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In the leptophilic model, one Higgs doublet couples to quarks and another couples to leptons.
We study the supersymmetric version of this model, concentrating on the tightly constrained Higgs
sector, which has four doublets. Constraints from perturbativity, unitarity, and LEP bounds are
considered. It is found that the lightest Higgs, h, can have a mass well below 114 GeV, and for masses
below 100 GeV will have a substantially enhanced branching ratio into τ pairs. For this region of
parameter space, traditional production mechanisms (Higgs-strahlung, W fusion and gluon fusion)
are suppressed, but it may be produced in the decay of heavier particles. The second lightest Higgs
has a mass of approximately 110 GeV for virtually all of parameter space, with Standard Model
couplings, and thus an increase of a few GeV in the current lower bound on the Standard Model
Higgs mass would rule out the model. The two heavier Higgs are both gauge-phobic, one decays
almost entirely into bb̄ and can be produced via gluon fusion while the other decays almost entirely
into τ+τ− but can’t be easily produced.

PACS numbers:

I. INTRODUCTION

The main purpose of the Large Hadron Collider (LHC) is the study of the mechanism of electroweak symmetry
breaking (EWSB). One of the simplest and most studied extensions of the Standard Model is the Two Higgs Doublet
Model (2HDM), in which two scalar doublets are jointly responsible for electroweak symmetry breaking and fermion
mass acquisition [1, 2]. This model has a very rich phenomenology, including charged scalars and pseudoscalars.
Among the earliest motivations for the 2HDM is its additional CP violation relative to the Standard Model [3–9],
which can provide an additional source of baryogenisis and the relative abundance of matter to antimatter in the
universe [10, 11]. It was also motivated by the fact that supersymmetric models and models with a Peccei-Quinn
symmetry [12] will always require a minimum of two Higgs doublets.

In order to avoid unobserved tree-level flavor changing neutral currents (FCNCs), all fermions with the same
quantum numbers (and which are thus capable of mixing) must couple to the same Higgs multiplet. The Glashow-
Weinberg theorem [13] states that a necessary and sufficient condition for the absence of FNCNs at tree-level is
that all fermions of a given charge and helicity transform according to the same irreducible representation of SU(2),
correspond to the same eigenvalue of T3, and that a basis exists in which they receive their contributions in the mass
matrix from a single source. In the 2HDM, this is due to the introduction of discrete or continuous symmetries.
Generally one may either take both up and down type quarks to couple to the same doublet or have each couple to
its own doublet. It is usually assumed that the leptons couple to the same doublet as the down type quarks, in which
case the former scenario describes the Type I 2HDM while the latter describes the Type II 2HDM. Such couplings
can be enforced by imposing a suitable Z2 symmetry, which may simply be imposed ad hoc or which may arise as a
subgroup of a continuous symmetry (as in Peccei-Quinn or supersymmetric models).

Despite the traditional convention that leptons couple to the same doublet as the down type quarks, there is no a
priori reason why this must be the case. An alternative possibility is that both the up and down type quarks couple
to one doublet while the leptons couple to the remaining doublet. While the traditional 2HDMs have received a great
deal of attention, relatively little work has been done in investigating this alternative possibility. Those who have
focused on this model [14–18] have referred to it by several names, our selection of which is the Leptophilic Two Higgs
Doublet Model (L2HDM). As noted by Su and Thomas [14], the consequences of a L2HDM could drastically alter
the possible detection channels for a light Higgs at the LHC, so it is important that it be considered as incoming data
begins to arrive. Furthermore, the possibility of substantially enhanced leptonic couplings (which can only occur in
leptophilic models) may shed some insight into explaining recent experimental results from PAMELA, Fermi LAT,
and H.E.S.S. [16].
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There also remain alternative possibilities. One can couple the up-type quarks and leptons to one Higgs doublet
and the down-type quarks to the other (referred to as the “flipped” model [19]) or one can couple all of the charged
fermions to one doublet and the right-handed neutrino to another (referred to as the “neutrino-specific” model) [20].
While interesting in their own right, these models do not offer the possibility of substantially enhanced leptonic
couplings, and we will not focus on them.

