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Abstract

I explore the rich phase diagram of two-flavor QCD as a function of the quark masses. The theory involves

three parameters, including one that is CP violating. As the masses vary, regions of both first and second

order transitions are expected. For non-degenerate quarks, non-perturbative effects cease to be universal,

leaving individual quark mass ratios with a renormalization scheme dependence. This raises complications

in matching lattice results with perturbative schemes and demonstrates the tautology of attacking the strong

CP problem via a vanishing up quark mass.

PACS numbers: 11.30.Er, 12.39.Fe, 11.15.Ha, 11.10.Gh
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I. INTRODUCTION

The standard theory of the strong interactions is based on quarks interacting through non-

Abelian gauge fields. This system is remarkable in its paucity of parameters. Once the overall scale

is set, perhaps by working in units where the proton mass is unity, the only remaining parameters

are the quark masses. In general these are complex numbers, although field redefinitions allow

removing all phases but one, usually called the strong CP parameter Theta. For a recent review,

see Ref. [1]. Thus the number of physical parameters for QCD is one more than the number of

quark species. As is well known, if Theta is non-trivial, the theory violates CP symmetry. As CP

appears to be a good symmetry of hadronic physics, the strong CP puzzle asks the question why

should this parameter be so small experimentally.

In this paper I restrict myself to two-flavor QCD and explore the qualitative behavior as the

most general mass terms are varied. Using effective potential techniques, I find a rich phase

diagram with regions of both first and second order phase transitions. I find that there can be

interesting long distance physics even when no individual quark mass vanishes. I also delve more

deeply into the old argument [2] for a fundamental ambiguity in defining a vanishing quark mass.

These effects are inherently non-perturbative and lead to unsettled issues for matching lattice with

perturbative results.

Of course, with QCD being an interacting quantum field theory, nothing has been proven rig-

orously. To proceed I assume that QCD exists as a field theory and confines in the usual way.

In addition I will work in the conventional picture of spontaneous breaking of approximate chiral

symmetry as the explanation for the lightness of the pions. I also assume the generation of the

singlet pseudoscalar meson mass is tied to the anomaly. For simplicity I work with the two-flavor

theory with only the u and d quarks, assuming their masses are light enough that conventional chi-

ral expansions make sense. The generalization to more flavors is straightforward, although there

are some rather fascinating further consequences [3].

I begin in Section II with a simple argument on how the various quark masses indirectly influ-

ence each other. The obscurity of these effects in a mass independent regularization scheme has

raised some controversy, which I address in Section III. Section IV turns to the most general mass

term for the two-flavor theory. Here I discuss some of the conventions needed for formulating this

question. Section V relates the mass parameters to the strong CP problem and discusses the issues

with pursuing a vanishing lightest quark mass. Section VI uses an effective potential argument to
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develop the qualitative phase diagram as a function of the independent mass parameters. Finally,

the basic ideas are summarized in section VII.

II. SPIN-FLIP QUARK SCATTERING

I begin with a reminder of some basic properties expected for massless two-flavor QCD. While

the classical theory is conformally invariant, it is commonly believed that in the quantized theory

confinement and dimensional transmutation generate a non-trivial mass scale Λqcd . This scale is

scheme dependent, but that will not enter the qualitative discussion here. In particular, the theory

should contain massive stable nucleons. On the other hand, spontaneous chiral-symmetry breaking

is expected to give rise to three massless pions as Goldstone bosons. In addition, the two-flavor

analog of the eta prime meson should acquire a mass from the anomaly.

In this picture, the eta prime and neutral pion involve distinct combinations of quark-antiquark

bound states. In the simple quark model the neutral pseudoscalars involve the combinations

π0 ∼ uγ5u−dγ5d (1)

η ′ ∼ uγ5u+dγ5d +glue. (2)

Here I include a gluonic contribution from mixing between the η ′ and glueball states. When the

quarks are degenerate, isospin forbids such mixing for the pion.

Projecting out helicity states for the quarks, qR,L = (1± γ5)q/2, the pseudoscalars are combi-

nations of left with right states, i.e. qLqR −qRqL. Thus, as shown schematically in Fig. 1, meson

exchange will contribute to a hypothetical quark-quark spin-flip scattering experiment. More pre-

cisely, the four point function 〈uRuLdRdL〉 should not vanish. (Scalar meson exchange will also

contribute to this process, but this is not important for the qualitative argument below.) Of course I

assume that some sort of gauge fixing has been done to eliminate a trivial vanishing of this function

from an integral over gauges.

