ξBαB

αgµν ,

u = 1
4ξBαB

α. (99)

Note that in this model only a single field Bµ underlies
all the coefficient fields (aeff)µ, cµν , k, sµν , and u. It fol-
lows that searches for Lorentz violation that are sensitive
to any one of these coefficient fields could provide infor-
mation constraining the others, at least in part. This
special feature of the bumblebee model may not extend
to models with more complicated field structure. Note
also that the coefficient field k in the matter sector is a
species-dependent analogue of the coefficient field u in
the gravity sector. A nonzero value of k can introduce
apparent WEP violations. Since these are Lorentz invari-
ant, the resulting phenomenology lacks the various time
dependences that characterize WEP violations resulting
from Lorentz breaking.

B. Solving the Model

Given the action (90), we can illustrate by direct calcu-
lation the correspondence between results from the bum-
blebee model and ones from the general SME-based ap-
proach developed in Sec. IV. For this purpose, it suffices
to work at lowest nontrivial order in the couplings ζ1, ζ2,
and σ1. We focus here on observable effects arising from
the identifications of (aeff)µ, cµν , and k in Eqs. (96) and
(97). Observable effects involving sµν and u as defined
in Eq. (99) are studied in Ref. [7].

The basic goal is to predict effects such as trajectory
deviations for given values of (aeff)µ and cµν . As dis-
cussed in Sec. IVC 3, observability of (aeff)µ involves
nonminimal couplings, so in the present context we can
expect dominant effects from (aeff)µ to be proportional
to the product ζ1σ1. In constrast, dominant observable
effects from cµν are generated directly from ζ2.

We remark in passing that the special bumblebee
model considered here is experimentally viable provided
the sizes of ζ1 and ζ2 are compatible with existing con-
straints on long-range spin-independent forces [35]. The
proportionality of (aeff)µ to ζ1σ1 implies the model can
yield Lorentz-violating effects involving large bµ that are
detectable only in gravitational experiments [11].

In this subsection, working at the appropriate pertur-
bative order and taking the newtonian limit where useful,
we obtain and solve the bumblebee equation of motion

and the modified Einstein equation. These results suffice
to determine the trajectory equation for a test particle in
terms of the vacuum value bµ of the bumblebee model.
Comparison to the general SME-based approach devel-
oped in Sec. IV yields an explicit match for (aeff)µ, cµν ,

k in terms of the couplings ζ1, ζ2, σ1 and the vacuum
value bµ.

1. Bumblebee equation

Consider first the equation of motion for the bumble-
bee field, which follows from varying the action SB. At
the perturbative order of interest, this equation takes the
form

∂µBµν = 2V ′bν − 2σ1b
µRµν + ζS

1 jν + . . . , (100)

where

jν =

∫
dτ uνδ

4(x− x′) (101)

is the source 4-current at the relevant order. In Eq. (100),
the prime on V denotes a derivative with respect to the
argument, while the ellipsis indicates that source terms
proportional to ζS

2 exist but provide no observable con-
tributions to the order at which we work. Adopting the
smooth quadratic potential (94) and the expansion (95),
the bumblebee equation can be written

(ηµν2 − ∂µ∂ν − 4λbµbν)
7̃
B
µ

=

−2λbνb
αbβhαβ − 2σ1b

αRαν + ζS
1 jν . (102)

The idea is to solve this expression for the fluctuations7̃
B
µ

so they can be eliminated from the analysis as needed.
The solution can be obtained in momentum space with

the propagator chosen as a suitable Green function [7].
The appropriate bumblebee propagator is

Kµν(p) = −η
µν

p2
+

(bµpν + bνpµ)

p2bαpα
− (4λbαbα + p2)pνpµ

4λp2(bαpα)2

(103)

in momentum space. Note that the additional poles in
this and following expressions can be understood as a
consequence of residual gauge freedom to the order at
which we work [52]. Using this propagator, we find the
solution

7̃
Bµ(p) =

pµb
αbβhαβ

2bαpα
+(

7̃
Bσ1

)µ(p)+(
7̃
Bζ1)µ(p)+(

7̃
Bζ2)µ(p),

(104)

where (
7̃
Bσ1

)µ(p), (
7̃
Bζ1)µ(p), and (

7̃
Bζ2)µ(p) are contribu-

tions to
7̃
Bµ(p) proportional to σ1, ζ

S
1 , and ζS

2 respectively.
In the limit of vanishing ζS

1 and ζS
2 , the solution (104) re-

duces to the known result [7] once the conversion from7̃
Bµ to B̃µ described in Sec. II B is implemented.
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Explicitly, the quantity (
7̃
Bσ1

)µ is given in momentum
space by [7]

(
7̃
Bσ1

)µ(p) = −σ1bµR

p2
+
σ1pµR

4λbαpα
+
σ1pµb

αbαR

p2bαpα

+
2σ1b

αRαµ
p2

− 2σ1pµb
αbβRαβ

p2bαpα
. (105)

For the piece proportional to ζ1, we obtain

(
7̃
Bζ1)µ(p) = −ζ

S
1 jµ
p2

+
ζS
1 bµp

νjν
p2pαbα

+
ζS
1 pµb

νjν
p2pαbα

−ζ
S
1 bαb

αpµp
νjν

p2(pβbβ)2
− ζS

1 pµp
νjν

4λ(pαbα)2
. (106)

The remaining term in Eq. (104), which contains contri-
butions proportional to ζS

2 , is irrelevant to the order at
which we work.

We emphasize that the explicit solution (104) for the

bumblebee fluctuation
7̃
Bµ is obtained by direct calcu-

lation from the action SB. This calculation depends
on knowledge of the bumblebee dynamics as described
by the Lagrange density (92). In contrast, the general
SME-based method presented in Sec. IV to obtain an

arbitrary coefficient fluctuation
7̃
tλµν... replaces the need

for complete knowledge of SB with the judicious use of
perturbation theory, the NG constraint, diffeomorphism
invariance, and Newton’s third law.

2. Modified Einstein equation

Varying the action with respect to the metric yields

the modified Einstein equation. At leading order in
7̃
Bµ

and lowest order in hµν , this equation takes the form

Gµν = 2σ1κ[b
α∂α∂(µBν) + b(µ∂α∂ν)B

α − b(µ2Bν)

−ηµνbα∂α∂βBβ ] + 2κV ′bµbν + κ(TBu)µν ,

(107)

where contributions from Bµ are understood to be lim-
ited to the appropriate perturbative order. Note that V ′

contributes at most through massive modes at this order,
so it plays no role in the present context.

The matter-sector contribution (TBu)µν to the energy-
momentum tensor can be written

(TBu)µν = −
∫
dτ
muµuνδ

4(x − x′(τ))√
1 − 2ζS2 bαbβu

αuβ
. (108)

This explicit expression is the bumblebee analogue of the
general form (70). As expected, terms proportional to
ζS
1 are absent from Eq. (108), confirming that minimal

couplings cannot generate Lorentz violation of the (aeff)µ
type in the modified Einstein equation. In this model, the
only nonzero observables proportional to ζS

1 arise through
the bumblebee fluctuations (106).

Inserting the solution for Bµ at the appropriate order,
the modified Einstein equation (107) can be solved. To
match the analysis in the general SME-based method of
Sec. IV the harmonic gauge must be used. At zeroth or-
der in Lorentz violation, the conventional metric is repro-
duced. For simplicity in this illustrative model, we limit
consideration at the next order to the newtonian limit for7̃
Bµ. This avoids possible complications from the residual
gauge invariance, while permitting a complete match to
the results of the SME method.

The solution for the metric can be constructed directly
from the trace-reversed form of the modified Einstein
equation (107). Using the NG condition

bµ
7̃
B
µ

= 1
2b
µbνhµν (109)

and the bumblebee equation (102), we can write

Rµν = 2σ1κ[b
α∂α∂(µBν) − ζS

1 b(µjν)] + κ(SBu)µν , (110)

where (SBu)µν is the trace-reversed version of the energy-
momentum tensor (108). In the newtonian limit, the
first term on the right-hand side is higher-order in time
derivatives and so is negligible.

Expanding (SBu)µν to the appropriate order, we find
that the O(1,1) modifications of the metric fluctuation
h00 are given in terms of the bumblebee vacuum value bµ
by

h
(1,1)
00 = (4σ1ζ

S
1 + ζS

2mb0)
2GNb0
r

. (111)

The first term arises from the bumblebee fluctuations via
the nonminimal couplings and is the bumblebee analogue
of Eq. (88). The second term arises directly from the
energy-momentum tensor (TBu)µν of the source S and
corresponds to Eq. (84). To complete the match to the
general SME analysis of Sec. IV, it remains to apply this
result to determine the deviations from geodesic motion
of a test particle T.

3. Particle trajectory

The equation of motion for a test point particle T in the
presence of the bumblebee field Bµ and the metric hµν
can be obtained by varying the action SBu with respect
to xµ. At leading order in the fluctuations, this yields

ẍµ = −Γ
µ

(0,1) αβ
uαuβ + ẍµζ1 + ẍµζ2 , (112)

where Γ
µ

(0,1) αβ
is the linearized Christoffel symbol. The

terms ẍµζ1 and ẍµζ2 represent contributions to ẍµ propor-

tional to ζT
1 and ζT

2 , respectively. The above equation is
the bumblebee analogue of the equation of motion (78)
obtained for the general SME analysis in Sec. IV.

The explicit form of the quantity ẍµζ1 takes the form

ẍµζ1 = −(Γζ1)
µ
αβu

αuβ− ζT
1

mT
gµν(∂ν

7̃
Bα−∂α

7̃
Bν)u

α, (113)
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where (Γζ1)
µ
αβ contains terms proportional to ζS

1 that
enter via Lorentz-violating corrections to the metric. The

piece of
7̃
Bµ contributing to this equation at the relevant

order can be written as

(
7̃
Bσ1

)µ = σ1hµνb
ν − 1

2σ1bµh
α
α + . . . (114)

in harmonic coordinates, where the ellipsis represents
terms that play no role within our approximations. The
latter equation is the bumblebee analogue of the SME
result (87) for the coefficient fluctuation ( 7̃aeff)µ, and as
expected it yields contributions to the trajectory equa-
tion proportional to the product σ1ζ

T
1 .

The quantity ẍµζ2 can be written

ẍµζ2 = −(Γζ2)
µ
αβu

αuβ + 2ζT
2 η

µνbνbλΓ
λ

(0,n) αβ
uαuβ

+2ζT
2 bαbβΓ

α

(0,1) νλ
uβuµuνuλ + 2ζT

2 bα∂
µ 7̃
Bβu

αuβ

−2ζT
2 η

µν(bν∂α
7̃
Bβ + bβ∂α

7̃
Bν)u

αuβ

−2ζT
2 bα∂ν

7̃
Bβu

αuβuµuν , (115)

where (Γζ2)
µ
αβ contains terms proportional to ζS

2 that
enter via Lorentz-violating corrections to the metric. In
this equation, only the first term in Eq. (104) produces a

relevant contribution to the fluctuation
7̃
Bµ in the present

context, which matches the SME result (85) for the co-
efficient fluctuation 7̃cµν .

At this stage, we can verify the conservation of total
4-momentum of the system of the source S and test body

T, as described in Sec. IVC 1. Substituting for
7̃
Bµ and

h
(1,1)
00 in the trajectory equation reveals the antisymmetry

under interchange of S and T required to satisfy Newton’s
third law. We can also complete the correspondence be-
tween the bumblebee model and the general SME-based
analysis of Sec. IV by making the identifications

α = 2σ1, (aeff)µ = ζ1bµ,

cµν = ζ2bµbν + 1
4ζ2ηµνb

2, k = 1
2ζ2b

2, (116)

which can be obtained by matching Eqs. (111) and (114)
to the SME results (84), (88), and (87).

VI. EXPERIMENTAL BASICS

In the remainder of this paper, we apply the theoret-
ical framework developed above to explore some experi-
mental prospects for detecting Lorentz violation through
matter-gravity couplings. As before, we adopt coordi-
nates satisfying the condition (23), which produces sim-
plified expressions without the photon-sector coefficients
(kF )αµαν . The primary focus is on signals involving the
coefficients (aweff)µ and (cw)µν . Certain effects associated
with the coefficient sµν in the pure-gravity sector are also
considered.

In the present section, we provide some basic infor-
mation broadly applicable to searches for Lorentz viola-
tion, including an outline of frame conventions and a dis-
cussion of sensitivities to coefficient combinations. Each

subsequent section addresses a particular class of exper-
imental searches. Section VII examines tests with ordi-
nary neutral matter in Earth-based laboratories, while
Sec. VIII studies satellite-based searches with ordinary
matter. Section IX considers more exotic laboratory and
satellite-based tests, including ones using charged parti-
cles, antimatter, and particles beyond the first genera-
tion. Section X addresses solar-system observations, in-
cluding lunar and satellite ranging and measurements of
perihelion precession. Finally, Sec. XI considers signals
from photon-gravity couplings.

A. Frames

A substantial advantage of the SME framework is the
ability to compare signals for Lorentz violation across
a wide variety of experiments and observations. To fa-
cilitate these comparisons, it is useful to report search
results in a canonical inertial frame.

In Minkowski spacetime, the canonical frame is a Sun-
centered celestial-equatorial frame [21], which is approx-
imately inertial over the time scales of most searches. In
this frame, the Z axis is aligned with the rotation axis
of the Earth, while the X axis points from the Earth
to the Sun at the vernal equinox. The origin of the time
coordinate T is the time when the Earth crosses the Sun-
centered X axis at the vernal equinox.

For post-newtonian investigations involving gravita-
tional effects in the solar system, the canonical frame is
identified with an asymptotically Minkowski frame that
is comoving with the rest frame of the solar system and
that coincides with the canonical Sun-centered frame [7].
In this Sun-centered frame, cartesian coordinates are de-
noted by

xΞ = (T,XJ) = (T,X, Y, Z) (117)

and are labeled with capital Greek indices. Also, we write

eΞ = (eT , eJ) (118)

for the corresponding coordinate basis vectors.
Various types of observers appear in the analyses be-

low, including ones at rest in an Earth-centered frame, in
a laboratory frame, in a satellite frame, and others. The
corresponding frames are specified as needed in the sec-
tions that follow. Among the sets of basis vectors having
generic applicability are one for an observer at rest in the
Sun-centered frame and a related one for an observer in
uniform motion relative to the Sun-centered frame. We
summarize these two sets briefly here.

For an observer at rest at the point (T, ~X) in the Sun-
centered frame, dXJ/dT = 0. Suitable basis vectors are
denoted as eµ with µ = (t, j), and they can be written
as [7]

et = δTt[1 + 1
2hTT (T, ~X) + PNO(4)]eT ,

ej = δJj [eJ − 1
2h

K
J (T, ~X)eK ] + δJjhTJ(T, ~X)eT .

(119)
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This basis is orthonormal.
If the observer is in motion with four-velocity uΞ in

the Sun-centered frame, then an appropriate set of basis
vectors can be taken as eµ̂ with µ̂ = (t̂, ĵ), where the
components (et̂)

Ξ are identified with the four-velocity,
(et̂)

Ξ = uΞ. This basis is given by [7]

et̂ = δt
t̂
(1 + 1

2v
2)et + vjej,

eĵ = δj
ĵ
vkRkjet + δj

ĵ
(δkl + 1

2v
kvl)Rljek, (120)

where vj is the coordinate velocity of the observer in
the frame (119), and Rjk implements the appropriate
rotation. This basis is also orthonormal.

In applying the above equations, the relevant contribu-
tions to the metric fluctuation and the observer velocity
can be obtained from the modified Einstein equations and
from the equation of motion of the observer. Note that
the results typically depend on coefficients for Lorentz vi-
olation. Also, some simplifying assumptions can usually
be adopted without loss of generality. For example, in
certain laboratory experiments the contributions to the
metric fluctuation hΞΛ sourced by the energy-momentum
tensor of the Sun can safely be neglected.

We remark in passing that the above definition of the
Sun-centered frame could be sharpened in various ways,
such as allowing for the precession and nutation of the
Earth, establishing the vernal equinox via the centroids
of bodies, and incorporating the motion of the Sun with
respect to the center of the solar system. Some of these
effects may allow additional sensitivities to Lorentz vio-
lation via the resulting time dependence of the standard
frame. Note also that the notion of parallelism used in
the Minkowski-spacetime definition of the Sun-centered
frame is inapplicable in the context of curved spacetime.
One way to address this latter issue is to define the Z
axis so that eẑ aligns with the spin axis of the Earth after
Eqs. (119) and (120) with Rjk = 0 and the appropriate
velocity are applied. For the various searches considered
in this work, the standard definition of the Sun-centered
frame suffices. A more complete investigation of these
issues is of potential interest but lies beyond our present
scope.

B. Sensitivities

In the following sections, we consider the observational
effects of the coefficients (aweff)µ, (cw)µν in the matter
sector and sµν in the pure-gravity sector. This subsection
offers some comments about attainable sensitivities to
these coefficients.

Measurement of the coefficients (aweff)µ is of particular
interest because they are virtually unexplored to date.
The existence of the field redefinitions described in Sec.
II C 1 means that observation of effects from (aweff)µ re-
quires either flavor-changing physics or gravitational cou-
plings. At the level of quarks, the flavor-changing weak

interactions have been used to provide access to observ-
ables involving differences of two coefficients (aw)µ with
w including second- and third-generation quarks [53, 54].
Flavor oscillations can also be used to constrain the coef-
ficients aµ in the neutrino sector, where they form 3 × 3
matrices in flavor space [55]. However, to date gravi-
tational couplings have been used to obtain sensitivity
only to limited combinations of the 12 independent com-
ponents of the SME coefficients (ae)µ, (ap)µ, (an)µ for
electrons, protons, and neutrons [11, 12]. These coef-
ficients are otherwise unconstrained and could be com-
paratively large, so they offer interesting prospects for
further investigation in gravitational tests.

In the present context, we can extend the single bound
on (aw)µ given in Ref. [11] by taking advantage of the
result of Sec. II C 1 that (aw)µ always appears at leading
order with (ew)µ in the combination (aweff)µ given by Eq.
(16). Using this result immediately yields a constraint
on three of the independent components of (aweff)µ for
electrons, protons, and neutrons, given as

|α(aeeff)T+α(apeff)T−0.8α(aneff)T | < 1×10−11 GeV (121)

at the 90% confidence level.
In contrast, many of the coefficients (cw)µν are read-

ily observable in nongravitational experiments. Nonethe-
less, gravitational tests offer additional opportunities to
achieve sensitivities to (cw)µν , including some compo-
nents that are unmeasured to date. For electrons, pro-
tons, and neutrons, there are 27 independent observable
symmetric coefficients (cw)µν . A compilation of existing
limits on (cw)µν for different flavors w is given in Ref. [2].

The coefficients sµν lie in the pure-gravity sector
of the minimal SME and therefore can be measured
only in the gravitational context. The corresponding
post-newtonian corrections to the gravitational field are
known [7, 56]. Constraints on most of the nine in-
dependent components of sµν have been obtained us-
ing a variety of techniques, including among others
perihelion-precession studies, lunar laser ranging, atom-
interferometer gravimetry, and laboratory and space-
based experiments [4–7]. All these analyses disregard
matter effects. In this work, we show that Lorentz viola-
tion in the matter sector can contribute in different ways
to signals involving the coefficients sµν .

For all the coefficients (aweff)µ, (cw)µν , sµν , the effects
of interest here involve gravitational couplings to matter.
It is therefore reasonable to expect that the best sensitiv-
ities to Lorentz violation are associated with couplings to
dominant gravitational effects. This suggests that tests
with high sensitivity to Newton gravity are of particular
interest. As described in Sec. IVB 3, the flavor depen-
dence of the coefficients for Lorentz violation implies that
WEP tests also lie in this category.

Many of the signals sought in gravity tests require an-
cillary measurements of time and distance. These typ-
ically involve matter in some form, and they may in-
troduce additional Lorentz-violating effects beyond those
comprising the direct signal of interest. However, most
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of these additional effects are negligible in the present
context because the corresponding coefficients are tightly
constrained via tests in Minkowski spacetime [2], whereas
sensitivities in gravitational tests are typically substan-
tially reduced by the weak gravitational field. Among
the coefficients of interest in the present work, this is-
sue is relevant only to (cw)µν because (aweff)µ and sµν
are unobservable in Minkowski-spacetime tests and be-
cause we adopt the coordinate choice (23) making unob-
servable the photon-sector coefficients (kF )αµαν . Among
the coefficients (cw)µν for ordinary matter, the neutron-
sector coefficients (cn)µν are the least well constrained
at present. Their effects may therefore be important for
certain tests, in which case a detailed analysis of the mea-
surement method may be necessary.

Another consideration relevant for identifying sensitiv-
ities in tests with atoms or bulk matter is the role of the
contributions from binding energy. In some cases, ac-
counting for these contributions can disentangle effects
from different coefficients, thereby producing additional
independent sensitivities. This can occur when coeffi-
cients from two or more sectors are involved, either di-
rectly within a WEP test or indirectly via comparison
of results obtained for different bodies. In the remain-
der of this subsection, we discuss this possibility for the
coefficients (aweff)µ and (cw)µν in turn.

Consider first combinations of the coefficients (aweff)µ.
Following the discussion in Sec. IVA 2, a body B has
an effective coefficient (aB

eff)µ given by Eqs. (73) and
(75). The dimensionless quantity relevant for a test is
(aB

eff)µ/m
B, and comparisons involving two bodies there-

fore appear as the difference of two quantities of this
form. For two neutral bodies involving bound electrons,
protons, and neutrons, this difference can be expanded
as follows:

∑

w

(
Nw

1

m1
− Nw

2

m2

)
(aweff)µ =

Np
1N

n
2 −Nn

1 N
p
2

m1m2
mn(ae+p−neff )µ

+
Np

1m
′
2 −Np

2m
′
1

m1m2
(ae+peff )µ

+
Nn

1 m
′
2 −Nn

2 m
′
1

m1m2
(aneff)µ. (122)

Here, the numbers of particles of species w for the two
bodies are Nw

1 , Nw
2 , and m′

1, m
′
2 are the binding-energy

contributions to the masses m1, m2 of the two bodies, as
defined in Eq. (71). Also, we define

(ae+peff )µ = (aeeff)µ + (apeff)µ,

(ae+p−neff )µ = (ae+peff )µ − me +mp

mn
(aneff)µ. (123)

When the contributions from binding energy are ne-
glected in Eq. (122), the linear combination (ae+p−neff )µ of
coefficients becomes the sole observable involving (aweff)µ
in a comparison of two bodies, with the effect scaled

by their difference in species content. However, incor-
porating the binding energy in the analysis introduces
the last two terms in Eq. (122), revealing that the effects
of (aeeff)µ + (apeff)µ and (aneff)µ vary differently with the
content of the bodies. This allows the possibility of in-
dependent measurements of (aeeff)µ + (apeff)µ and (aneff)µ.
Note that the sensitivity of such measurements is typi-
cally an order of magnitude less than that of measure-
ments of (ae+p−neff )µ due the appearance of ratios of the
form m′/m.