The most popular extension of the Standard Model is supersymmetry, which can solve the hierarchy problem
and which has a very tightly constrained Higgs sector. Thus, one is led to consider the supersymmetric versions
of these alternative 2HDM models. Recently, with McCaskey, we considered [21] the supersymmetric version of the
“neutrino-specific” model, and found some remarkable signatures, including pentalepton and hexalepton events with
very high rates at the Tevatron and the LHC. In this work, we extend the L2HDM to incorporate supersymmetry.
The resulting Supersymmetric Leptophilic Higgs Model (SLHM) leads to exciting phenomenological prospects. In
the scalar sector, the strong constraints on the Higgs potential will substantially alter the phenomenology of the
lightest Higgs boson, since decays to leptons can be substantially enhanced, and the decrease in the coupling to the
gauge bosons means that the current LEP bounds will not apply, and much lighter Higgs bosons can be tolerated. In
addition, the supersymmetric partners to the leptons and the leptonic Higgs doublet are influenced by the unusual
Yukawa structure. In the case of R-parity violation, the lightest supersymmetric particle (LSP) could decay into
leptons. Without R-parity violation the LSP might annihilate into leptons [16]. In this paper, we will focus on the
scalar sector, since the results may be testable in the very near future at the Tevatron.

The layout of this paper is as follows. In Section II we review the setup of the L2HDM. In Section III we introduce
the SLHM and calculate the scalar mass matrices. In Section IV we consider various constraints on the model’s
parameter space by focusing on the neutral scalar sector. By combining results from Yukawa coupling perturbativity
considerations, unitarity requirements, and direct searches for Higgs bosons at LEP, we obtain severe restrictions on
the model’s parameter space. In Section V we discuss the phenomenology of the lightest and next-to-lightest Higgs
bosons at the Tevatron and the LHC, and then in Section VI, we conclude.

II. THE LEPTOPHILIC TWO HIGGS DOUBLET MODEL

The L2HDM contains two scalar SU(2)L doubles Φq and Φℓ. A discrete Z2 symmetry is imposed under which
Φℓ → −Φℓ and eRi

→ −eRi
, but all other fields are invariant. The resulting Yukawa lagrangian is given by

LY = −
{
Y u

ij uRi
Φ̃†

q · QLj
+ Y d

ijdRi
Φ†

q · QLj
+ Y ℓ

ijeRi
Φ†

ℓ · ELj
+ h.c.

}
, (1)

where

QLi
=

(
uLi

dLi

)
, ELi

=

(
νLi

eLi

)
, and ΦX =

(
φ+

X
1√
2

(
vX + φ0

Xr + iφ0
Xi

)
)

for X = q, ℓ and Φ̃q = iσ2Φq. The Higgs sector potential is given by [14, 22]

V = m2
q|Φq|2 + m2

ℓ |Φℓ|2 +
(
m2

qℓΦ
†
qΦℓ + h.c.

)
+

λ1

2
|Φq|4 +

λ2

2
|Φℓ|4

+ λ3|Φq|2|Φℓ|2 + λ4|Φ†
qΦℓ|2 +

λ5

2

[(
Φ†

qΦℓ

)2
+ h.c.

]
.

(2)

The physical scalars consist of two neutral scalars h and H , a pseudoscalar χ0, and a charged pair H±. The other
three degrees of freedom are the Goldstone bosons G± and G0, which are eaten by the W± and Z0 respectively. If
one defines the mixing angle tanβ = vq/vℓ, the physical charged scalars can be expressed as

(
G+

H+

)
=

(
cosβ sin β
− sinβ cosβ

)(
Φ+

ℓ
Φ+

q

)
. (3)

The physical neutral scalar states are expressed in terms of the mixing angle tanα, which can be solved for in terms
of the entries of the neutral scalar mass-squared matrix tan 2α = 2M2

12/(M2
11 − M2

22). One then finds the following
relation

(
H
h

)
=

√
2

(
cosα sin α
− sinα cosα

)(
φ0

ℓr − vℓ

φ0
qr − vq

)
. (4)
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The vertex factors for the couplings between the charged scalar and fermions are given by [15]

H+uidj →
(

ig cotβ

2
√

2MW

)
Vij

[
(mui

− mdj
) − (mui

+ mdj
)γ5

]
,

H+νiei →
(

ig tan β

2
√

2MW

)
mei

(1 − γ5).

(5)

For large tanβ the neutrino-lepton coupling to H+ is magnified while the quarks’ coupling to H+ is diminished. The
neutral scalar couplings to the charged leptons will similarly be magnified. An interesting feature of the model is
that tanβ can be much larger than in the conventional 2HDMs without causing problems with perturbativity and
unitarity, since the Standard Model leptonic couplings are smaller than the quark couplings.

III. THE SUPERSYMMETRIC LEPTOPHILIC HIGGS MODEL

In this section we introduce the minimal leptophilic model required to incorporate supersymmetry. A SLHM will
require a minimum of four Higgs doublets in order to achieve anomaly cancelation. Therefore, we add to the MSSM
two Higgs doublets H0 and Hℓ with weak hypercharge assignments +1/2 and −1/2 respectively. The four Higgs
doublets along with their weak hypercharges are listed in the table.