It is important that the π0 and η ′ are not degenerate. This is due to the anomaly and the fact

that the η ′ is not a Goldstone boson. At a more abstract level this π0–η ′ splitting is ascribed

to topological structures in the gauge field, but such details are not necessary for the discussion

here. Because the mesons are not degenerate, their contributions to the above diagram cannot

cancel. The conclusion of this simple argument is that helicity-flip quark-quark scattering is not

suppressed as the mass goes to zero.
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FIG. 1: Both pion and eta prime exchange can contribute to spin flip scattering between up and down quarks.
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FIG. 2: Through physical meson exchange, a down quark mass can induce an effective mass for the up

quark. The gluon exchanges can compensate for the pseudoscalar nature of the meson fields.

Now consider turning on a small d quark mass while leaving the up quark massless. Formally

this mass allows one to connect the in-going and out-going down-quark lines in Fig. 1 and thereby

induce a mixing between the left and right handed up quark. Such a process is sketched in Fig. 2.

Here I allow for additional gluon exchanges to compensate for turning the pseudoscalar field into

a traditional mass term.

So the presence of a non-zero d quark mass will induce an effective mass for the u quark, even

if the latter initially vanishes. As a consequence, non-perturbative effects will renormalize mu/md .

If this ratio is zero at some scale, it cannot remain so for all scales. Only in the isospin limit are

quark mass ratios renormalization group invariant. As lattice simulations include all perturbative

and non-perturbative effects, this phenomenon is automatically included in such an approach.

Confinement plays a crucial role in what is effectively an ambiguity in defining quark masses.

Because quarks cannot travel long distances in isolation, their masses cannot be directly inferred

from long distance propagators. This is tied directly with the phase diagram discussed in Section 6,

where it is shown that no discernable physical structure is seen when single quark mass vanishes.

This cross talk between the masses of different quark species is a relatively straightforward
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consequence of the chiral anomaly and has been discussed several times in the past, usually in the

context of gauge field topology and the index theorem [2, 4–6]. Despite the simplicity of the above

argument, the conclusion is frequently met with skepticism from the perturbative community. In

perturbation theory, spin flip processes are suppressed as the quark masses go to zero. The above

discussion shows that this lore need not apply when anomalous processes come into play. In

particular, mass renormalization can not be flavor blind and the concept of mass independent

regularization is problematic. Since the quark masses influence each other, there are inherent

ambiguities defining mu = 0. This has consequences for the strong CP problem, discussed further

below. Furthermore, since these effects involve quark mass differences, a traditional perturbative

regulator such as MS is not complete when mu 6= md . Because of this, the practice of matching

lattice calculations to MS is problematic, a point that is sometimes ignored [7, 8]. (Ref. [7] also

suffers from an uncontrolled extrapolation in the number of quark species [9].)

III. SPECIFIC CRITIQUES

Given the simplicity of the argument in the previous section, it may seem surprising that it

often receives severe criticism. The first complaint sometimes made is that one should work

directly with bare quark masses. This ignores the fact that the bare quark masses all vanish under

renormalization. The renormalization group equation for a quark mass reads

a
dmi

da
= γ(g)mi = γ0g2 +O(g4) (3)

where the leading coefficient is well known, γ0 = 8
(4π)2 . As asymptotic freedom drives the bare

coupling to zero, the bare masses behave as

m ∼ gγ0/β0(1+O(g2)) → 0 (4)

where β0 (explicitly given later) is the first term in the beta function controlling the vanishing of

the bare coupling in the continuum limit. Since all bare quark masses are formally zero, one must

address these questions in terms of a renormalization scheme at a finite cutoff.

The second objection often made is that in a mass independent regularization scheme, mass

ratios are automatically constant. Such an approach asks that the renormalization group function

γ(g) in Eq. (3) be chosen to be independent of the quark species and mass. This immediately

implies the constancy of all quark mass ratios. As only the first term in the perturbative expansion
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of γ(g) is universal, a mass independent scheme is indeed an allowed procedure. However, such

a scheme obscures the off-diagonal md effect on mu discussed above. In particular, by forcing

constancy of bare mass ratios, one will find that the ratios of physical particle masses will vary as

a function of cutoff. This will be in a manner that cancels the flow from the process in Section

II. The fact that physical particle mass ratios are not just a function of quark mass ratios is shown

explicitly in Section 6, where it is shown that in the chiral limit the combination 1−m2
π0

/m2
π±

is

proportional to
(md−mu)

2

(md+mu)Λqcd
.