Next, consider combinations of the coefficients (cw)µν .
For a body B, the effective coefficient (cB)µν is a dimen-
sionless quantity given by Eq. (74). As discussed in Sec.
IVA2, nonzero Lorentz-violating contributions from the
binding energy given by the coefficients (c′B)µν are ex-
pected to exist, along with the usual binding-energy con-
tributions m′ to the body mass. It turns out that these
Lorentz-violating contributions impede the use of bind-
ing energy to extract additional independent sensitivities
to combinations of the coefficients (cw)µν . To see this,
consider two neutral bodies as before, and expand the
analogue of Eq. (122) to get

∑

w

(
Nw

1

m1
− Nw

2

m2

)
mw(cw)µν =

Np
1N

n
2 −Nn

1 N
p
2

m1m2
mnmp(ce+p−n)µν

+
Np

1m
′
2 −Np

2m
′
1

m1m2
mp(ce+p)µν

+
Nn

1 m
′
2 −Nn

2 m
′
1

m1m2
mn(cn)µν

+(me +mp)
Np

2m
′
1(c

′1)µν −Np
1m

′
2(c

′2)µν
m1m2

+mnN
n
2 m

′
1(c

′1)µν −Nn
1 m

′
2(c

′2)µν
m1m2

, (124)

where we introduce

(ce+p)µν =
me

mp
(ce)µν + (cp)µν ,

(ce+p−n)µν = (ce+p)µν −
me +mp

mp
(cn)µν . (125)

When binding-energy effects are neglected, (ce+p−n)µν
becomes the only observable combination of the coeffi-
cients (cw)µν in gravitational tests comparing two bod-
ies. Including the binding-energy terms as in Eq. (124)
shows that bodies with different species content can ex-
hibit distinct effects. Although it seems unlikely that
nonzero effects at orderm′/m in a variety of bodies would
cancel sufficiently well to evade detection altogether, the
appearance of the unknown coefficients (c′B)µν makes it
infeasible at present to extract unambiguous independent
measurements on combinations of the coefficients (cw)µν
using binding-energy effects.
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VII. LABORATORY TESTS

This section considers some sensitive laboratory tests
with ordinary neutral bulk matter, neutral atoms, and
neutrons performed on or near the surface of the Earth.
The basic theory for these tests is developed in Sec. VII A,
while Secs. VII B, VII C, VII D, and VII E consider sig-
nals and sensitivities attainable in a variety of terrestrial
searches. More exotic laboratory tests with charged par-
ticles, antimatter, and particles beyond the first genera-
tion are considered in Sec. IX.

Terrestrial experiments seeking gravitational Lorentz
violation using ordinary matter can be classified either
as gravimeter tests or as WEP tests. In gravimeter tests,
the basic idea is to seek variations either in the gravita-
tional force on a test body or in its gravitational accel-
eration. The corresponding signals originate in the time
dependence of laboratory coefficients for Lorentz viola-
tion induced by the rotation of the apparatus and the
rotation and revolution of the Earth. These signals can
be interpreted as an effective time variation of the New-
ton gravitational constant GN . In WEP tests, the idea is
to compare either the gravitational force between two dif-
ferent bodies or their relative gravitational acceleration.
The corresponding signals, which can be instantaneous
or time-varying, are sensitive to differences between the
coefficients associated with different species of matter.

Lorentz violation can introduce deviations from New-
ton’s second law, so the distinction between force and
acceleration can be important. This distinction implies
the two classes of gravimeter and WEP tests can each be
further subdivided into two categories, force-comparison
tests and free-fall tests. The basic idea of a free-fall test
is to search for a time or composition dependence in the
gravitational acceleration of a freely falling test body by
monitoring its motion. The idea of a force-comparison
test is to balance the gravitational force experienced by
a test body with a second force, investigating changes in
the equilibrium arising from the time or species depen-
dence of the laboratory coefficients for Lorentz violation.
The force comparison can be achieved either by using
a seesaw arrangement to balance the gravitational forces
on test bodies of different composition, which constitutes
a force-comparison WEP test, or by using a nongravi-
tational force to counter the gravitational force on the
test body, which represents a force-comparison gravime-
ter test.

We thus have four categories of possible laboratory
tests with ordinary matter. In what follows, each is
considered in a separate subsection. Free-fall gravime-
ter tests, including searches with freely falling corner
cubes and with atom interferometers, are considered in
Sec. VII B. Force-comparison gravimeter tests using me-
chanical and superconducting gravimeters are studied in
VII C. Free-fall WEP tests, which come in a wide vari-
ety of forms, are considered in Sec. VII D. Finally, force-
comparison WEP tests are discussed in Sec. VII E, with
focus on a torsion-balance configuration.

Table I provides a list of some conventions adopted in
this section for the analyses of laboratory tests. Many of
the quantities are self explanatory. The laboratory speed
VL is due to the rotation of the Earth and depends on the
laboratory colatitude χ. The relative time T⊕ involves
a convenient choice of origin, measured from any instant
when the ŷ axis in the laboratory frame and the Y axis of
the Sun-centered frame coincide. Using T⊕ instead of the
canonical time T in the Sun-centered frame introduces a
phase ψ in the analysis. The angle ζ is defined in terms of
the component accelerations ax̂, aẑ of a test body along
x̂, ẑ in the laboratory frame,

ζ = tan−1(ax̂/aẑ). (126)

At leading order, ζ is approximated by the ratio of the
usual Newton centripetal and gravitational accelerations,
ζ ≃ 10−3. It represents the angular deviation from the
vertical at the location of the laboratory of a plumb line
or of a test body in free fall.

Table I. Notation for laboratory tests.

Quantity Definition

R mean Earth-Sun distance

R⊕ mean Earth radius

Ω mean Earth orbital frequency

ω mean sidereal frequency

ωe apparatus rotation frequency

V⊕ = ΩR mean Earth orbital speed

VL laboratory rotational speed

T⊕ relative time

η inclination of Earth orbit

χ laboratory colatitude

ψ = ω(T⊕ − T ) phase induced by T⊕
ζ ≈ ω2R⊕/ sin(2χ)g deviation angle

A. Theory

The relevant observables for laboratory tests of Lorentz
symmetry in gravity are the motions of test bodies rel-
ative to the Earth and relative to each other. These
observables can be obtained from the action for a test
body, evaluated at the appropriate post-newtonian order
and expressed in laboratory coordinates.

Consider the action SB
u for a test body given in Eq.

(76), with the gravitational field of the Earth acting as

the source S. The corresponding lagrangian L
(3)
a,c describ-

ing the motion of the test body T at PNO(3) can be
constructed by expanding SB

u with B≡T. The solution
for the metric fluctuation hµν at this order is obtained
from the general expressions (81), (84), and (88), with
the Earth treated as a rigid rotating source S as described
in Sec. IVA2. In what follows, we neglect the gravita-
tional fields of other bodies such as the Sun, although in
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a more detailed treatment these could be incorporated
using similar methods.

For laboratory searches, it is convenient to begin cal-
culations in an Earth-centered frame with coordinates
denoted by xµ̃ = (t̃, x̃, ỹ, z̃). At leading order, the spatial
components of the Earth-centered basis are taken to co-
incide with those of the Sun-centered frame, and t̃ = T .
In the Earth-centered frame, we find

L(3)
a,c = 1

2m
T
(
1 + (cT)t̃t̃ + 2(cT)t̃j̃vj̃

)
vk̃vk̃

+mT(cT)j̃k̃vj̃vk̃

+
GNm

SmT

r

[
1 +

2α

mT
(aT

eff)t̃ +
2α

mS
(aS

eff)t̃

+
α

mS
(aS

eff)j̃vj̃

+(cT)t̃t̃ + (cS)t̃t̃ + 2(cT)(t̃j̃)vj̃

]

+
GNm

T

r3
α(aS

eff)j̃xj̃xk̃vk̃

+
GNm

SmT

5r3
R2

⊕ǫj̃k̃l̃ωk̃xl̃

[ 2α

mT
(aT

eff)j̃ +
α

mS
(aS

eff)j̃

+ 2(cS)(t̃j̃)

]
, (127)

where r =
√
xj̃xj̃ . This expression contains the conven-

tional Newton kinetic and potential terms for a test body
T moving in the gravitational field of S, along with a se-
ries of corrections that depend on the coefficients (aB

eff)µ̃
and (cB)µ̃ν̃ . Some of these additional terms are motional,
analogous to centrifugal effects, and some are gravita-
tional, including ones analogous to gravitomagnetic ef-
fects. Effects from the Earth’s motion about the Sun
are implicitly included via the dependence of (aB

eff)µ̃ and
(cB)µ̃ν̃ on the orbital speed V⊕. This dependence can
be made explicit by expressing the coefficients in Sun-
centered coordinates instead of Earth-centered ones.

To obtain results applicable to laboratory tests, the re-
sult (127) must be transformed from the Earth-centered
frame to the laboratory frame. We denote the laboratory

coordinates by xµ̂, where the spatial coordinates xĵ are
taken to coincide with the standard SME conventions for
a laboratory on the surface of the Earth [21]. In the lab-
oratory, the x̂ axis points South, the ŷ axis points East,
and the ẑ axis points towards the local zenith. To the
required post-newtonian order, t̃ = t̂ and the coordinate
location of the laboratory in the Earth-centered frame
can be written [7]

~ξ = R⊕(sinχ cos(ω⊕T + φ), sinχ sin(ω⊕T + φ), cosχ).
(128)

The transformation between the two sets of spatial coor-
dinates can therefore be written

xj̃ = ξj̃ +Rj̃ĵxĵ , (129)

where Rj̃ĵ is the relevant rotation between the bases of
the laboratory and the Earth-centered frames. Note that
Eq. (129) implies the coefficients (aB

eff)µ̂ and (cB)µ̂ν̂ in

the laboratory frame acquire implicit dependences on the
laboratory speed VL and on the sidereal frequency ω,
which arise from the rotation of the Earth.

The inclusion of the Earth’s rotation in the analysis
implies the laboratory frame is noninertial. The struc-
ture of the first few terms in Eq. (127) reveals that iner-
tial forces in the laboratory couple to (cT)µ̂ν̂ , which can
result in nongravitational Lorentz-violating effects com-
parable in size to the gravitational ones of interest. We
therefore incorporate these nongravitational effects in our
subsequent analyses. In practice, this means effects pro-
portional to the centrifugal acceleration ω2R⊕ ≈ 10−3g
must be considered.

In what follows, we consider effects up to and including
PNO(3). The leading PNO(3) effects are proportional to
the speed V⊕ of the Earth as it revolves about the Sun
and are of order gV⊕ ≈ 10−4g, where g = GNm

S/R2
⊕ for

a laboratory on the surface of the Earth. This yields sen-
sitivity to various components of the coefficients (aweff)µ
and (cw)µν . For some laboratory tests, it is advanta-
geous to consider also PNO(3) effects proportional to the
smaller speed VL of the laboratory due to the rotation of
the Earth, which are of order gVL ≈ 10−6g. The benefit
arises in two ways. First, inclusion of the boost VL intro-
duces effects proportional to (aweff)µ that vary sidereally
instead of annually. This offers access to (aweff)µ for mea-
surements conducted on comparatively short time scales,
albeit at a sensitivity reduced by about two orders of
magnitude. Second, certain laboratory tests have greater
sensitivity to forces in the x̂ and ŷ directions than to ones
in the ẑ direction. The inclusion of effects from (aweff)µ
and (cw)µν that are proportional to VL can then intro-
duce new sensitivities or improve existing ones.

So far, modifications to the trajectory of the test body
arising from the coefficients sµν have been disregarded.
However, it is straightforward to incorporate these in
the lagrangian at PNO(2) because the coordinate choices
made here are consistent with those of Ref. [7] at this
perturbative order. In the laboratory frame, we find the
PNO(2) contribution from sµν to the lagrangian of the
test body can be written

L(2)
s = mTg(sẑx̂x̂+ sẑŷ ŷ − 1

2sẑẑ ẑ − 3
2st̂t̂ẑ). (130)

It turns out that L
(2)
s suffices to achieve sensitivity to

sµν at PNO(3). The point is that the leading PNO(3)
effects are proportional to V⊕, while inclusion of effects
proportional to VL offers no additional benefit in this
case for the tests we consider. The coefficients sµν are
species independent, so they are unobservable in WEP

tests. Moreover, inspection of L
(2)
s reveals that the coef-

ficients sµ̂ν̂ already vary at the sidereal frequency through
the transformation to the Sun frame.

In the laboratory frame, the PNO(3) lagrangian L
(3)
a,c,s

obtained from Eq. (127) and incorporating effects from
sµ̂ν̂ via Eq. (130) is somewhat lengthy in form. As an
illustration of its structure and implications, we can re-
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strict attention to its PNO(2) limit L
(2)
a,c,s. We find

L(2)
a,c,s = 1

2m
T(1 + (cT)t̂t̂)ẋĵ ẋĵ +mT(cT)

ĵk̂
ẋĵ ẋk̂

−mTg
[
1 +

2α

mT
(aT

eff)t̂ +
2α

mS
(aS

eff)t̂

+ (cT)t̂t̂ + (cS)t̂t̂ + 3
2st̂t̂ + 1

2sẑẑ

]
z

+mTg(sẑx̂x+ sẑŷy). (131)

Varying this result yields the Euler-Lagrange equations of
motion, which we can express in the form of the modified
force law

Fĵ = m
ĵk̂
ẍ
k̂
. (132)

At this perturbative order, the inertial and gravitational
forces acting on the test particle are given by

Fx̂ = mTgsẑx̂,

Fŷ = mTgsẑŷ,

Fẑ = −mTg
[
1 +

2α

mT
(aT

eff)t̂ +
2α

mS
(aS

eff)t̂

+ (cT)t̂t̂ + (cS)t̂t̂ + 3
2st̂t̂ + 1

2sẑẑ

]
,

(133)

while

m
ĵk̂

= mT
(
1 + (cT)t̂t̂

)
δ
ĵk̂

+ 2mT(cT)(ĵk̂). (134)

is the effective inertial mass.
These results reveal the generic feature that the grav-

itational force Fĵ acquires tiny corrections both along
the ẑ direction and perpendicular to it. Also, the re-
sponse of the test body deviates slightly from the di-
rection of the applied force because the effective inertial
mass m

ĵk̂
depends on the coefficients (cT)µ̂ν̂ . In princi-

ple, some of these effects are detectable in sensitive labo-
ratory tests, and the corresponding signals are discussed
using PNO(3) results in the following subsections.

Some coefficients appear in combinations that are chal-
lenging to separate in laboratory tests. This is true,
for example, of the coefficients α(aT

eff)T and (cT)TT .
Consider for simplicity the scenario with only isotropic
Lorentz violation in the Sun-centered frame, where
the nonzero coefficients are α(aT

eff)T and (cT)TT =
3(cT)XX = 3(cT)Y Y = 3(cT)ZZ . In the laboratory
frame, (aT

eff)t̂ ≈ α(aT
eff)T and (cT)t̂t̂ ≈ (cT)TT up to boost

factors. These coefficients therefore cannot be readily
separated in gravimeter tests, which depend on time vari-
ations from anisotropic effects. Moreover, inspection of
the PNO(2) lagrangian (131) reveals that if 3α(aT

eff)t̂ =
mT(cT)t̂t̂ then the contributions of α(aT

eff)t̂ and (cT)t̂t̂ to
the effective inertial and gravitational masses are identi-
cal. The combination α(aT

eff)T −mT(cT)TT /3 therefore
cannot be readily separated in conventional WEP tests
either. Note that WEP tests comparing a particle and its
antiparticle can in principle evade this difficulty because
the sign of α(aT

eff)T differs between the two. Another pos-
sibility would be to compare matter with light, an option
considered further in Sec. XI.

B. Free-fall gravimeter tests

In this subsection, we consider laboratory tests that
monitor the motion of a test body in free fall near the
surface of the Earth. The equation of motion for the
test body can be obtained from the PNO(3) lagrangian

L
(3)
a,c,s described in Sec. VII A. Its explicit form is lengthy.

However, all information relevant for present purposes is
contained in its solution expressed to the desired pertur-
bative order. This solution can be written in the form

xĵ = (xo)ĵ + (vo)ĵt+
1
2aĵt

2, (135)

where the test body has initial position ~xo and initial ve-
locity ~vo. The quantities of interest in searches for grav-
itational Lorentz violation are the components aĵ of the
acceleration of the test body in laboratory coordinates.

For purposes of data analysis and reporting sensitiv-
ities to coefficients for Lorentz violation, it is useful to
express the acceleration components aĵ in a form that
displays explicitly the time variation and the dependence
on particle species. In free-fall gravimeter tests, the time
variation appears at frequencies 0, ω, 2ω, ω±Ω, 2ω±Ω,
and Ω, which are collectively labeled as n in what follows.
The dependence on particle species arises from the com-
position of the test and source bodies. It is characterized
by the label w, which ranges over e, p, n for ordinary
matter.

Table II. Amplitudes for the acceleration ax̂.

Amplitude Phase

Aw0 = mw sinχ cosχ[(cw)XX + (cw)Y Y − 2(cw)ZZ ] 0

Awω = 2mw(cw)(XZ) cos 2χ+ 2
5VLα(aweff)Y cosχ ψ

A′w
ω = 1

5VL
[
α(aweff)Y + 2mw(cw)(TY )

]
cosχ ψ

Bwω = 2mw(cw)(Y Z) cos 2χ− 2
5VLα(aweff)X cosχ ψ

B′w
ω = − 1

5VL
[
α(aweff)X + 2mw(cw)(TX)

]
cosχ ψ

Aw2ω = 1
2m

w((cw)XX − (cw)Y Y ) sin 2χ 2ψ

Bw2ω = mw(cw)(XY ) sin 2χ 2ψ

Awω+Ω = −mwV⊕(cw)(TX) sin η cos 2χ ψ

Bwω+Ω = −mwV⊕
[
(cw)(TY ) sin η

− (cw)(TZ)(1 − cos η)
]
cos 2χ ψ

Awω−Ω = −mwV⊕(cw)(TX) sin η cos 2χ ψ

Bwω−Ω = −mwV⊕
[
(cw)(TY ) sin η

+ (cw)(TZ)(1 + cos η)
]
cos 2χ ψ

Aw2ω+Ω = − 1
2m

wV⊕(cw)(TY )(1 − cos η) sin 2χ 2ψ

Bw2ω+Ω = 1
2m

wV⊕(cw)(TX)(1 − cos η) sin 2χ 2ψ

Aw2ω−Ω = 1
2m

wV⊕(cw)(TY )(1 + cos η) sin 2χ 2ψ

Bw2ω−Ω = − 1
2m

wV⊕(cw)(TX)(1 + cos η) sin 2χ 2ψ

AwΩ = −mwV⊕
[
(cw)(TY ) cos η

−2(cw)(TZ) sin η
]
sin 2χ 0

BwΩ = mwV⊕(cw)(TX) sin 2χ 0
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Table III. Amplitudes for the acceleration aŷ.

Amplitude Phase

Cw0 = mwVL(cw)(TZ) sin 2χ 0

Cwω = 2mw(cw)(Y Z) cosχ

− 2
5VLα(aweff)X + 2mwVL(cw)(TX) sin2 χ ψ

C′w
ω = − 1

5VL
[
α(aweff)X + 2(cw)(TX)

]
ψ

Dw
ω = −2mw(cw)(XZ) cosχ

+ 2mwVL(cw)(TY ) sin2 χ− 2
5VLα(aweff)Y ψ

D′w
ω = − 1

5VL
[
2mw(cw)(TY ) + α(aweff)Y

]
ψ

Cw2ω = 2mw(cw)(XY ) sinχ 2ψ

Dw
2ω = −mw((cw)XX − (cw)Y Y ) sinχ 2ψ

Cwω+Ω = mwV⊕
[
(cw)(TZ)(1 − cos η)

− (cw)(TY ) sin η
]
cosχ ψ

Dw
ω+Ω = mwV⊕(cw)(TX) sin η cosχ ψ

Cwω−Ω = −mwV⊕
[
(cw)(TZ)(1 + cos η)

+ (cw)(TY ) sin η
]
cosχ ψ

Dw
ω−Ω = mwV⊕(cw)(TX) sin η cosχ ψ

Cw2ω+Ω = mwV⊕(cw)(TX)(1 − cos η) sinχ 2ψ

Dw
2ω+Ω = mwV⊕(cw)(TY )(1 − cos η) sinχ 2ψ

Cw2ω−Ω = −mwV⊕(cw)(TX)(1 + cos η) sinχ 2ψ

Dw
2ω−Ω = −mwV⊕(cw)(TY )(1 + cos η) sinχ 2ψ

For the x̂ component of the acceleration, some calcu-
lation yields an expression of the form

ax̂ = ω2R⊕ sinχ cosχ

+g
∑

n,w

[(Nw

mT
Awn +

Nw
⊕

mS
A′w
n + 1

3An

)
cos(ωnT + ψn)

+

(
Nw

mT
Bwn +

Nw
⊕

mS
B′w
n + 1

3Bn

)
sin(ωnT + ψn)

]
.

(136)

In this equation, the amplitudes Awn , A′w
n , Bwn , B′w

n con-
tain the coefficients for Lorentz violation (aweff)µ, (cw)µν
and hence depend on particle species. These amplitudes
and their associated phases are listed in Table II. The re-
maining amplitudes An, Bn contain the coefficients sµν
from the gravitational sector, which are independent of
the composition of the test body. These amplitudes can
be obtained from the amplitudes Awn , Bwn by the sub-
stitutions mw → 1, (cw)ΣΞ → 1

2sΣΞ, and (aweff)Ξ → 0,
disregarding contributions proportional to VL.

The ŷ component of the acceleration can be decom-
posed similarly. We find

aŷ =
∑

n,w

g
[(Nw

mT
Cwn +

Nw
⊕

mS
C′w
n + 1

3Cn

)
cos(ωnT + ψn)

+

(
Nw

mT
Dw
n +

Nw
⊕

mS
D′w
n + 1

3Dn

)
sin(ωnT + ψn)

]
.

(137)

The amplitudes Cwn , C′w
n , Dw

n , D′w
n depend on particle

species through the coefficients (aweff)µ, (cw)µν and are
listed in Table III, along with the corresponding phases.
The remaining amplitudes Cn, Dn are obtained from Cwn ,
Dw
n using the substitutions mw → 1, (cw)ΣΞ → 1

2sΣΞ,
and (aweff)Ξ → 0, disregarding contributions proportional
to VL as before.

For the ẑ component of the acceleration, we obtain

aẑ = −g + ω2R⊕ sin2 χ

+
∑

n,w

g
[(Nw

mT
Ewn +

Nw
⊕

mS
E′w
n + 1

3En

)
cos(ωnT + ψn)

+

(
Nw

mT
Fwn +

Nw
⊕

mS
F ′w
n + 1

3Fn

)
sin(ωnT + ψn)

]
.

(138)

The amplitudes Ewn , E′w
n , Fwn , F ′w

n depend on particle
species via the coefficients (aweff)µ, (cw)µν . The ampli-
tudes En, Fn are independent of species and given in
terms of the coefficients sµν . All these amplitudes and
their phases are provided in Table IV.

In principle, the results of a free-fall laboratory test
using any gravimeter can be analyzed with the above
equations. The dominant effects appear at different fre-
quencies for different coefficients, so the time scale of data
taking in a given experiment affects the breadth of its
reach in coefficient space. Also, each signal frequency can
be expected to have distinct systematics. For example,
dominant effects from the coefficients (aeff)J occur at the
annual frequency Ω, for which seasonal systematics are
relevant. Note that all the Lorentz-violating effects can
be accessed at or near the sidereal frequency ω, although
in some cases at reduced sensitivity.

At least two kinds of devices can be classified as free-
fall gravimeters: falling corner cubes, and matter inter-
ferometers. Falling corner cubes, which typically are
sensitive only to the direction of the free-fall motion,
are used to monitor time variations of the gravitational
field for geodesy and other geophysical purposes [57].
In principle, they are of interest for free-fall gravimeter
tests of Lorentz violation. However, matter interferome-
ters presently carry several advantages over falling corner
cubes in this context. They are slightly more sensitive,
some types can sense accelerations in more than one di-
rection, and the composition of the test body can be
determined more readily. We therefore focus on matter
interferometers in this subsection, revisiting the use of
both falling corner cubes and interferometers in the con-
text of free-fall WEP tests in Sec. VII D.
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Table IV. Amplitudes for the acceleration aẑ.