Φ Hu Hd H0 Hℓ

UY (1) +1/2 −1/2 +1/2 −1/2

The scalar doublets Hu and Hd are responsible for giving mass to the up and down quarks respectively. We refer to
these doublets as the quark friendly doublets. Of the new doublets, the lepton friendly doublet Hℓ gives mass to the
leptons, while the remaining inert doublet H0 does not couple to quarks or leptons. This Yukawa structure is enforced
by a discrete Z2 symmetry, under which the superfields E, H0, and Hℓ transform as X → −X while all other fields
remain unchanged. The most general superpotential respecting R-parity, gauge symmetry, and the Z2 symmetry is

W = yuUQHu − ydDQHd − yℓELHℓ + µ̃1HuHd + µ̃2H0Hℓ . (6)

The Z2 symmetry is softly broken by the terms (µ2
3HuHℓ +µ2

4H0Hd +h.c.) contained in the Higgs sector soft SUSY
breaking potential VSoft given by

VSoft = µ2
u|Hu|2 + µ2

d|Hd|2 + µ2
0|H0|2 + µ2

ℓ |Hℓ|2 +
(
µ2

1HuHd + µ2
2H0Hℓ + µ2

3HuHℓ + µ2
4H0Hd + h.c.

)
.

The Higgs sector potential is given by the sum of the F-terms, D-terms, and VSoft respectively

V =

k∑

i=1

∣∣∣∣
∂W

∂Hi

∣∣∣∣
2

+
1

2

∑

a

∣∣∣∣∣

k∑

i=1

gaH†
i T aHi

∣∣∣∣∣

2

+ VSoft.

Expanding the above expression results in

V = m2
u|Hu|2 + m2

d|Hd|2 + m2
0|H0|2 + m2

ℓ |Hℓ|2 +
(
µ2

1HuHd + µ2
2H0Hℓ + µ2

3HuHℓ + µ2
4H0Hd + h.c.

)

+
g2
1

8

∑

a

∣∣∣H†
uσaHu + H†

dσaHd + H†
0σaH0 + H†

ℓ σaHℓ

∣∣∣
2

+
g2
2

8

∣∣∣|Hu|2 − |Hd|2 + |H0|2 − |Hℓ|2
∣∣∣
2

,

where m2
u = (|µ̃1|2 + µ2

u), m2
d = (|µ̃1|2 + µ2

d), m
2
0 = (|µ̃2|2 + µ2

0), m
2
ℓ = (|µ̃2|2 + µ2

ℓ), and σa (a = 1, 2, 3) are the Pauli
matrices. To achieve spontaneous symmetry breaking, the Higgs doublets acquire the following vacuum expectation
values (vevs):

〈Hu〉 =
1√
2

(
0

vu

)
, 〈Hd〉 =

1√
2

(
vd

0

)
, 〈H0〉 =

1√
2

(
0

v0

)
, 〈Hℓ〉 =

1√
2

(
vℓ

0

)
. (7)

We define v2 = v2
u + v2

d + v2
0 + v2

ℓ so that we have v2 = 4M2
Z/(g2

1 + g2
2) ≈ (246 GeV)2. Between the quark friendly

doublets we define the mixing angle tanβ = vu/vd while between the lepton friendly and inert doublets we define the
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mixing angle tanβℓ = v0/vℓ. We also define tanα = vq/vL, where v2
q = v2

u + v2
d and v2

L = v2
0 + v2

ℓ . These definitions
allow us to express the individual vevs in terms of the Standard Model vev and the three mixing angles α, β, and βℓ

vu = v sinα sinβ, vd = v sin α cosβ, v0 = v cosα sin βℓ, vℓ = v cosα cosβℓ. (8)

Each of the four complex Higgs doublets contains four real degrees of freedom, so there are a total of sixteen degrees
of freedom. Three of these are eaten to give mass to the W± and Z0, while those remaining result in a scalar mass
spectrum that includes four neutral scalars, three pseudoscalars, and three charged pairs. From the scalar potential
above, the mass matrices can be calculated. We parameterize them in terms of the gauge boson masses and the three
mixing angles appearing in equation 8.

The neutral scalar mass matrix is M2
N =




M2
1 − 1

2
M2

Zs2
αs2β − µ2

1
1
2
M2

Zs2αsβsβℓ
− 1

2
M2

Zs2αsβcβℓ
− µ2

3

− 1
2
M2

Zs2
αs2β − µ2

1 M2
2 − 1

2
M2

Zs2αcβsβℓ
− µ2

4
1
2
M2

Zs2αcβcβℓ

1
2
M2

Zs2αsβsβℓ
− 1

2
M2

Zs2αcβsβℓ
− µ2

4 M2
3 − 1

2
M2

Zc2
αs2βℓ

− µ2
2

− 1
2
M2

Zs2αsβcβℓ
− µ2

3
1
2
M2

Zs2αcβcβℓ
− 1

2
M2

Zc2
αs2βℓ

− µ2
2 M2

4




where sx and cx are shorthand for sinx and cosx respectively, and the diagonal terms are given by

