
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Single-sector supersymmetry breaking, chirality, and
unification

Siavosh R. Behbahani, Nathaniel Craig, and Gonzalo Torroba
Phys. Rev. D 83, 015004 — Published 18 January 2011

DOI: 10.1103/PhysRevD.83.015004

http://dx.doi.org/10.1103/PhysRevD.83.015004


SLAC-PUB-14247

Single-sector supersymmetry breaking,
chirality and unification

Siavosh R. Behbahania,b, Nathaniel Craigb,c,d, Gonzalo Torrobaa,b

a SLAC National Accelerator Laboratory, Stanford, CA 94309
b Department of Physics, Stanford University, Stanford, CA 94305

c Institute for Advanced Study, Princeton, NJ 08540
d Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854

Abstract

Calculable single-sector models provide an elegant framework for generating the
flavor textures via compositeness, breaking supersymmetry, and explaining the
electroweak scale. Such models may be realized naturally in supersymmetric
QCD with additional gauge singlets (SSQCD), though it remains challenging
to construct models without a surfeit of light exotic states where the Standard
Model index emerges naturally. We classify possible single-sector models based
on Sp confining SSQCD according to their Standard Model index and number
of composite messengers. This leads to simple, calculable models that sponta-
neously break supersymmetry, reproduce the fermion flavor hierarchy, and ex-
plain the Standard Model index dynamically with little or no additional matter.
At low energies these theories realize a “more minimal” soft spectrum with direct
mediation and a gravitino LSP.



1 Introduction

A very appealing idea is that some of the Standard Model (SM) quarks and leptons are
secretly composites of more fundamental “preons” that explain their attributes in a simple
way. Seemingly unrelated puzzles like the origin of the Yukawa couplings and the gauge
hierarchy problem could then be solved by the same underlying dynamical mechanism. This
more fundamental gauge theory has to produce approximately massless fermionic bound
states, protected by a chiral symmetry.1 Supersymmetric gauge theories provide a natural
framework for these ideas. Indeed, supersymmetric QCD (SQCD) can produce exactly
massless bound states. It may also be used to generate dynamically the Fermi scale and
to break supersymmetry. Furthermore, Seiberg duality [5] gives, in many cases, weakly
coupled dual theories where the massless mesons and baryons are described as elementary
excitations.

Recent developments in SUSY gauge theories have motivated a renewed interest in con-
structing realistic composite models. The works [6, 7] proposed that the strong dynamics
responsible for supersymmetry breaking may also produce composite SM fermions. These
“single-sector models” can in principle give a simultaneous explanation for the observed
flavor textures and the stabilization of the electroweak hierarchy. They are also quite eco-
nomical in that they do not have a modular structure with messengers put in by hand
–supersymmetry is communicated directly to the composites. These beautiful constructions
have the drawback of not being calculable, and a detailed understanding of the spectrum
was not possible.

The insight of Franco and Kachru [8] was to combine these ideas with the ISS mecha-
nism (Intriligator, Seiberg and Shih [9]), building calculable single-sector models in SQCD.
Next [10] constructed models with a fully realistic texture using a dimensional hierarchy
mechanism. The flavor hierarchies are generated by coupling the SQCD mesons to ele-
mentary Higgs fields via higher dimensional operators, produced at a certain scale Mflavor

larger than the dynamical scale Λ. After confinement, these irrelevant operators give rise to
marginal Yukawa interactions, naturally suppressed by powers of

ε = Λ/Mflavor . (1.1)

Moreover, following the same single sector philosophy it was shown in [11] that the strong
gauge dynamics can also yield a composite Higgs, break SU(2) × U(1) and solve the µ/Bµ

problem.

The main conclusion from these works is that SQCD in the free magnetic range, sup-
plemented by adequate superpotential deformations, can provide a unified explanation for
the flavor hierarchies, supersymmetry breaking and Higgs physics, simultaneously generating
some of the SM fields as composites. The requirement of being in the free magnetic range

1These ideas have been explored over the years in different ways, mainly motivated by the work of ’t
Hooft [1]. Early examples of nonsupersymmetric models were given in [2]; for a review and references on
supersymmetric constructions see [3]. A very interesting model combining technicolor with composite SM
fermions was given in [4].
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is essential for calculability: the asymptotically free “electric theory” becomes strong in the
IR but admits a weakly coupled “magnetic dual”. The magnetic theory gives a description
of the SM composites as elementary excitations, allowing for a direct perturbative analysis
of their interactions and spectrum.

In this context, there are two important aspects that have to be addressed. The first one
is how the SM chirality emerges from the confining gauge theory. Is it possible to generate
dynamically a nonzero index2 for the 10 + 5̄ representations of SU(5)SM? Is there a simple
explanation for the family structure of the SM? The other point regards the construction of
single sector models with perturbative unification. This has been quite difficult to achieve
in constructions so far. The goal of this work is to address these points.

1.1 Overview

Let us summarize the main points of the present work. In §2 a general analysis of calculable
single-sector models is presented, with emphasis on SM chirality and possible flavor textures.
In models constructed to date, the confining interactions generate, for each desired 10 + 5̄
composite generation, unwanted matter in the conjugate 10 + 5. The problem of conjugate
representations was avoided in [8, 10] by introducing additional spectator fields in 10 + 5̄
multiplets, and coupling them to the unwanted matter. The procedure is somewhat artificial,
because the 10 + 5̄ index is put in by hand directly in the UV. This is overcome by allowing
the electric quarks to transform under chiral representations of the SM gauge group.

The problems of generating the SM chirality and achieving unification are related: models
with chiral SM representations have in general less amount of unwanted composites than their
vector-like counterparts. This helps to keep the gauge couplings perturbative. Motivated
by these two points, we perform in §3 a general classification of confining SQCD theories
that produce composites in chiral representations of the SM gauge group. This group theory
analysis will be used to construct more efficient single sector models with less amount of
extra matter and spectators.

This reveals a rich set of possible spectators (denoted by S), both in chiral and vector-like
representations of SU(5)SM . The supersymmetry breaking structure of single-sector models
is based on the ISS mechanism [9], but it includes an important novelty: some of the mesons
are coupled to the magnetic singlets S. In the electric theory, these couplings are generated
from marginal interactions between the electric quarks Qi and spectators,

Wel = λSijQiQj . (1.2)

These become relevant in the IR. In §4 we present a detailed analysis of metastable su-
persymmetry breaking in the presence of the deformations (1.2) for S in real or complex
representations of the flavor group.

In §§5 and 6 we apply our results to construct examples where a nonzero 10 + 5̄ index is
dynamically generated, and which perturbatively unify. The first two composite generations

2The index for a complex representation R is defined as NR −NR.
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can either arise from a single electric meson (in which case there is an approximate U(2)
flavor symmetry) or from mesons of different classical dimension (“dimensional hierarchy”
models). The third generation and Hu are necessarily elementary. An interesting outcome
of our analysis is that the more economical examples are in fact models with U(2) flavor
symmetry. However, the flavor textures generated via Eq. (1.1) are not in full agreement
with experimental values. We will present a new mechanism for generating fermion masses
and mixings that circumvents this problem.

Insofar as the calculability of our models relies on preserving perturbativity of SM gauge
couplings up to the GUT scale, we briefly review perturbativity constraints on additional
SM-charged matter in Appendix A. Finally, we end in Appendix B with a detailed discussion
of FCNC constraints on the pattern of soft supersymmetry-breaking masses in the various
models under consideration. While U(2)-symmetric models are essentially unconstrained by
FCNCs, mild constraints arise for models with a dimensional hierarchy.

2 Chirality and flavor hierarchies

We begin by describing our approach in general terms; some of the results can be applied
to mechanisms different than the ones presented in [8, 10, 11]. In order to clarify our
motivations and the classification given in §3, some necessary results from these papers will
also be summarized in this section.

In searching for microscopic gauge theories that can produce a composite SM it is useful
to review the way in which the SM itself explains the observed hadrons. In the IR, SU(3)C
becomes strong and confines, while the SU(2)×U(1) gauge fields are ‘spectators’ of the strong
color dynamics. The SM also contains spectator fermions that only couple to SU(2)×U(1).
These are of course the leptons and, in particular, they are crucial for anomaly cancellation.
The theory of preons that could underlie the SM will be built upon a similar pattern. This
approach was advocated for instance in [1].

2.1 Basic SQCD setup

For concreteness we will consider a SQCD theory with Sp gauge group. The analysis for
SU and SO theories is quite similar, and it turns out that Sp theories lead to more eco-
nomical models. Recall that an Sp(2Nc) gauge theory3 with 2Nf fundamental quarks Qi,
i = 1, . . . , 2Nf (Nf flavors) admits, for Nf > Nc − 2, a dual description with gauge group

Sp
(

2Ñc ≡ 2(Nf −Nc − 2)
)

containing 2Nf magnetic quarks qi together with a meson singlet Mij = QiQj in the anti-
symmetric of the flavor group. The dynamical scale of the theory is denoted by Λ. Following
the discussion in §1 we require that the magnetic dual is IR free, Nc+3 ≤ Nf < 3(Nc+1)/2.

3The notation is Sp(2) ∼ SU(2) and, more generally, Sp(2N) ⊂ SU(2N).
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In some cases we will also be interested in adding a field U in the “traceless” antisym-
metric (Nc(2Nc − 1)− 1) of the gauge group, with a superpotential W ∝ Tr(J2NcU)3 which
restricts the mesons to

Mij ≡ QiQj , (MU)ij ≡ QiUQj . (2.1)

Both are in the antisymmetric of the flavor group SU(2Nf ). Color indices are contracted
with J2Nc = 1Nc ⊗ (iσ2). The motivation for adding this field is to have mesons of different
classical dimension that can lead to realistic fermion masses [10]. The duality for this case
was studied in [16].

The SM quantum numbers are explained by weakly gauging SU(5)SM ⊂ SU(2Nf )
and taking the electric quarks to transform under (possibly) chiral representations Ri of
SU(5)SM . Finally, the theory contains elementary spectator fields Sa which, by definition,
are singlets under Sp(2Nc) and transform under SU(5)SM . In summary, the matter content
is given by

Sp(2Nc) SU(5)SM
Qα
i � Ri

Uαβ antisym 1
Sa 1 Ra

(By a slight abuse of notation, the same indices i, j are used to denote the Nf flavors Qi and
the possible representations Ri). According to our definition, all the elementary SM fields
(third generation, Higgs, etc.) are contained in the spectator fields Sa. Anomaly cancellation
may also require extra elementary spectators not present in the SM.

The structure of the magnetic dual is

Sp(2Ñc) SU(5)SM

Mij 1 R[i ×Rj]

(MU)ij 1 R[i ×Rj]

qαi � Ri

Ũαβ antisym 1
Sa 1 Ra

where Ñc = Nf −Nc− 2 in the absence of Ũ , while including this field with a cubic superpo-
tential leads to Ñc = 2(Nf − 2)−Nc. The SM quantum numbers of the mesons are obtained
from the antisymmetric part of Ri ×Rj. Also, the magnetic superpotential includes cubic
couplings W ∝ qMq + qMUq that will be important for supersymmetry breaking.