Amplitude Phase

Ew0 = −2α(aweff)T + 2mw(cw)ZZ cos2 χ

+mw ((cw)XX + (cw)Y Y ) sin2 χ 0

E′w
0 = −2α(aweff)T −mw(cw)TT 0

Ewω = 2mw(cw)(XZ) sin 2χ− 4
5VLα(aweff)Y sinχ ψ

E′w
ω = − 4

5VL
(
3α(aweff)Y +mw(cw)(TY )

)
sinχ ψ

Fwω = 2mw(cw)(Y Z) sin 2χ+ 4
5VLα(aweff)X sinχ ψ

F ′w
ω = 4

5VL
(
3α(aweff)X +mw(cw)(TX)

)
sinχ ψ

Ew2ω = mw((cw)XX − (cw)Y Y ) sin2 χ 2ψ

Fw2ω = 2mw(cw)(XY ) sin2 χ 2ψ

Ewω+Ω = −mwV⊕(cw)(TX) sin η sin 2χ ψ

Fwω+Ω = −mwV⊕
[
(cw)(TY ) sin η

− (cw)(TZ)(1 − cos η)
]
sin 2χ ψ

Ewω−Ω = −mwV⊕(cw)(TX) sin η sin 2χ ψ

Fwω−Ω = −mwV⊕
[
(cw)(TY ) sin η

+ (cw)(TZ)(1 + cos η)
]
sin 2χ ψ

Ew2ω+Ω = −mwV⊕(cw)(TY )(1 − cos η) sin2 χ 2ψ

Fw2ω+Ω = mwV⊕(cw)(TX)(1 − cos η) sin2 χ 2ψ

Ew2ω−Ω = mwV⊕(cw)(TY )(1 + cos η) sin2 χ 2ψ

Fw2ω−Ω = −mwV⊕(cw)(TX)(1 + cos η) sin2 χ 2ψ

EwΩ = 2V⊕α((aweff)Y cos η + (aweff)Z sin η)

− 2mwV⊕
[
(cw)(TY ) cos η sin2 χ

+ 2(cw)(TZ) sin η cos2 χ
]

0

E′w
Ω = 2V⊕α((aweff)Y cos η + (aweff)Z sin η)

+ 2mwV⊕((cw)(TY ) cos η + (cw)(TZ) sin η) 0

FwΩ = −2V⊕α(aweff)X + 2mwV⊕(cw)(TX) sin2 χ 0

F ′w
Ω = −2V⊕α(aweff)X − 2mwV⊕(cw)(TX) 0

E0 = − 1
2sZZ cos2 χ− 1

4 (sXX + sY Y ) sin2 χ

− 3
2sTT 0

Eω = − 1
2s(XZ) sin 2χ ψ

Fω = − 1
2s(Y Z) sin 2χ ψ

E2ω = − 1
4 (sXX − sY Y ) sin2 χ 2ψ

F2ω = − 1
4s(XY ) sin2 χ 2ψ

Eω+Ω = 1
4V⊕s(TX) sin η sin 2χ ψ

Fω+Ω = 1
4V⊕

[
s(TY ) sin η

− s(TZ)(1 − cos η)
]
sin 2χ ψ

Eω−Ω = 1
4V⊕s(TX) sin η sin 2χ ψ

Fω−Ω = 1
4V⊕

[
s(TY ) sin η

+ s(TZ)(1 + cos η)
]
sin 2χ ψ

E2ω+Ω = 1
4V⊕s(TY )(1 − cos η) sin2 χ 2ψ

F2ω+Ω = − 1
4V⊕s(TX)(1 − cos η) sin2 χ 2ψ

E2ω−Ω = − 1
4V⊕s(TY )(1 + cos η) sin2 χ 2ψ

F2ω−Ω = 1
4V⊕s(TX)(1 + cos η) sin2 χ 2ψ

EΩ = V⊕
[
s(TY ) cos η(1

2 sin2 χ+ 3)

+ s(TZ) sin η(cos2 χ+ 3)
]

0

FΩ = −V⊕s(TX)(
1
2 sin2 χ+ 3) 0

Matter interferometers, which permit quantum-
mechanical laboratory measurements of the motion of
falling matter, have attained impressive sensitivities to
gravitational acceleration [58] and to rotational accelera-
tions via the Sagnac effect [59]. In the context of gravita-
tional Lorentz violation, matter interferometry has been
used to measure combinations of the coefficients sµν and

(kF )αµαν [5] based on the gravimeter analysis of effects
from the pure-gravity sector of the SME [7]. Here, we
extend the latter analysis to include effects from the co-
efficients (aweff)µ, (cw)µν and generalize it to other inter-
ferometer configurations.

The basic idea of a matter interferometer is to place the
matter in a superposition of spatially separated quantum
states, which may acquire a measurable relative phase.
In the gravitational tests considered here, the behavior
of the interferometer is close to the classical limit, and
a convenient way to perform the analysis is to proceed
semiclassically via path integration along the classical
motion [58, 60]. The phase difference between the final
states can then be viewed as a sum of three contribu-
tions: the phase difference acquired from the momentum
transfers used to control the beams, the phase difference
accumulated from the classical action along the different
paths, and in some configurations a phase difference com-
ing from a final separation of the states. It turns out that
the dominant effect for acceleration sensing is the phase
difference acquired through momentum transfers. Since
leading-order Lorentz-violating motional effects appear
as modified accelerations, the phase difference from the
momentum transfers is the relevant contribution in the
present context.

For definiteness, suppose the interferometer paths
trace a parallelogram. This includes the limiting case of
temporal path separation, where the parallelogram has
zero area. Other shapes could also be analysed using the
equation of motion (135). In the Lorentz-invariant case,
the standard result for the phase shift due to the Earth’s

gravitational field is ∆φ = kẑgτ
2, where ~k is the magni-

tude of the momentum transfer in the beam splitter and
τ is the time of flight between impulses. With Lorentz
violation present, we find the phase shift ∆φ takes a sim-
ilar form but with the Newton gravitational acceleration
replaced by the accelerations in Eq. (135), giving

∆φ = kĵaĵτ
2. (139)

The signal frequencies associated with Lorentz viola-
tion can be identified by substitution of the expressions
(136)-(138) for the acceleration components aĵ . Note
that Lorentz-violating effects on the atomic energy lev-
els could generate additional contributions to the phase
difference but are already tightly constrained in other ex-
periments and so can typically be neglected. Note also
that possible Lorentz-violating effects varying with the
particle spins, which are described explicitly by the rel-
ativistic hamiltonian of Sec. III B, are disregarded here
as outside our present scope. A comprehensive investiga-
tion of their implications for matter interferometry may
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be of interest [61].
Several atom interferometers currently or recently op-

erating are relevant to free-fall gravimeter searches for
Lorentz violation. An impressive sensitivity of about
1 × 10−10g to the vertical acceleration was achieved by
Peters, Chung, and Chu [58]. In another apparatus, a

differential-acceleration sensitivity of 3×10−9g/
√

Hz has
been demonstrated [62]. An interferometer designed for
experiments in space is expected to achieve sensitivity
of about 3 × 10−9g in ground operations [63]. Initial
sensitivities to accelerations in each direction of about
6 × 10−7g after 10 minutes of averaging have been at-
tained in a device using highly parabolic trajectories
[64]. Recent estimates suggest that future measurements
of vertical acceleration could achieve sensitivities at the
level of about 10−15g [65].

Given this information and the phase shift (139), we
can use Tables II, III, and IV to obtain crude estimates
for attainable sensitivities to coefficients for Lorentz vi-
olation in existing or near-future atom interferometers.
With present capabilities, sensitivities at the level of
parts in 105 could in principle be obtained to combi-
nations of the coefficients α(aweff)J , J = X,Y, Z and of
several currently unconstrained components of the coef-
ficients (cw)ΣΞ, including (cn)(TJ) for the neutron. The
relevant signals are associated with the Earth’s boost as it
revolves about the Sun, so they exhibit an annual period-
icity. The next generation of atom interferometers could
in principle improve this sensitivity to parts in 1010. The
boost of the laboratory due to the Earth’s rotation pro-
vides sensitivities that have sidereal periodicities instead
but that are weaker by a factor of about 100. Note that
the boost suppressions could in principle be avoided for
certain coefficients, including presently unbounded com-
binations involving (cn)ZZ , by the use of an interferome-
ter sensitive to the accelerations ax̂, aŷ that is placed on
a rotating turntable. Note also that individual sensitivi-
ties to neutron coefficients can in principle be extracted
by performing atom interferometry with different neutral
atoms having distinct proton-to-neutron ratios. Another
possibility with weaker existing sensitivity includes neu-
tron interferometry [66], which could provide indepen-
dent and clean bounds on neutron coefficients.

C. Force-comparison gravimeter tests

Another class of gravimeter tests is based on the idea
of countering the gravitational force with an appropri-
ate electromagnetic force. Force-comparison gravimeter
tests can be performed with gravimeters based on sys-
tems of springs and masses [57] and with superconduct-
ing gravimeters [57, 67, 68]. At present, the latter de-
vices have sensitivities competitive with those of exist-
ing atom interferometers. Certain experiments studying
short-range gravity may also offer relevant sensitivities
[69].

The signals for gravitational Lorentz violation in a

given force-comparison gravimeter can be extracted from

the PNO(3) lagrangian L
(3)
a,c,s discussed in Sec. VII A.

Since macroscopic bodies are involved, the analysis must
include an assessment of their composition. Note also
that conventional intuition from Newton’s second law
can be misleading because the effective inertial masses
depend on the coefficients (cw)µν , as discussed following
Eq. (134).

Superconducting gravimeters have already been pro-
posed as suitable devices for measuring the gravity-sector
coefficients sµν for Lorentz violation [7]. Here, we ex-
tend this discussion to include effects from the coefficients
(aweff)µ and (cw)µν . The analysis proceeds directly from

the PNO(3) lagrangian L
(3)
a,c,s by noting that the device is

designed to maintain ẍĵ = 0. The applied force required
to hold this constraint can be taken as the relevant ob-
servable and can be written

Fẑ′ = Fẑ cos ζ + Fx̂ sin ζ, (140)

where ζ is the deviation angle defined in Eq. (126). To
maintain consistent counting of small effects, we restrict
terms independent of velocity to first order in ζ and terms
containing a power of velocity to zeroth order in ζ.

We find that the relevant contributions to the force Fẑ′
can be decomposed by frequency as

Fẑ′ = mTg(1 − ζ tanχ− 3
2ζ

2) −mTg

×
∑

n6=0,w

[(
Nw

mT
Gwn +

Nw
⊕

mS
E′w
n + 1

3Gn

)
cos(ωnT + ψn)

+

(
Nw

mT
Hw
n +

Nw
⊕

mS
F ′w
n + 1

3Hn

)
sin(ωnT + ψn)

]
,

(141)

where constant effects that are unobservable in supercon-
ducting gravimeters are neglected. In this expression, the
amplitudes Gwn , Hw

n and their phases are given in Table
V, while E′w

n and F ′w
n are listed in Table IV. The remain-

ing amplitudes Gn and Hn can be expressed in terms of
amplitudes given in Tables II and IV as

Gn = Anζ + En, Hn = Bnζ + Fn. (142)

The frequency decomposition (141) can be examined
to extract crude estimates of attainable sensitivities to
Lorentz violation. In this way, we estimate that the
presently unbounded coefficients α(aweff)J and (cw)(TJ)

could be measured at the level of parts in 107 using ex-
isting data from superconducting gravimeters [68]. Im-
proved sensitivities are likely to be attainable in a dedi-
cated experiment of this type.
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Table V. Amplitudes for the force Fẑ′ .

Amplitude Phase

Gwω = 2mwζ(cw)(XZ)

− 4
5VLα(aweff)Y sinχ− 2mwVL(cw)(TY ) sinχ ψ

Hw
ω = 2mwζ(cw)(Y Z)

+ 4
5VLα(aweff)X sinχ+ 2mwVL(cw)(TX) sinχ ψ

Gw2ω = mwζ((cw)XX − (cw)Y Y ) 2ψ

Hw
2ω = 2mwζ(cw)(XY ) 2ψ

GwΩ = 2V⊕α((aweff)Y cos η + (aweff)Z sin η)

+ 2mwV⊕
[
(cw)(TY ) cos η sin2 χ

+ 2(cw)(TZ) sin η cos2 χ
]

0

Hw
Ω = 2V⊕α(aweff)X + 2mwV⊕(cw)(TX) sin2 χ 0

For tests of short-range gravity and certain other ap-
plications, it is useful to consider the standard case of
two point masses m1 and m2 at coordinate locations ~x1

and ~x2. With this setup, the modified Newton potential
V at PNO(2) in the laboratory frame can be obtained

from L
(3)
a,c,s. We find

V = −GNm1m2

|~x1 − ~x2|
[
1 +

2α

m1
(a1

eff)t̂ +
2α

m2
(a2

eff)t̂

+(c1)t̂t̂ + (c2)t̂t̂ + 1
2 x̂

ĵ x̂k̂sĵk̂
]
, (143)

where x̂ = (~x1 − ~x2)/|~x1 − ~x2|. This modified poten-
tial exhibits the usual inverse-distance dependence, and
it generalizes Eq. (137) of Ref. [7]. The corresponding
modified Newton force typically has a component per-
pendicular to the unit vector x̂, while obtaining the ac-
celerations requires determining also the effective iner-
tial masses. As usual, any motion of the masses relative
to the Sun-centered frame implies time dependence of
the laboratory-frame coefficients. In principle, the above
modified Newton potential could be used in conjunction
with integration or finite-element methods to determine
the effects of the coefficients (aweff)µ, (cw)µν , sµν on the
behavior of two interacting bodies.

D. Free-fall WEP tests

In this subsection, we consider WEP tests in which
signals for Lorentz violation can be sought by monitoring
the relative motion of two freely falling bodies of different
composition. Typical free-fall WEP tests are sensitive to
motion along the direction of the net acceleration aẑ′ .
This acceleration is the combination

aẑ′ = aẑ cos ζ + ax̂ sin ζ (144)

of the component accelerations (136) and (138), weighted
by the deviation angle ζ given in Eq. (126). In what
follows, terms containing both a boost factor and a factor
of ζ are treated as higher order and negligible, as in the
previous subsection.

The relevant observable for free-fall WEP tests is the
relative position ∆ẑ′ of two test bodies 1 and 2 in a given
drop. It can be written as

∆ẑ′ =
[
(vo)

1
ẑ′ − (vo)

2
ẑ′

]
t̂+ 1

2

(
a1
ẑ′ − a2

ẑ′

)
t̂2. (145)

This relative position varies with the canonical time T .
Decomposing by frequency yields the expression

∆ẑ′ =
∑

n,w

(
Nw

1

m1
− Nw

2

m2

)
T 2

×[Iwn cos(ωnT + ψn) + Jwn sin(ωnT + ψn)].

(146)

The amplitudes Iwn and Jwn can be expressed as

Iwn = Awn ζ + Ewn , Jwn = Bwn ζ + Fwn , (147)

where Awn , Bwn are listed in Table II and Ewn , Fwn are
given in Table IV, along with the associated phases ψn.
In Eq. (146), the quantities Nw

1 and Nw
2 are the numbers

of particles of type w appearing in the test bodies 1 and
2, respectively, while m1 and m2 are the corresponding
conventional masses.

The frequency decomposition (146) of the signal (145)
can be used to provide rough estimates of attainable sen-
sitivities to Lorentz violation in existing or near-future
free-fall WEP tests. We combine values for the fractional
acceleration sensitivity ∆a/a discussed in Refs. [65, 70–
75] with the result (146) to compile some estimates in Ta-
ble VI. In this table, the first row lists the fractional accel-
eration sensitivity, while each of the other rows concerns
a particular combination of coefficients. For brevity, in
the first column we adopt the notations

(aeff)Y+Z = (aeff)Y cos η + (aeff)Z sin η,

(cw)Q = (cw)XX + (cw)Y Y − 2(cw)ZZ , (148)

along with those introduced in Eqs. (123) and (125). We
follow common procedure in the literature [2] by taking
(cw)TT , (cw)XX−(cw)Y Y , and (cw)Q as the relevant inde-
pendent combinations of the traceless coefficients (cw)ΣΞ.

Each column in Table VI lists estimated attainable sen-
sitivities on the moduli of various quantities in specified
types of free-fall WEP test, expressed to the nearest or-
der of magnitude. Values listed with neither brackets
nor braces are limits based on published data that are
implied by our present analysis. Values shown in brack-
ets are our estimate of sensitivities that could in principle
be obtained from a suitable reanalysis of existing data.
Values shown in braces represent our estimate of sensi-
tivities attainable using data from future tests.

The second column of the table concerns free-fall WEP
tests using falling corner cubes [70, 71]. In the second
entry of this column, we present a single bound on the
time-independent portion of the signal implied by exist-
ing data. The remainder of this column lists crude es-
timates of sensitivities that could be attained through
sidereal and annual analysis of the same data.
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The third and fourth columns of the table list sensitiv-
ities from free-fall WEP tests using atom interferometry.
In the second entry of the third column, we present a sin-
gle bound extracted from existing data [72]. The fourth
column concerns proposals for future tests with atom in-
terferometers [65], based on the idea that the relative
vertical acceleration of two different atoms may be mea-
sured using a simultaneous dual-species fountain [76].

The remaining columns of the table concern other pro-
posed free-fall WEP tests. Crude estimates are provided
of the sensitivities that might be achieved in the Principle
of Equivalence Measurement (POEM) [73], via balloon
drops in the General Relativity Accuracy Test (GReAT)
[74], and using the Bremen drop tower [75].

In the table, the estimates for the coefficients listed in
the second and third rows and for (cn)Q in the penul-
timate row all arise from the time-independent compo-
nent of the data. A nonzero signal for any of these mea-
surements would therefore be challenging to distinguish
from other potential sources of WEP violation. Note
that obtaining the independent sensitivities in the third
and penultimate rows requires combining data taken in

free-fall WEP tests performed at different colatitudes χ.

Independent sensitivities can also be achieved via other
techniques. One possibility is positronium interferometry
[77], which via comparison with ordinary matter could
yield a bound on different linear combinations of (aweff)T
and (cw)TT . Also, some independent measurements can
be extracted by combining results from free-fall WEP
tests with those from the force-comparison WEP tests
discussed below.

The next generation of the POEM experiment [73] is
the proposed Sounding Rocket POEM (SR-POEM) [78],
which is a WEP test designed to measure to 10−16 the rel-
ative acceleration of freely falling test bodies on a sound-
ing rocket during certain phases of its flight. Although
not terrestrial, this experiment can also be analyzed us-
ing the methods presented here. A competitive sensitiv-
ity is anticipated for measurements of the combination
α(ae+p−neff )T − mp(ce+p−n)TT /3 of isotropic coefficients.
Obtaining sufficient data to resolve the periodic changes
necessary for sensitivity to other coefficient combinations
would be challenging.

Table VI. Sensitivities for free-fall WEP tests.

Falling Atom Tossed Balloon Drop

Coefficient corner-cube interferometry masses drop tower

combination [70, 71] [72] [65] [73] [74] [75]
∆a
a 10−10 10−7 {10−17} {10−14} {10−15} {10−12}
α(ae+p−neff )T − 1

3m
p(ce+p−n)TT

+ (1
2 cos2 χ− 1

6 )mn(cn)Q 10−8 GeV 10−5 GeV {10−15 GeV} {10−12 GeV} {10−13 GeV} {10−10 GeV}
α(ae+p−neff )T − 1

3m
p(ce+p−n)TT . . . . . . {10−15 GeV} {10−12 GeV} {10−13 GeV} {10−10 GeV}

α(ae+p−neff )X [10−4 GeV] . . . {10−11 GeV} {10−8 GeV} {10−9 GeV} {10−6 GeV}
α(ae+p−neff )Y+Z [10−4 GeV] . . . {10−11 GeV} {10−8 GeV} {10−9 GeV} {10−6 GeV}
α(ae+p−neff )Y [10−2 GeV] . . . {10−9 GeV} {10−6 GeV} {10−7 GeV} {10−4 GeV}
α(ae+p−neff )Z [10−2 GeV] . . . {10−9 GeV} {10−6 GeV} {10−7 GeV} {10−4 GeV}
(cn)Q . . . . . . {10−15} {10−12} {10−13} {10−10}
(cn)(TJ) [10−4] . . . {10−11} {10−8} {10−9} {10−6}

E. Force-comparison WEP tests

Typical force-comparison WEP tests can be viewed
as comparing the motion of two or more bodies joined
through electromagnetic forces with that predicted by
an equation of the modified form (132). The predicted
motion depends on the details of the configuration, so a
unified analysis for all force-comparison WEP tests is im-
practical. Here, we consider as an illustration a sensitive
existing force-comparison WEP test based on a torsion
pendulum [35, 81]. Exceptional sensitivity to Lorentz vi-
olation can be achieved using a torsion pendulum with a
spin-weighted bob [34, 41, 82], but here we treat instead
a bob with a dipolar composition. We remark in pass-
ing that another interesting option for force-comparison
WEP tests is the use of superconducting gravimeters to

compare gravitational forces on parts of the Earth having
different compositions [83], although present sensitivities
to coefficients for Lorentz violation are likely to be some-
what weaker.

For the torsion pendulum, a simple model of the bob
is a dumbbell viewed as a rod with test bodies 1 and 2
placed on each end. The two test bodies are composed
of different materials, and the bob is suspended by a tor-
sion fiber attached at the midpoint between them. The
resulting pendulum is typically rotated in the laboratory
to improve the modulation of the signal. The relevant ob-
servable in such tests is the twist angle θ(T ) of the torsion
fiber. This angle can be calculated from the Newton sec-
ond law as modified by the presence of Lorentz violation.

At zeroth order in Lorentz violation, the pendulum
hangs at an angle ζ from the local vertical in the labo-
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ratory given by Eq. (126). Lorentz-violating corrections
to ζ exist, but these make no contribution to the signal
to the order at which we work. This angle represents
the equilibrium position for the swing mode of the pen-
dulum. Lorentz-violating modifications to this position
could drive small excitations of the swing mode, but ex-
periments tuned to the torsion mode are typically com-
paratively insensitive to other modes [81].

The orientation of the bob about the axis perpendicu-
lar to both the torsion fiber and to the dumbbell dipole
moment can also be considered. This is the equilibrium
position for the wobble mode of the pendulum. For sim-

plicity, we assume here that the bob is suspended at a
point P equidistant between the centers of mass of the
test bodies and that the test bodies are constructed to
ensure the dumbbell is perpendicular to the torsion fiber.
In the absence of Lorentz violation, this implies equality
of the two masses m1 and m2. However, in the presence
of Lorentz violation, m1 and m2 differ at leading order in
the coefficients for Lorentz violation. As the pendulum
rotates, this difference could shift the dumbbell orienta-
tion away from its equilibrium point and generate small
excitations of the wobble mode about P . Again, experi-
ments are comparatively insensitive to this mode.

Table VII. Amplitudes for torsion-pendulum tests.