M2
1 = M2

Z sin2 α sin2 β + λ1, λ1 = µ2
1 cotβ + µ2

3 cotα
(

cos βℓ

sin β

)
,

M2
2 = M2

Z sin2 α cos2 β + λ2, λ2 = µ2
1 tanβ + µ2

4 cotα
(

sin βℓ

cos β

)
,

M2
3 = M2

Z cos2 α sin2 βℓ + λ3, λ3 = µ2
2 cotβℓ + µ2

4 tan α
(

cos β
sin βℓ

)
,

M2
4 = M2

Z cos2 α cos2 βℓ + λ4, λ4 = µ2
2 tanβℓ + µ2

3 tan α
(

sin β
cos βℓ

)
.

The pseudoscalar mass matrix is

M2
A =




λ1 µ2
1 0 µ2

3

µ2
1 λ2 µ2

4 0

0 µ2
4 λ3 µ2

2

µ2
3 0 µ2

2 λ4


 . (9)

The charged scalar mass matrix is

M2
H± = M2

A + ∆M2, (10)

where

∆M2 = M2
W




s2
αc2

β + c2
αc2βℓ

1
2
s2

αs2β
1
2
s2αsβsβℓ

1
2
s2αsβcβℓ

1
2
s2

αs2β s2
αs2

β − c2
αc2βℓ

1
2
s2αcβsβℓ

1
2
s2αcβcβℓ

1
2
s2αsβsβℓ

1
2
s2αcβsβℓ

c2
αc2

βℓ
+ s2

αc2β
1
2
c2
αs2βℓ

1
2
s2αsβcβℓ

1
2
s2αcβcβℓ

1
2
c2
αs2βℓ

c2
αs2

βℓ
− s2

αc2β


 .

In Section 3.3 of [23] Gupta and Wells outline a procedure for obtaining an upper bound on the tree-level mass of
the lightest neutral scalar, h, in the limit of large SUSY breaking masses (as compared to the Z-mass). The procedure
consists of transforming the mass matrices into the so called “Runge basis,” in which one doublet obtains all of the
vev while the others are orthogonal to one another. Details on the Runge basis can be found in [24]. In this basis all
but one diagonal entry of the neutral scalar mass matrix grow large in the limit of large SUSY breaking masses. This
entry acts as an upper bound on M2

h since, for a positive definite matrix, the smallest eigenvalue is bounded above
by the smallest diagonal entry. Their result holds in our case as well and results in the inequality

Mh ≤ MZ | sin2 α cos 2β + cos2 α cos 2βℓ|. (11)

Leading order radiative corrections to the Higgs masses will be important in constraining parameter space. As
usual, the dominant contributions come from top quark loops, governed by the top quark Yukawa coupling. In this
section we have written the neutral scalar mass matrix, M2

N , in the {u, d, 0, ℓ} basis. Hence the 1-1 entry receives a
correction from top quark loop diagrams given by

∆M2
11 =

3α

π

(
m4

t

M2
Z

)
ln
(
m2

t̃
/m2

t

)

sin2 2θW sin2 α sin2 β
, (12)
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where mt̃ is the stop squark mass, which we take to be ∼ 1 TeV. In addition to top quark loop corrections, other
corrections are potentially significant because of the possibility of very large values for tanβ and tanβℓ. We therefore
also consider the leading correction to the 2-2 and 4-4 entries of M2

N , which come from bottom quark loop diagrams
and a tau loop diagram respectively. The 3-3 entry receives no correction since the inert doublet, H0, does not couple
to quarks or leptons. There are other sub-leading-log corrections to the masses, and these can contribute 5− 10 GeV
to the masses (see Ref. [25] for a detailed discussion).

IV. CONSTRAINTS ON THE SUPERSYMMETRIC LEPTOPHILIC HIGGS MODEL

In this section we outline the main constraints that limit the viable parameter space of the SLHM. The free
parameters arising from the scalar sector consist of the four couplings µ2

1, µ2
2, µ2

3, and µ2
4, which mix pairs of Higgs

doublets in the scalar potential, as well as the three mixing angles tan α, tan β, and tanβℓ, which appear in equation
8. The constraints arising from the charged scalar sector are similar to those of the L2HDM, which is studied in [15].
Our interest therefore lies in the neutral sector. We find that LEP data and other constraints severely restrict the
size of the allowable parameter space, but leave enough room to comfortably fit the model a lightest neutral scalar
mass substantially less than 110 GeV.