2.2 Standard Model chirality

The mesons Mij and (MU)ij defined in (2.1) have SM quantum numbers given by the anti-
symmetric part of Ri ×Rj. We wish to identify the composite SM generations

Tk ∈ 10 , F k ∈ 5 (2.2)
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with appropriate meson components,

T ⊂ (M10, (MU)10) , F ⊂ (M5, (MU)5) . (2.3)

In principle it is also possible to use SQCD baryons as composite SM fields, but in the simple
examples below this does not lead to realistic models.

At this stage, composite models can be classified into

• models where the two composite generations (Tk, F k), k = 1, 2, arise from the same
meson. In the absence of superpotential interactions, there is then an unbroken U(2)
flavor symmetry;

• dimensional hierarchy models, where the lightest first generation arises from the di-
mension 3 meson QUQ, while the second generation is identified with QQ.

We also distinguish between ‘democratic’ models where both 10 and 5 are composites, and
‘ten-centered’ models where only the 10’s are composites. As we discuss below, such models
tend to be very minimal and lead to quite realistic flavor textures.

Next, we wish to determine whether it is possible to generate dynamically the SM chi-
rality. This entails calculating the index for the 10 and 5 representations

∆NR = NR −NR (2.4)

where NR is the number of fields (q,M,MU) in the magnetic theory transforming under the
representation R of SU(5)SM . Even though the SM particles are identified from components
of M and MU , the magnetic quarks q are also included in the calculation of the index. The
reason for this is that in the single-sector models that we explore, the magnetic gauge group
is completely higgsed and the q’s couple to some of the components of the mesons, producing
vector-like composite messengers. This is explained in more detail in §4.

Three different levels of chirality may be distinguished:

a) Models where the Standard Model index is not explained, ∆N10 = ∆N5 = 0. It
is generated in the UV using spectators. In the absence of spectators the composites are
vector-like.

b) Models where the 10 + 5̄ index is correct, but there are also fermions in other chiral
representations. These are better in that, although spectators are still needed, they are in
general “predicted” by the cancellation of SM anomalies directly in the electric theory.

c) Models where the total index is explained, and it agrees with the 10 + 5̄ index. The
only light chiral fields are then in 10 and 5̄ representations, and no spectators are needed
besides the usual SM elementary fields (H and the third generation).

These qualifications apply for ten-centered models with simple modifications; the goal
in this case is to produce ∆N10 = 2 and ∆N5 = 0 among (q,M,MU). §3 is devoted to
the general group theoretic analysis of the SM index. In single-sector models with 2-index
representations, we will find a few models of type b) and, surprisingly, just one model of
type c) is allowed.
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2.3 Generating the flavor textures

Let us now explain how the flavor textures are generated [8, 10]. At a scale Mflavor > Λ before
the electric theory confines, there is some new dynamics that generates interactions between
the elementary Higgs and the mesons, W ∼ MHM . These operators, being irrelevant in
the UV, are suppressed by powers of M−1

flavor. After confinement they become marginal and
give rise to the SM Yukawa couplings, with hierarchies controlled by powers of

ε ≡ Λ

Mflavor

. (2.5)

In models where the first two composite generations (10 + 5̄) come from a single meson
M = QQ, these new interactions are of the form

WY uk ∼
1

M2
flavor

(QQ)H(QQ) +
1

Mflavor

(QQ)HΨ3 + Ψ3HΨ3 , (2.6)

where Ψ3 denotes the elementary third generation. In the IR, after canonically normalizing
the meson by QQ/Λ, Eq. (2.6) gives rise to Yukawa couplings

Y ∼

 ε2 ε2 ε
ε2 ε2 ε
ε ε 1

 , (2.7)

where order one coefficients are being omitted. For ε ∼ 10−1 − 10−2, these simple Yukawa
textures are a good starting point for generating the hierarchies in fermion masses, but
more structure is required to obtain fully realistic masses and mixings. In §5, we present an
alternative mechanism for obtaining realistic Yukawa matrices in models with U(2) flavor
symmetry. This will open up new model-building possibilities.

Next, consider dimensional hierarchy models; here the lightest first generation is identified
with the dimension 3 meson MU = QUQ, while the second generation arises from M = QQ.
The superpotential at the scale Mflavor now reads

WY uk ⊃
1

M4
flavor

(QUQ)H(QUQ) +
1

M3
flavor

(QQ)H(QUQ) +

1

M2
flavor

(QQ)H(QQ) +
1

Mflavor

(QQ)HΨ3 + Ψ3HΨ3 . (2.8)

After confinement, WY uk gives rise to Yukawa couplings

Y ∼

 ε4 ε3 ε2

ε3 ε2 ε
ε2 ε 1

 . (2.9)

Realistic flavor textures are obtained for ε ∼ 0.1 [10].
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Finally, let us discuss ten-centered models, where the flavor hierarchies come entirely
from the 10’s: the Tk ∈ 10 corresponding to the first two generations are composites, while
F k ∈ 5 are elementary. As before, in these models the composites T1 and T2 can either be
produced by the same dimension two meson, or we can have T1 ⊂ QUQ, T2 ⊂ QQ. In the
former case, the analog of Eq. (2.6) gives

Yu ∼

 ε2 ε2 ε
ε2 ε2 ε
ε ε 1

 , Yd,l ∼

 ε ε ε
ε ε ε
1 1 1

 . (2.10)

Similarly, for dimensional hierarchy models,

Yu ∼

 ε4 ε3 ε2

ε3 ε2 ε
ε2 ε 1

 , Yd,l ∼

 ε2 ε2 ε2

ε ε ε
1 1 1

 . (2.11)

Predictions for masses and mixings are discussed below, after analyzing concrete models.

So far we have assumed that both Hu and Hd are elementary. However, as pointed out
in [11], it is also possible to have a composite Hd ⊂ QQ. This leads to various phenomeno-
logically desirable consequences: the electroweak scale is generated dynamically (and to a
smaller extent radiatively), the µ/Bµ problem is solved, and the hierarchy between top and
bottom/tau masses is naturally explained. While it is not the purpose of this work to discuss
in detail the Higgs physics of single-sector models, we point out that a composite Hd may
also lead to attractive ten-centered models, providing an additional suppression for Yd,l in
(2.10), (2.11).

3 Chirality and unification: analysis of the SM index

Having explained the gauge dynamics that produces composite generations and the various
types of flavor textures that can be obtained, we are now ready to perform a group-theoretic
classification of single sector models according to the SM representations that are obtained
in the IR and their messenger content. We will compute the index of the complex SU(5)SM
representations and use these results to construct models with massless 5̄ and/or 10 com-
posites. This procedure will allow us to find all the examples where perturbative unification
may be achieved, and exhibit an interesting connection between SM chirality and unification.

3.1 Calculation of the index

Recall that the microscopic theory is SQCD with gauge group Sp(2Nc) and Nf flavors Qi,
in the free magnetic range. Absent superpotential interactions, the flavor symmetry group
is SU(2Nf ), with the electric quarks transforming in the fundamental representation. The
SM quantum numbers are explained by weakly gauging a subgroup

SU(5)SM ⊂ SU(2Nf ) .
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Then the quarks decompose as

Q ∼ n1 × 1 + n5 × 5 + n5̄ × 5̄ + n10 × 10 + n10 × 10 , (3.1)

where the color index is not shown. For our purposes it is not necessary to consider higher
dimensional representations. In general the embedding will be chiral, namely nr 6= nr̄;
SM anomalies are canceled by adding spectators Sa that are singlets under Sp(2Nc). See
discussion in §2.1.

In the dual magnetic description, the magnetic quarks decompose into

q ∼ n1 × 1 + n5 × 5̄ + n5̄ × 5 + n10 × 10 + n10 × 10 . (3.2)

The SM index contributed by the magnetic quarks is then

∆N10 ≡ N10 −N10 = 2Ñc(n10 − n10)

∆N5̄ ≡ N5̄ −N5 = 2Ñc(n5 − n5̄) , (3.3)

where 2Ñc is the color multiplicity. Note also that we have defined the index for 5-dimensional
representations such that positive index indicates an excess of 5̄’s.

The mesons Mij = QiQj transform in the antisymmetric of SU(2Nf ). Taking the anti-
symmetric part of QQ in Eq. (3.1) gives:

∆N50 =
n10(n10 − 1)

2
− n10(n10 − 1)

2

∆N45 =
n10(n10 + 1)

2
− n10(n10 + 1)

2
+ n10n5̄ − n10n5

∆N40 = n10n5 − n10n5

∆N15 =
n5(n5 − 1)

2
− n5(n5 − 1)

2

∆N10 =
n5(n5 + 1)

2
− n5(n5 + 1)

2
+ n1(n10 − n10) + n10n5̄ − n10n5

∆N5̄ =
n10(n10 − 1)

2
− n10(n10 − 1)

2
+ n10n5 − n10n5̄ + n1(n5̄ − n5) . (3.4)

The final expression for the total index associated to the composites (q,M) is thus

∆N50 =
n10(n10 − 1)

2
− n10(n10 − 1)

2

∆N45 =
n10(n10 + 1)

2
− n10(n10 + 1)

2
+ n10n5̄ − n10n5

∆N40 = n10n5 − n10n5

∆N15 =
n5(n5 − 1)

2
− n5(n5 − 1)

2

∆N10 =
n5(n5 + 1)

2
− n5(n5 + 1)

2
+ (n1 − 2Ñc)(n10 − n10) + n10n5̄ − n10n5
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∆N5̄ =
n10(n10 − 1)

2
− n10(n10 − 1)

2
+ n10n5 − n10n5̄ + (n1 − 2Ñc)(n5̄ − n5) . (3.5)

As we anticipated above, we are computing the total composite index by adding the
contributions of Mij and qαi , although the latter have a magnetic gauge group index α while
the former are singlets under Sp(2Ñc). We will explain in §4 that in our models the gauge
group is completely higgsed at low energies; the elements of q with nontrivial SM quantum
numbers pair with corresponding conjugate fields from M to give vector-like messengers.
Accordingly, we introduce the messenger index (see e.g. [19])

Nmess ≡ 2Ñc(n5 + n5̄ + 3n10 + 3n10) . (3.6)

In what follows, we specialize to the smallest possible magnetic gauge group, namely Ñc = 1.

