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We calculate the electromagnetic, axial and pseudo-scalar form factors of the Nucleon to

∆(1232) transition using two dynamical light degenerate quarks and a dynamical strange

quark simulated with the domain wall fermion action. Results are obtained at lattice spac-

ings a = 0.114 fm and a = 0.084 fm, with corresponding pion masses of 330 MeV and

297 MeV, respectively. High statistics measurements are achieved by utilizing the coherent

sink technique. The dominant electromagnetic dipole form factor, the axial form factors and

the pseudo-scalar coupling are extracted to a good accuracy. This allows the investigation

of the non-diagonal Goldberger-Treiman relation. Particular emphasis is given on the ex-

traction of the sub-dominant electromagnetic quadrupole form factors and their ratio to the

dominant dipole form factor, REM and RSM , measured in experiment.

PACS numbers: 11.15.Ha, 12.38.Gc, 12.38.Aw, 12.38.-t, 14.70.Dj

I. INTRODUCTION

Form factors are fundamental quantities which probe the internal structure of the hadron. They

are typically extracted from electromagnetic or weak scattering processes on hadronic targets,

dominated by one-body exchange currents. The prime example are the form factors of the proton,

which remain the most well-studied. Its electromagnetic (Sachs) form factors have been measured

since the 50’s [1] and static properties such as the magnetic moment and the charge radius are

extracted. For recent reviews on the experimental and theoretical status we refer the reader to

Refs. [1, 2] and [3, 4] respectively. Despite the long history of measurements of the electromagnetic

nucleon form factors, polarization experiments recently revealed an unexpected behaviour in the

momentum dependence of the electric to magnetic form factor of the proton which has triggered
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theoretical investigations to explain the dynamics that give rise to such behavior [5].

The proton, being the building block of all matter that is presently observed to be stable,

provides a nice laboratory for studying a relativistic bound state. One fundamental question is

whether hadrons being composite systems are deformed and in particular whether the proton is

spherical or has an intrinsic deformation. The elastic form factors do not suffice to answer this

question on nucleon deformation, an important quantity that characterizes the distribution of

quarks in the nucleon. The reason lies in the fact that the spectroscopic quadrupole moment of

an J = 1/2 state vanishes identically in the laboratory frame if a one-photon exchange process

is studied, although a quadrupole deformation may still exist in the body-fixed intrinsic frame.

Therefore, regarding the nucleon, one has to study the transition to the lowest positive parity

J = 3/2 state which is the ∆(1232). The γN∆ matrix element is parameterized in terms of a

dominant magnetic dipole, GM1, plus the sub-dominant electric quadrupole, GE2, and Coulomb

quadrupole, GC2, transition form factors. Detection of non-zero GE2 or GC2 signals the existence

of deformation in the N−∆ system [6–8]. Precise electroproduction experiments in the last decade

demonstrated that this is indeed the case and provided measurements of the EM transition form

factors for a wide range of values of the momentum transfer squared q2. The E2 and C2 amplitudes

are measured to a few percent of the dominant, M1, amplitude and are typically given as ratios to

the M1 amplitude, denoted by REM and RSM respectively.

State-of-the-art lattice QCD calculations can yield model independent results on hadron form

factors, thereby providing direct comparison with experiment. Like in experiment, the electro-

magnetic nucleon form factors have been studied by many collaborations recently using dynamical

simulations [9–15]. Reproducing the experimental results on the electric and magnetic form fac-

tors is a prerequisite for enabling lattice predictions of other form factors. This is also true for

lattice calculations of the dominant magnetic dipole N to ∆ transition form factor which is also

well measured experimentally. In particular, in the case of the N to ∆, there are no disconnected

contributions and therefore reproducing this form factor would provide a validation of lattice QCD

techniques in calculating hadron form factors. The evaluation of the sub-dominant N to ∆ elec-

tric and Coulomb quadrupole form factors have also been studied for many years in dedicated

experiments since, as we already pointed out, a non-zero value of these form factors signals a de-

formation in the N-∆ system. However the experimental determination needs model input and

therefore lattice QCD can provide an ab initio calculation of these fundamental quantities.

In the axial sector, in the case of the nucleon, there exist two form factors, the axial, GA, and

induced pseudo-scalar, Gp, form factors. They have been studied in neutrino scattering and muon
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capture experiments, respectively but experimental data are less precise [16, 17]. There have also

been several lattice evaluations of the nucleon axial charge gA [9, 18–20] and of the momentum

dependence of the two form factors [12, 21]. Partial conservation of axial symmetry (PCAC) leads

to a relation between the nucleon axial charge and the pseudo-scalar π − N coupling constant

gπNN , the well-known Goldberger-Treiman relation. The strong decay of the ∆ obscures greatly

experimental studies of the N to ∆ weak matrix element but some information on the dominant

axial transition form factors CA5 (q2) and CA6 (q2) is available from neutrino interactions on hydrogen

and deuterium targets. CA5 and CA6 are the analogue of the nucleon axial form factors, GA and

Gp, respectively. Indeed, like Gp, the q2 dependence of CA6 is dominated by the pion pole and

due to the axial Ward-Takahashi identity (AWI) a relation can be derived between CA5 and the

phenomenological strong coupling of the pion-nucleon-∆ vertex, gπN∆. This relation is referred to

as the non-diagonal Goldberger-Treiman relation.

Such observations strongly motivate the study of the N -to-∆ transition from first principles

using lattice QCD. The first lattice study of the electromagnetic γN∆ transition was carried out

in the quenched approximation [22] at a fixed Euclidean momentum transfer squaredQ2 = −q2 with

inconclusive results as to whether the E2 or C2 amplitudes were non-zero due to large statistical

errors. A study employing the formalism of Ref. [22] followed using quenched and two dynamical

flavors of degenerate Wilson-type quarks at smaller quark masses but still only at the lowest q2-

value allowed on the lattices at hand. Although there was an almost ten-fold increase in statistics

the values obtained for the quadrupole form factors had large statistical noise and a zero value could

not be excluded [23, 24]. In order to obtain sufficient accuracy we combined sequential inversions

through the source instead of through the current for the evaluation of the three-point functions

and optimized sources that led to a large sample of statistically independent measurements for a

given q2-value. The calculation, carried out in the quenched approximation, confirmed a non-zero

value with the correct sign for both of the quadrupole amplitudes [25, 26]. A similar study was

also carried out for the axial vector N to ∆ matrix element [27]. Using this new methodology

we extended the calculation of the N to ∆ electro-weak form factors to unquenched lattice QCD.

For the latter study we used Nf = 2 Wilson fermions as well as an Nc = 2 + 1 calculation with a

mixed action with domain wall valence quarks on a staggered sea reaching a pion mass of about 350

MeV [21, 28–30]. This calculation showed that the unquenched results on the Coulomb quadrupole

form factor at low q2 decreased towards the experimental results. However, the discrepancy in the

momentum dependence of the dominant dipole form factor remained with lattice results having

smaller values at low q2-values and a weaker dependence on q2. Using the same set of sequential
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propogators as in the electromagnetic case the axial and pseudo-scalar N to ∆ form factors were

studied [21, 30]. The strong coupling constant gπN∆ and non-diagonal Goldberger-Treiman relation

were examined in detail and it was demonstrated that the behaviour is very similar manner to the

corresponding relations in the nucleon system.