Amplitude Phase αn

Kωe
= − 1

2 (mw(cw)XX +mw(cw)Y Y − 2α(aweff)T )
(
1 + ω2R⊕

g
sin2 χ

)
sin 2χ φ

Kωe+Ω = − 1
2V⊕α((aweff)Y cos η + (aweff)Z sin η) sin 2χ+ 1

2m
wV⊕(cw)(TY ) cos η sin 2χ φ

Lωe+Ω = − 1
2V⊕α(aweff)X sin 2χ+ 1

2m
wV⊕(cw)(TX) sin 2χ φ

Kωe−Ω = − 1
2V⊕α((aweff)Y cos η + (aweff)Z sin η) sin 2χ+ 1

2m
wV⊕(cw)(TY ) cos η sin 2χ φ

Lωe−Ω = 1
2V⊕α(aweff)X sin 2χ− 1

2m
wV⊕(cw)(TX) sin 2χ φ

Kωe+ω = mw(cw)(XZ)

(
1 − ω2R⊕

g
cos2 χ

)
sin2 χ− gVLα

5ω2R⊕
(aweff)Y (1 + cosχ) φ+ ψ

Lωe+ω = −mw(cw)(Y Z)

(
1 − ω2R⊕

g
cos2 χ

)
sin2 χ− gVLα

5ω2R⊕
(aweff)X(1 + cosχ) φ+ ψ

Kωe−ω = mw(cw)(XZ)

(
1 − ω2R⊕

g
cos2 χ

)
sin2 χ+ gVLα

5ω2R⊕
(aweff)Y (1 − cosχ) φ− ψ

Lωe−ω = mw(cw)(Y Z)

(
1 − ω2R⊕

g
cos2 χ

)
sin2 χ+ gVLα

5ω2R⊕
(aweff)X(cosχ− 1) φ− ψ

Kωe+2ω = − 1
2m

w((cw)XX − (cw)Y Y )
(
sinχ+ sinχ cosχ+ ω2R⊕

g
sin3 χ cosχ

)
φ+ 2ψ

Lωe+2ω = mw(cw)(XY )

(
sinχ+ sinχ cosχ+ ω2R⊕

g
sin3 χ cosχ

)
φ+ 2ψ

Kωe−2ω = 1
2m

w((cw)XX − (cw)Y Y )
(
sinχ− sinχ cosχ− ω2R⊕

g
sin3 χ cosχ

)
φ− 2ψ

Lωe−2ω = mw(cw)(XY )

(
sinχ− sinχ cosχ− ω2R⊕

g
sin3 χ cosχ

)
φ− 2ψ

Kωe+ω+Ω = − 1
2m

wV⊕(cw)(TX) sin η sin2 χ φ+ ψ

Lωe+ω+Ω = 1
2m

wV⊕
[
(cw)(TY ) sin η − (cw)(TZ)(1 − cos η)

]
sin2 χ φ+ ψ

Kωe+ω−Ω = − 1
2m

wV⊕(cw)(TX) sin η sin2 χ φ+ ψ

Lωe+ω−Ω = 1
2m

wV⊕
[
(cw)(TY ) sin η + (cw)(TZ)(1 + cos η)

]
sin2 χ φ+ ψ

Kωe−ω+Ω = − 1
2m

wV⊕(cw)(TX) sin η sin2 χ φ− ψ

Lωe−ω+Ω = − 1
2m

wV⊕
[
(cw)(TY ) sin η + (cw)(TZ)(1 + cos η)

]
sin2 χ φ− ψ

Kωe−ω−Ω = − 1
2m

wV⊕(cw)(TX) sin η sin2 χ φ− ψ

Lωe−ω−Ω = − 1
2m

wV⊕
[
(cw)(TY ) sin η − (cw)(TZ)(1 − cos η)

]
sin2 χ φ− ψ

Kωe+2ω+Ω = 1
2m

wV⊕(cw)(TY )(1 − cos η) sinχ(1 + cosχ) φ+ 2ψ

Lωe+2ω+Ω = 1
2m

wV⊕(cw)(TX)(1 − cos η) sinχ(1 + cosχ) φ+ 2ψ

Kωe+2ω−Ω = − 1
2m

wV⊕(cw)(TY )(1 + cos η) sinχ(1 + cosχ) φ+ 2ψ

Lωe+2ω−Ω = − 1
2m

wV⊕(cw)(TX)(1 + cos η) sinχ(1 + cosχ) φ+ 2ψ

Kωe−2ω+Ω = − 1
2m

wV⊕(cw)(TY )(1 + cos η) sinχ(cosχ− 1) φ− 2ψ

Lωe−2ω+Ω = 1
2m

wV⊕(cw)(TX)(1 + cos η) sinχ(cosχ− 1) φ− 2ψ

Kωe−2ω−Ω = 1
2m

wV⊕(cw)(TY )(1 − cos η) sinχ(cosχ− 1) φ− 2ψ

Lωe−2ω−Ω = 1
2m

wV⊕(cw)(TX)(1 − cos η) sinχ(1 − cosχ) φ− 2ψ

To analyze the torsion mode, it is convenient to express
the relevant contributions to the difference m1 − m2 of
the test-body masses in a form displaying the dependence
on particle species. This form can be obtained from Eq.

(133), giving

m1 −m2 = −
∑

w

(Nw
1 −Nw

2 ) (2α(aweff)T +mw(cw)TT ) .

(149)
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At leading order in Lorentz violation, the oscillations of
the system are determined by the second-order differen-
tial equation

I
d2θ

dT 2
+ 2γI

dθ

dT
+ κθ = τ, (150)

where γ is the torsional damping constant and κ is the
torsional spring constant. The moment of inertia I can
be taken as

I = (m1 +m2)r
2
0 + I ′, (151)

where r0 is the distance from P to the test bodies and I ′ is
the moment of inertia of the remaining matter comprising
the dumbbell. The torque τ includes Lorentz-violating
effects and is determined by the forces on the test bodies

calculated from the PNO(3) lagrangian L
(3)
a,c,s.

The damping term in Eq. (150) ensures that free oscil-
lations vanish in the steady state. The time dependence
of the steady-state solution is therefore determined by the
rotations of the pendulum relative to the Sun-centered
frame. Neglecting possible torques other than those im-

plied by L
(3)
a,c,s, the steady-state solution can be written

in frequency-decomposed form as

θ(T ) =
∑

n,w

(Nw
1 −Nw

2 )ω2R⊕r0

I
√

(ω2
0 − ω2

n)
2 + 4γ2ω2

n

×
[
Kn sin(ωnT + βn + αn)

+Ln cos(ωnT + βn + αn)
]
, (152)

where βn = 2γωn/(ω
2
0 − ω2

n) and where αn is a phase
fixing the relationship between the time coordinate in
the turntable frame and the Sun-centered time T . The
amplitudes Kn, Ln and the phase αn are given in Table
VII. With the exception of the first row in the table, these
signals for Lorentz violation are distinguished from other
potential sources of WEP violation by their characteristic
time dependence.

In the above analysis, the assumption of a steady-
state solution implies the pendulum motion is governed
by leading-order Lorentz violation, while the torque τ
is taken as the only relevant source of Lorentz viola-
tion. Note that Lorentz-violating contributions to the
moment of inertia I can be neglected here because they
enter only at higher order. These are a manifestation
of the angular-momentum nonconservation that accom-
panies Lorentz violation, and they are analogous to the
Lorentz-violating contributions to the effective inertial
mass in the modified Newton second law (132). In prin-
ciple, the rotation of the apparatus in the laboratory in-
troduces similar effects proportional to cJK and ω2

er0.
These may be comparable in magnitude to effects listed
in Table VII that are suppressed by ω2R⊕V⊕, but they
offer no additional advantage in terms of sensitivity and
so are disregarded here.

The above analysis can be used to extract constraints
on Lorentz violation from the results of the torsion-
pendulum WEP tests reported in Refs. [35, 81]. The

attained sensitivity to the differential acceleration of Be
and Ti test bodies at the level of 10−15 ms−2 [35] is the
experimental basis for our limit (121), which extends an
earlier bound [11] to include the coefficients eµ. In the
remainder of this subsection, we revisit this issue to incor-
porate the slightly weaker constraints from torsion pen-
dulum experiments using Al, Be, Cu, and Si test bodies
[81], and we consider implications of nonzero (cw)µν .

First, suppose (cw)µν = 0. Inclusion of data from tests
with different materials permits the extraction of some
independent sensitivities to neutron coefficients and to
combinations of electron and proton coefficients. This
treatment relies on differences in binding energy be-
tween the materials involved, so the signal sensitivity of
10−15 ms−2 relative to ω2R⊕ ≃ 3 × 10−3 ms−2 is sup-
pressed both by the typical material-dependence factor
of (Nw

1 − Nw
2 ) ≃ 10−2 appearing in Eq. (152) and by

another order of magnitude from the binding-energy dif-
ference. By combining available Be-Ti and Al-Be data
[81] we obtain the estimated bounds

|α(ae+peff )T | ∼< 10−10 GeV,

|α(aneff)T | ∼< 10−10 GeV, (153)

valid for (cw)µν = 0.
If instead nonzero coefficients (cw)µν are present, then

we obtain the estimated bound

|α(ae+p−neff )T− 1
3m

p(ce+p−n)TT− 1
6m

n(cn)Q| ∼< 10−11 GeV.
(154)

The contributions due to the spatial neutron coefficient
(cn)Q cannot be disentangled from those due to the tem-
poral components at this order in the analysis. However,
this separation becomes feasible when the result (154)
is combined with the limit achieved via free-fall WEP
tests given in row 2 of Table VI. We thereby obtain the
constraints

|α(ae+p−neff )T − 1
3m

p(ce+p−n)TT | ∼< 10−8 GeV,

|(cn)Q| ∼< 10−8. (155)

As discussed following Eq. (125), the possibility of
(cw)µν -type Lorentz-violating effects in the binding en-
ergy impedes its direct use in extracting independent
sensitivities to |α(ae+peff )T − 1

3m
p(ce+p)TT | and |α(aneff)T −

1
3m

p(cn)TT |.
In addition to the constraints (153), (154), and (155),

other new bounds could be placed on the moduli of cer-
tain coefficients for Lorentz violation by reanalysing the
time dependence of the data obtained in the experiments
of Refs. [35, 81] using the result (152). Crude estimates
of these sensitivities are given in Table VIII. These are
obtained disregarding binding-energy considerations but
making the strong assumption that all relevant frequen-
cies in Table VII can be studied in the data. Allowing for
binding-energy effects could yield independent sensitivi-
ties to the neutron coefficients and to a combination of
proton and electron coefficients, both reduced by roughly
a factor of 10.
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Table VIII. Sensitivities for torsion-pendulum tests.

Coefficient Sensitivity

cn(TJ) [10−7]

α(ae+p−neff )X [10−8 GeV]

α(ae+p−neff )Y+Z [10−7 GeV]

α(ae+p−neff )Y [10−8 GeV]

α(ae+p−neff )Z [10−7 GeV]

VIII. SATELLITE-BASED WEP TESTS

Space-based platforms offer certain advantages in tests
of gravity [84] and searches for Lorentz violation [85].
The long free-fall times that may be attainable on
a drag-free spacecraft make satellite-based WEP tests
particularly attractive. Several proposals are in an
advanced stage of development, including the Micro-
Satellite à trâınée Compensée pour l’Observation du
Principe d’Equivalence (MicroSCOPE) [86], the Satellite
Test of the Equivalence Principle (STEP) [87], and the
Galileo Galilei (GG) mission [88]. A WEP reach similar
to that of STEP has also been suggested for the Grand
Unification and Gravity Explorer (GaUGE) mission [89].

The basic idea underlying these missions is to mon-
itor the relative motion of test bodies made of differ-
ent materials as they orbit the Earth in a satellite. In
the presence of nonzero coefficients for Lorentz violation
(aweff)µ and (cw)µν , the orbits of the test bodies become
material dependent. In this section, we determine the re-
sulting apparent WEP violations and then obtain crude
estimates of the sensitivities to (aweff)µ and (cw)µν attain-
able in MicroSCOPE, STEP, and GG.

A. Theory

The basic observable for a satellite-based WEP test is
the differential local acceleration between the test bod-
ies. The typical design goal is to achieve excellent sensi-
tivity to one or two components of this acceleration. For
present purposes, we can idealize the situation as a pair
of test bodies aboard a satellite traveling in a circular or-
bit. In what follows, we allow for the possibility that the
test bodies are also rotating about an axis perpendicular
both to the direction of motion of the satellite and to the
direction of acceleration sensitivity.

Some notation relevant for our analysis of satellite-
based WEP tests is summarized in Table IX. Paralleling
the analysis of terrestrial experiments in Sec. VII A, it
is convenient to introduce an Earth-centered frame with
coordinates xµ̃ = (t̃, x̃, ỹ, z̃), chosen so that t̃ = T and
so that the spatial components match those of the Sun-
centered frame at leading post-newtonian order. The
Earth-centered coordinates can be related to the Sun-
centered ones as discussed in Sec. VI A. The angles ξ1,

ξ2 in the table are defined relative to the basis vectors of
the Earth-centered frame. The notation for properties of
the test masses 1 and 2 follows that of Sec. VI B.

Table IX. Notation for satellite-based WEP tests.

Quantity Definition

R⊕ mean Earth radius

V⊕ mean Earth orbital speed

rJ Earth-satellite separation

ωs satellite orbital frequency

ωr satellite rotational frequency

ξ1 inclination of satellite orbit

ξ2 longitude of satellite-orbit node

θ1 phase fixing satellite location at T = 0

θ2 phase fixing satellite orientation at T = 0

Establishing the signal arising from nonzero coeffi-
cients for Lorentz violation requires the transformation
from the Sun-centered frame to a frame comoving with
the satellite. The satellite frame serves as the equiva-
lent of the laboratory frame for terrestrial searches. We
denote coordinates in the satellite frame by xµ̂.

Since the satellite orbit is inclined relative to the Earth-
centered frame, it is also useful to introduce an interme-
diate frame aligned with the satellite orbit and hence
rotated with respect to the Earth-centered frame. The
intermediate coordinates are denoted by xµ

′

. The rota-

tion transformation from xj
′

to xj̃ can be written as the
matrix

Rj̃k
′

1 =




cos ξ2 − cos ξ1 sin ξ2 sin ξ1 sin ξ2
sin ξ2 cos ξ1 cos ξ2 − sin ξ1 cos ξ2

0 sin ξ1 cos ξ1
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using the angles ξ1 and ξ2 defined in Table IX.
The connection between the satellite coordinates and

the Earth-centered coordinates can be written

xj̃ = Rj̃k
′

1 (Rk
′ l̂

2 xl̂ + xk
′

s ). (157)

Here, xk
′

s is the world line of the satellite in the in-
termediate coordinate system. This world line can be
parametrized as

xk
′

s = (r cos(ωsT + θ1), r sin(ωsT + θ1), 0) , (158)

where r is the magnitude of the Earth-satellite separa-
tion. The satellite therefore orbits in the x′-y′ plane.

Also, in Eq. (157) the rotation Rk
′ l̂

2 of the satellite is
given by the matrix

Rk
′ l̂

2 =




cos(ωrT + θ2) − sin(ωrT + θ2) 0

sin(ωrT + θ2) cos(ωrT + θ2) 0

0 0 1


 . (159)

The axis of the satellite rotation is therefore along ẑ.
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Table X. Amplitudes for satellite-based WEP tests.

Amplitude phase

Pωr
= mwrωs

[
(cw)(TY ) sin ξ1 + (cw)(TX) cos ξ1

]
+

ωR2

⊕α cos ξ2
5r

[
(aweff)X cos ξ1 + (aweff)Y sin ξ1

]
θ2

Qωr
= mwrωs

[
(cw)(TX) sin ξ1 cos ξ2 − (cw)(TY ) cos ξ1 cos ξ2 − (cw)(TZ) sin ξ2

]

+
ωR2

⊕α

5r

[
(aweff)X sin ξ1 − (aweff)Y cos ξ1

]
θ2

Pωr+ωs
= 2mw

[
cos ξ2 cos 2ξ1(c

w)(XY ) + sin ξ2 sin ξ1(c
w)(Y Z)

+ 1
2 sin 2ξ1 cos ξ2((c

w)Y Y − (cw)XX) + sin ξ2 cos ξ1(c
w)(XZ)

]
θ1 + θ2

Qωs+ωr
= mw

[
(cos2 ξ2 cos2 ξ1 − sin2 ξ1 + 1

2 sin2 ξ2)((c
w)XX − (cw)Y Y ) + 1

2 sin2 ξ2((c
w)XX + (cw)Y Y − 2(cw)ZZ)

− cos ξ1 sin 2ξ2(c
w)(Y Z) + sin ξ1 sin 2ξ2(c

w)(XZ) + sin 2ξ1(1 + cos2 ξ2)(c
w)(XY )

]
θ1 + θ2

Qωs−ωr
= mw

[ (
cos2 ξ1 sin2 ξ2 + 1

2 cos2 ξ2 + 1
2

)
((cw)XX − (cw)Y Y )

− 1
2 sin2 ξ2 ((cw)XX + (cw)Y Y − 2(cw)ZZ ) + 2(cw)Y Y

+ sin 2ξ1
(
1 − cos2 ξ2

)
(cw)(XY ) − sin ξ1 sin 2ξ2(c

w)(XZ) + cos ξ1 sin 2ξ2(c
w)(Y Z)

]
− 2α(aweff)T θ1 − θ2

P2ωs−ωr
= −mwrωs

[
(cw)(TX) cos ξ1 + (cw)(TY ) sin ξ1

]
− 3ωR2

⊕α cos ξ2
5r

[
(aweff)X cos ξ1 + (aweff)Y sin ξ1

]
2θ1 − θ2

Q2ωs−ωr
= mwrωs

[
(cw)(TY ) cos ξ1 cos ξ2 − (cw)(TX) sin ξ1 cos ξ2 + (cw)(TZ) sin ξ2

]

− 3ωR2

⊕α

5r

[
(aweff)X sin ξ1 − (aweff)Y cos ξ1

]
2θ1 − θ2

PΩ+ωs+ωr
= mwV⊕

[ (
cos2 ξ1 − sin2 ξ1 cos2 ξ2 − cos η cos ξ2 cos 2ξ1 − sin η sin ξ2 cos ξ1

)
(cw)(TX)

+ sin ξ1 sin ξ2 (cos ξ2 − cos η) (cw)(TZ)

+
(
cos ξ1 + cos ξ1 cos2 ξ2 − sin η sin ξ2 − 2 cosη cos ξ1 cos ξ2

)
sin ξ1(c

w)(TY )

]
θ1 + θ2

QΩ+ωs+ωr
= mwV⊕

[ (
2 cos ξ1 cos ξ2 − sin η sin ξ2 cos ξ2 − cos η cos ξ1(1 + cos2 ξ2)

)
sin ξ1(c

w)(TX)

−
(
cos 2ξ1 cos ξ2 − sin η cos ξ1 sin ξ2 cos ξ2 + cos η(1 − cos2 ξ1 sin2 ξ2)

)
(cw)(TY )

− (cos ξ1 − sin η sin ξ2 − cos η cos ξ1) sin ξ2(c
w)(TZ)

]
θ1 + θ2

PΩ+ωs−ωr
= mwV⊕

[ (
1 − sin2 ξ1 sin2 ξ2

)
(cw)(TX) + 1

2 sin 2ξ1 sin2 ξ2(c
w)(TY ) − 1

2 sin ξ1 sin 2ξ2(c
w)(TZ)

]

−αV⊕(aweff)X θ1 − θ2

QΩ+ωs−ωr
= −mwV⊕

[
1
2

(
cos η sin 2ξ1 sin2 ξ2 − sin η sin ξ1 sin 2ξ2

)
(cw)(TX)

+
(

1
2 sin η cos ξ1 sin 2ξ2 + (1 − sin2 ξ2 cos2 ξ1) cos η

)
(cw)(TY )

+
(
sin η sin2 ξ2 + 1

2 cos η cos ξ1 sin 2ξ2
)
(cw)(TZ)

]
+ αV⊕

[
(aweff)Z sin η + (aweff)Y cos η

]
θ1 − θ2

PΩ−ωs+ωr
= mwV⊕

[
(1 − sin2 ξ1 sin2 ξ2)(c

w)(TX) + 1
2 sin 2ξ1 sin2 ξ2(c

w)(TY ) − 1
2 sin ξ1 sin 2ξ2(c

w)(TZ)

]

−αV⊕(aweff)X −θ1 + θ2

QΩ−ωs+ωr
= mwV⊕

[
1
2

(
sin η sin ξ1 sin 2ξ2 − cos η sin 2ξ1 sin2 ξ2

)
(cw)(TX)

−
(

1
2 sin η cos ξ1 sin 2ξ2 + cos η(1 − cos2 ξ1 sin2 ξ2)

)
(cw)(TY )

−
(
sin η sin2 ξ2 + 1

2 cos η cos ξ1 sin 2ξ2
)
(cw)(TZ)

]
+ αV⊕

[
(aweff)Z sin η + (aweff)Y cos η

]
−θ1 + θ2

PΩ−ωs−ωr
= mwV⊕

[ (
cos2 ξ1 − sin2 ξ1 cos2 ξ2 + sin η cos ξ1 sin ξ2 + cos η cos 2ξ1 cos ξ2

)
(cw)(TX)

+
(

1
2 sin 2ξ1(1 + cos2 ξ2) + sin η sin ξ1 sin ξ2 + cos η sin 2ξ1 cos ξ2

)
(cw)(TY )

+
(

1
2 sin 2ξ2 + cos η sin ξ2

)
sin ξ1(c

w)(TZ)

]
−θ1 − θ2

QΩ−ωs−ωr
= mwV⊕

[
−
(
sin 2ξ1 cos ξ2 + 1

2 sin η sin ξ1 sin 2ξ2 + 1
2 cos η sin ξ1(1 + cos2 ξ2)

)
(cw)(TX)

+
(
cos 2ξ1 cos ξ2 + 1

2 sin η cos ξ1 sin ξ2 − cos η(sin2 ξ1 − cos2 ξ1 cos2 ξ2)
)
(cw)(TY )

+
(
cos ξ1 sin ξ2 + sin η sin2 ξ2 + 1

2 cos η cos ξ1 sin 2ξ2
)
(cw)(TZ)

]
−θ1 − θ2
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For our purposes, it suffices to obtain explicitly the
local differential acceleration ∆ax̂ of the test bodies in
the x̂ direction. We have

∆ax̂ ≡ d2∆x̂

dt̂2
= ∆ax̂tidal + ∆ax̂LV + . . . . (160)

The first term on the right-hand side of this expression
is the conventional Newton tidal term. It takes the form

∆ax̂tidal = −
(

3
2ω

2
s cos(2ωrT − 2ωsT + θ2 − θ1)

+ω2
r + 1

2ω
2
s

)
∆x̂. (161)

The second term in Eq. (160) contains Lorentz-violating
contributions to the differential acceleration. It can be
written

∆ax̂LV = rω2
s

∑

w,n

(
Nw

1

m1
− Nw

2

m2

)
(162)

×
(
Pn sin(ωnT + αn) +Qn cos(ωnT + αn)

)
.

The amplitudes Pm, Qm and the corresponding phases
are provided in Table X. Finally, the ellipsis in Eq.
(160) represents higher-order general-relativistic correc-
tions and Lorentz-violating effects at the same post-
newtonian order as ∆ax̂tidal. The latter are typically of
lesser interest. If desired, the differential acceleration
∆aŷ along ŷ can be obtained by performing the transfor-
mation ωrT → ωrT − π/2 on Eq. (160).

B. MicroSCOPE and STEP

Within our idealized scenario, MicroSCOPE [86] and
STEP [87] can be analysed in parallel. Each apparatus
consists of a pair of cylindrical test bodies made of differ-
ent material but having a common symmetry axis. The
test bodies are free to move along this axis. In satellite
coordinates, this direction lies along x̂ and is perpendic-
ular both to the direction of motion of the satellite and
to the axis of the satellite rotation.

One prosaic origin of relative motion of the test bodies
along the x̂ direction could be the influence of tidal forces
on a misalignment of the two centers of mass, which
would lead to the acceleration ∆ax̂tidal in Eq. (160). This
can be separated from the acceleration due to WEP vi-
olations stemming from Lorentz-invariant sources, which
enters with the characteristic frequency ωs − ωr. Here,
we are interested in a WEP-violating acceleration ∆ax̂LV

arising from the coefficients (aweff)µ and (cw)µν for Lorentz
violation. This can be distinguished from both the above
effects through careful separation of the frequencies as-
sociated with the amplitudes in Table X, except for the
amplitude Qωs−ωr

.
The sensitivity goals of MicroSCOPE and STEP are

∆a/rω2
s < 10−15 and ∆a/rω2

s < 10−18, respectively.
These sensitivities and the results in Table X can be

used to obtain rough estimates of the reach of these ex-
periments for studies of Lorentz violation. For this pur-
pose, we take the quantity Nw

1 /m1 −Nw
2 /m2 appearing

in Eq. (162) to be of order 10−2 GeV−1, which is the
best available value with the Pt-Ir, Be, and Nb test bod-
ies presently proposed for STEP. Note that the bounds
scale linearly with this difference, so a careful choice of
test-body material can maximize sensitivity to Lorentz
violation. Moreover, combining results for different test
materials can yield additional independent sensitivities.
Note also that the experimental reach may vary with the
choice of orbit. For definiteness, we suppose the sines
and cosines of ξ1 and ξ2 are of order one.