3.2 Solutions

Having determined the index for arbitrary combinations of simple matter, let us now classify
the most economical models. For simplicity, we will restrict ourselves to models with Nf ≤
15, so that the flavor symmetry is at most SU(30). In order that these models produce
successful theories of Standard Model flavor, we will require ∆N10 ≥ 1. From the embedding
Eq. (3.1),

2Nf =
∑
i

nri dim(ri) (3.7)

thus the sum must be even. Finally, in the Sp models of §4 the supersymmetry breaking
vacuum requires n1(n1−1)/2 ≥ 1 or n1 ≥ 2, in order not to prematurely break the SU(5)SM .

The Sp models with matter (q,M) satisfying the above criteria, ordered by the messenger
index Nmess of Eq. (3.6) are:

n10 n10 n5 n5̄ n1 ∆N50 ∆N45 ∆N40 ∆N15 ∆N10 ∆N5̄ Nmess

Sp-1 0 0 n5 0 n1 0 0 0 n5(n5−1)
2

n5(n5+1)
2 n5(2− n1) 2n5

Sp-2 1 0 0 0 n1 0 −1 0 0 n1 − 2 0 6
Sp-3 0 0 2 1 n1 0 0 0 1 2 −n1 + 2 6
Sp-4 1 0 0 1 n1 0 0 0 0 n1 − 3 n1 − 3 8
Sp-5 1 0 1 0 n1 0 −1 1 0 n1 − 2 −n1 + 2 8
Sp-6 0 0 3 1 n1 0 0 0 3 5 −2n1 + 4 8
Sp-7 1 0 1 1 n1 0 0 1 0 n1 − 3 −1 10
Sp-8 0 1 2 0 n1 0 −1 0 1 −n1 + 5 −2n1 + 6 10
Sp-9 0 0 3 2 n1 0 0 0 2 3 −n1 + 2 10
Sp-10 1 0 2 0 n1 0 −1 2 1 n1 − 1 −2n1 + 4 10
Sp-11 1 0 1 2 n1 0 1 1 −1 n1 − 5 n1 − 4 12
Sp-12 1 0 2 1 n1 0 0 2 1 n1 − 2 −n1 + 1 12
Sp-13 2 0 0 0 n1 −1 −3 0 0 2n1 − 4 1 12

The indices in this table are calculated using Eq. (3.5), which count net number of chiral
composites from q and M ; this classification then applies to single-sector models with U(2)
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flavor symmetry. Dimensional hierarchy models have additional composites from MU , so
that (3.4) should be added again. Hoping that it does not lead to confusion, the notation
Sp− k from this classification will be used for both U(2) and dimensional hierarchy models.
Notice that Eq. (3.7) restricts the multiplicities ni. For instance in the class Sp− 1, n1 and
n5 have to be both even or both odd. In class Sp− 2, n1 must be even, while in Sp− 3 and
Sp− 4 n1 is odd.

One of our goals is to find models where perturbative unification is possible. In general, a
messenger index of 6 is the largest that allows perturbative gauge coupling unification if the
messengers are between 105− 107 GeV, as is the case for the single-sector models considered
here. Therefore we will focus on models 1 − 3. Nevertheless, we will also consider model
4 in detail, as it is the unique model of category (c) (see discussion in §2.2). It is useful
to explain the salient features of models with small messenger index. After analyzing the
supersymmetry breaking mechanism in §4, we will study these examples in detail in §§5 and
6.

Let us begin by considering class Sp− 2, the unique class of strictly ten-centered models
with no extra chiral matter in small representations (∆N5̄ = 0). The minimal model of this
class that we may construct is a U(2)-symmetric model with

n10 = 1 , n10 = n5 = n5̄ = 0 , n1 = 4

(the model with n1 = 2 has only 10’s in messenger fields, but not in the components of
the meson in which Standard Model fermions are embedded). Conveniently, the messenger
index is compatible with perturbative gauge coupling unification. Using Eq.(3.5), we find
for this model

∆N10 = 2 , ∆N45 = −1 , ∆N50 = ∆N40 = ∆N15 = ∆N5̄ = 0 .

This gives a net number of two massless composite in the 10, to be identified with the first
two SM generations. These meson components have a U(2) flavor symmetry in the absence
of an electric superpotential. Notice that M and q also give two pairs of 10 + 10 in the
minimal case Ñc = 1. These become messengers in the supersymmetry breaking model.
Once elementary Standard Model fields have been included, anomaly cancellation requires
the addition of spectators to cancel the anomaly contribution of the 45.

We may also use this class to build models with a dimensional hierarchy. In this case,
the minimal embedding is identical to that of the U(2) model. This will lead to extra 10’s in
the pseudomoduli of both meson fields, which must be removed with spectators. However,
we will find that this doubling is a desirable feature for models where the doubling of matter
fields is required to obtain the correct more-minimal spectrum of MSSM soft masses.

These are all the examples for ten-centered models with N5̄ −N5 = 0. But perhaps this
is too restrictive and we may have some number of 5’s lifted by spectators. This is a natural
situation in our framework, because the SM generations already give three 5̄ spectators. We
may then consider ten-centered models in classes Sp − 1 and Sp − 3, both of which have
chiral 5’s that must be removed by spectators.
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Consider first class Sp − 1, which is particularly attractive. The minimal model of this
class is

n5 = 1 , n10 = n10 = n5̄ = 0 , n1 = 3 .

For this model the chiral indices are

∆N10 = 1 , ∆N5̄ = −1 , ∆N50 = ∆N45 = ∆N40 = ∆N15 = 0 .

From the matter content of q, two of the 5’s become messengers in this model, leaving only
one 5 that needs to be lifted by spectators, as can be seen from the index. Of course, since
this model has only one 10, it must necessarily be a dimensional hierarchy model in order
to produce the correct number of composite generations. This model is quite compact, with
a small messenger index guaranteeing perturbativity at all scales.

What else can we build in class Sp− 1? There is no model with just two 10’s. We may
build a model with three 10’s (and Nmess = 4) via

n5 = 2 , n10 = n10 = n5̄ = 0 , n1 = 4

for which the chiral indices are

∆N10 = 3 , ∆N5̄ = −4 , ∆N15 = 1 , ∆N50 = ∆N45 = ∆N40 = 0 .

The SM anomalies are canceled by adding the following SQCD singlets: one 15, one 10 and
6 fields in the 5̄ –two of which are the elementary first and second generation SM fields.
Generic superpotential deformations lift the extra unwanted matter at long distance, leaving
a confined theory with composites in the 10.

We close out our discussion of ten-centered models with those of class Sp − 3. The
simplest such model is

n5 = 2 , n5̄ = 1 , n10 = n10 = 0 , n1 = 3 .

The chiral indices from composites in this case are

∆N10 = 2 , ∆N5̄ = −1 , ∆N15 = 1 , ∆N50 = ∆N45 = ∆N40 = 0 .

Here four 5’s and two 5̄’s become messengers. Two 24’s may be given mass terms, and like-
wise with a 10 + 10 and 5 + 5 pair. Anomalies are canceled by adding 15 and 5̄ spectators,
leaving two chiral 10’s to become Standard Model states. Such a model can give rise either
to a U(2) theory or a dimensional hierarchy with doubled matter, much as in the models
of the Sp − 2 class. This concludes our study of all the simple ten-centered models with
minimal spectator content and sufficiently low messenger index.

Now let us analyze models of type c). Here we require all Nr −Nr̄ = 0 except for the 10
and/or 5. If this can be accomplished, then no spectators are needed and the SM chirality
is generated by the gauge dynamics. Interestingly, there is a unique Sp example (up to
addition of singlets),

n10 = n5 = 1 , n10 = n5 = 0 , n1 ≥ 3 . (3.8)
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This corresponds to class Sp− 4 above, with nonvanishing index

N10 −N10 = N5̄ −N5 = n1 − 3 . (3.9)

There are no ten-centered models of type c). On the other hand, models in class a) (where
∆N10 = ∆N5̄ = 0) were presented in [8, 10] so we will not describe them again here.

Let us pause to summarize what we have achieved so far. We have found the Sp gauge
theories that give rise to massless meson composites in 10 and 5̄ SM representations, with
smallest messenger number. The masslessness is guaranteed, in the absence of EWSB, by
a nonvanishing index computed in the table above. In some of the simpler examples, the
number of composite SM families is determined by fields that are neutral under SU(5)SM .
For instance, in classes Sp− 2 and Sp− 4 the number of mesons in the 10 is proportional to
the number n1 of electric quarks neutral under the SM gauge group. Similarly, in dimensional
hierarchy models the families are associated to mesons QQ and QUQ containing the SM-
neutral field U (an antisymmetric of the electric gauge group).4

Models with SM-chiral electric quarks Q give a small messenger index Nmess and make
perturbative unification possible. This reveals an interesting connection between SM chirality
and unification, the basic reason being that in these models of direct mediation the dynamics
that produces composite generations also gives messenger fields. Another consequence of this
approach is the existence of spectator fields S that are singlets under the electric Sp gauge
group. These are required to make the theory anomaly-free. Once we allow for generic
superpotential deformations, these fields will have the desirable effect of lifting extra SM
exotics produced by the Sp dynamics. So, let us now study these and other aspects of the
low energy theory in detail.

4 Metastable SUSY breaking in SQCD plus singlets

Having explained the flavor hierarchies via compositeness, the next step is to use the same
gauge dynamics to break supersymmetry dynamically and calculably. While the original
proposals in [6, 7] were incalculable, [8] found that metastable supersymmetry breaking can
occur quite naturally in these models. Indeed, ISS showed [9] that adding small masses to
the electric quarks,

Wel = tr(mQQ̃) (4.1)

leads, in the free magnetic range, to metastable vacua at the origin M = 0 of field space.
(These formulas refer to an SU(Nc) gauge group; the Sp case will be studied shortly). The
macroscopic theory becomes

Wmag = tr(mM) +
1

Λ
tr(qMq̃) (4.2)

4Class Sp− 3 is an interesting exception, where a fixed index ∆N10 is obtained from the product of two
preons in the 5.
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(where Λ is set by the dynamical scale) and supersymmetry is broken by the rank condition.

Single-sector models have one new ingredient, namely additional singlets under the elec-
tric gauge group, that can potentially modify the supersymmetry breaking vacua.5 We saw
in §3 that anomaly cancellation in general requires adding spectators S that are neutral
under the confining dynamics but have nontrivial SU(5) quantum numbers. In fact, this is
phenomenologically attractive because, allowing for generic (gauge invariant) superpotential
interactions,

Wel = λSR(QQ̃)R + . . . (4.3)

can lift unwanted exotics and leave us with just the SM matter fields in the IR.

This naturally leads us to consider SQCD with electric quark masses and couplings to
singlets,

W = (mi δij + λSij)QiQ̃j (4.4)

in the free-magnetic phase.6 We consider singlets (and masses) that transform nontrivially
under the flavor symmetry group, such that the weakly gauged subgroup SU(5)SM of (3.1)
is left unbroken. To set some notation, we begin by reviewing the ISS construction (i.e. no
extra singlets) for Sp theories with unequal electric masses. Then we study in detail the case
of interest Eq. (4.4); the analysis for SU gauge theories is similar.