In this work we study the N -to-∆ transition using NF = 2 + 1 dynamical domain wall fermions

simulated by the RBC-UKQCD collaborations [31]. This eliminates ambiguities about the cor-

rectness of the continuum limit due to the rooting of the staggered sea quarks and the matching

required in a mixed action. Preliminary results have been presented in Refs. [32]. We use two

ensembles corresponding to lattice spacing a = 0.114 fm and a = 0.084 fm and physical vol-

ume of (2.7 fm)3. Both lattice spacings are smaller than the lattice spacing used in our previous

mixed-action calculation. This allows, for the first time, the investigation of cut-off effects on these

hadronic observables. For each lattice spacing, we chose to perform the calculation on the lightest

pion mass set available, namely at 330 MeV pions for the coarse lattice and 297 MeV for the fine

one, in order to be as close as possible to the physical regime. The goal is, first, to check whether

lattice results on the well measured experimentally dominant dipole form approach experiment.

Secondly, we would like to see the onset of the large pion cloud contributions to the quadrupole

form factors as predicted by chiral effective theory [33]. Thirdly we will extract the axial N to ∆

coupling that enters in chiral expansions of the nucleon axial charge as well as the strong coupling

constant gπN∆. Determining these quantities together with the corresponding quantities gA and

gπNN for the nucleon as well as for the ∆ on the same gauge configurations will enable simultaneous

chiral extrapolations to the physical point and yield more reliable results on these fundamental

quantities.

The paper is organized as follows: In Section II we describe the general lattice setup and outline

the techniques utilized to extract all the transition form factors from three-point functions measured

on the lattice. In Section III we present in detail the decomposition of the electromagnetic N to

∆ matrix element on the hadronic level in terms of the Sachs form factors and discuss the results

for the electromagnetic transition form factors. In Section IV we give the corresponding matrix

element for the electro-weak transition and discuss the results on the axial and pseudo-scalar form

factors. Finally, the last section contains our conclusions and an outlook regarding further studies

in the subject.
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II. LATTICE SETUP AND TECHNIQUES

We use the Nf = 2 + 1 dynamical domain wall fermion (DWF) ensembles generated by the

RBC and UKQCD collaborations [31, 34, 35] with the strange quark mass fixed at the physical

point. Specifically, we consider gauge configurations on lattices of volume 243 × 64 corresponding

to a pion mass of about 330 MeV and inverse lattice spacing a−1 = 1.73(3) GeV and 323 × 64

corresponding to a pion mass of about 297 MeV and a−1 = 2.34(3) GeV. We refer to the former

lattice corresponding to a−1 = 1.73(3) GeV, as the coarse DWF lattice, and the one corresponding

to a−1 = 2.34(3) GeV, as the fine DWF lattice.

Domain wall fermions preserve chiral symmetry in the infinite limit of the fifth dimension,

L5. In actual computations L5 is finite leading to an additive contribution to the quark mass

as defined through the Axial Ward-Takahashi Identity (AWI). For the coarse ensemble a residual

quark mass of amres = 0.00315(2) has been measured by UKQCD-RBC [31] with the extent of the

fifth dimension set to L5 = 16. The same L5 extent for the fine ensemble leads to a much smaller

violation, measured to amres = 0.000665(3), or just 17% of the bare quark mass [11].

Details about the lattice parameters used in this study are provided in Table I, where for

comparison the relevant values of the parameters used in our previous study using the mixed

action [12, 21, 28] are also given.

Volume Ndom.
confs (Nmeas.) Nsubd.

confs (Nmeas.) a−1 [GeV] ZV ZA mu,d/ms mπ [GeV] mN [GeV] m∆ [GeV]

coarse NF = 2 + 1 DWF [31]

243 × 64 200 (800) 398 (1592) 1.73(3) 0.7161(1) 0.7161(1) 0.005/0.04 0.329(1) 1.130(6) 1.457(11)

fine NF = 2 + 1 DWF [11]

323 × 64 176 (704) 309 (1236) 2.34(3) 0.7468(39) 0.74521(2) 0.004/0.03 0.297(5) 1.127(9) 1.455(17)

Hybrid action [12]

DWF valence: amu,d = 0.0138, ams = 0.081

283 × 64 300 (300) 300 (300) 1.58(3) 0.01/0.05 0.353(2) 1.191(19) 1.533(27)

TABLE I: Parameters for the calculation of the electromagnetic and axial transition form factors. The

mixed action results from Refs. [21, 28] are also included for completeness. In the second (third) column we

show the number of gauge configurations used for the dominant (suppressed) form factors. For the DWF

lattices the numbers in the parentheses next to the number of configurations are multiplied by four, since

the coherent sink method was employed, showing the actual number of measurements taken into account

in the overconstrained analysis. In the fifth and sixth columns we list the values of the vector and axial

current renormalization constants, respectively that have been used as input parameters in our calculation,

since we have used local currents and not the lattice conserved ones.
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In order to create the proton and ∆+ states we use the standard interpolating operators

χp(x) = εabc
[
uT a(x) Cγ5d

b(x)
]
uc(x), (1)

χ∆+

σ (x) =
1√
3
εabc
{

2
[
uTa(x) Cγσdb(x)

]
uc(x) +

[
uTa(x) Cγσub(x)

]
dc(x)

}
, (2)

respectively. The J = 3/2 ∆ state is described by the Rarita-Schwinger vector-spinor where

σ = 1, 2, 3, 4 is the Lorentz vector field index. C = γ4γ2 is the charge-conjugation matrix.

Form factors of the N −∆ transition are extracted on the lattice from the three-point function

〈G∆JµN
σ (t2, t1; p ′,p; Γτ )〉 =

∑
x2, x1

e−ip
′·x2e+iq·x1 Γβατ 〈Ω|T

[
χσα∆ (x2, t2)Jµ(x1, t1)χ̄βN (0, 0)

]
|Ω〉 (3)

In this notation, an initial nucleon state with momentum p is created at time zero and propagated

to a later time t1 at which it couples to the current J causing a transition to the ∆ state of

momentum p′ which is annihilated at a later time t2. q = p′ − p is the momentum transfer. The

projection matrices Γτ are given by

Γi =
1
2

 σi 0

0 0

 , Γ4 =
1
2

 1 0

0 0

 . (4)