Our crude estimates for attainable sensitivities to the
moduli of (aweff)µ and (cw)µν for MicroSCOPE and STEP
are presented in the first three columns of Table XI. In
each row, the listed sensitivities are obtained under the
assumption that all coefficients vanish except those ap-
pearing in the first entry. The key factor underlying the
difference in reach for the various coefficient combina-
tions is the boost entering the relevant amplitude in Table
X. Amplitudes containing V⊕ are suppressed by roughly
10−4, while those containing rωs are suppressed by about
10−5. As before, the braces indicate the estimated sensi-
tivities involve data from future tests.

C. Galileo Galilei

Certain design features of GG [88] differ from those
of MicroSCOPE and STEP in ways that are significant
for studies of Lorentz violation. Although GG also uses
coaxial cylindrical test bodies, it is sensitive to accelera-
tions in the plane perpendicular to the axis of the cylin-
ders. Also, the cylinders are rotated about their axis at
a comparatively high frequency of about 2 Hz.

In applying the generic analysis of Sec. VIII A to GG,
it is convenient to take the cylinder axes to lie along
ẑ. The experiment is then sensitive to accelerations in
the x̂-ŷ plane. The differential acceleration ∆ax̂ along
x̂ is given in Eq. (160), while ∆aŷ can be obtained by
adjusting the phase θ2.

The sensitivity goal of GG is ∆a/rω2
s < 10−17. In

Table XI, we present rough estimates of the correspond-
ing reach for measurements of the coefficients (aweff)µ and
(cw)µν for Lorentz violation, obtained using the result
(162). The values for GG in the table are based on the
same assumptions as those discussed above for Micro-
SCOPE and STEP. This includes the material-dependent
factor, with the proposed materials for the GG test bod-
ies being Be and Cu. The boost factors leading to the
varying sensitivities for GG listed in the table are also
of the same order of magnitude as for the other satellite
experiments.

We remark in passing that the comparatively high ro-
tation rate for the GG cylinders could introduce addi-
tional Lorentz-violating effects. Typically, the presence
of nonzero (cw)µν introduces modifications to the effec-
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tive moment of inertia of a body. This can affect the dy-
namical balance of the system, which can lead to observ-
able signals. For example, potential effects of this type
on the timing of pulsar signals have been used to con-
strain some combinations of (cn)µν [90]. In the present
context, the observable signals could include a material-
dependent Lorentz-violating wobble varying at the satel-
lite frequency and at the Earth’s orbital frequency. It is
conceivable that these Lorentz-violating effects could be

detected by the GG apparatus that senses the test-body
location. Notice that the signals would be independent
of gravity. They may be detectable using sophisticated
terrestrial dynamical-balancing equipment, perhaps in-
cluding that used in the Galileo Galilei on the Ground
(GGG) experiment [91]. The investigation of these ef-
fects represents an interesting open question for future
work.

Table XI. Sensitivities for satellite-based WEP tests.

Coefficient MicroSCOPE GG STEP

α(ae+p−neff )T − 1
3m

p(ce+p−n)TT {10−13 GeV} {10−15 GeV} {10−16 GeV}
α(ae+p−neff )X {10−9 GeV} {10−11 GeV} {10−12 GeV}
α(ae+p−neff )Y+Z {10−9 GeV} {10−11 GeV} {10−12 GeV}
α(ae+p−neff )Y {10−7 GeV} {10−9 GeV} {10−10 GeV}
α(ae+p−neff )Z {10−7 GeV} {10−9 GeV} {10−10 GeV}

(cn)Q {10−13} {10−15} {10−16}
(cn)(TJ) {10−9} {10−11} {10−12}

IX. EXOTIC GRAVITATIONAL TESTS

In this section, we offer a few remarks about some
gravitational searches for Lorentz violation using mate-
rial test bodies other than neutral bulk matter, neutral
atoms, or neutrons. These more exotic searches typically
present unique experimental challenges, but they could
provide access to combinations of coefficients for Lorentz
violation that are awkward or impossible to isolate and
measure in other searches discussed in this paper. Here,
we briefly consider tests with electrons and ions, studies
with antihydrogen, and experiments using particles from
the second and third generation of the SM.

A. Tests with electrons and ions

Measurements of the gravitational acceleration of
charged matter remain of definite theoretical interest be-
cause the WEP and other foundational aspects of gravity
are comparatively poorly tested in this regime. In this
subsection, we consider possible signals from studies of
charged electrons or ions. Given the experimental chal-
lenges of these tests and their limited attainable sensi-
tivities, we restrict attention here to effects from (aweff)µ,
setting other coefficients to zero for simplicity.

In the context of searches for Lorentz violation, grav-
itational tests with charged matter offer unique access
to the coefficients (aweff)µ. For example, measurements of
this kind can disentangle coefficients for Lorentz violation
in the proton and electron sectors. They can also detect
certain countershaded effects that are otherwise invisi-
ble. In particular, some models have coefficients (aweff)µ
proportional to electric charge, which would evade de-
tection in searches with neutral test bodies [11]. This
possibility is a natural consequence for theories in which

the photon modes are interpreted as Nambu-Goldstone
bosons from spontaneous Lorentz breaking and in which
(aweff)µ remains physically observable, such as nonmini-
mally coupled bumblebee electrodynamics [14].

One candidate technique to measure gravitational ef-
fects from the coefficients (aweff)µ is charged-particle in-
terferometry. Electron interferometry has been used to
measure the Sagnac effect at the 30% level [92], while ion
interferometry is under investigation as a practical tool
for sensitive tests of Coulomb’s law [93]. In the present
context, electron or ion interferometry offers an interest-
ing alternative prospect to the free-fall tests with neu-
tral matter discussed in Sec. VII. For a given geometry,
the observed phase shift can be determined using the
methods of Sec. VII B. In the limit of interest here, the
vertical acceleration aẑ of the electron or ion T in the
gravitational field of the Earth S is given at PNO(2) by

aẑ = −g − 2gα

mT
(aT

eff)t̂ −
2gα

mS
(aS

eff)t̂. (163)

As before, the PNO(3) version of this acceleration can
be frequency decomposed relative to the Sun-centered
frame, with the corresponding amplitudes depending on
the coefficients (aweff)µ as given in Table IV.

In principle, a charged-particle interferometer can be
used for free-fall gravimeter tests of the type discussed
in Sec. VII B or for free-fall WEP tests as in Sec. VII D.
A free-fall gravimeter test is insensitive to (aweff)T and
has only boost-suppressed signals from (aweff)J , so a sub-
stantial improvement over the existing reach of charged-
matter interferometers would be required to achieve a
sensitivity compatible with perturbative consistency. In
contrast, a free-fall WEP test is directly sensitive to
(aweff)T but requires a simultaneous measurement with
two test bodies. One option along these lines could be a
direct comparison with neutral matter via a falling corner
cube or an atom interferometer.
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Another approach to gravitational tests with charged
matter is to study the motion of charged particles in a
vertical metallic drift tube. This setup is accompanied by
gravitationally induced electric forces caused by the sag-
ging of the tube [94], along with a variety of challenging
systematics. An experiment of this type with electrons
[95] confirmed that the gravitational forces on the elec-
trons in the tube and on the electrons within the metal
are comparable to about 10%. An analogous experiment
involving cold antiprotons [96] was designed to achieve a
sensitivity of 0.1% to the gravitational acceleration [97].
These measurements are all experimentally challenging,
and their interpretation is theoretically subtle [98].

In the present context of gravitational Lorentz viola-
tion involving the coefficients (aweff)µ, intuition for the
theoretical implications of ballistic tests of this type can
be gained by considering the idealized case and working
at PNO(2). We suppose a test particle T of charge qT

moves along the symmetry axis of a vertical cylindrical
metallic drift tube with body comprised of a lattice of
ions of type I and conduction electrons e. Disregarding
applied fields, stray fields, and various systematics, the
overall conventional force on the particle T is the sum
of the direct gravitational force on T from the Earth S
and the net force on T from the electromagnetic field
arising from the gravitationally induced sagging of the
tube. The presence of nonzero coefficients (aweff)µ intro-
duces corrections to both these forces. At PNO(2), the
gravitational force on T is given by

(Fgrav)ẑ = −mTg − 2gα(aT
eff)t̂ − 2gα

mT

mS
(aS

eff)t̂,

(164)

while the vertical component of the force on T from the
gravitationally induced electric field is

(Fem)ẑ =
qT

e

(
meg + 2gα(aeeff)t̂ + 2gα

me

mS
(aS

eff)t̂

)

+γ
qT

e

(
mIg + 2gα(aIeff)t̂ + 2gα

mI

mS
(aS

eff)t̂

)
.

(165)

In these expressions, me and mI are the masses of an
electron and an ion in the tube lattice, respectively, while
e and qI are the corresponding charges. The factor γ is
a constant, set by the properties of the metal lattice. In
Eq. (165), the first three terms arise from the sagging
of the electrons in the tube walls, while the last three
are proportional to the dilation derivative of the work
function for the metal and originate in the longitudinal
compression of the lattice. These expressions reduce to
standard ones when the coefficients (aweff)µ vanish.

Although the expressions (164) and (165) hold in an
idealized situation, they suffice to demonstrate in princi-
ple that experiments of this type are sensitive to nonzero
coefficients (aweff)µ, even when these coefficients are un-
detectable with neutral matter. This is also true if the

particle T is an electron, when the sum of the forces
(Fgrav)ẑ and (Fem)ẑ leaves only the last three terms in
Eq. (165). In practice, however, the reported reach of
drift-tube experiments to date is insufficient to achieve
useful sensitivity in gravimeter tests. A WEP test relat-
ing a drift-tube setup to an independent gravimeter may
be of more interest. For a given experiment, specific sen-
sitivities can be estimated using the analyses presented
in Sec. VII.

A third methodology for investigating gravitational
Lorentz violation from nonzero coefficients (aweff)µ could
conceivably be to adopt as the gravimeter a device that
wholly confines charged particles. For example, a single
charged particle can be trapped for long periods using
a Penning trap [99]. Measuring gravitational effects in
this way is ambitious, as can be appreciated from the
size of the quantity |meg/e| ≃ 6× 10−12 V/m. Nonethe-
less, the feasibility of gravitational measurements with
trapped antiprotons at a sensitivity of about 1% has been
suggested, using a gravity-induced shift of radial orbits
[100]. This would also lead to sensitivity to the coeffi-
cients (aweff)µ via an analysis similar to those discussed
above.

B. Tests with antimatter

The study of antimatter offers another realm in which
to search for Lorentz and CPT violation. Antihydro-
gen has been detected [101, 102] and produced in copi-
ous amounts [103], while prospects for studies of trapped
cold antihydrogen are excellent [104]. Antihydrogen spec-
troscopy could yield special sensitivity to nongravita-
tional SME coefficients for Lorentz and CPT violation
[105], and the experiment for Atomic Spectroscopy And
Collisions Using Slow Antiprotons (ASACUSA) expects
to achieve sensitivities of parts in 10−7 to the predicted
shifts in hyperfine transitions [106].

To study the interaction of gravity and antimatter, var-
ious ideas for measuring the gravitational acceleration
of antihydrogen have been advanced. Among them are
methods involving trapped antihydrogen [107], antihy-
drogen interferometry [108], antihydrogen free fall from
an antiion trap [109], and tests in space [110]. One ap-
proved project, the Antimatter Experiment: Gravity, In-
terferometry, Spectroscopy (AEGIS) [111], has an intero-
ferometric design with an initial sensitivity goal of 1% to
the gravitational acceleration of antihydrogen.

In the context of gravitational Lorentz and CPT vi-
olation, these experiments offer the prospect of special
sensitivities to the coefficients (aweff)µ and (cw)µν . The
key point is that a CPT transformation has the net ef-
fect of reversing the sign of (aweff)µ while leaving (cw)µν
unchanged. As a result, experiments with antihydrogen
could in principle observe distinctive and novel behav-
iors. Moreover, when compared with similar measure-
ments on hydrogen, the results would offer the opportu-
nity for clean separation of effects. For instance, free-fall
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WEP tests comparing hydrogen and antihydrogen could
yield independent sensitivity to (ce+p)TT . In general, the
theoretical treatment of prospective free-fall gravimeter
or WEP tests with antihydrogen follows the same path
as described in Sec. VII, except with the sign of (aweff)µ
reversed throughout.

The literature contains numerous attempts to place
indirect limits on the possibility of unconventional
antimatter-gravity interactions, many of which are re-
viewed and critiqued in Ref. [112]. In the present con-
text, the SME offers a general field-theoretic approach
that can elucidate aspects of this issue and provide new
insights about possible limitations on effects. We next
present an explicit toy model that evades some previous
indirect limits on large unconventional effects in antihy-
drogen.

For simplicity, we choose to work within the isotropic
limit of the SME. In any specified inertial frame O, a sub-
set of Lorentz-violating operators in the SME Lagrange
density preserves rotational symmetry. Setting the coef-
ficients of all other operators to zero produces an inter-
esting limiting case. The frame O then becomes a pre-
ferred frame, since the rotation invariance is broken in
any frame O′ boosted with respect to O. Physical effects
of Lorentz violation are then isotropic in O but not in O′.
The frame O could in principle be identified as the rest
frame U of the cosmic microwave background (CMB),
the Sun-centered frame S, or any other desired choice.
Isotropic models of this type are sometimes called ‘fried-
chicken’ models because of their popularity and simplic-
ity.

In Minkowski spacetime, toy isotropic models can be
used to show that Lorentz- and CPT-violating effects
could in principle be substantially larger in antihydro-
gen than hydrogen. One example is the isotropic ‘in-
visible’ model (IIM) [113], which is defined in the CMB
frame U and yields effects challenging to see in searches
with ordinary matter. Denoting coordinates in U by
(T ′, X ′, Y ′, Z ′), the IIM assumes the only nonzero co-
efficients for Lorentz violation are (bp)T ′ and isotropic
(dp)Ξ′Ξ′ obeying the simple condition

(bp)T ′ = kmp(dp)T ′T ′ (166)

for a suitable choice of constant k. In the Sun-centered
frame S, this one-parameter model generates nonzero
coefficients (bp)J and (dp)JT . The dominant signals in
terrestrial experiments with hydrogen appear in the hy-
perfine structure and involve the combination (bp)J −
mp(dp)JT , which vanishes for suitable k. These experi-
ments can therefore detect only effects suppressed by at
least one power of the boost of the Earth around the Sun,
which is about 10−4 and requires an experiment sensitive
to annual modulations. In contrast, the dominant effects
in experiments with antihydrogen involve the combina-
tion (bp)J +mp(dp)JT , which produces unsuppressed sig-
nals in the hyperfine structure. The IIM thus provides a
toy field-theoretic scenario in which observable effects in
antihydrogen are at least 10,000 times greater than those

in hydrogen or other nonrelativistic neutral matter.
The IIM involves spin-dependent operators for Lorentz

and CPT violation in Minkowski spacetime. In this
work, the focus is on the gravitational couplings of
spin-independent operators with coefficients (aweff)µ and
(cw)µν . At the end of Sec. VIII A, we remark on the dif-
ficulty of observing with matter any signals depending
on the combination α(aT

eff)T −mT(cT)TT /3 of isotropic
coefficients. Here, we consider some implications for an-
timatter gravity of a specific toy model, the isotropic
‘parachute’ model (IPM), in which unobserved combina-
tions of this type provide the dominant source of Lorentz-
violating effects and could yield significant a priori differ-
ences in the gravitational accelerations of hydrogen and
antihydrogen.

To construct the IPM, consider the Lagrange density of
the SME in the Sun-centered frame S, with nonzero co-
efficients restricted to (aweff)T and isotropic (cw)ΣΞ. Fol-
lowing the derivation in the early sections of this work,
we can extract the PNO(3) effective classical lagrangian
for a test particle T moving in the gravitational field of
a source S. This can be written in the suggestive form

LIPM = 1
2m

T
i v

2 +
GNm

T
gm

S
g

r
, (167)

where mT
i is the effective inertial mass of T, while mT

g

and mS
g are the effective gravitational masses of T and

S, respectively. All these effective masses are defined in
terms of the coefficients (aweff)T , (cw)TT for Lorentz vio-
lation and the body masses mB of Eq. (71). We find

mB
i = mB +

∑

w

5
3 (Nw +N w̄)mw(cw)TT

mB
g = mB +

∑

w

(
(Nw +N w̄)mw(cw)TT

+ 2α(Nw −N w̄)(aweff)T

)
, (168)

where B is either T or S. These expressions adopt the
notation Nw and N w̄ for the number of particles and an-
tiparticles of type w, respectively, while as before mw is
the mass of a particle of type w. Note that for a given
body the passive and active gravitational masses are
identical, reflecting the preservation of Newton’s third
law in the model.

For electrons, protons, and neutrons, the IPM is de-
fined by the three conditions

α(aweff)T = 1
3m

w(cw)TT , (169)

where w ranges over e, p, n. Since there are three inde-
pendent conditions on six real parameters, this produces
a three-parameter IPM. The condition (169) ensures that
for a matter body B the effective inertial and gravita-
tional masses are equal,

mB
i = mB

g (matter), (170)
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and hence no Lorentz-violating effects appear in gravita-
tional tests to PNO(3) using ordinary matter. However,
for an antimatter test body T this condition fails,

mT
i 6= mT

g (antimatter), (171)

so observable signals arise in comparisons between the
gravitational responses of matter and antimatter or be-
tween different types of antimatter. Ensuring the valid-
ity of perturbation theory requires that the coefficients
α(aweff)T = mw(cw)TT /3 are perturbatively small relative
to mw. With theoretically conceivable values perhaps
even as large as 0.5mw, the gravitational accelerations of
hydrogen and antihydrogen might differ at the 50% level.

Rather than a serious effort at a realistic theory, the
IPM is constructed as a simplistic playground within
which to explore field-theoretic limitations on unconven-
tional properties of antimatter and antihydrogen. In the
next few paragraphs we treat it as such, briefly address-
ing some concerns about unconventional signals in this
context.

One issue is whether energy remains conserved when
matter and antimatter have different gravitational in-
teractions [114]. For the analysis of the SME in the
present work, this issue is moot because an explicit
conserved energy-momentum tensor exists. As an il-
lustration, consider the gedanken experiment in which
a particle-antiparticle pair is lowered in a gravitational
field, converted to a photon pair, raised to the original lo-
cation, and finally reconverted to the particle-antiparticle
pair. In generic scenarios the particle, antiparticle, and
photons each provide different contributions to the en-
ergy and so problems can arise. However, in the IPM
these complications are avoided. The photons make no
contribution because they are conventional, partly via
the coordinate choice (23). The particle and antiparticle
do contribute to the energy via the coefficient (aweff)T , but
the two contributions cancel. Contributions involving the
coefficient (cw)TT exist and combine during the lowering
procedure, but the definition (70) of the conserved energy
also contains (cw)TT and so the net change remains zero
at the end of the experiment. The resolution of this and
other illustrative scenarios is less transparent when more
nonzero coefficients for Lorentz violation are present, but
the existence of a conserved energy-momentum tensor en-
sures that no contradictions arise.

Another attempt to argue against the possibility of an
anomalous antimatter response to gravity is based on the
large binding energy content of baryons, atoms, and bulk
matter [115]. For hydrogen and antihydrogen, a modern
version of the argument could proceed by first noting
that the quarks in hydrogen contain only about 10% of
the mass with most of the remainder contained in the
gluon and sea binding, and then concluding that since
the binding forces are comparable for hydrogen and an-
tihydrogen their gravitational response cannot differ by
more than about 10%. This type of reasoning implic-
itly assumes that the gravitational response of a body is
determined by its mass and hence also by its binding en-

ergy. However, as shown generically in Sec. VIII A, the
coefficient (aweff)T in the IPM leads to a correction to the
gravitational force that is independent of mass and can
vary with flavor. Indeed, the binding forces are largely
conventional in the IPM, and the gravitational responses
of hydrogen and antihydrogen are primarily determined
by the flavor content of the valence particles. It is even
conceivable in principle that a large gravity effect could
be associated purely with the positron, as occurs in the
IPM when only (aeeff)T is nonzero and satisfies the con-
dition (169). A careful treatment of this issue in the
IPM would require consideration of radiative effects in-
volving (aweff)T , (cw)TT , and other SME coefficients for
Lorentz violation [18, 116], perhaps imposing the condi-
tion (169) only after renormalization. In any case, the
essential points illustrated with the IPM remain valid:
the gravitational response of a body can be independent
of mass, can vary with flavor, and can differ between
particles and antiparticles.

The gravitational response of antimatter could in
principle also be restricted by the results of experi-
ments studying kaons [117] and other neutral-meson sys-
tems, which are natural interferometers mixing strong-
interaction particle and antiparticle eigenstates via weak-
interaction effects. When analyzed in the context of
the SME in Minkowski spacetime, neutral-meson mix-
ing places tight constraints on certain differences of the
coefficients (aweff)µ for w ranging over several quark fla-
vors [53, 54]. However, these constraints have no dom-
inant implications for leptons or for baryons, which in-
volve three valence quarks rather than a quark and an
antiquark as in mesons. Moreover, the neutral-meson
constraints necessarily involve valence s, c, and b quarks,
which are largely irrelevant for protons and neutrons. In
the presence of gravitational interactions, the same line
of reasoning holds, with the flavor dependence of Lorentz
and CPT violation leading to the conclusion that the
IPM evades restrictions from meson oscillations.

We can also use the IPM to illustrate a type of con-
straint on more realistic model building arising from
the extensive searches for Lorentz and CPT violation in
Minkowski spacetime. The key point is that the mixing
of Lorentz-violating operators under rotations and boosts
can imply indirect limits on some coefficients. In the
IPM, for example, the coefficient (aweff)T is unobservable
in Minkowski spacetime, as discussed in Sec. II C, but
certain nongravitational experiments could in principle
obtain boost-suppressed sensitivity to (cw)TT for some
w via measurements of the coefficients (cw)JK . As one
illustration, a measurement with a Cs-Rb double foun-
tain clock over a total of five weeks in the spring and fall
of 2005 achieved a sensitivity of parts in 1025 on some
combinations of the coefficients (cp)JK [118]. This sug-
gests that continuing an experiment of this type over a
longer period could attain parts in 1017 on the coefficient
(cp)TT by analysing the data allowing for the Earth’s or-
bital boost V⊕ ≃ 10−4. Similarly, a careful analysis of
multiple searches for Lorentz violation involving the elec-
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tron sector could be used to measure (ce)TT at the level
of parts in 1015 [119]. Although these types of nongrav-
itational studies remain to be performed, they could in
principle place experimental limits on the magnitude of
the anomalous gravitational response of antihydrogen in
the IPM and possibly also in more realistic models. We
remark in passing that these kinds of constraints nonethe-
less leave considerable room for realistic model building,
in particular when operators of arbitrary dimension are
incorporated in the framework [120].

C. Tests with matter beyond the first generation

Most studies of fermion-gravity couplings to date have
involved particles from the first generation of the SM.
However, the SME coefficients for Lorentz and CPT
violation can differ between sectors, so investigations
of higher-generation matter-gravity couplings are of in-
dependent interest. Since fermion masses and hence
fermion-gravity couplings typically increase with the gen-
eration, it is conceivable that an unconventional gravita-
tional coupling may be more readily identified in grav-
itational tests with higher-generation matter. Compar-
atively few results exist for the coefficients (aweff)µ and
(cw)µν for particles w beyond the first generation [2], so
there is considerable room for measurements of effects
involving gravity couplings.