From a non-perturbative point of view, having physical mass ratios vary with cutoff seems

rather peculiar; indeed, the particle masses are physical quantities that would be natural to hold

fixed. And, even though a mass independent approach is theoretically possible, there is no guaran-

tee that any given ratio mi

m j
will be universal between schemes. Finally, the lattice approach itself is

usually implemented with physical particle masses as input. As such it is not a mass independent

regulator, making a perturbative matching to lattice results rather subtle.

A third frequent complaint against the argument in Section II is that one should simply do

the matching at some high energy, say 100 GeV, where “instanton” effects are exponentially sup-

pressed and irrelevant. This point of view has several problems. First, the lattice simulations are

not done at miniscule scales and non-perturbative effects are present and substantial. Furthermore,

the exponential suppression of topological effects is in the inverse coupling, which runs logarith-

mically with the scale. As such, the non-perturbative suppression is a power law in the scale and

straightforward to estimate.

Recall the renormalization group prediction for how the eta prime mass depends on the coupling

in the continuum limit

mη ′ ∝
1

a
e−1/(2β0g2)g−β1/β 2

0 . (5)

Here β0 =
11−2n f /3

(4π)2 , β1 =
102−12n f

(4π)4 , n f is the number of quark flavors, and a is the cutoff scale,

i.e. the lattice spacing with such a renormalization scheme. While this formula indeed shows the

exponential suppression in 1/g2, this is cancelled by the inverse cutoff factor in just such a way

that the mass of this physical particle remains finite. The ambiguity in the quark mass splitting is

controlled by the mass splitting mη ′ −mπ0
as well as being proportional to md −mu. Considering

md = 5 MeV at a scale of µ = 2 GeV, a rough estimate of the order of the u quark mass shift is

∆mu(µ) ∼

(

mη ′ −mπ0

Λqcd

)

(md −mu) = O(1 MeV), (6)

a number comparable to typical phenomenological estimates. Of course the result depends on

6



scale, but that dependence is only logarithmic and given by Eq. (4). Additional flavors will reduce

the size of this effect; with the strange quark present, it should be proportional to mdms.

It is important to note that for a modest number of flavors the exponent controlling the coupling

constant suppression in Eq. 5 differs substantially from the classical instanton action

8π2

(11−2n f /3)g2
<<

8π2

g2
. (7)

This difference arises because one should consider topological excitations above the quantum, not

the classical, vacuum. Zero modes of the Dirac operator are still responsible for the bulk of the eta

prime mass, but naive semi-classical arguments strongly underestimate their effect.

IV. GENERAL MASSES IN TWO-FLAVOR QCD

Given the confusion over the meaning of quark masses, it is useful to explore the behavior

of two-flavor QCD as these quantities are varied. Here I review how the theory depends on the

three non-trivial mass parameters. These includes the possibility of explicit CP violation. The full

theory has a rather rich phase diagram, including both first and second order phase transitions,

some occurring when none of the quark masses vanish.

For the following the quark fields ψ carry implicit isospin, color, and flavor indices. I assume

that the theory in the massless limit has the flavored chiral symmetry under

ψ −→ eiγ5τα φα/2ψ

ψ −→ ψeiγ5τα φα/2. (8)

Here τα represents the Pauli matrices generating isospin rotations. The angles φα are arbitrary

rotation parameters. This, of course, is the chiral symmetry that is spontaneously broken to give

the massless Goldstone pions.

I wish to construct the most general possible two-flavor mass term to add to the massless La-

grangian. Such should be a dimension 3 quadratic form in the fermion fields and should transform

as a singlet under Lorentz transformations. For simplicity, I only consider quantities that are charge

neutral as well. This leaves four candidate fields, giving the generalized form for consideration

m1ψψ +m2ψτ3ψ + im3ψγ5ψ + im4ψγ5τ3ψ. (9)

The first two terms are naturally interpreted as giving the average quark mass and the quark mass

difference, respectively. The remaining two terms are less conventional. The m3 term is connected
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with the CP violating parameter of the theory. The final m4 term has been used in conjunction with

the Wilson discretization of lattice fermions, where it is referred to as a “twisted mass” [10, 11]. Its

utility in that context is the ability to reduce lattice discretization errors, but that is not the subject

of this note.