The one-body currents considered in this work include the local vector current

Vµ(x) =
2
3
ū(x)γµu(x)− 1

3
d̄(x)γµd(x) , (5)

the axial-vector current and pseudo-scalar density

Aaµ(x) = ψ̄(x)γµγ5
τa

2
ψ(x) , P a(x) = ψ̄(x)γ5

τa

2
ψ(x) (6)

with τa the three Pauli-matrices acting in flavor space and ψ the isospin doublet quark field. Note

that due to the ∆J = 1 nature of the transition, only the isovector part of Vµ contributes and,

due to isospin symmetry, only the flavor diagonal operator τ3 needs to be evaluated. Inclusion of

baryon states in the three-point function (3) and the use of standard Euclidean spin-sums for the

Rarita-Schwinger field∑
s

uσ(p, s)ūτ (p, s) =
−iγ · p+m∆

2m∆

[
δσ τ +

2pσpτ
3m2

∆

− ipσγτ − pτγσ
3m∆

− 1
3
γσγτ

]
, (7)

and the Dirac spinor ∑
s

u(p, s)ū(p, s) =
−iγ · p+mN

2mN
(8)
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lead to the isolation of the desired matrix element, assuming that the initial and final ground states

dominate the propagation before and after the operator insertion, respectively. In order to cancel,

in the large Euclidean time limit, the dependence on the Euclidean time evolution and on the

unknown overlaps of the nucleon and ∆ states with the initial states, we form the following ratio:

RJσ(t2, t1; p ′,p ; Γτ ;µ) =
〈G∆JµN

σ (t2, t1; p ′,p; Γ)〉
〈G∆∆

ii (t2,p ′; Γ4)〉

×
[〈G∆∆

ii (t2,p ′; Γ4)〉
〈GNN (t2,p; Γ4)〉

〈GNN (t2 − t1,p; Γ4)〉 〈G∆∆
ii (t1,p ′; Γ4)〉

〈G∆∆
ii (t2 − t1,p ′; Γ4)〉 〈GNN (t1,p; Γ4)〉

]1/2

(9)

which requires also measurements of the nucleon (GNN ) and ∆ (G∆∆
στ ) two-point functions

〈GNN (t,p; Γ)〉 =
∑
x

e−ip·x Γβα 〈Ω| T χα(x, t)χ̄β(0, 0) |Ω 〉, (10)

〈G∆∆
στ (t,p; Γ)〉 =

∑
x

e−ip·x Γβα 〈Ω| T χασ(x, t)χ̄βτ (0, 0) |Ω 〉. (11)

Implicit summations on indices i = 1, 2, 3 are assumed in the above ratio (9), which is designed

such that the time evolution (and consequently the noise) appearing in its two-point function part

is minimized. In the large Euclidean time limit (t2 − t1 � 1, t1 � 1) where we have ground state

dominance this ratio (9) thus yields a a time-independent function ΠJ
σ(p ′,p ; Γτ ;µ) that is related

to the matrix element 〈∆(p′)|J |n(p)〉. Therefore we look for the plateau region of Eq. (9) in order

to extract the matrix element that we are interested in. For a given operator insertion J and

projection matrix Γτ , the function ΠJ
σ(p ′,p ; Γτ ;µ) is a linear combination of the corresponding

form factors. These relations for the appropriate choice of Γτ and ∆ vector index σ will be given

in the following sections.

The computationally intensive part of the calculation lies in the calculation of the three-point

function given in Eq. (3). In order to achieve the extraction of the momentum dependence of the

matrix element for the Vµ(x), A3
µ(x) and P 3(x) insertions, one needs an evaluation for a large

number of values of the momentum transfer q. This is feasible by evaluating the matrix element

using sequential inversions through the sink. In this method, the quantum numbers of the source

and sink interpolating fields are fixed, effectively by fixing the σ and τ indices. The time slices of

the source and sink are, in addition, fixed. The quark propagator with the operator insertion is

obtained by the joining of a forward propagator and the sequential propagator which is obtained

by using as a source the baryon state at the sink folded in with the two forward propagators

from the source. With the forward and sequential propagators available, the operator insertion at

selected intermediate times t1 and momenta transfers q is readily available. In this method the

final state, in this case the ∆-state, is always at rest. Since the σ − τ space of indices still spans
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a set of 16 independent inversions that would be required, an optimization in this space has been

exploited. Three linear combinations are constructed from which the EM, axial and pseudo-scalar

form factors are extracted such that the maximal set of statistically independent measurements of

momentum transfer vectors q per q2 value is achieved. In addition, they are chosen to decouple

the dominant dipole (M1) part of the EM transition from the sub-dominant quadrupoles E2 and

C2 measurements. The three linear combinations which we construct and measure in this work

are given below.

SJ1 (q; J) =
3∑

σ=1

ΠJ
σ(0,−q ; Γ4; J) (12)

SJ2 (q; J) =
3∑

σ 6=k=1

ΠJ
σ(0,−q ; Γk; J) (13)

SJ3 (q; J) = ΠJ
3 (0,−q ; Γ3; J)− 1

2

[
ΠJ

1 (0,−q ; Γ1; J) + ΠJ
2 (0,−q ; Γ2; J)

]
, (14)

where J denotes the operators Vµ, A3
µ and P 3. Occasionally we refer to S1, S2, S3 as optimal ∆

sinks, although they actually correspond to an optimal linear combination of the full N −∆ three-

point function with arbitrary insertion J . We stress that, given the forward propagators, three

inversions in total are required in order to compute the momentum dependence of the full N −∆

transition and extract the electromagnetic, axial and pseudo-scalar form factors.

Since the source-sink separation is fixed in this method it is crucial to suppress the excited baryon

states as much as possible. This is achieved by employing gauge invariant Gaussian smearing on

the local quark fields with APE-smeared gauge fields and parameters that have been carefully

optimized for the nucleon state. For the coarse lattice, we show in Fig. 1 a comparison of results

obtained with a sink-source separation of 0.91 fm and 1.14 fm. As can be seen, extending the

source-sink separation to 1.14 fm, the plateau values for the dominant magnetic dipole form factor

GM1, which are the most accurate, are consistent with a time-separation of 0.91 fm. Since the

larger time separation introduces a doubling in the statistical noise, for the accuracy needed in

this study, we opt to use the smaller sink-source separation in time. For the fine lattice, we take a

sink-source separation of ∆T = 12a corresponding to 1.01 fm, consistent with our findings using

the coarse lattice.

In order to improve accuracy, a goal that is particularly crucial for the extraction of the sub-

dominant electromagnetic form factors, we employ a new method first implemented in the study of

the nucleon form factors [11] and referred to as the coherent sink technique. The method consists

of creating four sets of forward propagators for each configuration at source positions separated in
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FIG. 1: The ratio RJσ from the source S1 of Eq. (9) versus t/a for a source-sink separation 0.91 fm shifted

by a time slice (triangles) and 1.14 fm (squares) for the four smallest non-zero ~q2 values. The fit range is

also shown along with the fitted lines and the corresponding error bands. The behavior is the same for both,

but the error reduction is better in the former, which is what we therefore utilize in the calculations.

time by one-quarter of the total temporal size. Namely, for the coarse DWF lattice, NL = 24, we

have forward propagators generated with sources positioned at:{
(~0, 0), (

~L

2
, 16a), (

~L

4
, 32a), (

~3L
4
, 48a)

}
,

and for the fine DWF lattice, NL = 32, placed at:{
(~0, 10a), (

~L

2
, 26a), (~0, 42a), (

~L

2
, 58a)

}
,

or {
(
~L

4
, 10a), (

3~L
4
, 26a), (

~L

4
, 42a), (

3~L
4
, 58a)

}
.