4.1 Metastable vacua in Sp theories with different masses

As in §2.1 we consider an Sp(2Nc) gauge theory with 2Nf fundamentals Qα
i , i = 1, . . . , 2Nf

in the range Nc + 3 ≤ Nf < 3(Nc + 1)/2. We also turn on masses for the Nf flavors,

Wel =

Nf∑
k=1

mk (Qα
2k−1JαβQ

β
2k) . (4.5)

Color indices are contracted with J2Nc = 1Nc⊗ (iσ2); subsequent formulas will be sometimes
simplified by omitting this contraction. Quark masses are ordered according to |m1| ≥ |m2| ≥
. . . ≥ |mNf

| and are chosen so that SU(5)SM ⊂ SU(2Nf ) of Eq. (3.1) is left unbroken; they
also have to be parametrically smaller than the dynamical scale, |mk| � Λ.

The matter content and symmetries of the magnetic theory in the limit mk = 0 are

Sp(2Ñc) SU(2Nf ) U(1)R
Φ 1 antisym 2
qαi � � 0

5We thank D. Green, A. Katz and Z. Komargodski for pointing out to us that superpotential couplings
between electric quarks and singlets in the adjoint of the flavor group produce new metastable vacua with
lower energy than the ISS configuration. For further discussion or other applications see [17].

6The SU(Nf ) global symmetry limit was already discussed in [20] as a way to generate the quark masses
dynamically.

13



where Ñc = Nf − Nc − 2 and Φ ∝ QQ/Λ and q have canonical kinetic terms. The theory
has a superpotential

Wmag = −h tr(µ2Φ) + h tr(ΦqT q) (4.6)

where the matrix µ2 in the linear term is given by

µ2 = diag(µ2
1, . . . , µ

2
Nf

)⊗ (iσ2) , hµ2
i ∼ Λmi . (4.7)

The diagonal entries are chosen to be real and positive, and ordered so that µ2
i ≥ µ2

j if i ≥ j.
For simplicity, the cubic coupling h is also taken to be real.

The F-terms
∂W

∂ΦT
= −hµ2 + h(qT q) (4.8)

cannot all vanish because the second term has a smaller rank than the first. The metastable
vacuum is obtained by turning on the maximum number of expectation values to cancel the
largest F-terms,

〈qT q〉 = diag(µ2
1, . . . , µ

2
Ñc

)⊗ (iσ2) . (4.9)

Fluctuations around the vacuum are parametrized by

Φ =

(
Y2Ñc×2Ñc

ZT
2Ñc×2(Nf−Ñc)

−Z2(Nf−Ñc)×2̃Nc
X2(Nf−Ñc)×2(Nf−Ñc)

)
, qT =

(
χ2Ñc×2Ñc

ρ2(Nf−Ñc)×2Ñc

)
. (4.10)

The tree-level nonzero F-terms and vacuum energy are

WX = −h diag(µ2
Ñc+1

, . . . , µ2
Nf

)⊗ (iσ2) , V0 = 2

Nf∑
j=Ñc+1

(hµ2
j)

2 . (4.11)

Importantly for what follows, the expectation values 〈qT q〉 are set by the largest µ2
i and the

F-terms are controlled by the smaller ones. The nonzero expectation value 〈χTχ〉 higgses
completely the magnetic gauge group Sp(2Ñc) → 1, and the SM gauge group is a weakly
gauged subgroup from

SU(5)SM ⊂ SU
(

2(Nf − Ñc)
)

(4.12)

(this group is left unbroken in the limit µ2
i → 0). Notice that (Z, ρ) give 2Ñc(� + �)

of SU(2(Nf − Ñc)) and X is an antisymmetric. This justifies our previous procedure for
computing the SM index.

The tree-level spectrum is as follows. The field X is a pseudo-modulus; it is flat at
tree-level but generically receives quantum corrections and will be lifted. (Y, χ) are super-
symmetric at tree level. On the other hand, ρ couples directly to the pseudo-modulus X
which has a nonzero F-term. Also, ρ and Z have a supersymmetric mass W ⊃ h〈χ〉Zρ
and have nontrivial SM quantum numbers. Therefore, in the macroscopic theory (ρ, Z) are
composite messengers with supersymmetric mass M = 〈χ〉 and splittings given by |WX |1/2.
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More precisely, some of these fields are Nambu-Goldstone modes in the limit gSM → 0; see [9]
for more details.

While this derivation has been for general µ2
i , for our purposes it suffices to have two

different values µ2
1 > µ2

2, with the first Ñc entries equal to µ2
1 and the last Nf − Ñc ones equal

to µ2
2. Then the superpotential becomes

Wmag = −hµ2
1 tr(J2Ñc

Y )−hµ2
2 tr(J2(Nf−Ñc)X)+h tr(χY χ)+h tr(ρXρ)+2h tr(χZρ) , (4.13)

with the expectation values simplifying to

〈χ〉 = µ1 12Ñc
, WX = −hµ2

2 12(Nf−Nc) , V0 = 2(Nf − Ñc)(h
2µ4

2) . (4.14)

We assume (4.13) for the rest of the calculations –the more general case can be approached
along similar lines. Here the expectation value of χ has been fixed by the Sp D-terms.

Integrating out the heavy messengers gives an effective Coleman-Weinberg potential that
lifts the pseudo-moduli [9]

VCW =
1

64π2
StrM4 log

M2

Λ2
0

= mCW |X|2 +O(|X|4) (4.15)

where, up to order one numerical factors, the CW mass is

m2
CW ≈

h2

16π2

(hµ2
2)2

µ2
1

. (4.16)

This implies that the MSSM composite sfermions acquire masses of order (4.16).

4.2 Metastable vacua in SQCD plus singlets

Now let us discuss the case relevant for our constructions: an Sp gauge theory with extra
singlets SIJ and superpotential

Wel =

Nf∑
k=1

mk (Q2k−1Q2k) + λ
∑
I, J

SIJ(QIQJ) . (4.17)

Here (I, J) run over an arbitrary subset of the 2Nf flavor indices and to avoid a proliferation
of indices we have identified all the cubic couplings into a single λ. The masses and cubic
couplings are singlets under the weakly gauged SU(5)SM . It is worth exploring first the
global limit gSM → 0, which is of more general interest beyond single-sector models. 7

The cubic couplings are marginally relevant and their effects are easiest to understand in
the magnetic dual, where we have

Wmag = −h tr(µ2Φ) + h tr(ΦqT q) + hλΛ tr(SΦ) . (4.18)

7SQCD plus singlets has a very rich dynamics in the conformal window; see for instance [18].
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The fields S have been grouped into a 2Nf -rowed antisymmetric matrix, with the under-
standing that only the elements corresponding to the set (I, J) have nonzero fields. The
F-term for Φ now becomes

∂W

∂ΦT
= −hµ2 + h(qT q) + hλΛS . (4.19)

The rank condition of (4.8) is modified in an important way because the extra singlets make
it possible to cancel more than Ñc F-terms from hµ2.

Due to the form of the linear terms, it is convenient to split S into ‘diagonal’ and ‘off-
diagonal’ pieces,

S = diag(S1, . . . , SNf
)⊗ (iσ2) + S ′ , S ′k,k+1 = 0 , (4.20)

and both contributions can be treated separately. Let us look first at the diagonal terms
assuming that there are n nonzero fields Sa and setting S ′ = 0. If these elements are all
independent, then there are vacua with 〈S〉 ∼ µ2/λΛ that have lower energy than Eq. (4.14).
For n ≥ Nf − Ñc these vacua are supersymmetric –here we focus on the supersymmetry
breaking case n < Nf − Ñc.

If S has n1 elements in the upper 2Ñc block (the analog of Y in Eq. (4.10)) and n2

elements in the lower 2(Nf − Ñc) block, with n1 < Ñc and n1 + n2 < Nf − Ñc, the new
supersymmetry breaking vacuum has

〈S1〉 = . . . = 〈Sn1〉 =
µ2

1

λΛ
, 〈Sn1+1〉 = . . . = 〈Sn1+n2〉 =

µ2
2

λΛ
〈χTχ〉 = µ2

1 J2(Ñc−n1) , 〈ρ
Tρ〉 = µ2

2 J2(Nf−Ñc−n1) . (4.21)

This gives an energy
V0 = 2(Nf − Ñc − n1 − n2), h2µ4

2 (4.22)

lower than the ISS state before. These extrema correspond to canceling n1 + n2 masses of
electric quarks. The two-loop instability of SQCD with massive and massless quarks [21, 22]
is absent here because the mesons with vanishing linear term have a large O(λΛ) mass.

Still in the situation with S ′ = 0, one interesting case (that will appear below) is when
there are restrictions on the components of S. For instance, we can impose the ‘traceless’
condition on the n nonvanishing diagonal elements in (4.20),

tr(J2nS) = 0 ⇒
∑

Sj = 0 . (4.23)

This arises quite naturally in Sp examples. Let us further assume that the nonvanishing
Sa sit in the lower 2(Nf − Ñc) block, parallel to X in Eq. (4.10). This leads to a rich set
of vacua because now turning on 〈S〉 also requires nonzero 〈ρTρ〉 in order to decrease the
extra energy contribution from the constraint. However, by the rank condition, some of the
components in 〈χTχ〉 have to be turned off. As a result, the vacuum energy depends on both
µ1 and µ2, as well as n.
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In more detail, the new metastable configuration has

〈χTχ〉 = µ2
1 J2(Ñc−1) , 〈ρ

Tρ〉 = µ2
2 diag(0, . . . , 0, n)⊗ (iσ2)

〈S〉 =
µ2

2

λΛ
diag(1, . . . , 1,−(n− 1))⊗ (iσ2) . (4.24)

There are non-vanishing F-term from both Y and X, giving

V0 = 2h2µ4
1 + 2(Nf − Ñc − n)h2µ4

2 . (4.25)

Recalling that µ2
1 > µ2

2, the new vacua have lower energy than the ISS configuration (4.14)
for

µ4
2 < µ4

1 < nµ4
2 (4.26)

while the metastable vacuum with vanishing S is preferred for µ4
1 > nµ4

2.

In the limiting case µ1/µ2 → 1, the new configuration has lower energy. It would be
interesting to compute the rate of decay from (4.14) to (4.24) and understand whether the
life-time can be made realistically long. This requires a numerical evaluation because there
is no small parameter controlling the bounce action.