A. Yukawa Coupling Perturbativity

The first constraints come from requiring that the Yukawa couplings remain perturbative. By demanding that each
Yukawa coupling remains smaller than 4π we obtain the following three inequalities

(
1 +

1

tan2 α

)(
1 +

1

tan2 β

)
<

8π2v2

m2
t

≈ 132,

(
1 +

1

tan2 α

)(
1 + tan2 β

)
<

8π2v2

m2
b

≈ 5202,

(
1 + tan2 α

)(
1 + tan2 βℓ

)
<

8π2v2

m2
τ

≈ 12352.

(13)

One can see that the top quark Yukawa coupling becomes non-perturbative for small values of tanα or tanβ while
the bottom quark Yukawa coupling does so for small values of tan α or large values of tanβ. In addition, the tau
Yukawa coupling becomes non-perturbative for large values of tanα or tanβℓ .

B. Tree Level Unitarity

Requiring perturbative unitarity of fermion anti-fermion scattering places upper bounds on the fermion masses.
The unitarity condition that must be satisfied is |ℜ(aJ )| ≤ 1/2, where aJ is the Jth partial wave amplitude in the
partial wave expansion of the fermion anti-fermion scattering amplitude. The scattering we consider occurs by the
exchange of a Higgs boson. We obtain bounds from imposing the unitarity condition on the J = 0 partial wave
amplitude, which is calculated from a sum over s- and t-channel helicity amplitudes in the high energy limit. The
procedure is described in detail in [26], where contributions to the partial wave amplitudes are provided for a general
model. These contributions depend on combinations of the vector and axial vector Yukawa couplings. For the SLHM
the resultant bounds are found to be (see [26] for a clear discussion)

GF m2
t

4π
√

2
< sin2 α sin2 β,

GF m2
b

4π
√

2
< sin2 α cos2 β,

GF m2
τ

4π
√

2
< cos2 α cos2 βℓ.

(14)

Here we have used the bounds obtained for third generation fermions as their larger masses yield the most stringent
results. The unitarity constraint prevents very large values for tan β, capping it at around 300. Several combinations
of tanα and tanβ values on the order of several tenths are also eliminated.
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C. The Anomalous Muon Magnetic Moment

As in the Standard Model, the magnetic moment of the muon receives a contribution from the one-loop diagram
formed by connecting the muon lines on a muon-muon-photon vertex with a neutral Higgs boson. Only the lightest
neutral Higgs is relevant since the contribution goes as the square of the ratio between the muon and Higgs masses.
For the SLHM the contribution is

∆aµ = K2
m2

µ

8π2v2

∫ 1

0

z2(2 − z)

z2 + x2(1 − z)
dz, (15)

where x = Mh/mµ and

K2 =
|U41|2

cos2 α cos2 βℓ
.

If the Higgs mass, Mh, is assumed to be the same in the SLHM and the Standard Model then the contribution to the
muon’s magnetic moment from a light scalar in the SLHM is simply its Standard Model value multiplied by K2. The
value of K2 however, remains <∼ 1 across the entire spectrum of parameter space, even for very large values of tanα
and tanβℓ. A review on the anomalous muon magnetic moment is given by [27] while current results and uncertainties
can be found in [28, 29]. In our case the contribution is much too small to produce any bounds.

In addition however, there is a two-loop Barr-Zee effect [30], which is generally more significant than the one-loop
contribution discussed above. The Barr-Zee effect occurs by connecting an internal Higgs to an internal photon
through a massive fermion loop and is given by [31, 32]. We consider such effects with third generation fermions in
the SLHM and find that the contribution to the muon magnetic moment is

∆aµ = −
αm2

µU41

4π3v2 cosβℓ

{
8U11f(xt)

3 sin 2α sin β
+

2U21f(xb)

3 sin 2α cosβ
+

U41f(xτ )

cos2 α cosβℓ

}
, (16)

where xf = m2
f/M2

h and the function f(x) is given by

f(x) =
x

2

∫ 1

0

1 − 2z(1 − z)

z(1 − z) − x
ln

[
z(1 − z)

x

]
dz.

Though the contribution from the tau loop diagram is suppressed by m2
τ/M2

h , it is enhanced for very large tanβℓ. In
following [33] we measure how well these contributions compare to experiment with the quantity

χ2
aµ

=

(
∆aSLHM

µ

6.8 × 10−10

)2

,

where 6.8 × 10−10 is the theoretical uncertainty for aµ in the Standard Model (used because it is larger than the
experimental uncertainty). The result is that, though larger than the one-loop contributions, the two-loop Barr-Zee
effect contributions are still too small to provide significant constraints on the parameter space.