From each source (~xi, Ti), a zero-momentum projected ∆ source is constructed at T0 slices

away, i.e. at (~xi, Ti + T0). For the coarse DWF lattice T0/a = 8, while for the fine DWF lattice
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T0/a = 12. Then a single coherent backward propagator is calculated in the simultaneous presence

of all four sources. The cross terms that arise vanish due to gauge invariance when averaged over the

ensemble. The forward propagators have already been computed by the LHPC collaboration [11]

and therefore we effectively obtain four measurements at the cost of one sequential inversion. This

assumes large enough time-separation between the four sources to suppress contamination among

them. A question that arises is whether or not there exist statistically important correlations

among these four measurements. In Fig. 2 we show the dependence of the jackknife error on the

magnetic dipole GM1 for different coherent sink bin sizes. As can be seen, the jackknife errors

using one sequential inversion for each are the same as combining all four in single inversion. This

is a direct verification that cross-correlations between the different sinks are absent or negligible.

FIG. 2: Dependence of the jackknife error for GM1(Q2) on the coherent sink bin sizes. This test shows that

there is no problem with cross-correlations in the coherent sink method applied in this study.

Finally, the full set of lattice data obtained at a given Q2 value is analyzed simultaneously

by a global χ2 minimization using the singular value decomposition of an overconstrained linear

system [21, 36]. Generically, this consists of setting up the following linear over-complete system

of equations

P (q;µ) = D(q;µ) · F (Q2), (15)

where P (q;µ) represent the lattice measurements of the appropriately defined ratios of Eq. (9),
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each one with its associated statistical weight wk. The column vector F (Q2) contains the number

M of form factors to be extracted. If we let N represent the number of momentum vectors q and

current directions µ that contribute to a specific value of Q2, then D(q;µ) is a matrix structure of

the form N ×M which depends on kinematical form factors obtained from the trace algebra on

the employed matrix element. The form factors, at the specific Q2 value, are then extracted from

the minimization of the total χ2:

χ2 =
N∑
k=1

(∑2
j=1DkjFj − Pk

wk

)2

, (16)

by applying the singular value decomposition on the N ×M, D(q;µ) matrix. All the errors on the

lattice measurements as well as the errors on the form factors are determined from the jackknife

procedure.

III. ELECTROMAGNETIC N–TO–∆ TRANSITION FORM FACTORS

A. The electromagnetic matrix element

The electromagnetic transition matrix element

〈∆(p′, s′)|jµ|N(p, s)〉 = i

√
2
3

(
m∆ mN

E∆(p′) EN (p)

)1/2

ūσ(p′, s′)Oσµu(p, s) (17)

is decomposed in terms of three multipole form factors:

Oσµ = GM1(q2)KM1
σµ +GE2(q2)KE2

σµ +GC2(q2)KC2
σµ

where the kinematical factors in Euclidean space are given by

KM1
σµ = − 3

(m∆ +mN )2 +Q2

m∆ +mN

2mN
i εσµαβ pαp′

β
,

KE2
σµ = −KM1

σµ + 6 Ω−1(Q2)
m∆ +mN

2mN
2 i γ5 εσλαβ p

αp′
β
ε λγδ
µ pγp

′
δ ,

KC2
σµ = −6 Ω−1(q2)

m∆ +mN

2mN
i γ5 qσ

(
q2(p+ p′)µ − q · (p+ p′)qµ

)
. (18)

The p(s) and p′(s′) denote initial and final momenta (spins), q2 ≡ (p′−p)2, and uσ(p′, s′) is a Rarita-

Schwinger vector-spinor. We also define Ω(Q2) =
[
(m∆ +mN )2 +Q2

] [
(m∆ −mN )2 +Q2

]
, with

(Q = q, Q4 = iq0), so the lattice momentum transfer gives Q2 = −q2.

In this work we present results for the dominant magnetic dipole form factor GM1(q2) as well

as the sub-dominant electric GE2(q2) and Coulomb quadrupole GC2(q2) form factors. Note that

these are all scalar functions depending on the momentum transfer q2 = −Q2, whereas on the

lattice only the space-like q2 are accessible, thus Q2 > 0.
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B. The magnetic dipole form factor

The magnetic dipole form factor is directly evaluated from the optimized linear combination

SV1 with the vector current Vµ(x) insertion. In the large Euclidean time separation limit with the

∆ produced at zero momentum we obtain,

SV1 (q;Vµ) = iA

{
(p2 − p3)δ1,µ + (p3 − p1)δ2,µ + (p1 − p2)δ3,µ

}
GM1(Q2) . (19)

The vector index µ takes spatial values, µ = 1, 2, 3 and A is a kinematical constant,

A =

√
2
3
m∆ +mN

4mNEN

√
EN

EN +mN
. (20)

The local vector current of Eq. (5) is not conserved by the lattice action and the renormalization

constant ZV , given in Table I, is used to renormalize the current. ZV is determined from charge

conservation that dictates that the electric nucleon form factor is one at Q2 = 0, namely ZV =

1/GE(0) = 1/F1(0) where F1 is the Dirac form factor.

In Fig. 3 we show the DWF results for the magnetic dipole form factor GM1 at mπ = 330 MeV on

the coarse lattice and at mπ = 297 MeV on the fine lattice as a function of the momentum transfer

Q2. These are compared with our previous results obtained with a hybrid action approach that

uses Asqtad improved staggered fermions generated by the MILC collaboration [37] and domain

wall valence quarks [28]. The experimentally available data (for more details see Ref. [28]) are also

shown in Fig. 3 showing a discrepancy between lattice results and experiment. Although there is a

small decrease in the value of GM1 at high Q2 bringing lattice data closer to experiment, the slope

at small Q2 is still smaller than in experiment. The second observation is that although the hybrid

calculation used a lattice spacing about 50% larger than the fine DWF lattice, these data show no

significant finite a-effects. Fits to a dipole form, g0/(1+Q2/m2
0)2, as well as to an exponential form

g̃0 exp(−Q2/m̃2
0) are shown for the fine DWF lattice. As can be seen they both provide a good

description of the lattice results. A list of the fit parameters for all sets is provided in Table II.

The discrepancy between experiment and lattice results is clearly reflected in the value of the

dipole mass of m0 = 0.78 GeV obtained by performing a dipole fit to the experimental data as

compared to the m0 values obtained from the lattice results listed in Table II. The steeper rise of

the experimental results on GM1 as a function of Q2 near the origin is indicative of the onset of

strong chiral quark effects, or equivalently, the lack of strong pion cloud from the still heavy pion

mass lattice ensembles that are utilized. Similar behavior has also been observed in the nucleon

electromagnetic form factors studies [10, 11, 13]. The N to ∆ transition is particularly clean
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FIG. 3: The magnetic dipole GM1(Q2) using DWF fermions (both coarse and fine lattices) and using the

hybrid action. The circles show the experimental results. The solid blue (dashed black) line is a fit to dipole

(exponential) form for the fine DWF lattice.