The comparatively long lifetime of the muon makes it
an interesting candidate for gravitational tests of Lorentz
violation with second-generation particles. Several muon
coefficients for Lorentz and CPT violation have already
been measured [121], but the sensitivities are largely lim-
ited to spin-dependent effects. Measurements of Lorentz-
violating gravitational couplings of the muon could be
achieved via muonium interferometry, with an estimated
initial reach of 10% [122]. Interferometry with muonic
hydrogen may also be possible [123]. In principle, these
experiments could yield first measurements of some com-
ponents of the coefficients (aµeff)µ and (cµ)µν in the muon
sector. In particular, free-fall WEP tests using muo-
nium interferometry to search for Lorentz and CPT vio-
lation offer the prospect of direct sensitivity to the co-
efficients (aµeff)T and (cµ)TT . In contrast, performing
free-fall gravimetric tests with muonium interferometry
is unlikely to be useful in the near future because the
dominant signals appear at annual frequencies and are
suppressed by the boost V⊕.

Consider for definiteness a free-fall WEP experiment
comparing the gravitational acceleration of muonium
with that of neutral matter N . Muonium is a bound
system containing an antimuon and an electron, so its
spin-independent Lorentz-violating gravitational proper-
ties are determined by the coefficients −(aµeff)µ, (cµ)µν ,
(aeeff)µ and (ce)µν . Following the line of reasoning in Sec.
VI B, we find that the dominant observable combination
of coefficients for CPT-odd effects in a free-fall WEP ex-

periment is

(aµ+e−N
eff )µ = −(aµeff)µ+(aeeff)µ−

mµ +me

mN
(aNeff)µ, (172)

where mN is the mass of N and (aNeff)µ is its effective co-
efficient for Lorentz and CPT violation. Assuming N is
composed of first-generation particles, the existing con-
straints on coefficients [2] imply that for most models it
is a good approximation to neglect all but the first term
on the right-hand side of this equation. For CPT-even ef-
fects, the relevant observable combination of coefficients
is

(cµ+e−N )µν = (cµ)µν +
me

mµ
(ce)µν −

mµ +me

mµ
(cN )µν .

(173)

Again, only the first term is likely to be significant in
practice. Similar expressions hold for muonic hydrogen,
with the replacements e → p for the superscripts and
(aµeff)µ → −(aµeff)µ for the muon coefficient for Lorentz
violation.

Searches for Lorentz-violating gravitational couplings
of other second- and third-generation particles could also
be countenanced. The typically short lifetimes of these
particles can in principle be overcome by boosting, so ac-
celerator experiments are likely to provide the best lab-
oratory prospects. Studying the gravitational infall of
particles of extraterrestrial origin in the context of free-
fall WEP searches might be a source of additional con-
straints.

The physical mixing of uncharged particles of differ-
ent flavors w offers an interesting alternative method to
achieve sensitivity to the coefficients (aweff)µ. Examples
already yielding SME constraints on Lorentz and CPT
violation include the interferometric oscillations of neu-
tral mesons [53, 54] and of neutrinos [55]. Particle mixing
implies nondiagonal terms in the propagator matrix, so
field redefinitions of the type (14) cannot be used to re-
move the coefficients (aweff)µ from the theory. Differences
between the coefficients (aweff)µ then become observable
even in Minkowski spacetime, offering sensitivity to ef-
fects that would otherwise be undetectable. For instance,
the recent observation of anomalous CP-violating effects
in B-meson oscillations [124] could originate in one or
more nonzero coefficients (aweff)T for Lorentz and CPT
violation in the quark sector, since these control CP-
odd but T-even operators that contribute to the effective
hamiltonian for the mixing [54]. Spin-independent CPT-
odd Lorentz violation involving coefficients such as (aw)µ
could also underlie the observed baryon asymmetry in the
Universe [125].

In terms of the perturbative counting scheme of Sec.
II D, the existing SME studies using neutral-meson and
neutrino oscillations lie at O(1,0). Incorporating leading-
order gravitational couplings along the lines in this pa-
per would introduce O(1,1) oscillation effects, including
species-dependent modifications of the meson or neu-
trino trajectories with characteristic time dependences
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similar to the WEP-violating effects discussed in Sec.
VII D. Possible O(1,0) contributions to the oscillations
can be distinguished from O(1,1) ones via the depen-
dences on energy, baseline, flavor, and time. The advent
of neutrino-oscillation experiments with long and very
long baselines of order 100-1000 km and corresponding
changes in gravitational potential along the beams may
offer particularly interesting options for free-fall WEP
tests of Lorentz and CPT violation of this type. A
detailed consideration of these possibilities would be a
worthwhile subject for future investigation.

X. SOLAR-SYSTEM TESTS

Studies of the motion of bodies within the solar sys-
tem provide an important source of information about
gravitational couplings to matter. In this section, we in-
vestigate the effects of nonzero coefficients (aeff)µ and
cµν for Lorentz violation in two solar-system contexts:
lunar and satellite laser ranging, and perihelion preces-
sion. The analysis here neglects effects that act merely
to scale the mass of the gravitational source. These are
unobservable using solar-system observations alone, but
they may be detectable in combined measurements using
photon tests. This latter issue is revisited in Sec. XI.

A. Lunar and satellite laser ranging

Lunar and satellite laser ranging provides a sensitive
test of gravitational physics. The relevant orbital per-

turbations to the motion of a satellite orbiting the Earth
that arise from nonzero Lorentz violation in the pure-
gravity sector of the minimal SME have been established
[7] and used to constrain some of the coefficients sµν [4].
Here, we seek to extend these results to include dominant
effects from nonzero coefficients (aeff)µ and cµν .

Where possible in this subsection, we follow the con-
ventions of Ref. [7]. A summary of our notation is given
in Table XII. The flavor dependence of the matter-gravity
couplings leads to composition-dependent factors in some
of the equations to follow. To simplify these expressions,
it is useful to define the eight combinations

nw1 = Nw
1 +Nw

2 ,

nw2 = Nw
1 −Nw

2 ,

nw3 = M

(
Nw

1

m1
+
Nw

2

m2

)
,

nw4 = M

(
Nw

2

m2
− Nw

1

m1

)
,

nw5 =
1

M
(m1N

w
2 +m2N

w
1 ),

nw6 =
1

M
(m1N

w
2 −m2N

w
1 ) ,

nw7 =
m2

m1
Nw

1 +
m1

m2
Nw

2 ,

nw8 =
1

M

(
m2

2

m1
Nw

1 − m2
1

m2
Nw

2

)
. (174)

Table XII. Notation for laser-ranging tests.

Quantity Definition

m1 satellite mass

Nw
1 number of particles of species w in the satellite

m2 Earth mass

Nw
2 number of particles of species w in the Earth

M = m1 +m2 total Earth-satellite mass

δm = m2 −m1 Earth-satellite mass difference

mn mass of the nth perturbing body

M⊙ Sun mass

Nw
⊙ number of particles of species w in the Sun

rJ1 satellite position

rJ2 Earth position

rJ = rJ1 − rJ2 = (x, y, z) Earth-satellite separation, of magnitude r = |~r1 − ~r2|
RJ = (m1r

J
1 +m2r

J
2 )/M position of Newton center of mass for Earth-satellite system

Ω⊕ =
√
GNM⊙/R3 mean Earth orbital frequency

vJ = vJ1 − vJ2 = drJ/dT relative Earth-satellite velocity

V J = (m1v
J
1 +m2v

J
2 )/M velocity of Newton center of mass for Earth-satellite system

The primary observable in laser-ranging tests is the
coordinate acceleration aJES of the relative Earth-satellite

separation. Working in the Sun-centered frame, we can
obtain this acceleration from the equation of motion (78).
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The relevant contributions to the coefficient and metric
fluctuations from (aeff)µ and cµν can be found in Sec.
IVC, while those from sµν are given in Ref. [7].

Incorporating perturbative effects of other bodies in-
cluding the Sun, the coordinate acceleration can be writ-
ten

aJES ≡ d2rJ

dT 2
= aJN + aJT + aJQ + aJLV + . . . . (175)

The first three terms in this expression involve effects
independent of Lorentz violation. They represent the
acceleration due to the Newton gravitational field of
the Earth-satellite system, the Newton tidal quadrupole
term, and the quadrupole moment of the Earth, respec-
tively. Their explicit form is given in Ref. [7]. The
leading Lorentz-violating contributions to the accelera-

tion are represented by the fourth term aJLV. This term
can itself be split into four pieces,

aJLV = aJaeff ,c,ES + aJaeff ,c,tidal + aJs,ES + aJs,tidal. (176)

The first two terms are the ones of interest in the present
work and are discussed below. The last two depend on
the coefficient sµν , with aJs,ES arising from the Earth-

satellite system and aJs,tidal involving perturbations due
to other bodies. The explicit form of these two quantities
is provided in Ref. [7].

The term aJaeff ,c,ES in Eq. (176) provides the Lorentz-
violating acceleration of the Earth-satellite system from
the matter-gravity couplings (aeff)µ and cµν . It takes the
form

aJaeff ,c,ES =
GN
r3

∑

w

[
− 2nw3 α(aweff)T r

J − nw1 m
w(cw)TT r

J + 2nw7 m
wηJK(cw)(KL)r

L

− 2nw3 α(aweff)KV
KrJ − 2nw2 α(aweff)Kη

JKvLr
L + 2nw2 α(aweff)Kv

KrJ + 2nw7 m
w(cw)(TK)V

JrK

− 2nw1 m
w(cw)(TK)V

KrJ + 2nw6 m
w(cw)(TK)v

KrJ + 2nw7 m
wηJK(cw)(TK)VLr

L

− 2(nw6 − 2nw8 )mwηJK(cw)(TK)vLr
L + 2nw8 m

w(cw)(TK)v
JrK

]
. (177)

In principle, aJaeff ,c,ES also acquires contributions proportional to R⊕ω, but these are neglected here because they are

typically suppressed compared to effects proportional to V J and vj .
In Eq. (176), the term aJaeff ,c,tidal contains the Lorentz-violating tidal acceleration involving (aeff)µ and cµν , which

arises from perturbing bodies. When the satellite is taken as the Moon, the dominant tidal contributions are due to
the Sun and can be written

aJaeff ,c,tidal = Ω2
⊕

∑

w

{[Nw
⊙

m⊙

(2α(aweff)T +mw(cw)TT ) − 2

M
nw1 α(aweff)T

] (
3rLR̂LR̂

J − rJ
)

+
2

M
nw4 α(aweff)TR

J − 2
mw

M
nw4 η

JK(cw)KLR
L − 2

mw

M
nw7 η

JK(cw)(KL)

(
3rM R̂M R̂

L − rL
)

− 2
mw

M

[
2nw4 η

JKVL(cw)(TK) − 2nw7 η
JKvL(cw)(TK) + nw4 V

J(cw)(TL) − nw7 v
J(cw)(TL)

]
RL

+ 4
Nw

⊙

m⊙

α(aweff)Kη
J[KvL]RL − 4

Nw
⊙

m⊙

α(aweff)K

(
δm

M
ηJ[KvL] + ηJ[KV L]

)(
3rM R̂M R̂L − rL

)

− 2
mw

M

[
2nw7 η

JKVL(cw)(TK) + 2nw8 η
JKvL(cw)(TK)

+ nw7 V
J(cw)(TL) + nw8 v

J (cw)(TL)

] (
3rM R̂M R̂

L − rL
)}

. (178)

If instead the satellite is artificial, then there are tidal
effects from both the Sun and the Moon. However, these

are suppressed relative to the Earth-satellite acceleration
(177).
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The Lorentz-violating coordinate accelerations given
by Eqs. (177) and (178) exhibit some interesting fea-
tures. The first two terms in Eq. (177) and the first
term in Eq. (178) are composition-dependent scalings of
the corresponding Newton accelerations. These terms
are therefore detectable only by comparison to results
obtained using satellites of different compositions. Also,
unlike the contributions aJs,tidal obtained in Ref. [7], here

the tidal acceleration (178) from the Sun on the Moon-
Earth system involves nontrivial WEP violations because
the Moon and the Earth fall differently towards the Sun
when the coefficients (aweff)µ and (cw)µν are nonzero. It is
also interesting to note that the tidal acceleration (178)
contains contributions at PNO(2) that are independent
of rJ and hence are enhanced at this order relative to
other contributions by a factor of R/r. This too is a
consequence of the WEP violations arising from (aeff)µ.
Similar terms appear at PNO(3) as well.

A typical experiment measures the time of flight for
laser photons to travel from the Earth to a reflector on
the satellite and back. To analyze the results, the laser-
ranging data can be fitted by incorporating Eq. (175) and
other conventional perturbing effects into an appropriate
modeling code. An alternative approach is to perform an
analytical perturbative expansion along the lines of the
one performed for the sµν contributions in Ref. [7] and
then match to the data. This latter method is adopted
in Ref. [4] to constrain combinations of the coefficients
sµν .

In the present context, we can obtain crude estimates
of sensitivites to (aweff)µ and (cw)µν attainable in lunar
laser ranging via either of these procedures, by using
term-by-term comparison of the accelerations Eq. (177)
and (178) to the accelerations aJs,ES and aJs,tidal obtained

for the coefficient sµν in Ref. [7]. With the precision al-
ready achieved in lunar laser ranging [126], we thereby
find estimated sensitivities at parts in 1010 to combi-
nations of (cw)(JK) and sJK , and parts in 106 to vari-
ous combinations of (aweff)J , (cw)(TJ) and sTJ . Actual
measurements at roughly these levels can be expected
to result from a reanalysis of existing data. A signifi-
cant further improvement is likely to be possible using
data from the Apache Point Observatory Lunar Laser-
Ranging Operation (APOLLO) [127]. Assuming that
millimeter ranging is achieved as expected and disregard-
ing probable subtantially improved statistics, we antici-
pate competitive estimated sensitivities of 10−7 GeV on
various combinations of α(aweff)X and α(aweff)Y+Z , and a
sensitivity of 10−7 on (cn)(TJ), where the notation of Eq.
(148) is used and the dependence on the coefficients sµν
has been omitted for simplicity.

Ranging to artificial satellites with orbit orientations
different from that of the Moon can yield sensitivity to
additional independent linear combinations of (aweff)µ and
(cw)µν . Typically, the reach of satellite ranging is ex-
pected to be about an order of magnitude less than lunar
laser ranging. Other possibilities for gravitational tests of
Lorentz violation include ranging to objects orbiting bod-

ies other than the Earth. For example, the time variation
G−1
N dGN/dt of the Newton gravitational constant has

been constrained by ranging data to the Viking landers
on Mars, to the Mariner 9 spacecraft orbiting Mars, and
to other bodies including the Moon [128]. These studies
primarily seek secular changes in the gravitational force.
Although secular changes in coupling constants can re-
sult from Lorentz violation [129], the signals of interest in
the present context are periodic. Reanalysis of existing
data to seek periodic effects in G−1

N dGN/dt would yield
sensitivities to Lorentz violation estimated to be some-
what less than lunar laser ranging but involving different
combinations of (aweff)µ and (cw)µν .

We conclude this subsection with some comments
about the coordinate location RJ of the center of mass
of an Earth-satellite system. Boost invariance normally
ensures this location is fixed, but the presence of Lorentz
violation means it can be time dependent, although the
effect may be unobservable via laser ranging. Neglecting
the effects of other bodies and working at PNO(3), the
Lorentz-violating contributions to the equation of motion
for the center of mass of the Earth-satellite system can
be written as the sum

R̈J ⊃ R̈Jaeff
+ R̈Jc + R̈Js (179)

of contributions from (aweff)µ, (cw)µν , and sµ. Explicitly,
we find

R̈Jaeff
=
∑

w

2GNn
w
5 η

JKα(aweff)KvLr
L

r3
, (180)

which contains only PNO(3) effects involving the internal
motion of the system. The second term in Eq. (179) is

R̈Jc =
∑

w

2GNm1m2m
w

M2r3

×
[

1
2n

w
2 (cw)TT r

J + nw2 η
JK(cw)KLr

L

+ηJK(cw)(TK)(n
w
2 VL + nw5 vL)rL

+(cw)(TK)(n
w
2 V

K + nw5 v
K)rJ

+(cw)(TK)(n
w
2 V

J + nw5 v
J )rK

]
. (181)

The first two terms are at PNO(2) and reflect the modi-
fication of the effective Newton inertial mass in the pres-
ence of nonzero cµν , while the remaining terms are at
PNO(3). The ones proportional to V J arise as a result
of the system boost in the Sun-centered frame, and those
proportional to vJ are due to the internal motion of the
system. The last term in Eq. (179) is

R̈Js =
GNm1m2

Mr3

[
3ηJKsTKvLr

L − sTKv
JrK

−sTKvKrJ + 3sTKr
JvLr̂

K r̂L
]
,

(182)

which again consists only of PNO(3) effects proportional
to the internal motion of the system. Note that all these
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contributions introduce an oscillatory motion for the cen-
ter of mass, and their presence is required by momentum
conservation.

B. Perihelion precession

The presence of nonzero coefficients (aeff)µ and cµν for
Lorentz violation leads to corrections to the motion of a
test body in a gravitational field. These corrections can
be calculated from the equation of motion (78) and from
the expressions for the coefficient and metric fluctuations
given in Sec. IVC. In this subsection, we determine the
effect of nonzero (aeff)µ and cµν on the perihelion pre-
cession for planetary orbits. We follow the treatment of
Ref. [7], which obtains the perihelion shift arising from
nonzero SME coefficients sµν . Our notation matches that
of Table XII and Eq. (174) in Sec. X A, with the labels 1
and 2 representing the planet and Sun, respectively.

The derivation of the perihelion precession used here
relies on the method of osculating elements [130], in
which the instantaneous motion of the planet is treated
as part of an ellipse. The ellipse is characterized using
the standard Kepler orbital elements, and the motion of
the planet is described by specifying them as a function
of time. The relevant orbital elements in the present case
are the angle ω between the line of ascending nodes and
the semimajor axis of the ellipse, the longitude Ω of the
ascending node, and the inclination i with respect to the
ecliptic. These are specified in the reference coordinate
system, which can be taken as the Sun-centered frame
for the planetary orbits considered here. More generally,
the reference frame is related to the Sun-centered frame
by a rotation and possibly a boost, as discussed in Sec.
V E 5 of Ref. [7]. The physical quantity relevant for the
perihelion precession is the change per period ∆ω̃ of the
perihelion angle ω̃ with respect to the equinox. In terms
of the basic orbital elements, ω̃ can be expressed as

ω̃ = ω + Ω cos i. (183)

For the cases of interest here, the angle i can be assumed
small.

The secular changes in the orbital elements arising
from (aeff)µ and cµν can be obtained by considering the
relative acceleration of the planet and the Sun, which has
the form

d2rj

dt2
= −GN

r3

∑

w

[
M + 2nw3 α(aweff)0r

j + nw1 m
w(cw)00r

j

−2ηjknw7 m
w(cw)(kl)r

l + 2nw2 α(aweff)kη
jkvlr

l

−2nw2 α(aweff)kv
krj − 2nw6 m

w(cw)(0k)v
krj

+2ηjk(nw6 − 2nw8 )mw(cw)(0k)vlr
l

−2nw8 m
w(cw)(0k)v

jrk
]
. (184)

The unperturbed ellipse is given as the solution ~r0 of the

Kepler-type equation

d2rj0
dt2

= −GN
r3

∑

w

[
M + 2nw3 α(aweff)0 + nw1 m

w(cw)00

]
rj .

(185)
This shows that the frequency n and semimajor axis a of
the unperturbed elliptic motion are related according to

n2a3 = GN
∑

w

[
M+2nw3 α(aweff)0+nw1 m

w(cw)00

]
. (186)

Note that the right-hand side of this expression depends
on the composition of the planet and the Sun.

The orientation of the orbit can be specified using three

unit vectors ~k, ~P , and ~Q. The first is chosen perpendic-
ular to the orbit, the second points from the focus to the
perihelion, and the third completes the orthonormal set.
Their explicit form in terms of orbital elements is given
in Eq. (116) of Ref. [7]. In terms of this basis set, the
unperturbed elliptical orbit can be expressed as

~r0 =
a(1 − e2)

1 + e cos f
(~P cos f + ~Q sin f), (187)

where e is the eccentricity and f is the true anomaly.
The perturbing acceleration a′j consists of the terms

in Eq. (184) that are absent from Eq. (185),

a′j =
d2rj

dt2
− d2rj0

dt2
. (188)

The time dependence of the orbital elements can be ex-
tracted from this equation via the method of osculating
elements. The general procedure is to insert the unper-
turbed solution (187) for ~r into the expression (188) for
a′j, to project the result as desired, and to integrate over
the true anomaly.

To obtain the perihelion precession, the final results
for the orbital elements ω and Ω must be combined ac-
cording to Eq. (183). After some calculation, we obtain
the expression

∆ω̃ = 2π
∑

w

[
(e2 − 2ǫ)

Me4
nw7 m

w((cw)QQ − (cw)PP )

− 2na(e2 − ǫ)

e3M
√

1 − e2

[
(nw6 − 2nw8 )mw(cw)(0Q)

+nw2 α(aweff)Q
]]

(189)

for the shift in the perihelion per orbit. Here, the sub-
scripts P and Q on the coefficients for Lorentz violation

indicate projections along the directions ~P and ~Q, re-
spectively. The quantity ǫ is the eccentricity function,
defined by ǫ = 1 −

√
1 − e2.

The result (189) reveals that the perihelion precession
depends on the orbit orientation through the projections

of the coefficients (aeff)µ and cµν along the directions ~P

and ~Q. Also, the factors scaling the coefficients in Eq.
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(189) vary with the composition of the orbiting body.
This means that the orbits of different planets or, more
generally, different satellites are affected by different lin-
ear combinations of coefficients for Lorentz violation. It
is therefore valuable to consider data from multiple sys-
tems so that independent measurements can be obtained.

To illustrate the sensitivities that can be achieved, we
consider explicitly the perihelion precessions of Mercury
and of the Earth. Substituting the relevant orbital data
for the two planets into Eq. (189) in turn, taking the plan-
etary mass as small compared to the solar mass m⊙, and
incorporating the results for the coefficients sµν obtained
in Eq. (190) of Ref. [7], we find the overall perihelion

shifts ˙̃ω' of Mercury and ˙̃ω⊕ of the Earth are given in

units of arcseconds per century C by the expressions

˙̃ω' ≈ 7 × 107′′

C
s'

+
1 × 108′′

C

∑

w

(
3 × 10−3N

w
⊙

m⊙

(aweff)' −
Nw

'
mw

m'
(cw)'

)
,

˙̃ω⊕ ≈ 2 × 107′′

C
s⊕

+
4 × 107′′

C

∑

w

(
3 × 10−2N

w
⊙

m⊙

(aweff)⊕ − Nw
⊕m

w

m⊕

(cw)⊕

)
.

(190)

The combinations of coefficients for Lorentz violation ap-
pearing in these equations are defined as

(aweff)' = α(aweff)Q,

(aweff)⊕ = α(aweff)Q,

(cw)' ≈ [(cw)QQ − (cw)PP ] − 6 × 10−3(cw)(0Q),

(cw)⊕ ≈ [(cw)QQ − (cw)PP ] − 5 × 10−2(cw)(0Q),

s' ≈ (sPP − sQQ) − 6 × 10−3s(0Q),

s⊕ ≈ (sPP − sQQ) − 5 × 10−2s(0Q). (191)

Note that the subscripts P , Q here represent projections
that differ for Mercury and the Earth.

The chemical composition of the Sun is believed to
be over 70% hydrogen and about 27% helium by mass
[131]. The factors in Eq. (190) that depend on the so-
lar composition can therefore be estimated as Ne

⊙/m⊙ =
Np

⊙/m⊙ ≃ 0.9 GeV−1 and Nn
⊙/m⊙ ≃ 0.1 GeV−1. As

can be seen from Eq. (191), these factors suffice for plac-
ing approximate bounds on the coefficients (aweff)µ from
knowledge of the perihelion precessions. The composi-
tion of Mercury is believed to be about 70% iron and
about 30% rocky material [131], so the analogous ratios
for Mercury are roughly Ne

'
/m' = Np

'
/m' ≃ 0.4 GeV−1

and Nn

'
/m' ≃ 0.6 GeV−1. For the Earth, using Ref.