D. LEP Higgs Search Data

The largest source of constraints for the neutral sector of the SLHM consists of LEP’s failure to discover a neutral
Higgs boson. If the lightest neutral scalar’s mass is too small, one would expect LEP to have seen it, whereas for a
mass Mh > 114.4 GeV, LEP data becomes irrelevant and no bounds can be obtained [34]. The production mechanism
at LEP is the Higgs-strahlung process e+e− → hZ, and thus if the coupling, gZZh, between the lightest neutral scalar
and Z-pairs is sufficiently small, the scalar’s non-discovery at LEP can be explained [35–38].

In addition, there is an effect which suppresses the sensitivity with which the experimental results may be applied
to constrain models beyond the Standard Model [33, 39]. Bounds from LEP were produced under the assumption
that the Higgs boson decays exclusively into bb̄ pairs or exclusively into τ+τ− pairs. LEP has provided a bound on
the quantity BR(h → XX)ξ2 for X = b and X = τ , where ξ is the ratio of the ZZh coupling in a model to that of
the Standard model i.e. ξ = gZZh/gSM

ZZh. We find the value of ξ2 in the SLHM to be

ξ2 =
∣∣∣U11 sin α sin β + U21 sin α cosβ + U31 cosα sin βℓ + U41 cosα cosβℓ

∣∣∣
2

. (17)
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We will employ both of these bounds to exclude regions of parameter space in the SLHM. Naively, one expects
BR(h → bb) to approach unity when tanβ is large and tanα, tanβℓ are small since in that case the down-type quark
Yukawa couplings are doubly enhanced while the lepton Yukawa couplings remains small. On the other hand, when
tan α and tanβℓ are large while tanβ is small, the lepton Yukawa couplings are enhanced and the down-type quark
Yukawa couplings remain small, resulting in an increase in the branching ratio BR(h → τ+τ−).

Since in the interesting region of parameter space, the ZZh and WWh couplings are small, we can approximate
the total decay width as simply Γ(h → bb̄) + Γ(h → τ+τ−). The two branching ratios for the SLHM can therefore be
conveniently expressed as BR(h → bb) = 1/(1+ κ) and BR(h → τ+τ−) = κ/(1 +κ), where κ = Γ(h → τ+τ−)/Γ(h →
bb̄). The variable κ is straightforward to calculate and is given by

κ =

(
m2

τ

3m2
b

)
tan2 α

cos2 β

cos2 βℓ

∣∣∣∣
U41

U21

∣∣∣∣
2(

M2
h − 4m2

τ

M2
h − 4m2

b

)3/2

, (18)

where the Uij are entries of the 4 × 4 diagonalizing matrix defined by U †M2
NU = M2

diag.

FIG. 1: The colored regions illustrate the allowed points in the tan α, tan β, tanβℓ parameter space. Each region is a slice of
constant tanβℓ in the tan α× tan β plane. The values of µ1, µ2, µ3, and µ4 are fixed at 200, 250, 300, and 100 GeV respectively,
but changing µ1 and/or µ3 has relatively little effect. Increasing µ2 and/or µ4 shrinks the above space. Increasing tan βℓ

enlarges the size of the allowed space quite rapidly until around tan βℓ ≈ 8, when the space stops enlarging and begins to slowly
shrink - this can be seen in Figure 2.

We have numerically scanned through parameter space, calculating the values of BR(h → bb)ξ2, BR(h → τ+τ−)ξ2,
and Mh in the SLHM. Those points in parameter space for which either BR(h → bb)ξ2 or BR(h → τ+τ−)ξ2 is greater
than its LEP bound at the corresponding value of Mh are excluded. By imposing these two LEP bounds as well as
the perturbativity requirements of Section IVA and the unitarity requirements of Section IVB, we are able to exclude
substantial regions of the model’s parameter space. In Figures 1 and 2 the allowed region of the three-dimensional
parameter space for the variables tanα, tanβ, and tanβℓ is shown. For these plots the values of µ1, µ2, µ3, and µ4

have been fixed at 200, 250, 300, and 100 GeV respectively. The plots depict several sections of viable parameter space
in the tanα × tan β plane, each being a slice of constant tanβℓ. As tan βℓ varies over its allowed range, one can see
how the sections grow in area, change shape, and eventually shrink back away.

Though the values of µ1, µ2, µ3, and µ4 are fixed, the size and shape of the allowed parameter space remains largely
unchanged when µ1 and µ3 are allowed to vary between 50 and 1000 GeV. Their values are consequentially relatively
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FIG. 2: A continuation of figure 1 for larger values of tan βℓ. As tanβℓ increases beyond 80, the space very slowly shrinks into
an extremely thin sliver of possible tan α values centered near 2; it finally disappears completely at tan βℓ ≈ 350.

unconstrained. Increasing the value of µ4 however, has the effect of sharply cutting down on the size of the allowed
region of parameter space. So too does increasing µ2, though to a slightly lesser degree. Merely increasing µ4 to
200 GeV results in a drastically smaller allowed region than that shown in Figure 1 and completely eliminates the
regions corresponding to tanβℓ values of 5.3 and 5.5. The other regions are compressed so that 3 <∼ tan α <∼ 20 and
50 <∼ tanβ <∼ 290, while their overall shape remains the same. Enlarging either µ2 or µ4 further rapidly shrinks the
allowed space away until it vanishes completely.