.

since there is no ambiguity regarding disconnected contributions and thus the flatter dependence

observed in the N-to-∆ electromagnetic form factor must be of different origin. Large pion cloud

effects would have to set in as we lower the pion mass in order to explain the experimental curve.

Such effects have been shown to arise in chiral expansions [33] and it is thus interesting to repeat

the calculation for mπ < 250 MeV where they are expected to become more pronounced.
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mπ [GeV] g0 m0 [GeV] g̃0 m̃0 [GeV]

coarse NF = 2 + 1 DWF

0.329(1) 1.937(65) 1.171(44) 1.737(53) 1.025(32)

fine NF = 2 + 1 DWF

0.297(5) 2.115(161) 1.078(79) 1.907(127) 0.939(55)

HYBRID

0.353(2) 3.263(64) 1.305(27) 3.05935(61) 1.097(21)

Experiment- (various sources)

– 3.266(40) 0.745(4) 2.202(67) 0.776(10)

TABLE II: The fit parameters for the magnetic dipole form factor obtained for both a dipole and an

exponential fit form with fit parameters (g0, m0) and (g̃0, m̃0), respectively.

C. The electric quadrupole form factor–GE2

The sub-dominant electromagnetic quadrupole form factors GE2 and GC2 are extracted from

the optimized sources SV2 and SV3 . The relevant expressions for a static ∆ final state are [28]:

SV2 (q;µ) =− 3A

{(
(p2 + p3)δ1,µ + (p3 + p1)δ2,µ + (p1 + p2)δ3,µ

)GE2(Q2)

− 2
pµ
p2

(
p1p2 + p1p3 + p2p3

) [GE2(Q2) +
EN −m∆

2m∆
GC2(Q2)

]}
, (21)

for the spatial current directions µ = 1, 2, 3. For the temporal current direction µ = 4, we have

SV2 (q;µ = 4) =
−i 6 B

p2
(p1p2 + p1p3 + p2p3)GC2(Q2) , (22)

where B is given by B = p2

2m∆
A, and A is the constant provided in Eq. (20).

Notice that the above combination, if used alone, will not allow for the extraction of GC2 at the

lowest photon momentum q = (1, 0, 0) 2π
aL . Since chiral effects are stronger at low Q2 values and

experiments are targeted in that regime, we utilize the optimal linear three-function combination

SV3 in order to obtain GC2 also at the lowest Q2 point allowed on the lattice. The corresponding

expressions are

SV3 (q;µ) =− 3 A
2

pµ

[
3
(
δµ,3 − p2

3

p2

)
GE2(Q2) +

EN −m∆

2m∆

(
1− 3

p2
3

p2

)
GC2(Q2)

]
(23)

for µ = 1, 2, 3 and for the temporal component

SV3 (q;µ = 4) =
3 i B

2

(
1− 3

p2
3

p2

)
GC2(Q2), (24)
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which is directly proportional to GC2(Q2). Data obtained from both SV2 and SV3 are simultaneously

fitted in the overconstrained analysis in order to extract the momentum dependence of GE2 and

GC2 as accurately as possible.
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FIG. 4: In (a) the result of the electric quadrupole form factor GE2(Q2) extracted from the fine DWF lattice

measurements is shown. The results obtained from the hybrid action [28], as well as the experimentally

extracted results from Bates [38–40], Jlab [41] and MAMI [42, 43] are also plotted for comparison. In (b)

the corresponding REM evaluated in the rest frame of the ∆ baryon (p′ = 0) is depicted for the fine DWF

lattice as well as for the hybrid action [28]. The experimentally available results from [38–43] are also shown.

In Fig. 4(a) we plot the values of the electric quadrupole form factor GE2 for a range of values

of Q2 < 1 GeV2, in the case of the fine DWF lattice. These results are compared to the results

obtained from the mixed action [28]. We also mention here that in the case of the coarse DWF

lattice the statistical noise on the GE2 and GC2 values is large, so a zero value can therefore not

be excluded. The phenomenologically interesting ratio REM is defined as

REM = −GE2(Q2)
GM1(Q2)

, (25)

and has been used traditionally as a signal of deviation from spherical symmetry in the nucleon-∆

system. Early quark models as well as models of the proton wave function based on relativistic

quarks including two-body exchange currents agree that a small REM value in the −1 ∼ 2% regime

should appear. The experimental values included in Fig. 4(a) show practically no dependence on

Q2. The same is true for the lattice data and in fact a good consistency with the experiment is
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evident. The approach to the physical point can be predicted in chiral effective theory [33] where

a non-monotonic dependence on the pion mass is expected with a minimum at 200 MeV. It is a

significant challenge for the lattice to provide accurate results in the future in this regime in order

to crosscheck the pion dynamics.

D. The Coulomb quadrupole form factor–GC2

As mentioned in the previous section, the Coulomb quadrupole form factor is computed with

the help of Eqs. (21)-(24). In the case of GC2, Fig. 5(a) shows the results from the fine DWF

lattice for values of Q2 < 1.5 GeV2. The values of GC2(Q2) are positive and consistent with

previous results obtained using the mixed action [28], and are also shown on the same figure. The

experimentally measured ratio of Coulomb quadrupole to magnetic dipole form factor known also

as CMR is defined by

RSM = − |q|
2m∆

GC2(Q2)
GM1(Q2)

, (26)

in the frame where the ∆ is produced at rest. Lattice results on the RSM ratio are shown in Fig. 5(b)

where m∆ in Eq. (26) is set to the physical mass. Known values of RSM from various experiments

are included in Fig. 5(b) and as with REM show almost no dependence on the momentum transfer.

This is also the feature shown by the two lattice ensembles, the fine DWF at 297 MeV and the

hybrid scheme at 353 MeV which are in very good agreement with each other. Despite the large

statistical errors which escort the lattice values, they disagree with the experiment. Chiral effective

theory predicts a monotonic decrease of this ratio as the pion mass approaches the chiral limit,

which is different from the dependence of REM . The onset of large pion effects are expected below

300 MeV pions.

The overall conclusion is that QCD confirms non-zero quadrupole amplitudes pointing to the

existence of the deformation in the N−∆ system, as coded in the EMR and CMR ratios. However,

quantitative agreement with experiment has to await simulations at lighter pions masses, expected

to become available in the next couple of years. Statistical accuracy at these light pions masses in

particular for the sub-dominant form factors is an issue that has to be addressed. The use of the

coherent source technique as employed here is a way to increase statistical accuracy.
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FIG. 5: In plot (a) we show the Coulomb quadrupole form factor GC2(Q2) extracted from the fine DWF

lattice measurements. Along with it we provide also the result from the hybrid action approach [28]. Plot (b)

depicts the corresponding RSM evaluated in the rest frame of the ∆ baryon. Non-zero values are confirmed,

for the lowest Q2 values accessible on the lattices. We also show results using the hybrid action taken from

Ref. [28]. Experimental results are also included using the same notation as those in Fig. 4.