These four terms are not independent. Indeed, consider the above flavored chiral rotation in the

τ3 direction, ψ → eiθτ3γ5ψ . Under this the terms transform as

ψψ −→ cos(θ)ψψ + sin(θ)iψγ5τ3ψ

ψτ3ψ −→ cos(θ)ψτ3ψ + sin(θ)iψγ5ψ

iψτ3γ5ψ −→ cos(θ)iψτ3γ5ψ − sin(θ)ψψ

iψγ5ψ −→ cos(θ)iψγ5ψ − sin(θ)ψτ3ψ (10)

Such a rotation mixes m1 with m4 and m2 with m3. Using this freedom, one can select any one of

the mi to vanish and a second to be positive.

The most common choice is to set m4 = 0 and use m1 as controlling the average quark mass.

Then m2 gives the quark mass difference, and CP violation appears in m3. This, however, is only a

convention. The alternative “twisted mass” scheme [10, 11], makes the choice m1 = 0. This uses

m4 > 0 for the average quark mass, and m3 becomes the up-down mass difference. In this case

m2 becomes the CP violating term. It is amusing to note that an up down quark mass difference

in this formulation involves the naively CP odd iψγ5ψ . The strong CP problem has been rotated

into the smallness of the ψτ3ψ term, which with the usual conventions is the mass difference. But

because of the flavored chiral symmetry, both sets of conventions are physically equivalent.

For the following I make the arbitrary choice m4 = 0, although one should remember that this

is only a convention and I could have chosen any of the four parameters in Eq. (9) to vanish. With

this choice two-flavor QCD, after scale setting, depends on three mass parameters

m1ψψ +m2ψτ3ψ + im3ψγ5ψ. (11)

It is the possible presence of m3 that represents the strong CP problem. As all the parameters are

independent and transform differently under the symmetries of the problem, there is no connection

between the strong CP problem and m1 or m2.

As is well known, the chiral anomaly is responsible for the singlet rotation

ψ −→ eiγ5φ/2ψ

ψ −→ ψeiγ5φ/2 (12)
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not being a valid symmetry, despite the fact that γ5 naively anti-commutes with the massless Dirac

operator. The anomaly is quite nicely summarized via Fujikawa’s [12] approach where after the

above rotation the fermion measure in the path integral picks up a factor of

det(eiγ5φ ) = exp(iφTr γ5). (13)

Using the Dirac operator /D itself as a regulator, define

Tr γ5 = lim
Λ→∞

γ5e /D2/Λ2

. (14)

In any give gauge configuration only the zero eigenmodes of /D contribute, and by the index theo-

rem this is connected to the winding number of the gauge configuration. The conclusion is that the

above rotation changes the fermion measure by an amount depending non-trivially on the gauge

field configuration.

Note that this anomalous rotation allows one to remove any topological term from the gauge

part of the action. Naively this would have been yet another parameter for the theory, but by

including all three mass terms for the fermions, this can be absorbed. For the following I consider

that any topological term has thus been rotated away. After this one is left with the three mass

parameters above, all of which are independent and relevant to physics.

These parameters are a complete set for two-flavor QCD; however, this choice differs somewhat

from what is often discussed. Formally one defines the more conventional variables as

mu = m1 +m2 + im3

md = m1 −m2 + im3

eiΘ =
m2

1 −m2
2 −m2

3 +2im1m3
√

m4
1 +m4

2 +m4
3 +2m2

1m2
3 +2m2

2m2
3 −2m2

1m2
2

. (15)

Particularly for Θ, this is a rather complicated change of variables. For non-degenerate quarks in

the context of the phase diagram discussed below, the variables {m1,m2,m3} are more natural.

V. THE STRONG CP PROBLEM

The strong interactions preserve CP to high accuracy. Thus only two of the three possible mass

parameters seem to be needed. With the above conventions, it is natural to ask why is m3 so small?

It is the concept of unification that brings this question to the fore. The weak interactions

of course do violate CP. Thus, if the electroweak and the strong interactions separate at some
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high scale, why doesn’t some remnant of this breaking survive in the strong sector? How is CP

recovered for the nuclear force?