Finally, let us include the off-diagonal contributions S ′. If there is only one singlet

S ′ab , (a, b) 6= (k, k + 1) ,

then the critical point of the F- plus D-term potential is at 〈S ′〉 = 0 and there are no new
vacua around the origin Φ = 0. New metastable vacua appear when there are at least two
singlets,

Wmag ⊃ hΛ
(
λS ′abΦba + λ̃S ′a+1,b+1Φb+1,a+1

)
, (a, b) 6= (k, k + 1) . (4.27)

Indeed, now we can combine the reduced rank matrix qT q with the singlets to cancel more
than Ñc F-terms. Assuming for instance that a, b > Ñc (so that the singlets couple to X)
there is a vacuum with

χTχ = µ2
1J2(Ñc−1) , (ρTρ)a,a+1 = −(ρTρ)b,b+1 = µ2

2 (4.28)

and

S ′ab = − µ
2
2

λΛ
, S ′a+1,b+1 =

µ2
2

λ̃Λ
. (4.29)

Imposing the Sp D-terms further restricts |ρa| = |ρa+1| = µ2 and similarly for the other
magnetic quarks.

In this configuration, two F-terms from X are cancelled instead of one F-term for Y ,
resulting in a vacuum energy

V0 = 2h2µ4
1 + 2(Nf − Ñc − 2)h2µ4

2 . (4.30)

The new vacuum is energetically preferred over the ISS one for

µ4
1 < 2µ4

2 . (4.31)

This result generalizes readily to n singlets with the above couplings. We will see shortly that
these vacua associated to off-diagonal spectators disappear after weakly gauging SU(5)SM .
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4.3 Single-sector supersymmetry breaking

Returning to single-sector models, we now turn on gSM 6= 0. This introduces additional
D-term contributions that have to be minimized together with the F-terms and magnetic
D-terms. Unlike vacua of §4.1 (which are along SM D-flat directions), the new configurations
of §4.2 involve expectation values for S and ρ that are charged under SU(5).

Examples with nonzero diagonal elements Sa in Eq. (4.20) arise, for instance, from spec-
tators in the adjoint of SU(5)SM . Though not required by anomaly cancellation, these
fields may be useful if there is extra matter in the 24 of QQ that needs to be lifted. The
configuration (4.24) extremizes the SM D-terms, so it gives a minimum in the theory with
nonvanishing gSM . Therefore, in the case of equal masses (or more generally for µ4

1 < nµ4
2

with n = 5 here) there are new states with lower vacuum energy than the ISS configuration.

In particular, this means that in some of the explicit models in [8, 10] (that included
spectators in the adjoint) there are additional vacua with lower energy. Decay rates to these
new configurations are not parametrically suppressed, and a numerical calculation of the
life-time is needed. It is certainly possible that the ISS-type vacua can still be realistically
long-lived, and it would be interesting to understand this in more detail. In any case, a simple
fix is to take different electric quark masses, as explained before. Indeed, the ISS vacuum
is energetically preferred already for order one differences µ2

1 ≥
√

5µ2
2, and the tunneling

instability to the new vacua is then absent.

On the other hand, spectators in chiral representations of SU(5), required for anomaly
cancellation, correspond to S ′ in Eq. (4.20). For instance, in class Sp − 1 there is a 5̄
spectator, with

Wel ⊃ λS5̄(QQ)5 .

This case is qualitatively different from the previous one because the SM D-terms can no
longer be minimized at 〈S〉 6= 0. (For this conclusion to hold it is also important to impose
the Sp D-terms). Hence for chiral spectators there are no new vacua (4.29) once gSM is
nonzero.8

For model-building purposes, we can then just focus on the ISS vacuum –the additional
states of §4.2 are either absent in chiral models or can be easily made energetically disfa-
vored.9 The chiral exotics are rendered massive via couplings to spectators, acquiring a mass
λΛ near the compositeness scale. On the other hand, the SM composite generations (iden-
tified with some of the elements of X) couple directly to the composite messengers through

8One could try to cancel the nonzero D-terms by using additional elementary fields that may be present in
particular models (e.g. the elementary F a in ten-centered models). However, minimizing the contributions
from F-terms and Sp(2Ñc)× SU(5)SM D-terms shows that there are no such vacua near the origin Φ = 0.
We thank D. Green for very interesting discussions on these possibilities.

9Note that for the case of spectators in the adjoint, the vacua of Eq. (4.24) completely break the SM gauge
group. They could lead to interesting phenomenology in models where for instance SU(5)SM is embedded
in the SU(2Ñc) flavor subgroup. A possible application was recently discussed in [17].
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(4.13) and acquire positive one-loop squared masses

m2
CW ∼

h2

16π2

h2µ4
2

µ2
1

. (4.32)

(The pattern of soft masses in dimensional hierarchy models is slightly more involved and
has been analyzed in [10]).

Elementary sfermions receive only two-loop gauge mediated masses,

m2
GM ∼

(
g2
SM

16π2

)2
h2µ4

2

µ2
1

. (4.33)

Gaugino masses are obtained by deforming the electric theory with a quartic operator (QQ)2,
which leads in the IR to

Wmag ⊃
h2

2
µφ tr Φ2 . (4.34)

This explicitly breaks the U(1)R symmetry and produces a (loop-enhanced) expectation
value for X leading to gaugino masses [15]:

〈hX〉 ∼ 16π2 µφ
µ2

1

µ2
2

⇒ mλ ∼ g2
SMµφ

µ4
2

µ4
1

. (4.35)

Models where both Ta and F a are composites present a “more minimal” type spec-
trum [14]. In ten-centered models only the composite Tk acquire heavy CW masses, while
all the F a (as well as the complete third generation) sfermions and gauginos are much lighter.
For

hµ2
1

µ2

∼ 100− 200 TeV , µφ ∼ 1 TeV (4.36)

composite masses are of order 10− 20 TeV, while the elementary fields are at the TeV scale.
For this choice of parameters the LSP gravitino has a mass

m3/2 ∼
F√

3MPl

∼ 1− 10 eV , (4.37)

satisfying cosmological constraints. We refer the reader to [15, 10, 11] for a detailed analysis
of supersymmetry breaking and soft spectra.

5 Models with U(2) flavor symmetry

We have now gathered all the necessary tools to construct realistic chiral single sector models.
This section presents the analysis of models where both composite generations are obtained
from elements of the same meson. Dimensional hierarchy models are studied in §6.

Models with composite generations from dimension 2 mesons are attractive for various
reasons. The supersymmetry breaking sector is quite simple and the generation of realistic
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soft masses, straightforward. The number of SM exotics at high scales is comparatively
small, and perturbative unification ensues. Moreover, these models give a very elegant
solution to the flavor problem, combining decoupling and universality between the composite
generations, enforced by the U(2) flavor symmetry. (Contributions to flavor-changing neutral
currents are analyzed in the appendix). However, these constructions do not give fully
realistic fermion textures. While the larger hierarchies are naturally explained –i.e. why the
third generation fermions are much heavier than the ones from the first two generations–
still Eqs. (2.7) or (2.10) do not predict the correct spectrum for lighter fermions.

We will now argue that the situation is remedied by requiring that the physics at the
scale Mflavor (responsible for generating the higher-dimensional interactions between the
Higgs and mesons) also respects a U(2) symmetry that acts on the first two composite
generations (Ψ1,Ψ2). Flavor-invariant interactions are constructed by adding a set of scalars
φ that transform under appropriate representations of U(2), and are singlets under the
confining dynamics. The expectation values of these “flavons” spontaneously break the
flavor symmetry and will be used to obtain realistic textures.

The idea of using these flavons in combination with various patterns of flavor symmetry
breaking is well-known.10 Our point here is that single-sector models where a dimension 2
meson gives rise to the SM composites can fruitfully combine the generation of textures via
compositeness with the requirement of a U(2) symmetry on the Yukawa interactions. It is
also necessary to point out that in ten-centered models it is natural to have a U(2) × U(2)
acting on (T1, T2) and (F 1, F 2) separately. Here we focus on the particular case of a single
U(2) with the aim of proving in a simple setup that this class of single-sector models can lead
to realistic textures. It would be interesting to study in generality the new types of flavor
patterns that are possible. In particular, while for simplicity the flavons will be chosen as
singlets of SU(5)SM , it would be nice if some of the spectator fields could also play a useful
role in flavor interactions.

A possible realistic scenario requires one flavon φa in the fundamental representation and
a symmetric tensor φab. Their expectation values are chosen to be of the form

〈φa〉 = δa2 Λv2 , 〈φab〉 = (δa1δb2 + δa2δb1) Λ v1 (5.1)

where the dynamical scale Λ has been included for later convenience and v1 and v2 are
dimensionless. We should stress that here we do not explain how these expectation values
are obtained, although it would be nice to find a mechanism that relates them to the natural
scales Λ or Mflavor. The largest flavor hierarchies are already generated via compositeness,
suggesting that the flavon dynamics could be quite simple.

In ‘democratic’ models where each full generation Ψa = Ta +F a is composite, combining
(2.7) with U(2) invariance yields

WY uk = ε2
φaφb

M2
flavor

ΨaHΨb + ε2
φab

Mflavor

ΨaHΨb + ε
φa

Mflavor

Ψ3HΨa + Ψ3HΨ3 . (5.2)

10In particular, we refer the reader to [12] for an analysis of models with U(2) flavor symmetry.
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Eq. (5.2) gives rise to the following Yukawa textures (up to order one factors)

Y ∼

 0 v1ε
3 0

v1ε
3 v2

2ε
4 v2ε

2

0 v2ε
2 1

 . (5.3)

In particular, fermion masses obey the relations

mc

mt

∼ v4
2 ε

4 ,
mu

mc

∼ v2
1

v4
2ε

2
, (5.4)

while similar relations hold for down-type quarks. A realistic spectrum can then be obtained
for

v1 ∼ ε ∼ 10−1 , v2 & O(1) . (5.5)

For ten-centered models, on the other hand, we obtain

WY uk = ε
φaφb

M2
flavor

Ta(εHuTb +HdF b) + ε
φab

Mflavor

Ta(εHuTb +HdF b)

+
φa

Mflavor

(εTaHuF 3 + T3HdF a) + T3HuT3 + T3HdF 3 . (5.6)

In this case the up-type Yukawas are unaltered from the previous case, while the down-type
Yukawas read

Yd ∼

 0 v1ε
2 0

v1ε
2 v2

2ε3 v2ε
2

0 v2ε 1

 . (5.7)

Numerical examples for fermion masses are reserved for Appendix B.

5.1 Ten-centered models

Thus far we have explored the general features of supersymmetry breaking and the flavor
hierarchy in single-sector models based on Sp(N) SQCD. Returning now to the chiral models
classified in § 3.2, we may build explicit theories of dynamical supersymmetry breaking and
chiral flavor. Let us begin with perhaps the simplest of all explicit models: ten-centered
theories with U(2) flavor symmetry.

A model of Sp− 1

Consider first an Sp(2Nc = 8) gauge theory with Nf = 7 flavors of fundamentals. This
corresponds to class Sp − 1 in the notation of § 3.2. The flavor symmetry of the theory is
SU(14) with Sp(14) left as the diagonal global symmetry. The dual theory – as is the case
for all models in this section – is an IR free Sp(2Ñc) gauge theory with Ñc = Nf−Nc−2 = 1
and 2Nf magnetic quarks transforming as conjugates of the electric quarks, plus the gauge
singlet meson.