IV. AXIAL N TO ∆ TRANSITION FORM FACTORS AND THE

GOLDBERGER-TREIMAN RELATION

A. The Electro-weak and Pseudo-scalar transition matrix element

The nucleon to ∆ matrix element of the axial vector current is parameterized in terms of four

dimensionless form factors. In the Adler parameterization [44] it is written as follows

〈∆(p′, s′)|A3
µ|N(p, s)〉 = i

√
2
3

(
m∆mN

E∆(p′)EN (p)

)1/2

ūλ∆+(p′, s′)[(
CA3 (q2)
mN

γν +
CA4 (q2)
m2
N

p′ν
)

(gλµgρν − gλρgµν) qρ + CA5 (q2)gλµ +
CA6 (q2)
m2
N

qλqµ

]
uP (p, s) (27)

with the axial current given in Eq. (6).

The form factors CA3 (q2) and CA4 (q2) belong to the transverse part of the axial current and are

both suppressed [27] relative to the longitudinal form factors CA5 (q2) and CA6 (q2), which are the

dominant ones and are the ones considered in this work.
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Likewise, the pseudo-scalar transition form factor GπN∆(q2), is defined via

2mq〈∆(p′, s′)|P 3|N(p, s)〉 = i

√
2
3

(
m∆mN

E∆(p′)EN (p)

)1/2 fπm
2
π GπN∆(q2)
m2
π − q2

ūν∆+(p′, s′)
qν

2mN
uP (p, s)

(28)

where the normalization of the RHS of (28) is chosen such that GπN∆(q2) reproduces the phe-

nomenological coupling of the π −N −∆ vertex in the strong interaction Lagrangian,

LπN∆ =
gπN∆

2mN
∆̄µ∂µ~π · ~τ N + h.c. (29)

and the pseudo-scalar density is defined in Eq. (6). In the SU(2) symmetric limit with mq denoting

the up/down mass, the pseudo-scalar density is related to the divergence of the axial-vector current

through the axial Ward-Takahashi identity (AWI)

∂µAaµ = 2mqP
a . (30)

Taking matrix elements of the above identity between N and ∆ states leads to the non-diagonal

Goldberger-Treiman (GT) relation

CA5 (q2) +
q2

m2
N

CA6 (q2) =
1

2mN

GπN∆(q2)fπm2
π

m2
π − q2

. (31)

On the other hand, flavor symmetry in the hadronic world is expressed through the partially-

conserved axial vector current (PCAC) hypothesis

∂µAaµ = fπm
2
ππ

a (32)

which relates the pseudo-scalar current to the pion field operator and the pion decay constant fπ

which is here is taken to be 92 MeV. From Eqs. (30) and (32) the pion field πa is related to the

pseudo-scalar density via

πa =
2mqP

a

fπm2
π

. (33)

Assuming pion pole dominance we can relate the form factor CA6 to GπN∆ through:

1
mN

CA6 (q2) ∼ 1
2
GπN∆(q2)fπ
m2
π − q2

(34)

Then, substituting Eq. (34) in Eq. (31), we obtain the simplified Goldberger-Treiman (GT) relation

GπN∆(q2) fπ = 2mNC
A
5 (q2) (35)
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in an analogous fashion to the well known GT relation which holds in the nucleon sector studied on

the lattice in Ref. [21]. Pion pole dominance therefore fixes completely the ratio CA6 (q2)/CA5 (q2)

as a pure monopole term

CA6 (q2)
CA5 (q2)

=
m2
N

m2
π − q2

. (36)

The aim here is to calculate the dominant axial CA5 (q2), CA6 (Q2), as well as the pseudo-scalar

GπN∆(Q2) form factor and examine the validity of the GT relations within the dynamical DWF

framework, using both the coarse and fine DWF lattices.

B. The dominant axial CA5 , C
A
6 transition form factors

The extraction of the axial transition form factors requires data from two sets of the optimal

∆ sinks, namely S1 and S2, which are introduced in section II, for the local isovector axial-vector

current insertion A3
µ(x). The corresponding expressions for the large Euclidean time separation

ratios are:

SA1 (q; j) =B

[
− CA3

2

{
(EN − 2m∆ +mN ) +

(
3∑

k=1

pk

)
pj

EN +mN

}

− m∆

mN
(EN −m∆)CA4 +mNC

A
5 −

CA6
mN

pj

(
3∑

k=1

pk

)]
, (37)

for spatial components j = 1, 2, 3 of the axial current, and

SA1 (q; 4) = −iB
3∑

k=1

pk

[
CA3 +

m∆

mN
CA4 +

EN −m∆

mN
CA6

]
, (38)

for the temporal component. Since the four form factors are not completely decoupled by the above

relations, we also employ the optimal ∆ sink SA2 given in the plateau by

SA2 (q; j) = i
3A
2

[(
3∑

k=1

pk

)(
δj,1(p2 − p3) + δj,2(p3 − p1) + δj,3(p1 − p2)

)
CA3

]
, (39)

valid for spatial components j = 1, 2, 3. The kinematical factors A and B are given by

A =
B

(EN +mN )
, B =

√
2
3

√
(EN +mN ) /EN

3mN
. (40)

Data from SA1 and SA2 determine all four form factors CA3 , CA4 , CA5 and CA6 at each value of Q2 in

a simultaneous overconstrained analysis. ZA is required to renormalize the axial vector operator.

This has been computed by the UKQCD-RBC and LHP collaborations for both ensembles [11, 31,
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34]. The values provided in Table I confirm that ZV = ZA +O(a2) in the chiral limit, as expected

for the manifestly chiral DWF action.