Several “solutions” to this puzzle have been proposed. Perhaps the simplest is that there is

no unification and the strong interactions should be considered on their own with the electroweak

effects being only a small perturbation. A second approach is to add an additional “axion” field to

make the CP phase a dynamical field that relaxes to zero [13, 14]. The coupling of this additional

field is not determined a priori, and thus it need only be small enough to have avoided detection in

past experiments.

Another often proposed solution involves having the lightest quark mass vanish, making its

phase irrelevant. Several years ago this was criticized because the definition of an isolated quark

mass is inherently ambiguous due to confinement [2]. As this conclusion remains controversial, I

return to this topic and reexpress the problem in terms of the above mass terms. I hope this lan-

guage will clarify why relating a vanishing up quark mass to the strong CP problem is a tautology.

Why is a vanishing up quark mass not a sensible approach? From the above, one can define the

up quark mass as a complex number

mu ≡ m1 +m2 + im3 (16)

But the quantities m1, m2, and m3 are independent parameters with different symmetry properties.

With our conventions, m1 represents an isosinglet mass contribution, m2 is isovector in nature, and

m3 is CP violating. And, as extensively discussed earlier, the combination m1 + m2 = 0 is scale

and scheme dependent. The strong CP problem only requires small m3. So while it may be true

formally that

m1 +m2 + im3 = 0 ⇒ m3 = 0, (17)

this would depend on scale and one might well regard this as “not even wrong.”

VI. PHASE DIAGRAM FOR GENERAL QUARK MASSES

As a function of the three mass parameters, QCD has a rather intricate phase diagram. From

simple chiral Lagrangian arguments this diagram can be qualitatively mapped out. Ref. [15] stud-

ied this system in the m2 = 0 case; a first order transition is expected along the m3 axes at m1 = 0.

In conventional notation, this corresponds to the strong CP parameter Θ taking the value π . That

paper, however, incorrectly speculated on the structure for non-degenerate quarks. In Ref. [16] the
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FIG. 3: The m2 and m3 terms warp the Mexican hat potential into two separate minima. The direction of

the warping is determined by the relative size of these parameters.

picture was generalized to several degenerate flavors and the first order transition at Θ = π was

shown to be generic for all n f > 1. Ref. [17] studied the phase diagram for m3 = 0 and showed how

the isospin breaking m2 term splits the chiral transition into two second-order transitions separated

by a phase with spontaneous CP violation. These second order transitions occur where none of the

quarks are massless.

The full phase diagram in terms of all mass parameters can be deduced from a linear sigma

model [18] analysis, generalizing Ref. [15]. For this, define the composite fields

σ = ψψ η ′ = iψγ5ψ

~π = iψγ5~τψ ~a0 = ψ~τψ. (18)

In terms of these, a natural starting effective potential is

V =λ (σ 2 +~π2 − v2)2 −m1σ −m2a03 −m3η ′

+α(η ′2 +~a2
0)−β (η ′σ +~a0 ·~π)2. (19)

Here α and β are “low energy constants” that bring in a chirally symmetric coupling of (σ ,~π)

with (η ′,~a0). As discussed in Ref. [15], α gives mass to the η ′ and ~a mesons while β splits their

masses. The sign of the β term is suggested so that mη ′ < ma0
. The effect of the anomaly is

manifest in these terms.
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FIG. 4: When m3 = 0, the warping of the effective potential is downward in the π0 direction. The sign of

m1 can not pick one of the minima uniquely, giving the possibility of the π0 field spontaneously acquiring

an expectation value.

The potential in Eq. (19) is a somewhat arbitrary model. It is natural to ask if the results of

this section are robust under variations of this form. The crucial feature of the potential is the

non-trivial minima associated with chiral symmetry breaking. Something similar to the α term is

needed to give the η ′ a non-vanishing mass. The β term is somewhat arbitrary; Ref. [15] discusses

how things would change qualitatively if it sign was reversed. The other implicit assumption is

that the masses are small enough that they don’t dramatically alter the underlying structure of

the potential. With these caveats, the final phase diagram should be qualitatively correct for any

similar potential.

This potential builds on the famous “Mexican hat” or “wine bottle” potential, in which the

Goldstone pions are associated with the flat directions running around at constant σ 2 +~π2 = v2.