The embedding of SU(5) in the flavor symmetry of the UV theory is
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Sp(8) SU(5)SM
Qα
i � (5 + 5 + 1 + 1) + 1 + 1

Sa 1 15 + 10 + 4× 5

where the parenthesis denotes the Sp(12) subgroup of the flavor symmetry that remains
unbroken in the nonsupersymmetric vacuum. To simplify the exposition, the anomaly-free
elementary SM matter content is omitted in the list of spectator fields. The product gauge
group theory is furthermore perturbed by a renormalizable superpotential

W = m1(Q1Q2) +m2

6∑
k=2

(Q2k−1Q2k) + λ
∑
a

Sa(QQ)ā (5.8)

where (as explained before) it is enough to consider two different electric masses.

The structure of the magnetic dual is

Sp(2) SU(5)SM
Mij 1 8× 5 + 3× 10 + 15 + 6× 1
qαi � (5̄ + 5̄ + 1 + 1) + 1 + 1
Sa 1 15 + 10 + 4× 5

The resulting composite messengers comprise

(ρ⊕ Z) ∼ 2× (2× 5 + 2× 5̄) (5.9)

and the lower block of the meson transforms as a 12×12 antisymmetric tensor, decomposing
under SU(5) as

X ∼ 2× 10 + [10 + 15 + 4× 5 + 1] . (5.10)

The fields (Sa, Xā) acquire masses of order λΛ and decouple from the low energy theory.
The electric mass terms lead to the metastable vacuum of §4.1. The only massless composites
in the IR are then the first two 10’s in X, giving the required SM matter fields. Given this
matter content, the messenger index for this theory is Nmess = 4, more than compatible with
perturbative gauge coupling unification (keeping in mind that there are significant additional
contributions at the scale λΛ).

A model of Sp− 2

Consider now an Sp(2Nc = 8) gauge theory with Nf = 7 flavors of fundamentals. In the
limit of vanishing superpotential, the flavor symmetry of the theory is SU(14) with Sp(14)
left as the diagonal global symmetry. The embedding in the UV theory is

Sp(8) SU(5)SM
Qα
i � (10 + 1 + 1) + 1 + 1

Sa 1 45
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where again the SM elementary fields are not shown, and a perturbation analogous to
Eq. (5.8) is turned on.

The structure of the magnetic dual is

Sp(2) SU(5)SM

Mij 1 4× 10 + 45 + 6× 1
qαi � (10 + 1 + 1) + 1 + 1
Sa 1 45

For the model considered here, we have composite messengers

(ρ⊕ Z) ∼ 2× (10 + 10 + 4× 1) (5.11)

and the lower block of the meson transforms as a 12×12 antisymmetric tensor, decomposing
under SU(5) as

X ∼ 2× 10 +
[
45 + 1

]
. (5.12)

Given this matter content, the messenger index for this theory is Nmess = 6, just compatible
with perturbative gauge coupling unification.

To this set of fields we must add the usual complement of elementary Standard Model
fields: two 5̄ for the first two generations, as well as one 5̄ + 10 pair for the elementary third
generation. Given this field content, we must also add one 45 in order for the theory to be
anomaly-free. Conveniently, this pairs with the 45 contained in X to obtain a mass at the
duality scale, leaving no superfluous fields charged under SU(5) at low energies. In this case
it is amusing to note that the massive 45 may be used to generate a Georgi-Jarlskog texture
[23] for the mass matrix of the Standard Model fermions.

A model of Sp− 3

We may also build a somewhat less attractive ten-centered meson model using the embedding
Sp− 3. Consider an Sp(2Nc = 12) gauge theory with Nf = 9 flavors of fundamentals. The
flavor symmetry of the theory is SU(18) embedding with Sp(18) left as the diagonal global
symmetry. The embedding of SU(5) in the flavor symmetry of the UV theory is

Sp(12) SU(5)SM

Qα
i � (5 + 5 + 5̄ + 1) + 1 + 1

Sa 1 15 + 5

The structure of the magnetic dual is

Sp(2) SU(5)SM

Mij 1 6× 5 + 3× 5̄ + 3× 10 + 10 + 15 + 2× 24 + 5× 1
qαi � (5 + 5̄ + 5̄ + 1) + 1 + 1
Sa 1 15 + 5
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The composite messengers for this model comprise

(ρ⊕ Z) ∼ 2× (3× 5 + 3× 5̄ + 2× 1) (5.13)

and the lower block of the meson transforms as a 16×16 antisymmetric tensor, decomposing
under SU(5) as

X ∼ 2× 10 +
[
(10 + 10) + (5 + 5̄) + 5 + 15 + 2× 24 + 2× 1

]
. (5.14)

Given this matter content, the messenger index for this theory is Nmess = 6, just compatible
with perturbative gauge coupling unification.

5.2 Model without spectators

Finally among the U(2)-symmetric theories, let us turn to the unique model with chiral SM
fields and no need for spectators (Sp− 4 in the classification scheme of § 3.2). In contrast to
the ten-centered models considered above, these spectator-free models automatically contain
both 10 and 5̄ representations.

The most minimal such model has a magnetic gauge group with Ñc = 1 and two composite
SM generations; this corresponds to

Nf = 10 , Nc = 7 , n1 = 5 . (5.15)

The UV theory is

Sp(14) SU(5)SM

Qα
i � (10 + 5̄ + 1 + 1 + 1) + 1 + 1

Sa 1 −

with magnetic dual

Sp(2) SU(5)SM

Mij 1 5× 10 + 5× 5̄ + 45 + 45 + 10 + 5 + 10× 1
qαi � (10 + 5 + 1 + 1 + 1) + 1 + 1
Sa 1 −

The composite messengers in this theory consist of

(ρ⊕ Z) ∼ 2× (10 + 10 + 5 + 5̄ + 3× 1) (5.16)

and the lower block of the meson transforms as

X ∼ 2× (10 + 5̄) +
[
45 + 45 + 10 + 5̄ + 10 + 5 + 3× 1

]
. (5.17)
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Excluding the singlet necessary for supersymmetry breaking, the extra representations inside
the brackets are vector-like and are made massive by deforming

∆W ∝ trX2

This deformation gives masses of order εΛ to the extra vector-like matter. As discussed in
§4, the metastable vacuum is stabilized by allowing for different electric quark masses.

Unfortunately, the messenger index for this theory is Nmess = 8, rendering it incompatible
with perturbative gauge coupling unification; SM gauge couplings hit a Landau pole around
1012 GeV in this theory, assuming messengers around 250 TeV. Given that in our analysis
this is the unique model without spectators, it would nice to improve this situation, perhaps
along the lines of [24].

6 Models with dimensional hierarchy

Next, we consider models where a realistic flavor structure is generated directly in the UV
theory without the addition of flavor spurions. To accomplish this, we consider a variation
of the Sp(N) model, adding an antisymmetric tensor [16]; this leads to the Sp(N) analog of
the SU(N) dimensional hierarchy models constructed in [10].

The electric theory is Sp(2Nc) (⊂ SU(2Nc)), with Nf flavors (Qi, i = 1, . . . , 2Nf ) and
a field U in the “traceless” antisymmetric (Nc(2Nc − 1) − 1) of the gauge group. The
antisymmetric field has a superpotential

W =
gU
3

Tr(J2NcU)3 +
mU

2
Tr(J2NcU)2 + λTr(J2NcU) . (6.1)

which restricts the mesons to

M = QQ , MU = QUQ . (6.2)

Both are in the antisymmetric of the flavor group SU(2Nf ). The Lagrange multiplier λ
enforces the “traceless” condition, setting to zero the Sp singlet (J2NcU) = 0.

This corresponds to k = 2 in the superpotential W = TrUk+1 of [16]; we include a
superpotential mass term for phenomenological reasons. The dual is Sp(2Ñc) with

Ñc ≡ k(Nf − 2)−Nc = 2(Nf − 2)−Nc .

As with the U(2)-symmetric models considered above, we will restrict to the minimal case
Ñc = 1, for which Sp(2) = SU(2).

The dual has a “magnetic” traceless antisymmetric Ũ , 2Nf fundamentals q, and canon-
ically normalized singlets Φ and ΦU corresponding to the above mesons. For Ñc = 1, the
theory does not contain the field Ũ – the antisymmetric is just a singlet, and this vanishes
by the traceless condition. This is the analog of s-confining SQCD. Then the magnetic
superpotential simplifies to

Wmag = h1tr(qJ2Ñc
qΦ) + h2tr(qJ2Ñc

qΦU) (6.3)
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where h1/h2 ∝ mU/(gUΛ), Λ being the dynamical scale. We will break supersymmetry by
the addition of a deformation whose IR form is

W ⊃ −h2µ
2tr(ΦUJ2Nf

) (6.4)

The effect of more general deformations was studied in [11].

The decomposition of IR fields is

Φ =

(
Y2Ñc×2Ñc

ZT
2Ñc×2(Nf−Ñc)

−Z2(Nf−Ñc)×2Ñc
X2(Nf−Ñc)×2(Nf−Ñc)

)
, (6.5)

ΦU =

(
YU,2Ñc×2Ñc

ZT
U,2Ñc×2(Nf−Ñc)

−ZU,2(Nf−Ñc)×2Ñc
XU,2(Nf−Ñc)×2(Nf−Ñc)

)
, (6.6)

qT =

(
χ2Ñc×2Ñc

ρ2(Nf−Ñc)×2Ñc

)
. (6.7)

The ρ-fields couple to the linear combination hΦH ≡ h1Φ + h2ΦU . The XU component
(see notation above) of ΦU will then be responsible for SUSY breaking after adding the
appropriate linear term, and the ZU ’s contained within ΦU couple to ρ, generating vector-
like messengers.

Notice the presence of the orthogonal combination to ΦH – call it ΦL – which does not
participate in supersymmetry breaking. This distinction of ΦH and ΦL leads to phenomeno-
logical complications. In particular, it is not possible to identically embed a single generation
of Standard Model fermions in each of Φ and ΦU , since this would lead to vastly different
first- and second-generation soft masses in clear conflict with FCNC constraints.

We may solve this problem, as in [10], by “doubling” the SM matter content in the mesons
Φ,ΦU – i.e., embedding the first generation sfermions in elements of XU,ij that are different
from the matrix elements Xij containing the second generation, so that both generations
come from the linear combination ΦH and acquire comparable one-loop masses. While this
solution appears somewhat contrived, it is fairly natural in the Sp models under consider-
ation. Many of the chiral models classified in § 3.2 necessarily contain an even number of
10’s, so that dimensional hierarchy theories built from them must have the doubling of fields
in Φ,ΦU already.