The results for the axial dominant form factor CA5 from the two DWF lattices considered in this

work are presented in Fig. 6(a) and are in good agreement with the results obtained from the mixed

action approach at mπ = 353 MeV [21]. The Q2 dependence is well described by two-parameter

dipole (solid line) and exponential (dashed line) forms d0/(1+Q2/m2
A)2, d̃0 exp(−Q2/m̃2

A), respec-

tively, which are almost indistinguishable in the plot. The fitted values for CA5 (0) ≡ d0 (or d̃0 of

the exponential form) and the corresponding axial mass mA (m̃A) are given in Table III. In the

same figure, we also show a dipole fit to the available experimental data [45] which determine an

axial mass within the range of values of mA ∼ 0.85 − 1.1 GeV [45, 46], obtained from the pure

dipole parameterization. As in the case of GM1(Q2), we observe a flatter slope for the lattice data,

reflected in the larger value of the axial mass mA extracted from the lattice results. The lattice

results for the CA6 are plotted in Fig. 6. The curve shown in the figure corresponds to the form

d0 c0

(1 +Q2/m2
A)2(1 +Q2/m2)

, (41)

mπ [GeV] mA [GeV] d0 m̃A [GeV] d̃0 m [GeV] c0 ∆′ gπN∆

coarse NF = 2 + 1 DWF (K) (α′)

0.329(1) 1.588(70) 0.970(30) 1.262(36) 0.940(21) 0.509(15) 5.132(204) 0.030(5) 9.525(168) 13.936(588)

fine NF = 2 + 1 DWF

0.297(5) 1.699(170) 0.944(58) 1.314(98) 0.927(46) 0.507(33) 5.756(516) 0.037(6) 8.444(491) 16.257(867)

Hybrid action

0.353(3) 1.795(40) 0.903(11) 1.386(18) 0.888(8) 0.496(10) 5.613(150) 0.019(11) 9.323(219) 11.446(617)

TABLE III: The first column gives the pion mass in GeV. The second and third columns provide the dipole

fit parameters mA and d0 extracted from fitting CA5 to d0/(1 +Q2/m2
A)2, the fourth and fifth columns the

corresponding parameters obtained from the use of an exponential ansatz d̃0 exp(−Q2/m̃2
A), the sixth and

seventh columns the fit parameters m and c0 extracted from fitting the ratio CA6 /C
A
5 to a monopole form

c0/(1 +Q2/m2) for the N–to–∆ process. The eighth and ninth columns show the calculated values of the fit

parameters α′ and ∆′ defined in the linear fit of Eq. (51). The last two columns give the predicted values of

the strong coupling constant gπN∆ ≡ GπN∆(0). The first value of the strong coupling constant is determined

using the fit function of Eq. (50), while the second uses the linear fit based on Eq. (51), which is exactly

equal to α′.

In Fig. 7 we show the ratio CA6 /C
A
5 . The dashed black line shows the pion pole dominance

prediction of Eq. (36), where for mN and mπ we use the lattice extracted values that correspond

to the fine DWF lattice. The predicted curve does not describe the data at low-Q2 i.e., in the
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FIG. 6: Plot (a) shows the Q2-dependence of the axial form factor CA5 extracted from the coarse and fine

DWF lattices. The corresponding mixed action results [21] have also been included. The solid blue (dashed

black) line is from the dipole (exponential) fit for to the fine DWF lattice results. Note that the error band

corresponds to the dipole fit. The dotted brown line is the dipole fit to the experimental data. Lattice

results for CA6 are shown in (b) as a function of Q2. The solid blue line is the fit to the form of Eq. (41).

regime where the strong pion cloud effects are expected to be present. Fitting the ratio to the

monopole form c0/(1 +Q2/m2) allowing c0 and m to vary one can describe satisfactorily the data

on the ratio. Tha value of m is larger than the lattice value of the pion mass (see Table III). Such

behavior has been observed also for the hybrid and quenched Wilson actions [21].

C. The Pseudo-scalar transition form factor and Goldberger-Treiman relation

The pseudo-scalar form factor GπN∆(Q2), defined via the matrix element given in Eq. (28),

is extracted directly from the optimized linear combination S1 with the pseudo-scalar current

operator insertion of Eq. (6). In the large Euclidean time limit where only the nucleon and ∆

states dominate the corresponding ratio yields

SP1 (q ; γ5) =

√
2
3

√
EN +mN

EN

[
q1 + q2 + q3

6mN

fπm
2
π

2mq(m2
π +Q2)

]
GπN∆(Q2) . (42)

Notice that the extraction of GπN∆ from the above equation requires knowledge of the quark

mass mq and the pion decay constant, fπ, on the given ensembles. Calculation of fπ requires the
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FIG. 7: The ratio CA6 /C
A
5 versus Q2. The dashed black line refers to the fine DWF lattice results and is the

pion pole dominance prediction of Eq. (36). The solid blue line is a fit to a monopole form c0/(1 +Q2/m2)

with c0 and m adjustable parameters.

two-point functions of the axial-vector current A3
4 with local-smeared (LS) and smeared-smeared

(SS) quark sources,

CALS(t) =
∑
x

〈Ω| T
(
A3

4(x, t)Ã3
4(0, 0)

)
|Ω 〉 (43)

(and similarly for CASS), where A3
4(x, t) denotes the local operator and Ã3

4(x, t) the smeared oper-

ator. The pion-to-vacuum matrix element

〈0|Aaµ(0)|πb(p)〉 = ifπpµδ
ab (44)

is extracted from the two-point functions CALS and CASS and

f eff
π (t) = ZA

√
2
mπ

CALS(t)√
CASS(t)

emπt/2, (45)

yields fπ in the large Euclidean time limit.

The renormalized quark mass mq is determined from the AWI, via two-point functions of the
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pseudoscalar density with either local (P 3) or smeared (P̃ 3) quark fields,

CPLS(t) =
∑
x

〈Ω| T
(
P 3(x, t)P̃ 3(0, 0)

)
|Ω 〉 , (46)

(and similarly for CPSS). The effective quark mass is defined by

mAWI
eff (t) =

mπ

2
ZA
ZP

CALS(t)
CPLS(t)

√
CPSS(t)
CASS(t)

. (47)

and its plateau value yields mq. Note that ZP will be needed only if ones wants mq alone. Since ZP

enters also Eq. (42) it cancels –as does ZA since it comes with fπ– and therefore GπN∆ is extracted

directly from ratios of lattice three- and two-point functions without prior knowledge of either ZA

or ZP . We also note that the quark mass computed through (47) includes the effects of residual

chiral symmetry breaking from the finite extent L5 of the fifth dimension. These effects are of the

order of 60% for the coarse ensemble and 17% for the fine ensemble. Chiral symmetry breaking

affects the PCAC relations and therefore the value of GπN∆ through Eq. (42).
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FIG. 8: In (a) we plot the ratio of Eq. (48) as a function of Q2 as a validity test of the GT relation. Similarly,

in plot (b) ratio of Eq. (49) that relates to the validity of Eq. (34).

The ratio

fπGπN∆(Q2)
2mNCA5 (Q2)

(48)

is depicted in Fig. 8(a). It should be unity if the off-diagonal Goldberger-Treiman relation of

Eq. (35) is satisfied, which in turn requires that PCAC holds exactly at the pion masses simulated in
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these ensembles. Deviations from this relation are seen in the low-Q2 regime. For the fine ensemble

considered in this study, the deviations from unity are less severe. At momentum transfers, of about

Q2 & 0.5 GeV2, the relation is at least approximately satisfied and it is consistent among all actions

considered here.

Pion pole dominance relates CA6 to CA5 through Eq. (36). It is found that the lattice data for

all the actions employed in this work (see also Fig. 7) are indeed well described by the monopole

form c0/(1 +Q2/m2) but with c0 and m differ from what PCAC predicts. One can test pion pole

dominance on the ratio

mNfπGπN∆(Q2)
2(m2

π +Q2)CA6 (Q2)
(49)

which should be consistent with unity. As can be seen in Fig. 8(b), where this ratio is shown there

agreement with unity.