[46] and following the discussion of Sec. IVA2, we find
Ne

⊕/m⊕ = Np
⊕/m⊕ ≈ Nn

⊕/m⊕ ≃ 0.5 GeV−1. However,
for the approximate bounds obtained below on the co-

efficients cµν , it suffices that the composition-dependent
factors for the planets are of order 10−1 GeV−1.

We are now in a position to place constraints on some
combinations of the coefficients (aweff)µ, cµν , and sµν by
adopting the established error bars in the existing data
for perihelion shifts. These error bars are 0.043′′ C−1 for
Mercury and 0.4′′ C−1 for the Earth [8, 132]. Taking the
error bars to be upper bounds on the perihelion shifts in
Eq. (190), we obtain the order-of-magnitude constraints

|s' + 10−3[(aeeff)' + (apeff)'] + 10−4(aneff)'

−10−4(ce)' − 10−1(cp)' − 10−1(cn)'| ∼< 10−9 GeV,

|s⊕ + 10−2[(aeeff)⊕ + (apeff)⊕] + 10−3(aneff)⊕

−10−4(ce)⊕ − 10−1(cp)⊕ − 10−1(cn)⊕| ∼< 10−8 GeV.

(192)

Assuming a model with nonzero coefficients (aweff)µ only,
this yields the approximate constraints

|(aeeff)' + (apeff)' + 0.1(aneff)'| ∼< 10−6 GeV,

|(aeeff)⊕ + (apeff)⊕ + 0.1(aneff)⊕| ∼< 10−6 GeV. (193)

Similarly, assuming a model with nonzero coefficients
(cw)µν only and making use of existing limits on cµν for
protons and electrons [2], we obtain the approximate con-
straints

|(cn)'| ∼< 10−8, |(cn)⊕| ∼< 10−7. (194)

A careful reanalysis of the existing data for multiple bod-
ies in the solar system could yield sharper sensitivities.

The result (193) represents first constraints on the spa-
tial coefficients α(aweff)J . A sense of the maximal attained
sensitivity to the nine components in α(aweff)J can be ob-
tained by taking each component in turn to be the only
nonzero one. Extracting these sensitivities requires the

explicit form of the vectors ~Q' and ~Q⊕. The relevant or-

bital elements in heliocentric coordinates are ω' ≃ 29◦,

Ω' ≃ 48◦, i' ≃ 7◦ and ω⊕ ≃ 103◦, Ω⊕ = 0◦ i⊕ = 0◦.

Converting to the Sun-centered frame using a counter-
clockwise rotation by η ≃ 23.5◦ about the X axis yields

~Q' ≃ −0.97eX + 0.15eY + 0.18eZ,

~Q⊕ ≃ −0.97eX − 0.21eY − 0.10eZ. (195)

Taking each component α(aweff)J as the only nonzero coef-
ficient in turn yields the order-of-magnitude sensitivities

|α(aeeff)X | ∼< 10−6 GeV,

|α(aeeff)Y |, |α(aeeff)Z | ∼< 10−5 GeV,

|α(apeff)X | ∼< 10−6 GeV,

|α(apeff)Y |, |α(apeff)Z | ∼< 10−5 GeV,

|α(aneff)X | ∼< 10−5 GeV,

|α(aneff)Y |, |α(aneff)Z | ∼< 10−4 GeV. (196)

These results are the maximal sensitivities achieved to
date on the coefficients α(aweff)J .
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XI. PHOTON TESTS

In this penultimate section, we consider searches for
gravitational Lorentz violation involving the trajectories
of photons. With the coordinate choice (23) adopted in
this work, photons follow null geodesics. The signals of
interest therefore arise from the modifications to the met-
ric, which are associated with Lorentz-violating matter-
gravity couplings of the source body and in certain cases
also of the clocks and rods used for measurements.

Photon tests for Lorentz violation involving the coef-
ficients sµν in the pure-gravity sector of the SME have
been studied in Refs. [7, 133]. Here, this analysis is ex-
tended to include the matter-sector coefficients (aweff)µ
and (cw)µν . The treatment and notation of Ref. [133] is
adopted where possible. Some quantities relevant for the
analysis are listed in Table XIII.

Table XIII. Notation for photon tests.

Quantity Definition

xµE = (tE , ~rE) coordinates of event E

rE magnitude of ~rE
xµP = (tP , ~rP ) coordinates of event P

rP magnitude of ~rP
~R = ~rP − ~rE zeroth-order light trajectory

R̂ = ~R/R unit vector along ~R

R = |~R| magnitude of ~R

bj = rjP − R̂j ~rP · R̂ impact-parameter vector

b magnitude of ~b

mS mass of source body

lP = ~rP · R̂ λ at P

−lE = ~rE · R̂ λ at E

τE proper time of E

τP proper time of P

uµE = dxµE/dτE 4-velocity of E

uµP = dxµP /dτP 4-velocity of P

~v = d~rE/dt 3-velocity of E

~w = d~rP /dt 3-velocity of P

νE frequency at E

νP frequency at P

In what follows, we consider various effects on a light
signal as it travels from an emission event E to a space-
time point P located near a massive body. The light path
can be specified parametrically as xµ = xµ(λ), where λ
is the path parameter. The wave 4-vector pµ of the ray
tangent to the path is

pµ =
dxµ

dλ
, (197)

and it obeys the conditions

dxµ

dλ
= −Γµαβp

αpβ,

pµpνgµν = 0. (198)

The wave 4-vector can be linearized as

pµ = pµ + δpµ, (199)

where the first term is the zeroth-order wave vector and
the second term contains gravitational corrections. Our
interest here lies in the O(1,1) contributions to δpµ.
The basic procedure is to insert the modifications (84)
and (88) of the metric arising from matter-sector effects
into the general expressions obtained in Ref. [133]. We
consider in turn Lorentz-violating contributions to the
Shapiro time delay, to the gravitational Doppler shift, to
the gravitational redshift, and to the null redshift, and
we compare the results to the effective mass of a gravita-
tional source as measured by orbital tests. We also offer
some comments about the implications of the results for
various experiments.

A. Shapiro time delay

In this subsection, we obtain the Lorentz-violating
modifications to the Shapiro time delay of a light signal
as it passes from a source to a detector in the presence of
a massive body such as the Sun. The one-way time delay
tP − tE can be determined by integrating δpµ along the
path and applying the null condition,

tP − tE = R + 1
2

∫ lP

−lE

hµνp
µpνdλ. (200)

Inserting the Lorentz-violating metric modifications (84)
and (88) and integrating, we find the delay can be written
in the form

tP − tE = R+ (tP − tE)GR

+(tP − tE)aeff ,c + (tP − tE)s. (201)

Here, R is the zeroth-order time difference. The second
term is the standard GR contribution, which at O(0,1)
and PNO(2) takes the form

(tP − tE)GR = 2GNm
S ln

(
rE + rP +R

rE + rP −R

)
. (202)

The third term of Eq. (201) consists of contributions
from Lorentz-violating matter-gravity couplings associ-
ated with the source body S. At O(1,1) and PNO(2),
these contributions are

(tP − tE)aeff ,c =

2GNm
S
( α

mS
(aS

eff)0 +
α

mS
(aS

eff)jR̂
j + (cS)00

)

× ln

(
rE + rP +R

rE + rP −R

)

−GNα((aS
eff)0 + (aS

eff)jR̂
j)

(
lE
rE

+
lP
rP

)

−GNα(aS
eff)kb

k

(
rE − rP
rErP

)
. (203)
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The final term in Eq. (201) arises from gravitational
Lorentz violation involving the coefficient sµν and is given
in Ref. [133].

In typical time-delay measurements, an observer emits
a light signal at E that is reflected at the spacetime point
P and subsequently detected by the observer at E′. The
round-trip coordinate travel time ∆t, which is related to
the measured proper time ∆τE by the factor dτE/dt, can
be written to O(1,1) and PNO(2) as

∆t = 2R(1+v2−~v ·R̂)+(∆t)GR +(∆t)aeff ,c+(∆t)s.
(204)

The zeroth-order term in this expression incorporates
Lorentz-violating corrections to the trajectory of the
emitter, which here can depend on particle species. These
can in principle be determined by modeling the relevant
orbits along the lines of the treatment in Sec. X and Ref.
[7]. The second term in Eq. (204) contains the leading
GR corrections,

∆tGR = 4GNm
S ln

(
rE + rP +R

rE + rP −R

)
. (205)

The third term in Eq. (204) contains the leading contri-
butions from nonzero (aeff)µ and cµν ,

∆taeff ,c = 4GNm
S
( α

mS
(aS

eff)0 + (cS)00

)

× ln

(
rE + rP +R

rE + rP −R

)

−2GNα(aS
eff)0

(
lE
rE

+
lP
rP

)
. (206)

The last term of Eq. (204) contains corrections involving
the coefficient sµν and is given in Ref. [133]. Note that
contributions from the coefficients (aeff)j and s0j cancel
in the round-trip expression, a result that can be traced
to the parity-odd nature of the corresponding Lorentz-
violating operators. Note also that the time-delay signal
changes over two relevant time scales, the conjunction
time b/v and the typically longer orbital time r/v, which
enables separation of the zeroth-order and gravitational
effects.

The dominant Lorentz-violating corrections to ∆t are
proportional to the logarithm in Eq. (206). The primary
effect of the Lorentz-violating matter-gravity couplings is
therefore to scale the factor of GNm

S in the usual GR
time delay (205). The scaling can be interpreted as an
effective value (GNM)TD for the source body relevant for
time-delay tests,

(GNM)TD = GNm
S
(
1 +

α

mS
(aS

eff)0 + (cS)00 + s00

)
.

(207)
This scaling is unobservable in time-delay tests alone.
However, we show in what follows that other tests can
yield different effective values of GNm

S, so suitable com-
parisons can reveal signals for Lorentz violation. This
prospect is considered in Sec. XI E below.

B. Gravitational Doppler shift

When light passes near a massive body, it suffers a
frequency shift as well as a time delay. In this and the
subsequent subsections, we consider the corrections to
the frequency shift due to the matter-sector coefficients
(aeff)µ and cµν .

The relevant quantity is the ratio of frequencies ob-
served at the two events E and P ,

νP
νE

=
(uµpµ)P
(uνpµ)E

. (208)

At PNO(3), this can be written as

νP
νE

=

√
1 − v2

1 − w2

(
1 − ~w · R̂
1 − ~v · R̂

)[
1 +

(
νP
νE

)

g

]
. (209)

Here, the term labeled g contains gravitational effects
involving both the Doppler shift and the redshift,

(
νP
νE

)

g

=

(
νP
νE

)

DS

+

(
νP
νE

)

RS

. (210)

This subsection treats the gravitational Doppler shift,
while the redshift effects are discussed in the next sub-
section.

Corrections to the gravitational Doppler shift
(νP /νE)DS depending on the coefficients (aeff)µ, cµν ,
and sµν can be obtained by inserting into Eq. (31) of
Ref. [133] the modifications to the metric from Eqs. (84)
and (88), along with those due to sµν given in Ref. [7].
Near conjunction, we find that the dominant effects take
the form
(
νP
νE

)

DS

≈ 4GNm
S

b

(
1 +

α

mS
(aS

eff)0 +
α

mS
(aS

eff)jR̂
j

+(cS)00

)db
dt

+

(
νP
νE

)

DS,s

, (211)

where the last term contains the contributions from sµν
found in Ref. [133].

Typical searches measure the round-trip frequency
shift,
(
δν

ν

)

DS

=
8GNm

S

b

(
1 +

α

mS
(aS

eff)0 + (cS)00

) db
dt

+

(
δν

ν

)

DS,s

. (212)

Note that the effects from parity-odd operators again
cancel. The coefficients (aeff)0, c00, and s00 associated
with isotropic Lorentz violation in the chosen inertial
frame act to scale the factor GNm

S in the usual expres-
sion for the gravitational Doppler shift, leading to an
effective value (GNM)DS given by

(GNM)DS = GNm
S
(
1 +

α

mS
(aS

eff)0 + (cS)00 + s00

)
.

(213)
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The scaling (213) is unobservable in Doppler-shift tests
alone. This result for (GNM)DS is identical in form to
that of the time-delay value (GNM)TD in Eq. (207).

C. Gravitational redshift

The Lorentz-violating contributions to the term
(νP /νE)RS in Eq. (210) for the gravitational redshift can
be viewed as subdominant to the time delay or Doppler
shift because they occur at the slow time scale. How-
ever, in dedicated redshift measurements, the Lorentz-
violating gravitational redshift can appear as the dom-
inant effect. In this subsection, we discuss Lorentz-
violating modifications to the usual gravitational redshift
and effects in null-redshift tests.

To place in context the results in this subsection, we
note that clocks can be used to perform three distinct
types of gravitational tests that are often convolved in
the literature under the term ‘redshift tests.’ The first
type, which measures the traditional gravitational red-
shift, involves two clocks held at different gravitational
potentials whose frequency is compared using light or
some other signal passing between them. This type of
test is discussed in Sec. XI C 1 below. The second type of
test is called a null-redshift test, and it involves monitor-
ing the frequencies of two clocks of different composition
as they move together through the gravitational poten-
tial. This is discussed in Sec. XI C2. The third kind of
test involves synchronizing two clocks and then moving
one of them around a closed path in the gravitational po-
tential. The signal in this case is the accumulated phase
difference between the clocks. An example of this ‘twin-
paradox’ redshift test is the free-fall gravimeter measure-
ment with interferometers discussed in Sec. VII D. These
three kinds of tests produce related signals in GR. How-
ever, they can yield distinct sensitivities in a more gen-
eral context such as the SME, as is demonstrated in what
follows.

1. Modified redshift

The term (νP /νE)RS in Eq. (210) for the gravitational
redshift can be understood as the product

(
νP
νE

)

RS

=

(
dt

dτP

)(
dτE
dt

)
, (214)

of the factors relating proper and coordinate times for
the clocks at the two points E and P . Each factor is de-
termined by the dispersion relation for the corresponding
clock, which depends on coefficients for Lorentz violation
via its material composition and on the Lorentz violation
associated with the gravitational field.

For simplicity in what follows, we assume the sending
and receiving clocks are identical. This eliminates the
need to consider O(1,0) effects, which have been sought in

numerous clock-comparison experiments performed with
both clocks at the same gravitational potential [2]. To
the order at which we work, the redshift can then be
expanded as

(
νP
νE

)

RS

=

(
νP
νE

)(0,1)

RS

+

(
νP
νE

)(1,1)S

RS

+

(
νP
νE

)(1,1)T

RS

,

(215)
where the term at O(0,1) is the conventional redshift, the
term at O(1,1) labeled by S contains Lorentz-violating
corrections from the gravitational source, and the last
term labeled by T involves O(1,1) contributions from the
clocks. For our present purposes, it suffices to work at
PNO(2).

For an ideal clock, the Lorentz-violating contributions
to the first two terms in Eq. (215) can be calculated by
inserting into the usual redshift equation the modifica-
tions (84) and (88) to the metric from the coefficients
(aeff)µ and cµν , along with the corrections from Ref. [7]
involving the coefficients sµν . This gives

(
νP
νE

)(0,1)

RS

+

(
νP
νE

)(1,1)S

RS

=

√√√√1 − (h
(0,1)
00 )E − (h

(1,1)
00 )E

1 − (h
(0,1)
00 )P − (h

(1,1)
00 )P

. (216)

Expanding to PNO(2) and keeping leading-order terms
in Lorentz violation, we obtain the conventional PNO(2)
result,

(
νP
νE

)(0,1)

RS

= GNm
S

(
re − rp
rerp

)
,

together with the correction

(
νP
νE

)(1,1)S

RS

= GNm
S
( 2α

mS
(aS

eff)0 + (cS)00

)(re − rp
rerp

)

+

(
νP
νE

)

RS,s

. (217)

The last term contains the contributions from sµν given
in Ref. [133].

For the remaining term in Eq. (215), the situation is
more complicated because the clock frequency must be
calculated directly and typically depends on the struc-
ture and composition of the clock. Moreover, although
our interest is at O(1,1), all three of the perturbative con-
tributions O(1,0), O(0,1), O(1,1) must be treated due to
the appearance of cross terms in the calculation. For
convenience, we can express the last term in Eq. (215) in
the form

(
νP
νE

)(1,1)T

RS

= GNm
Sξclock

(
re − rp
rerp

)
, (218)

where ξclock is a function of the coefficients for Lorentz
violation associated with the clock. If the clock’s ticking
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rate is set by its inertial properties, as is the case for most
atomic clocks, then ξclock can be expected to depend on
the coefficients (cw)µν . If the clock’s ticking rate depends
intrinsically on the local gravitational acceleration, as oc-
curs for a pendulum clock, then ξclock can be expected to
depend on the coefficients (aweff)µ. In general, the value
of ξclock can depend on both sets of coefficients,

ξclock = ξclock

(
(aweff)µ, (c

w)µν
)
. (219)

The key point is that different clocks have different ξclock

according to the details of their construction and flavor
content.

Combining the above results, we see that the domi-
nant Lorentz-violating effects for the gravitational red-
shift can be represented as an effective value (GNM)RS

implementing a scaling of GNm
S, in parallel with the

results for the time delay and the gravitational Doppler
shift. We obtain

(GNM)RS = GNm
S
(
1 +

2α

mS
(aS

eff)0 + (cS)00 + 5
3s00

+ξclock

)
. (220)

This represents an unobservable scaling in any particu-
lar redshift test, but comparing redshift tests performed
with different clocks could yield access to differences in
ξclock. Moreover, the result for (GNM)RS differs from
both the time-delay value (GNM)TD in Eq. (207) and the
Doppler-shift value (GNM)DS in Eq. (213), so comparing
results from different tests could yield independent sen-
sitivities to (aS

eff)0 that are inaccessible in other searches
with ordinary matter. This prospect is considered in Sec.
XI E.

We remark in passing that for certain special mod-
els the observable redshift effects in (GNM)RS may be
hidden in WEP tests. A simple example is provided by
the isotropic parachute model discussed in Sec. IXB. By
virtue of Eq. (169), the effective inertial and gravitational
masses in this model are equal for a test body made of
ordinary matter, so no signals are observable in WEP
tests. However, the presence of nonzero (cw)µν implies
a nonzero rescaling of (GNM)RS, which is observable by
comparing to (GNM)TD or (GNM)DS. Signals from this
model could also arise in the null-redshift tests discussed
in Sec. XI C2 below.

We conclude this subsection with an illustrative cal-
culation of ξclock for a simplified clock based on tran-
sitions between the Bohr levels of hydrogen, for which

we determine (νP /νE)
(1,1)T
RS and ξclock ≡ ξH,Bohr assum-

ing both the clocks and the gravitational source are at
rest. This calculation is straightforward due to the spher-
ical symmetry and the zero velocity, and also because
a simple match exists between the zeroth-order hamil-
tonian h(0,0) and the kinetic contributions to the sum
h(1,0) +h(0,1) +h(1,1) of the perturbative corrections pre-
sented in Sec. III C. By matching these expressions, we
find that the kinetic portion of the hamiltonian in the
presence of gravity and Lorentz violation can be obtained

from the zeroth-order one by the following simple replace-
ments for the proton and electron mass:

1

mp
→ 1

mp

(
1 − 3

2h00 + 5
3 (cp)00 + 13

6 (cp)00h00

)
,

1

me
→ 1

me

(
1 − 3

2h00 + 5
3 (ce)00 + 13

6 (ce)00h00

)
.

(221)

Also, the source term in the Maxwell equations is cor-
rected by the vierbein determinant e, and the result
can be obtained by a simple replacement for the proton
charge,

qp → qp

e
≈ qp(1 − h00). (222)

It follows that the calculation of interest can be directly
performed by implementing the above replacements in
the standard result for the Bohr energy levels. This yields

E → E
(
1 − 1

2h00

+
1

mp +me
[mp(ce)00 +me(cp)00](

5
3 − 1

2h00)
)
.

(223)

The modification (218) to the gravitational redshift is
therefore given by

(
νP
νE

)(1,1)T

RS

= − 2GNm
S

3(mp +me)
(mp(ce)00 +me(cp)00)

×
(
re − rp
rerp

)
(224)

when the clock transitions are those of the Bohr levels of
hydrogen. This implies the result

ξH,Bohr = − 2

3(mp +me)
(mp(ce)00 +me(cp)00). (225)

The value of ξclock for a realistic clock can be obtained
via calculation if the hamiltonian describing the clock is
known.

2. Null redshift

Another Lorentz-violating signal can be accessed by
comparing two clocks of different types as they explore
the gravitational potential together. This type of mea-
surement is called a null-redshift test [134].

Consider comparing the frequencies of two clocks A
and B having different values ξclock = ξA and ξclock = ξB
that are located at a point P with gravitational potential
hP00. The frequency ratio is given by

(
νA
νB

)P
=
[
1 + 1

2 (ξA − ξB)hP00
]
(
ν

(0)
A

ν
(0)
B

)
, (226)
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where the superscript (0) denotes a frequency at a hy-
pothetical zero gravitational potential hµν = 0. This
frequency ratio depends inseparably on the potential hP00
at point P and the ratio in zero potential.

When the same two clocks are moved to a point Q at

potential hQ00, the frequency ratio takes a new value. If
the values ξA and ξB differ, then so do the frequency
ratios at P and Q. The ratio of frequency ratios then
shifts away from 1 and is given by

(
νA
νB

)P (
νB
νA

)Q
= 1 − 1

2 (ξA − ξB)(hQ00 − hP00). (227)

The shift is an observable, and it depends on the differ-
ence ∆ξAB = ξA−ξB and also on the potential difference
between P and Q.

For a gravitational source with h00 = 2GNm
S/r at

PNO(2), we obtain

(
νA
νB

)P (
νB
νA

)Q
= 1 −GNm

S∆ξAB
(rP − rQ)

rP rQ
. (228)

Unlike the other Lorentz-violating photon effects dis-
cussed here, all of which represent scalings of GNm

S,
this result is a qualitative change from conventional grav-
ity. It is also strictly a gravitational effect, vanishing in
Minkowski spacetime.

Since the shift varies with spacetime position, it ex-
hibits features analogous to violations of local position in-
variance, which have been the subject of numerous stud-
ies [8]. In the present case, these features arise from the
Lorentz-violating flavor dependence of the clock mate-
rial. Note also that the observable (228) contains the
same information as the result of two separate redshift
tests performed with different clocks but the same gravi-
tational source. This can be verified by inspection of the
effective value (GNM)RS in Eq. (220). Some relevant
experiments are described in Sec. XI E.

D. Comparison to effective orbital mass

The preceding subsections reveal that the Lorentz-
violating contributions to the Shapiro time delay, the
gravitational Doppler shift, and the gravitational redshift
are all controlled by the effective value of GNM for the
gravitational source. In the context of the solar-system
tests discussed in Sec. X, rescalings of GNM also occur
but can be disregarded as unobservable. Here, we deter-
mine the effective value of GNM relevant to observations
of orbiting bodies, (GNM)OB.

For Lorentz violation involving the coefficients (aeff)µ
and cµν , the secular changes in the orbital elements for
the trajectory of an orbiting body are given by Eq. (184).
The analogous result for the coefficients sµν is given in
Eq. (162) of Ref. [7]. Inspecting these equations, we can
deduce the effective reduced mass of the source and test
bodies and hence extract the effective value (GNM)OB.

Making no additional assumptions about the masses of
the source and test bodies, we find

(GNM)OB = GNM
(
1 +

2α

mS
(aS

eff)0 +
2α

mT
(aT

eff)0 + 5
3s00

+
mS − 2

3m
T

M
(cS)00 +

mT − 2
3m

S

M
(cT)00

)
.