Likewise, following [10] we may rid ourselves of the faux-messenger Z field by adding
a spectator or sufficiently large stabilizing mass term for components of Φ; this is because
Z is not a key component of the CW potential stabilizing the nonsupersymmetric vacuum,
and may be disposed of. Since the size of the messenger index is a key consideration in the
models we are building, this is generally a useful exercise.

6.1 Ten-centered models

In analogy with § 5.1, let us turn to explicit chiral models with a dimensional hierarchy of
Standard Model flavor; once again, the simplest such examples are of the ten-centered type.
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A model of Sp− 1

Let’s begin with a dimensional hierarchy model of Sp−1. The model consists of an Sp(2Nc =
18) gauge theory with Nf = 7 flavors of fundamentals and embedding

Sp(18) SU(5)SM

Qα
i � (5 + 5̄ + 1 + 1) + 1 + 1

Uαβ antisym 1
Sa 1 2× 15 + 2× 10 + 12× 5

Recall that the anomaly free SM elementary fields are not shown in the spectators above.

The dual gauge theory – here and in all the other models in this section – has Ñc =
2(Nf − 2)−Nc = 1. The structure of the magnetic dual is

Sp(2) SU(5)SM

Mij 1 8× 5 + 3× 10 + 15 + 6× 1
(MU)ij 1 8× 5 + 3× 10 + 15 + 6× 1
qαi � (5 + 5̄ + 1 + 1) + 1 + 1
Sa 1 2× 15 + 2× 10 + 12× 5

The composite messengers are (given that the components of Z are lifted)

(ρ⊕ ZU) ∼ 2× (2× (5 + 5̄)) (6.8)

and the lower block of the mesons transform as a 12×12 antisymmetric tensor, decomposing
under SU(5) as

X ∼ 2× 10 + [15 + 10 + 4× 5 + 1]

XU ∼ 2× 10 + [15 + 10 + 4× 5 + 1] (6.9)

Both X and XU contain a pair of 10 fields, so that this model naturally gives us the doubling
of fields required for a realistic soft spectrum. Provided we embed the first and second
generations in different 10’s in each meson, both generations of SM sfermions will reside in
ΦH and get masses at one loop from the CW potential. The messenger index for this theory
is Nmess = 4, nicely compatible with perturbative gauge coupling unification.

A model of Sp− 2

Consider now the Sp − 2 embedding with Sp(2Nc = 18) gauge theory with Nf = 7 flavors
of fundamentals and customary embedding

Sp(18) SU(5)SM
Qα
i � (10 + 1 + 1) + 1 + 1

Uαβ antisym 1
Sa 1 2× (45 + 2× 10)
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The structure of the magnetic dual is

Sp(2) SU(5)SM

Mij 1 4× 10 + 45 + 6× 1
(MU)ij 1 4× 10 + 45 + 6× 1
qαi � (10 + 1 + 1) + 1 + 1
Sa 1 2× (45 + 2× 10)

The composite messengers are

(ρ⊕ ZU) ∼ 2× (10 + 10 + 4× 1) (6.10)

and the lower block of the mesons transform as a 12×12 antisymmetric tensor, decomposing
under SU(5) as

X ∼ 2× 10 +
[
45 + 1

]
XU ∼ 2× 10 +

[
45 + 1

]
(6.11)

As in the previous case, both X and XU contain two 10 fields. Given this matter content,
the messenger index for this theory is Nmess = 6, just compatible with perturbative gauge
coupling unification.

A model of Sp− 3

Last among the ten-centered models, consider the Sp − 3 embedding with Sp(2Nc = 26)
gauge theory with Nf = 9 flavors of fundamentals and embedding

Sp(18) SU(5)SM

Qα
i � (5 + 5 + 5̄ + 1) + 1 + 1

Uαβ antisym 1
Sa 1 2× 10 + 2× 15 + 4× 5

The structure of the magnetic dual is

Sp(2Ñc) SU(5)SM

Mij 1 6× 5 + 3× 5̄ + 3× 10 + 10 + 15 + 2× 24 + 5× 1
(MU)ij 1 6× 5 + 3× 5̄ + 3× 10 + 10 + 15 + 2× 24 + 5× 1
qαi � (5 + 5̄ + 5̄ + 1) + 1 + 1
Sa 1 2× 10 + 2× 15 + 4× 5

For the model considered here, we have composite messengers

(ρ⊕ ZU) ∼ 2× (3× 5 + 3× 5̄ + 2× 1) (6.12)
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and the lower block of the mesons transform as a 16×16 antisymmetric tensor, decomposing
under SU(5) as

X ∼ 2× 10 +
[
(10 + 10) + (5 + 5̄) + 5 + 15 + 2× 24 + 2× 1

]
(6.13)

XU ∼ 2× 10 +
[
(10 + 10) + (5 + 5̄) + 5 + 15 + 2× 24 + 2× 1

]
(6.14)

Once again, both X and XU contain two 10 fields. Given this matter content, the mes-
senger index for this theory is Nmess = 6, just compatible with perturbative gauge coupling
unification.

6.2 Model without spectators

Last but not least, we may construct a model of dimensional hierarchy without spectators.
The electric theory is

Sp(26) SU(5)SM

Qα
i � (10 + 5̄ + 1) + 1 + 1

Uαβ antisym 1
Sa 1 −

with magnetic dual

Sp(2) SU(5)SM

Mij 1 3× (10 + 5̄) +
[
45 + 45 + 10 + 5 + 3× 1

]
(MU)ij 1 3× (10 + 5̄) +

[
45 + 45 + 10 + 5 + 3× 1

]
qαi � (10 + 5 + 1) + 1 + 1
Sa 1 −

In order to ensure the correct Standard Model index at low energies and remove the su-
perfluous charged matter contained in Z, we may lift the excess 10 + 5̄ vector-like pairs in
Z,X,XU through unusual but technically natural superpotential terms of the form

∆W = Z(10+5̄)X(10+5) + Z(10+5̄)′XU,(10+5) (6.15)

These would correspond to dimension 4 and higher in the electric theory. The composite
messengers are then

(ρ⊕ ZU) ∼ 2× (10 + 10 + 5̄ + 5 + 2× 1) (6.16)

and the lower block of the mesons transform as a 16×16 antisymmetric tensor, decomposing
under SU(5) as

X ∼ (10 + 5̄) +
[
45 + 45 + 10 + 5

]
XU ∼ (10 + 5̄) +

[
45 + 45 + 10 + 5

]
. (6.17)
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The excess (10+5)’s in each of X,XU may be removed without spectators by the deformation
(6.15), while the (45 + 45) may be given a vector mass. The appeal of such a construction
rests in its utter lack of spectators, but there are a variety of shortcomings. Already the
theory has a messenger index Nmess = 8, leading to a Landau pole well shy of the GUT scale.
Perturbative unification aside, there are a variety of other shortcomings; among other things
the pseudomodulus XU lacks a requisite Standard Model gauge singlet, while the embedding
of a single 10 + 5̄ in each of X,XU leads to a phenomenologically unviable soft spectrum for
reasons discussed earlier.

In order to rectify these shortcomings, the most minimal extension of this theory requires

Nf = 10, Nc = 15, n1 = 5

The resulting spectrum is a natural generalization of the above, but now possesses both
an SM gauge singlet in XU and the desired (10 + 5̄) ‘doubling’ in each of X,XU required
for a viable soft spectrum. However, this doubling leads to extra light (10 + 5̄) fermions
which may only be removed by spectators. Hence this phenomenologically-viable dimensional
hierarchy model no longer strictly qualifies as “spectator-free”.

7 Conclusions

Single-sector models offer an exceptionally compact means of realizing a variety of beyond-
the-Standard Model objectives: explaining the origin of quarks and leptons, generating
the flavor hierarchy observed in Yukawa matrices, breaking supersymmetry dynamically,
and naturally communicating its breaking in a flavor-respecting manner to Standard Model
superfields without the need for a separate messenger sector. However, the majority of single-
sector models constructed to date have suffered from a range of shortcomings, including an
excess of SM exotics, Landau poles in the gauge couplings below the unification scale and no
dynamical explanation for the Standard Model index. Additional spectators were required to
lift unwanted states, leading in some cases to unwanted (and phenomenologically unviable)
new vacua.

In this work we have attempted to address these shortcomings. To this end, we have
found a small number of models based on Sp(N) SSQCD in which supersymmetry is bro-
ken in a metastable vacuum and the Standard Model index is generated dynamically. The
nontrivial family structure is explained in terms of electric “preons” that transform under
chiral representations of the SM. These models are quite compact, with few added spectators
and ready compatibility with perturbative unification of gauge couplings. In Sp(N) theories
with only fundamental matter, the single-sector models realize a U(2) flavor symmetry that
explains the heaviness of the top quark and leads to a soft spectrum free of problematic
FCNCs, but must be supplemented by additional flavor textures to explain the pattern of
light fermion masses. In contrast, Sp(N) theories with both fundamental and antisymmetric
matter realize a dimensional hierarchy of fermion masses, which is alone sufficient to ex-
plain the observed Yukawa textures but is free from FCNCs only over a particular range of
parameters.
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In either case, the resulting soft spectrum offers a natural ultraviolet realization of the
“more minimal” soft spectrum with a gravitino LSP and direct mediation. Both types of
theories may be used to construct a variety of specific models, depending on the way in which
Standard Model representations are embedded in the global flavor symmetry. In most cases,
such compact models realize a ten-centered flavor texture with a small number of additional
spectators whose existence is often required by anomaly cancellation. There is, however,
also a unique model with no spectators in which both 10 and 5̄ are composite, though the
messenger index of this theory is incompatible with perturbative unification.

There has often been a tension between the pleasing conciseness of the single-sector prin-
ciple and the variety of actual single-sector realizations. While the models constructed here
are far from perfect, we hope that they represent progress in developing more compact, calcu-
lable models that naturally combine flavor and supersymmetry breaking in four dimensions.
As these models grow more realistic, it would be useful to determine how their structure
may be probed more deeply at colliders. Certainly evidence for a “more minimal” spectrum
of soft masses at the LHC with gravitino LSP would be a compelling first indication. But it
may also be the case that experimental indications first arise in other settings; in particular,
there is the intriguing possibility for signals of single-sector physics to arise in the Bs meson
system, along the lines of [25].

Finally, it is quite interesting that these single-sector models admit a systematic classifi-
cation, which moreover reveals a dynamical relation between chirality and unification. How
general is this classification? It certainly does not include models where the subgroup that
confines is itself chiral, or where there is no product gauge group structure at all. Both
alternatives deserve being explored in depth and may reveal a very rich dynamics –but it is
also much harder to explore them systematically. On the other hand, our classification is
general granting a product gauge group structure and that the strong dynamics is vector-
like. The analysis for SU and SO groups is very similar to the Sp case considered in this
work (exceptional groups are not included here). Similarly, the addition of other 2-index
representations is expected to parallel the antisymmetric case. Representations with more
indices are quickly forbidden by asymptotic freedom.
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Figure 1: One-loop running of Standard Model gauge couplings for different values of the
messenger index Nmess given sparticle masses m̃ ∼ 1−10 TeV and messenger masses Mmess ∼
250 TeV. Perturbative unification allows Nmess ≤ 6; Nmess ≤ 4 is required if the messengers
are significantly lighter (Mmess . 100 TeV).