Figure 3 plots an assortment of possible BR(h → bb̄)ξ2 values as a function of the lightest neutral scalar mass
Mh. Each value plotted corresponds to some point in the allowed region of parameter space. The LEP curve is
shown in blue. For very large values of tanβℓ, the curves continue down to approximately 25 GeV, with the value
of BR(h → bb̄)ξ2 becoming extremely small. We see that Higgs bosons below 114.4 GeV are certainly allowed, but
below approximately 90 GeV their couplings to vector bosons become negligible, making detection through vector
boson fusion or Higgs-strahlung off a vector boson impossible. The analogous result for BR(h → τ+τ−) is plotted in
Figure 4, with similar conclusions.

V. PHENOMENOLOGY

In this section we discuss the possibility of detecting a supersymmetric leptophilic Higgs. We have focused on
the neutral sector, as the charged sector strongly resembles the non-SUSY leptophilic scenario covered in [15]. The
quantity of importance to the decay of the lightest neutral scalar is the ratio κ = BR(h → τ+τ−)/BR(h → bb), which
is given by equation 18 in Section IVD.

For the region of parameter space discussed in the previous section, we have shown various values of κ in Figure 5.
For Higgs bosons near 114.4 GeV, the allowed value of κ approaches its Standard Model value of approximately 0.1.
However, for lighter Higgs bosons, κ is much bigger, approaching unity for Higgs masses below 100 GeV.

We see that in this model, the Higgs can be relatively light, and will have a much larger branching ratio to τ+τ−

than in the Standard Model. In order to detect the Higgs at the Tevatron or the LHC, however, one also must consider
the production rate. As we have seen, for Higgs bosons below 90 GeV, the ZZh and WWh couplings are quite small,
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FIG. 3: Various values of the quantity BR(h → bb̄)ξ2 plotted as a function of the lightest neutral scalar mass Mh. The plotted
values correspond to a uniform sampling of points within the allowed regions of the tan α× tan β plane for the different values
of tan βell that are plotted in figures 1 and 2. The LEP bound of reference [36] is shown in blue.

FIG. 4: Various values of the quantity BR(h → τ+τ−)ξ2 plotted as a function of the lightest neutral scalar mass Mh.

and thus Higgs-strahlung is negligible. What about gluon fusion, which is the primary production mechanism for a
light Higgs? Here, one must include both top and bottom loops, and the coupling to the Higgs will be different. We
find that the ratio of the gluon fusion cross section to that of the Standard Model is

σSLHM

σSM
=

∣∣∣∣
U11

sin α sin β
+

A(mb)

A(mt)

U21

sinα cosβ

∣∣∣∣
2

, (19)

and this is plotted in Figure 6 for various parameters. The function A(mf ) is given by A(mf ) = 2
[
xf + (xf −

1)f(xf )
]
x−2

f , where xf = M2
h/4m2

f and f(xf ) is given by equation 2.47 in [40]. For much of parameter space, the
gluon fusion rate is also very small, making Higgs detection extremely difficult. In the Standard Model, the only
other production mechanism that doesn’t involve gluon fusion or the WWh or ZZh vertex is Higgs-strahlung off a
top quark. That is difficult in the Standard Model, and in this model is even weaker since the top quark Yukawa
coupling is smaller. One can think about Higgs-strahlung off a tau, but this is likely to be swamped by backgrounds.
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FIG. 5: Various values of κ plotted as a function of the lightest neutral scalar mass Mh.

FIG. 6: Logplot of the ratio of the production cross section of the lightest neutral scalar by gluon fusion in the SLHM to the
Standard Model.

In any event, this is just a specific model. One might have other possibilities for Higgs production, such as production
in the decay of one of the charged Higgs bosons in the model, or production through supersymmetric particles. In
both of these scenarios, the production rate would depend on many additional parameters. Thus, experimenters
should look for Higgs bosons in the 75 − 110 GeV range with a substantially enhanced coupling to τ pairs (below 75
GeV, a very small sliver of parameter space does remain). A study of τ pair detection in leptophilic Higgs decays at
the LHC was carried out in Ref. [41]. Since they did not consider the supersymmetric version, they concentrated on
Higgs in the 100 − 160 GeV mass range, and gluon fusion production was not particularly suppressed, as it is here.
They also focussed on models with dark matter candidates (usually involving an additional singlet or an additional
inert doublet). Nonetheless, their techniques show that detection of a Higgs decay into τ pairs is feasible in the early
stages at the LHC. At the Tevatron, CDF and D0 did explicitly search for Higgs decays to τ pairs [42], but did not
consider Higgs masses below 90 GeV