(229)

To obtain an expression that is more readily compa-
rable to the effective values of (GNM) measured in pho-
ton tests, we note that mT ≪ mS under typical circum-
stances. The above result then reduces to

(GNM)OB = GNm
S
(
1 +

2α

mS
(aS

eff)0 + (cS)00 + 5
3s00

+
2α

mT
(aT

eff)0 − 2
3 (cT)00

)
. (230)

This expression for (GNM)OB contains a linear combina-
tion of coefficients for Lorentz violation that is indepen-
dent of the three combinations (GNM)TD, (GNM)DS,
and (GNM)RS obtained for photon tests. Some com-
ments about tests with this result are provided in the
next subsection.

E. Experiments

The above subsections show that each type of photon
test of Lorentz symmetry is sensitive to an effective value
of GNM that contains a combination of coefficients for
Lorentz violation. The time-delay value (GNM)TD is
given by Eq. (207), and it depends on the coefficients
α(aS

eff)0, (cS)00, and s00. The gravitational Doppler shift
involves the value (GNM)DS in Eq. (213) and involves
the same combination of the three coefficients. The value
(GNM)RS for the gravitational redshift is given by Eq.
(220), which contains a different combination of coeffi-
cients and varies also with ξclock. All three of these pho-
ton tests yield sensitivities differing from those in orbital
tests, which involve the value (GNM)OB in Eq. (230)
that depends also on the test-body coefficients α(aT

eff)0
and (cT)00. Note that no qualitatively new signals are in-
volved in any of these cases, since the effects are merely
scalings of established physics. In contrast, the null-
redshift observable given in Eq. (227), which depends
on the difference of clock quantities ∆ξAB , represents
a qualitative departure from conventional gravitational
physics.

Comparisons of the time-delay value (GNM)TD or
the Doppler-shift value (GNM)DS to the redshift value
(GNM)RS for the same source body can be used to ob-
tain sensitivity to combinations of coefficients for Lorentz
violation. High-quality data for the time delay and the
gravitational Doppler shift have been obtained by track-
ing the Cassini spacecraft [135] in the gravitational field
of the Sun. Proposed missions such as the Astrodynam-
ical Space Test of Relativity using Optical Devices (AS-
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TROD) [136], the Mercury Orbiter Radio-science Exper-
iment (MORE) [137], the Search for Anomalous Gravita-
tion using Atomic Sensors (SAGAS) [138], and the Solar
System Odyssey (SSO) [139] have the potential to im-
prove these measurements using the Sun as the gravita-
tional source, while the Beyond Einstein Advanced Co-
herent Optical Network (BEACON) [140] could sharpen
results using the Earth as the gravitational source. An-
other relevant recent proposal involves the use of very-
long-baseline interferometry (VLBI) [141] to measure the
deflection of radio waves from distant sources by solar-
system objects. The sensitivity of this measurement to
Lorentz violation is likely to be comparatively weaker but
may be offset by the enhanced access to independent co-
efficient combinations offered by multiple measurements
and perhaps by access to anisotropic effects involving spa-
tial components of sµν .

Redshift tests permit sensitivities to effects controlled
by ξclock. These can be isolated either by comparing sep-
arate redshift tests performed with different clocks in
the same gravitational source or more directly by null-
redshift tests, in which the signal depends on the differ-
ence ∆ξAB between two clocks A, B and vanishes in the
absence of gravity. The results of some investigations of
local position invariance can be reinterpreted as measure-
ments of ∆ξAB. For example, a recent Earth-based test
comparing a hydrogen maser with a Cs fountain [142]
obtained a sensitivity that corresponds to the bound

|ξH − ξCs| < (0.1 ± 1.4)× 10−6, (231)

while another comparing a hydrogen maser with a cryo-
genic sapphire oscillator [143] yields the measurement

ξH − ξCSO = (−2.7 ± 1.4) × 10−4. (232)

These results offer a benchmark for currently attainable
sensitivities to ξclock. The two experiments involve dif-
ferent clocks and hence likely different sensitivities to the
coefficients (cw)µν . Calculating the specific constraints
on (cw)µν and possibly other coefficients for Lorentz vi-
olation from these and other tests is an interesting open
project. Note that Earth-based searches of this type typ-
ically take advantage of the annual and diurnal variations
in the gravitational potential of the Sun as experienced
in the laboratory. In searches using the annual variation,
it is challenging and perhaps impossible to disentangle
gravitational effects of nonzero ξclock from other Lorentz-
violating effects in Minkowski spacetime. However, di-
urnal searches can distinguish the two types of effects
because the Minkowski-spacetime signals occur at the
sidereal frequency instead. Note also that other clock-
comparison tests normally viewed as sensitive to SME
coefficients in Minkowski spacetime may also have sensi-
tivity to ξclock. One intriguing possibility is that suitable
choices of clocks could separate effects from (ce)TT and
(cp)TT , which would then lead to independent sensitivi-
ties to (aeeff)T and (apeff)T , a result otherwise challenging
to achieve.

Satellites carrying two different clocks offer interesting
prospects for improved null-redshift searches for Lorentz
violation. Since the attainable sensitivities improve with
the gravitational potential difference according to Eq.
(227), it is desirable to acquire elliptical orbits. The
Space-Time Asymmetry Research (STAR) program [144]
presently under development proposes to compare two
different clocks on a satellite traveling in an elliptical or-
bit. This mission could improve sensitivities to ξclock by
an order of magnitude or more relative to ground-based
tests. Improved sensitivities may also be possible by com-
paring clocks aboard the proposed SAGAS spacecraft.
Note also that experiments in highly elliptical orbits can
be expected to have increased sensitivity to anisotropic
effects on the redshift produced by sJK .

Provided effects due to ξclock are excluded, either
through independent experiments or by using a clock
with ξclock = 0, then the dependence of (GNM)RS on
(aS

eff)T implies that measurements of the gravitational
redshift can be compared with other photon tests per-
formed with the same gravity source to obtain indepen-
dent sensitivities to (aweff)T . The Gravity Probe A (GPA)
mission [145], which used the Earth as the gravity source,
confirmed the conventional gravitational redshift to parts
in 104. This result could eventually be combined with
proposed time-delay or Doppler-shift measurements of
the BEACON type to yield sensitivity to the coefficient
(aS

eff)T for the Earth. Improved tests of the gravitational
redshift are also proposed for the Atomic Clock Ensem-
ble in Space (ACES) [146], SAGAS, and STAR missions.
With the Sun as the gravity source instead, the Galileo
space probe obtained sensitivity to deviations for the
gravitational redshift at the level of parts in 102 [147].
Given knowledge of ξclock for the Galileo clock, this re-
sult could be combined with the Cassini results to yield
sensitivity to the coefficient (aS

eff)T for the Sun. If feasi-
ble, a redshift test performed directly with Cassini would
be of interest in this respect. Other gravitational sources
could also be used. For example, the gravitational red-
shift was measured to parts in 102 using Saturn as the
source during the flyby of Voyager [148]. Time-delay or
Doppler-shift data could therefore permit sensitivity to
the coefficient (aeff)T for Saturn.

Combinations of photon tests with measurements of
the effective orbital mass are also of interest. In the
limit of zero matter-sector Lorentz violation, the result
(230) for (GNM)OB has been combined with Eq. (207)
for (GNM)TD to extract sensitivity to sTT [133]. How-
ever, with nonzero coefficients (aeff)µ and cµν , the effec-
tive value (GNM)OB involves properties of the test body
as well as the source. Note that these appear in the famil-
iar combination α(aT

eff)T−mT(cT)TT /3 discussed in Secs.
VII and IX B. The WEP tests considered in this work
constrain the degree to which this combination can differ
between neutrons and neutral combinations of electrons
and protons, but only through the indirect arguments
involving binding energy described in Sec. VI B. In con-
trast, comparing GNM factors for measurements with
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orbiting bodies and for photon tests offers the opportu-
nity to obtain direct sensitivity to α(aneff)T−mT(cn)TT /3

and α(ae+peff )T −mT(ce+p)TT /3. Comparisons with sen-
sitive gravimeters may also be of interest in this respect.

We remark in passing that proposed sensitive experi-
ments to measure gravitational light bending, including
the Laser Astrometric Test of Relativity (LATOR) [149]
and the Space Interferometry Mission (SIM) [150], are
likely to have signals affected by Lorentz violation. The
attainable sensitivities can be expected to be similar to
those discussed above, but the analysis of this possibility
lies beyond our present scope.

XII. SUMMARY

This work studies the gravitational couplings of matter
in the presence of Lorentz violation. The framework for
the investigation is the fermion sector of the gravitation-
ally coupled minimal SME in a post-newtonian expan-
sion. Our primary goal is to develop a suitable method-
ology for searches for Lorentz and CPT violation that
exploit the couplings of matter to gravity, incorporating
in particular effects that are challenging or impossible to
detect in Minkowski spacetime.

Section II presents the basic formalism for the work.
The action for the gravity-matter system is given in Sec.
II A, and the linearization procedure is outlined in Sec.
II B. Some types of Lorentz violation are unobservable
in principle. This issue is discussed in Sec. II C, which
also fixes the coordinate choice (23) used in this work.
The metric and coefficient fields for Lorentz violation can
fluctuate about their background values, and the corre-
sponding interactions must be incorporated in analyses
of experiments. In Sec. II D, we develop general per-
turbative techniques to analyze these fluctuations. Two
notions of perturbative order are introduced. One is de-
noted O(m,n) and tracks the orders in Lorentz violation
and in gravity, while the other is denoted PNO(p) and
tracks the post-newtonian order. The goal of this work is
to investigate dominant terms involving Lorentz violation
in gravity, which are at O(1,1).

Section III studies the quantum theory of the gravity-
matter system. Starting from the field-theoretic action,
we construct the relativistic quantum mechanics in the
presence of gravitational fluctuations and Lorentz viola-
tion. Formulating the quantum theory for matter in the
presence of gravitational fluctuations is a standard chal-
lenge. In Sec. III A, we present a solution to this problem
via a field redefinition, which yields a hamiltonian that
is hermitian with respect to the usual scalar product for
wave functions. We then use this procedure in Sec. III B
to extract the explicit form of the relativistic hamiltonian
involving all coefficients for Lorentz violation in the min-
imal QED extension. The result forms the appropriate
starting point for general investigations of Lorentz and
CPT violation in matter-gravity couplings. To maintain
a reasonable scope in this work, we subsequently special-

ize our focus to the study of spin-independent Lorentz-
violating effects, which are governed by the coefficient
fields (aeff)µ, cµν and the metric fluctuation hµν . The
nonrelativistic quantum hamiltonian for this case is ob-
tained in Sec. III C using the standard Foldy-Wouthuysen
procedure.

Measurements of gravity-matter couplings typically
are performed at the classical level. Section IV con-
structs the classical theory associated with the quantum-
mechanical dynamics of matter involving nonzero (aeff)µ,
cµν , and hµν . The behavior of test and source bodies in
the presence of Lorentz violation is the subject of Sec.
IVA. Working from the action for a point particle, we
provide expressions for the mass and for the effective co-
efficients for Lorentz violation for a test or source body,
along with the effective action (76) describing the dy-
namics of the body. These results enable the derivation in
Sec. IVB of the modified Einstein equation and the equa-
tion (78) for the trajectory of a test particle. To apply
this equation in practice requires knowledge of the coeffi-
cient and metric fluctuations. In Sec. IVC, we develop a
systematic methodology for calculating this information
in perturbation theory and obtain general expressions for
the coefficient and metric fluctuations to O(1,1) in terms
of various gravitational potentials and the background
coefficient values (aeff)µ and cµν .

To illustrate the application of the general formalism,
we consider in Sec. V a specific class of bumblebee mod-
els, which are theories with a vector field driving spon-
taneous Lorentz breaking. The action for the bumble-
bee field Bµ is given in Sec. VA, where a match at the
field-theoretic level to the general formalism of earlier
sections is made and the coefficient fields (aeff)µ and cµν
are identified in terms of Bµ and the metric. In Sec. VB,
we explicitly solve the model at the relevant order in per-
turbation theory, extract the modified Einstein equation,
and derive the equation for the trajectory of a test parti-
cle. The results are shown to match those obtained using
the general formalism developed in the earlier sections.

The largest portion of the paper is devoted to a dis-
cussion of experiments and observations that can achieve
sensitivity to the coefficients (aeff)µ and cµν . Section
VI presents some general material broadly applicable to
searches for Lorentz violation. Various choices of refer-
ence frame and their relationship to the canonical Sun-
centered frame are discussed in Sec. VI A. Attainable
sensitivities to the coefficients (aeff)µ and cµν in any mea-
surement procedure are constrained by certain generic
features. Section VI B considers some of these, includ-
ing the role of binding energy in impeding or aiding the
analysis of WEP tests for signals of Lorentz violation.

A major class of searches for Lorentz violation involves
laboratory tests with ordinary neutral bulk matter, neu-
tral atoms, and neutrons. Section VII treats this topic.
The PNO(3) lagrangian describing the dynamics of a test
body moving near the surface of the Earth in the presence
of Lorentz violation is considered in Sec. VII A. Expres-
sions are given in an Earth-centered frame and the trans-
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formation to the laboratory frame is outlined. The re-
sulting description of laboratory signals for gravitational
Lorentz violation includes effects from the matter-sector
coefficients (aeff)µ and cµν and ones from the gravity-
sector coefficients sµν obtained in Ref. [7]. It reveals
that the gravitational force acquires tiny corrections both
along and perpendicular to the usual free-fall trajectory
near the surface of the Earth, while the effective iner-
tial mass of a test body becomes a direction-dependent
quantity. These effects can be sought in numerous lab-
oratory experiments. Since the standard relationship
between force and acceleration is modified, it is useful
to distinguish tests measuring gravitational acceleration

from ones comparing forces. In Sec. VII B, we consider
free-fall gravimeter tests such as falling corner cubes and
atom interferometry. Force-comparison gravimeter tests
using equipment such as superconducting gravimeters are
studied in Sec. VII C. An important potential signal for
gravitational Lorentz violation arises from the flavor de-
pendence of the effects, which implies signals in WEP
tests. A variety of free-fall WEP tests is considered in
Sec. VII D, while force-comparison WEP tests with a tor-
sion pendulum are treated in Sec. VII E. For all the tests
considered, the possible signals for Lorentz violation are
decomposed according to their time dependence, and es-
timates of the attainable sensitivities are obtained.

Table XIV. Summary of actual and attainable sensitivities in past or present tests.

Coefficient Gravimeter Free-fall Force-comparison Solar

combinations WEP WEP system

α(ae+peff )X [10−7 GeV] [10−3 GeV] [10−7 GeV] . . .

α(ae+peff )Y+Z [10−7 GeV] [10−3 GeV] [10−6 GeV] . . .

α(ae+peff )Y [10−5 GeV] . . . [10−7 GeV] . . .

α(ae+peff )Z [10−5 GeV] . . . [10−6 GeV] . . .

α(ae+peff )T . . . 10−7 GeV† 10−10 GeV† . . .

α(aneff)X [10−7 GeV] [10−3 GeV] [10−7 GeV] . . .

α(aneff)Y+Z [10−7 GeV] [10−3 GeV] [10−6 GeV] . . .

α(aneff)Y [10−5 GeV] . . . [10−7 GeV] . . .

α(aneff)Z [10−5 GeV] . . . [10−6 GeV] . . .

α(aneff)T . . . 10−7 GeV† 10−10 GeV† . . .

α(ae+p−neff )X [10−7 GeV] [10−4 GeV] [10−8 GeV] [10−6 GeV]

α(ae+p−neff )Y+Z [10−7 GeV] [10−4 GeV] [10−7 GeV] [10−6 GeV]

α(ae+p−neff )Y [10−5 GeV] . . . [10−8 GeV] . . .

α(ae+p−neff )Z [10−5 GeV] . . . [10−7 GeV] . . .

α(ae+p−neff )T − 1
3m

p(ce+p−n)TT . . . 10−8 GeV‡ 10−8 GeV‡ . . .

α(ae+p−neff )T − 1
3m

p(ce+p−n)TT
+ (1

2 cos2 χ− 1
6 )mn(cn)Q . . . 10−8 GeV . . . . . .

α(ae+p−neff )T − 1
3m

p(ce+p−n)TT
− 1

6m
n(cn)Q . . . . . . 10−11 GeV . . .

(aeeff)' + (apeff)' + 0.1(aneff)' . . . . . . . . . 10−6 GeV†

(aeeff)⊕ + (apeff)⊕ + 0.1(aneff)⊕ . . . . . . . . . 10−6 GeV†

(cn)(TJ) [10−7] [10−4] [10−7] [10−6]

(cn)Q . . . 10−8‡ 10−8‡ . . .

(cn)' . . . . . . . . . 10−8†

(cn)⊕ . . . . . . . . . 10−7†

Section VIII considers satellite-based WEP tests,
which offer interesting prospects for improved sensitiv-
ities to Lorentz violation. In this context, the signal for
Lorentz violation is an anomalous time variation of the
relative local acceleration between two test bodies of dif-
fering composition located on the satellite. We derive
the frequency decomposition of the signal for Lorentz vi-

olation, and we consider idealized scenarios for several
proposed satellite-based WEP tests. Based on the de-
sign reach of the missions, we estimate the sensitivities
that could be achieved to various combinations of the
matter-sector coefficients (aeff)µ and cµν .

Studies of the gravitational couplings of charged par-
ticles, antimatter, and second- and third-generation par-
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ticles present distinct experimental challenges but can
yield sensitivities to Lorentz and CPT violation that are
otherwise difficult or impossible to achieve. Section IX
addresses some of these possibilities, including charged-
particle interferometry, ballistic tests with charged par-
ticles, gravitational experiments with antihydrogen, and
signals in muonium free fall. For antihydrogen experi-
ments, simple toy models are introduced to illustrate as-
pects of their discovery potential and to address attempts
to place indirect limits on possible effects.

Traditional tests of gravity couplings to matter include
observations of the motion of bodies within the solar
system. Section X contains a discussion of the signals
accessible via lunar and satellite laser ranging and via
measurements of the precession of the perihelion of or-
biting bodies. A reanalysis of existing data from lunar
laser ranging could yield interesting sensitivities to some
combinations of the matter-sector coefficients (aeff)µ and
cµν . We use the established advance of the perihelion
for Mercury and for the Earth to obtain constraints on
combinations of (aeff)µ, cµν , and sµν .

The interaction of photons with gravity offers a differ-
ent arena in which to seek Lorentz and CPT violation.
Section XI is devoted to this topic. We consider signals
arising in measurements of the photon time delay, studies
of the gravitational Doppler and redshifts, and compar-
isons of the behaviors of photons and massive bodies. A
variety of existing and proposed experiments on space-
craft offer interesting prospects for these measurements.

Tables XIV and XV collect estimated sensitivities to
the matter-sector coefficients (aweff)µ and (cw)µν obtained
from many of the measurements discussed in this work.
These tables disregard possible effects from the pure-
gravity coefficients sµν that could in principle be relevant
to solar-system tests. Table XIV concerns existing data,
while Table XV tabulates future prospects. One result
omitted from these tables is the generalization (121) of
the constraint obtained in Ref. [11] using data from force-
comparison WEP tests with a torsion pendulum. In Sec.
VII E, multiple datasets are combined to separate this
constraint into the two limits (153), and both of these
are included in Table XIV instead.

Table XV. Summary of attainable sensitivities in future tests.

Coefficient Free-fall Free-fall Satellite Solar

combinations gravimeter WEP WEP system

α(ae+peff )X 10−10 GeV 10−10 GeV 10−11 GeV . . .

α(ae+peff )Y+Z 10−10 GeV 10−10 GeV 10−11 GeV . . .

α(ae+peff )Y 10−8 GeV 10−8 GeV 10−9 GeV . . .

α(ae+peff )Z 10−8 GeV 10−8 GeV 10−9 GeV . . .

α(ae+peff )T . . . 10−14 GeV† 10−15 GeV† . . .

α(aneff)X 10−10 GeV 10−10 GeV 10−11 GeV . . .

α(aneff)Y+Z 10−10 GeV 10−10 GeV 10−11 GeV . . .

α(aneff)Y 10−8 GeV 10−8 GeV 10−9 GeV . . .

α(aneff)Z 10−8 GeV 10−8 GeV 10−9 GeV . . .

α(aneff)T . . . 10−14 GeV† 10−15 GeV† . . .

α(ae+p−neff )X 10−10 GeV 10−11 GeV 10−12 GeV 10−7 GeV

α(ae+p−neff )Y+Z 10−10 GeV 10−11 GeV 10−12 GeV 10−7 GeV

α(ae+p−neff )Y 10−8 GeV 10−9 GeV 10−10 GeV . . .

α(ae+p−neff )Z 10−8 GeV 10−9 GeV 10−10 GeV . . .

α(ae+p−neff )T
− 1

3m
p(ce+p−n)TT . . . 10−15 GeV 10−16 GeV . . .

(cn)(TJ) 10−10 10−11 10−12 10−7

(cn)Q . . . 10−15 10−16 . . .

The formalism and the analytical results for gravita-
tional signals of Lorentz violation presented in this work
apply to the nonzero matter-sector coefficients (aweff)µ,
(cw)µν and in some cases also to the gravity-sector coef-
ficients sµν . Comparatively little is known about the co-
efficients (aweff)µ, and scenarios exist in which they could
be countershaded, having large values while still escaping
notice in searches to date [11]. However, nongravitational

measurements have already yielded impressive sensitivi-
ties to various components of (cw)µν [2]. The estimated
attainable sensitivities to (cw)µν derived in this work are
therefore primarily restricted to components of (cn)µν ,
for which existing constraints are weaker. Tables XIV
and XV reflect these facts, containing mostly entries for
combinations of the coefficients (aweff)µ along with some
results for (cw)µν .
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Table XIV summarizes actual sensitivities or estimated
attainable ones using data from past or present measure-
ments. The table is based on the calculations presented
in this work and includes only sensitivities below parts
in 102. Each entry in the first column of this table rep-
resents a linear combination of coefficients that is acces-
sible in principle via existing searches. Each of the other
four columns contains our estimates for sensitivities that
could be achieved in the listed class of tests, expressed
to the nearest order of magnitude. Values in these four
columns that are shown without brackets represent order-
of-magnitude sensitivities implied by our present analysis
to the modulus of the coefficient combination displayed.
Values appearing in brackets in the table represent our es-
timate of sensitivities that could in principle be obtained
from a suitable reanalysis of existing data. An obelisk
(†) following a value indicates a limit attainable under
the assumption that either (aweff)µ or (cw)µν is negligibly
small or vanishes. A diesis (‡) indicates a sensitivity that
is attained by combining data from two different classes
of experiments, and this sensitivity is placed in each of
the two corresponding columns in the table.

Table XV contains future attainable sensitivities to the
moduli of various combinations of the matter-sector co-
efficients (aweff)µ and (cw)µν , as estimated in previous sec-
tions of this work. The structure of this table is similar
to that of Table XIV. The listed entries are based on the
best design reach and are given to the nearest order of
magnitude. For each class of search, we assume enough
measurements have been performed to achieve the maxi-
mum number of independent sensitivities. The reader is
cautioned that for certain coefficients a single measure-

ment cannot attain the indicated sensitivity, but instead
only a linear combination of coefficients with multipliers
controlled by composition and orientation factors. Note
that elsewhere in this work the convention is to display
values of future sensitivities in braces, but this conven-
tion is suppressed in Table XV because all entries are of
this type. Note also that further improvements in the-
oretical techniques and experimental design in all types
of searches, including ones not listed in Table XV such
as exotic gravitational tests or photon tests, are expected
to yield additional interesting prospects for future attain-
able sensitivities.

Taken together, Tables XIV and XV reveal excellent
prospects for using matter-gravity couplings to seek ef-
fects of Lorentz violation. The opportunities for mea-
suring the countershaded coefficients (aweff)µ at sensitive
levels are of particular interest in this context, as these
coefficients typically cannot be detected in nongravita-
tional searches. Indeed, the spatial components of (aweff)µ
remain essentially unconstrained to date. The tests pro-
posed here can be performed with existing or near-future
technology, and they offer a promising new arena for
searches for signals from the Planck scale.
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