A Limits on the messenger index

Here we briefly review the constraints on the messenger index from perturbative unification of
Standard Model gauge couplings. For simplicity, we merely compute the one-loop running
of SM gauge couplings between the weak scale and unification scale, taking into account
thresholds associated with the appearance of messenger matter; the results are shown in
Fig. 1. We take messenger masses to lie around 250 TeV (the natural value in single-sector
models). In this case, Nmess ≤ 6 is readily compatible with perturbative gauge coupling
unification. In contrast, Nmess = 8 is strongly disfavored with a Landau pole at µ ∼ 1012

GeV. From the perspective of flavor model-building it is perhaps unnecessary to require
perturbative unification of SM gauge couplings, but perturbativity is nonetheless a necessary
ingredient if we are to retain calculability in the models under consideration.

B FCNCs in single-sector models

There are two primary contributions to FCNCs in the models under consideration: (1) con-
tributions coming from direct coupling between SM fermions and supersymmetry-breaking
messengers; and (2) conventional gluino-mediated contributions involving MSSM sparticles
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due to the misalignment of scalar soft masses and fermion masses. The former do not lead
to significant constraints on the low-energy spectrum, as box diagrams involving messen-
gers are suppressed both by a loop factor and the large messenger mass; the most stringent
constraints coming from K0 − K̄0 mixing are readily satisfied by µ & 160 TeV [10].

However, the latter contributions from MSSM sparticles do constrain the weak-scale
soft spectrum, particularly for dimensional hierarchy models. We will parametrize the
gluino-mediated contributions to flavor changing neutral currents (FCNCs) following [27];
our notational conventions are those of [10]. We may place bounds on first- and second-
generation sfermion masses for both democratic and ten-centered single-sector flavor models
from K0−K̄0, D0−D̄0, or B0−B̄0 mixing and the rare decays µ→ eγ and b→ sγ. Natural-
ness dictates that the stop mass lie around 1-2 TeV, which sets the scale of gauge-mediated
contributions to all three generations. When this is the only source of SUSY breaking, SUSY
FCNCs are negligible. However, in addition to the gauge-mediated contribution, the first
and second generation squarks and sleptons may obtain additional soft masses directly from
SUSY-breaking, leading to an inverse hierarchy. The size of additional contributions to the
soft masses mf̃1

,mf̃2
of the first two generations is then constrained by FCNCs.

In the case of U(2) symmetric models, all FCNCs involving first- and second-generation
sfermions are naturally mitigated, as the soft masses for these generations are universal. Prin-
cipal constraints then arise from FCNC’s involving first- and third-generation sfermions, e.g.,
from B0− B̄0 mixing. Since limits on B0− B̄0 mixing are much more relaxed than those on
K0−K̄0 mixing, the soft spectrum in U(2) symmetric models is essentially unconstrained by
flavor considerations. In the case of dimensional hierarchy models, the primary constraints
still arise from typical processes involving first- and second-generation sfermions – primarily
K0 − K̄0 in the case of democratic models and D0 − D̄0 in the case of ten-centered models
(where the right-handed contributions to K0−K̄0 vanish). As the yukawa textures for demo-
cratic and ten-centered models differ significantly, we will consider the relevant constraints
in turn.

B.1 Constraints

Straightforward constraints on sparticle masses from FCNCs may be placed by considering
gluino-mediated contributions to neutral meson mixing and decay. The Standard Model
contributions to measured meson mixings fall within the measured values, but depend on
hadronic uncertainties to an extent that the full contribution is unknown. Thus we may take
as our constraints the requirement that contributions to ∆mK ,∆mD,∆mB, and Γ(b→ sγ)
do not exceed (in magnitude) the measured values. We extract the contribution to these
quantities from squark mixing from [27]. The relevant processes are

• K0 − K̄0: We may constrain the possible values of mf̃1
and mf̃2

via the parameters

(δdLL)12 and (δdRR)12, by computing their contribution to the KL −KS mass difference
∆mK . This difference has been measured within excellent precision to be very nearly
∆mK = (3.483 ± 0.006) × 10−12 MeV [28]. These contributions depend on the gluino
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mass mg̃ and the squark masses mf̃1
,mf̃2

.

• D0−D̄0: Similar constraints on (δu)12 arise from D0−D̄0 mixing via their contribution
to ∆mD = (1.57+.39

−.41)× 10−11 MeV [28].

• B0 − B̄0: The mixings (δdMN)13 may similarly be constrained by B0 − B̄0 mixing from
their contribution to ∆mB = (3.337± 0.033)× 10−10 MeV [28].

• b → sγ and µ → eγ: We may constrain mixing between the second and third gener-
ations via the rare decay b → sγ, using the gluino-mediated contribution in [27]. In
this case, we require that our contribution not exceed the measured branching ratio
BR(b→ sγ) = (3.52±0.23±0.09)×10−4 [29]. The branching ratio is a strong function
of squark mass, and is satisfied readily for squark masses above 1 TeV; thus b → sγ
does not place a significant constraint on the models under consideration. Similar
constraints may be placed on the lepton sector via the rare decay µ → eγ, but once
again these limits are readily satisfied by the sparticle masses under consideration.
Constraints from b→ sγ and µ→ eγ will therefore not be shown in what follows.

Constraints from tachyonic stop mass

We must also take into account an upper bound placed on squark masses by the requirement
of a positive stop mass at the weak scale. As noted in [26], overly large masses for the first and
second-generation squarks can drive the stop mass negative via their two-loop contribution
to the stop mass RG. This places an upper bound on soft masses for the first two generations
of squarks; we require merely that the stop retain a positive mass-squared at the weak scale.
The constraints relevant to our models were studied in [10]; we refer the reader to their
Appendix A.5 for details. With these constraints in hand, let us now turn to explicit limits
on the soft spectrum.

B.2 Models

Now we may turn to detailed limits on the soft spectrum for the four classes of yukawa
textures under consideration. The constraints on democratic models are much the same as
those appearing in [8, 10], which results in fairly stringent limits on the first two generations.
In contrast, ten-centered models offer an exceptionally appealing scenario from the perspec-
tive of FCNCs, in that the strongest constraints from K0 − K̄0 mixing only arise from the
LL sector and are naturally mitigated. In GUT models where only the Q, ū, ē ∈ 10 of the
first two generations receive SUSY-breaking soft masses directly from VCW , the remaining
fields obtain strictly flavor-universal masses from gauge mediation. Crucially, this spectrum
still guarantees a vanishing hypercharge D-term at leading order, preserving the successes
of the “more minimal” spectrum even though not all first- and second-generation sfermions
are heavy. In detail:
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Figure 2: FCNC constraints on first- and second-generation soft masses for (a) democratic,
U(2)-symmetric models (upper left), (b) democratic, dimensional hierarchy models (upper
right), (c) ten-centered, U(2)-symmetric models (lower left), and (d) ten-centered, dimen-
sional hierarchy models (lower right) given mf̃3

= 1 TeV and mg̃ = 500 GeV. The purple

region is excluded by K0 − K̄0; the blue region is excluded by D0 − D̄0; the brown region is
excluded by B0− B̄0. The green region is excluded by tachyonic stop masses. Note that, for
U(2)-symmetric models, the first- and second-generation masses are identical, so that FCNC
constraints are automatically satisfied.

• Democratic, U(2)-symmetric: The primary constraint in this case comes in principle
from B0−B̄0 mixing, as all constraints involving first- and second-generation sfermions
are automatically satisfied. Even in this case, however, the B0− B̄0 limits do not place
any stringent constraints on the model.
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• Democratic, dimensional hierarchy: Primary constraints in this case come fromK0−K̄0

mixing. The soft spectrum is heavily proscribed by the combination of K0−K̄0 mixing
limits and positivity of the stop mass; this is the most constrained of the model types
under consideration.

• Ten-centered, U(2)-symmetric: As with the democratic case, the primary constraint in
these models comes from B0 − B̄0 mixing. However, in ten-centered models the only
contributions to B0−B̄0 mixing come from the LL sector, making the constraints even
weaker; consequently the soft spectrum is effectively unconstrained by FCNCs.

• Ten-centered, dimensional hierarchy: Primary constraints in this case come from D0−
D̄0 mixing, as limits from K0 − K̄0 mixing are weakened since only the LL sector
contributes.

Of course, in order to compute bounds from FCNCs it is necessary to begin with Yukawa
matrices that reproduce Standard Model fermion masses and CKM mixing angles as accu-
rately as possible. As a numerical example for flavor textures for U(2)-symmetric theories,
we consider

v1 = 4× 10−1 , ε = 10−1 , v2 = 4 , tan β = 20 .

For a ‘democratic’ U(2) model we may then choose Yukawa matrices

Yu =

 0 0.3 v1ε
3 0

0.3 v1ε
3 3 v2

2ε
4 v2ε

2

0 v2ε
2 0.8

 , Yd =

 0 3.2 v1ε
3 0

3.2 v1ε
3 6 v2

2ε
4 0.9 v2ε

2

0 0.9 v2ε
2 0.3

 . (B.1)

This gives a top mass of order 150 GeV, and a bottom mass ∼ 2.5 GeV at the TeV scale.

It is interesting that with the same set of parameters, we can also have a realistic ten-
centered Yukawa matrix

Yd ∼

 0 0.3 v1ε
2 0

0.3 v1ε
2 0.6 v2

2ε
3 0.4 v2ε

2

0 0.2 v2ε 0.3

 . (B.2)

Notice that, with these Yukawas, the CKM parameters are set by the ratio of quark masses.

For instance, the Cabibbo angle is
√

md

ms
' 0.2 [12].

For dimensional hierarchy models, the additional texture makes it unnecessary to rely on
additional flavor spurions, though O(1) numerical coefficients are still required. We use for
a ‘democratic’ model the numerical textures

Yu ∼

 0.5ε4 1.2ε3 ε2

1.2ε3 3ε2 2ε
ε2 2ε 1

 , Yd ∼

 2ε4 4ε3 0.5ε2

4ε3 6ε2 2ε
0.5ε2 2ε 0.5

 , (B.3)
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which reproduce Standard Model fermion masses and the CKM parameters with a fair degree
of accuracy. For ten-centered models we take instead the down-type Yukawa texture

Yd ∼

 0.35ε2 0.5ε2 ε2

0.17ε 0.16ε ε
0.1 0.25 1

 . (B.4)

Detailed constraints are shown in Fig. 2.
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