Throughout this analysis, we have ignored the effects of the heavier neutral Higgs scalars. Consider the second
lightest neutral scalar, η. As we scan the entire allowed parameter space, we find that the η always appears to be very



11

close to 110 GeV. This may not be too surprising. Imagine that there was no mixing at all between the quarkophilic
and leptophilic Higgs sectors. Then each sector would have a similar mass matrix to that of the MSSM (although with
smaller overall vevs), and thus one would find two relatively light Higgs. Mixing can’t be eliminated, of course, due
to D-terms, but it is not surprising that there are two relatively light scalars in the model. In the region of parameter
space in which the couplings of the h to the gauge bosons is severely suppressed, however, the couplings of the η
will not be, and thus the η will be similar to the Standard Model Higgs. Given the uncertainty in our calculations,
including the effects of non-leading-log and higher order corrections to the masses, it is premature to conclude that
the current LEP bounds would rule out this 110 GeV Higgs, but an increase of just a few GeV in the current lower
bound on the Standard Model Higgs would rule out this model.

In the region of parameter space of interest, the h and η are primarily linear combinations of H0 and Hu, with small
admixtures of Hd and Hℓ. Nonetheless, the ratios of vacuum expectation values are large enough that the dominant
decay of the h, for example, is primarily into τ ’s and b’s through these small admixtures. The two heaviest Higgs
bosons are each almost entirely Hd and Hℓ , respectively, with little mixing.

Consider these two heavier Higgs bosons, H1 and H2. Since the coupling of the η, in the region of interest, to Z-pairs
is very close to that of the Standard Model, then the fact that the sum of the squares of the Higgs couplings to Z-pairs
must equal the square of the Standard Model coupling implies that the coupling of H1 and H2 with W, Z-pairs is
negligible. We have confirmed this numerically. Another way to say this is that the narrow window of parameter
space forces the direction of the vacuum expectation value to be almost entirely in the η direction, leaving little room
for vev-dependent couplings of the other neutral Higgs. This will also cause a suppression in the H1hh and H2hh
couplings. The H1 and H2 will thus be both Higgs-phobic and gauge-phobic and will only decay into fermion pairs.
One of the two, H1, will decay almost entirely into bb̄, and the other, H2, will decay almost entirely into τ+τ−. This
leads to interesting phenomenological consequences. The H1 can be copiously produced through gluon fusion (through
its coupling to the b-quark), and its dominant decay into bb̄ will be quite dramatic. The H2 would be a heavy Higgs
boson that decays entirely into τ pairs. However, gluon fusion occurs at a small rate, and thus production through
heavier particles or supersymmetric partners would be necessary. This possibility is currently under investigation.

VI. CONCLUSION

In this work, we have studied the Higgs sector of the supersymmetric version of leptophilic models. The model
contains four Higgs doublets, which couple to the up quarks, down quarks, charged leptons and no fermions, re-
spectively. The Higgs sector, as in all supersymmetric models, is tightly constrained. We consider constraints from
perturbativity, unitarity, the muon anomalous magnetic moment and we also impose constraints from experimental
searches at LEP.

We find that in most of parameter space, the lightest Higgs, h, has a mass between 75 and 110 GeV (with a very
small sliver of parameter space giving smaller masses). For lighter values of the mass, the decay branching ratio into
τ pairs is substantial, and can even be the dominant decay mode. This would lead to some spectacular signatures
at the Tevatron and the LHC. However, the conventional production mechanisms, such as W-fusion, Higgs-strahlung
and gluon fusion are suppressed in this region of parameter space.

The second lightest Higgs, η, has a mass throughout the allowed parameter space of approximately 110 GeV. Its
production cross section is not as strongly suppressed, and would appear similar to a Standard Model Higgs. The
remaining two neutral scalars are typically heavier, are gauge-phobic and Higgs-phobic, and would decay into fermions.
One decays almost entirely into bb̄ and would be copiously produced through gluon fusion. The other decays almost
entirely into τ+τ−, but conventional production mechanisms are suppressed.

There are also three charged scalars and three pseudoscalars in the model. We do not expect the phenomenology to
differ substantially from the detailed analysis of Logan and MacLennan[15], who used MSSM parameters to constrain
their parameter space (even though the model was not supersymmetric), and thus there would only be O(1) changes
in their results due to mixing angles. Exploration of the supersymmetric particles in the model are currently under
investigation.

We thank Heather Logan and Reinard Primulando for useful discussions. This work was supported by the National
Science Foundation PHY-0755262.
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