The m2 and m3 terms do not directly affect the σ and π fields, but induce an expectation value

for a03 and η ′, respectively. This in turn results in the α and β terms inducing a warping of

the Mexican hat into two separate minima, as sketched in Fig. 3. The direction of this warping

is determined by the relative size of m2 and m3; m2 (m3) warps downward in π0 (σ ) direction.

Turning on m1, this selects one of the two minima as favored. Which one depends on the sign of

m1. This selection gives rise to a generic first order transition at m1 = 0.

In addition to this transition, there is an interesting structure in the m1,m2 plane when m3

vanishes. In this situation the quadratic warping is downward in the π0 direction, as sketched in
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FIG. 5: In the m1,m2 plane, m2
π0

can pass through zero, giving rise to pion condensation at an Ising-like

transition. Figure taken from [15].

Fig. 4. For large |m1| only σ will have an expectation, with sign determined by the sign of m1.

The pion will be massive, but the quark mass difference will give a neutral pion mass below that of

the charged pions. As m1 decreases in magnitude at fixed m2, eventually the neutral pion becomes

massless and condenses. This is sketched in Fig. 5. An order parameter for the transition is the

expectation value of the π0 field, with the transition being in the class of the four dimensional Ising

model.

In this simple model the ratio of the neutral to charged pion masses can be estimated from a

quadratic expansion about the minimum of the potential. For m3 = 0 and m1 above the transition

line, this gives

m2
π0

m2
π±

= 1−
βvm2

2

2α2m1
+O(m2). (20)

The second order transition is located where this vanishes, and thus occurs for m1 proportional

to m2
2. Note that this equation shows that a constant quark mass ratio does not correspond to a

constant meson mass ratio and vice versa. This is the ambiguity discussed in Section II. This

model should not be trusted when the quark masses become of order Λqcd , but the Vafa-Witten

theorem [19] shows that the transition can only occur in a region where the two flavors have

opposite signs for their masses, i.e. |m1| < |m2|.

Note that this transition occurs when both mu and md are non-vanishing but of opposite sign.

At the transition the correlation length diverges. This is a simple example of how it is possible to

have significant long distance physics without small Dirac eigenvalues. Complimentarily, there is

no structure at points where only one of the quark masses vanishes. In this situation there is no

long distance physics despite the possible existence of small Dirac eigenvalues. This is connected

with the difficulty in defining a vanishing quark mass as discussed in Section II.

Putting this all together gives the final phase diagram sketched in Fig. 6. There are two inter-

secting first-order surfaces, one at {m1 = 0, m3 6= 0} and the second at {m1 < m2, m3 = 0}. The

latter ends at second-order curves that touch the lines of vanishing quark mass only at the origin.
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FIG. 6: The full phase diagram for two-flavor QCD as a function of the three mass parameters. It consists

of two intersecting first-order surfaces with second-order edges along curves satisfying m3 = 0, |m1|< |m2|.

There is no structure along the mu = 0 line except when both quark masses vanish.

The transition at the origin itself is, of course, that of the four dimensional O(4) sigma model. The

octets defined by the signs of the three mass terms are characterized by the signs of the expectation

values for the conjugate fields σ ,π0,η
′. The flavored chiral symmetry of Eq. (10) combined with

permutation symmetry for the two flavors shows that the eight corresponding regions divide into

two sets of four with equivalent physics, the sets differing in the sign of CP violating effects.

The first-order surfaces both occur where the formal parameter Θ takes the value π . However,

note that with non-degenerate quarks there is also a finite Θ = π region with m2 near m1 where

there is no transition. The absence of any physical singularity at mu = 0 when md 6= 0 lies at the

heart of the problem of defining a vanishing quark mass.

VII. SUMMARY

Non-perturbative effects in QCD couple the renormalization group flow for the masses of dif-

ferent fermion species. This effect is absent in perturbation theory, but is automatically included in
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lattice gauge simulations. This coupling means that quark mass ratios are generally not constants

but depend on renormalization scale. This is true for vanishing as well as non-vanishing quark

masses. One practical consequence is that it is inappropriate to match lattice and perturbative

masses.

Taking into account the possibility of CP violation, the general two-flavor theory depends on

3 mass parameters. A simple effective Lagrangian approach reveals an intricate phase diagram

containing both first and second order transitions as the mass parameters are varied. This diagram

displays no structure at mu = 0 when md 6= 0, suggesting that mu = 0 is not an appropriate solution

to the strong CP problem.
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