In Fig. 9 we compare results on GπN∆(q2) using the dynamical DWF lattices to the results

obtained from the hybrid scheme taken from Ref. [21]. There is an agreement for Q2 > 0.5 GeV2

whereas for lower Q2 values the fine DWF data appear to be higher than the data from the other

two lattices. The solid line is a one-parameter fit form to the fine DWF data

GπN∆(Q2) = K
(Q2/m2

π + 1)
(Q2/m2

A + 1)2(Q2/m2 + 1)
, (50)

which is expected assuming the validity of Eq. (36). The fit parameter K provides an estimate of

the strong coupling gπN∆ at Q2 = 0. In addition, we fit to the ansatz

GπN∆(Q2) = α′
(

1−∆′
Q2

m2
π

)
, (51)

shown by the dashed line. The fit parameters are provided in Table III. As can be seen, despite

the fact that both fits describe sufficiently well the data for 0.5 . Q2 . 1.5 GeV2, they yield quite

different values at Q2 = 0 prohibiting a reliable evaluation of gπN∆. Clearly, in order to achieve this

goal, a better understanding of the behavior at low-Q2 is required, since this quantity is sensitive

to pion loop effects that maybe affected by lattice artifacts such as the finite-L5 extent.

Finally, from our lattice results we can predict the currently unmeasured ratio CA5 /C
V
3 , which

is an important first approximation to the parity violating asymmetry. Its dependence in Q2 is

depicted in Fig. 10. From the plot we can see a very good agreement between the coarse and fine

DWF data, at least in the range up to Q2 ∼ 1.0 GeV, indicating that there are no lattice cut-off

effects regarding this quantity. It is also evident from the plot that at Q2 = 0 the ratio is expected
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FIG. 9: The plot shows the Q2-dependence of the pseudo-scalar transition form factor GπN∆. The solid

blue line is a fit to pion pole dominance form of Eq. (50) for the fine DWF ensemble. The dashed black line

is the linear fit given by Eq. (51). The strong coupling constant gπN∆ is the value of GπN∆ at Q2 = 0.

to have a non-zero value. It is noted that CV3 is computed from the relationship

CV3 =
3
2

m∆(mN +m∆)
2(mN +m∆)2 +Q2

(GM1 −GE2) (52)

and is therefore dominated by GM1. As both CA5 and GM1 lack chiral effects near the origin, the

ratio CA5 /C
V
3 is expected to be less sensitive to such effects. The present results for CA5 /C

V
3 are

also consistent within statistics with the results reported earlier in Ref. [27].

V. CONCLUSIONS

The nucleon to ∆ electromagnetic, axial and pseudoscalar transition form factors are calculated

using Nf = 2+1 dynamical domain wall fermions for pion masses of 330 MeV and 297 MeV for Q2

values up to about 2 GeV2. There is qualitative agreement between results obtained in the unitary

theory and corresponding results obtained using valence domain wall quarks on a staggered sea.

The momentum dependence of the dominant magnetic dipole, GM1, and axial, CA5 , form factors



26

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
A 5
/C

V 3

Q2 (GeV2)

DWF, mπ = 297 MeV
DWF, mπ = 330 MeV

FIG. 10: The plot describes the Q2-dependence of the ratio CA5 /C
V
3 . The results shown are those extracted

from both DWF lattices considered in this work.

are well described by dipole forms. They both show a slower fall-off with Q2 than the comparison

to the experimental data, a fact that is reflected in the heavier dipole masses that fit the lattice

data. Pion cloud effects are expected to dominate the low-Q2 dependence and therefore simulations

with pion mass below 300 MeV are required in order to allow the evaluation of such effects from

first principles.

The phenomenologically interesting sub-dominant electromagnetic quadrupole form factors GE2

and GC2 have been calculated in the case of the fine DWF lattice using the coherent sink technique

in order to increase the statistical accuracy. The results confirm a non-zero value at low Q2 ≤
1 GeV2. The EMR and CMR ratios are almost Q2 independent. The EMR values are in agreement

with the experiment, whereas the strength of the CMR is underestimated. This can be understood

in chiral effective theory, which predicts different chiral behavior for the two quantities. The non-

zero values calculated in QCD are in accord with the experimental determinations [8, 38, 40–43]

and confirm a deviation from spherical symmetry in the Nucleon-∆ system.

The axial transition form factor CA6 is dominated by chiral symmetry breaking dynamics, which
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is directly reflected in the pion pole dominance. In addition, the pseudoscalar form factor GπN∆

is computed and the non-diagonal Goldberger-Treiman relation, which is a direct consequence of

PCAC is shown to be well satisfied by the lattice data, especially for the lowest mass on the

fine DWF ensemble. Pure monopole dependence of the CA6 /C
A
5 ratio is well satisfied, but with

monopole masses considerably heavier than the corresponding lattice pion masses. The low-Q2

dependence of GπN∆ appears to be non-trivial and the extraction of the phenomenological strong

π−N −∆ coupling, gπN∆, requires careful understanding of the matrix element systematics, since

it will be sensitive to both chiral and lattice cutoff effects.

In conclusion, the N − ∆ transition contains valuable information that is complementary to

nucleon and Delta form factors. Also, since the transition is isovector, it provides an opportunity

to assess the importance of disconnected quark loop effects. Furthermore, it provides constraints

on the low energy constants that enter the chiral effective description of hadron properties. This

work, utilizing dynamical chiral fermions corresponding to pion masses of 297 MeV and 330 MeV,

together with related calculations of nucleon and Delta form factors, is a significant advance in

the quest to understand from first principles how the closely related structure of the nucleon and

Delta arise from QCD. The outstanding challenge for the future is to extend these calculations to

the physical pion mass and reduce statistical and systematic errors to the level of a few percent.

It is an appealing challenge for Lattice QCD to perform precise calculations for pion masses that

approach the physical point with all systematics under control. Simulations with pions almost at

its physical value will soon become available and it will be important to continue the investigation

of these quantities.
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VI. APPENDIX

Q2 (GeV2) GM1

DWF (Nf = 2 + 1), a−1 = 1.73 GeV, mπ = 330 MeV

0.141 1.581(40)

0.380 1.198(32)

0.605 0.933(33)

0.819 0.786(39)

1.022 0.641(30)

1.217 0.545(33)

1.584 0.449(50)

1.757 0.369(42)

1.925 0.332(51)

2.088 0.238(48)

2.247 0.204(99)

TABLE IV: Coarse DWF results for GM1, their Q2-dependence and the corresponding (form factor) jackknife

statistical errors.

Q2 (GeV2) GM1 GE2 EMR (%) GC2 CMR (%)

DWF (Nf = 2 + 1), a−1 = 2.34 GeV, mπ = 297 MeV

0.154 1.602(93) 0.0508(344) -3.118(2.064) 0.249(142) -2.748(1.595)

0.398 1.168(75) 0.0146(208) -1.129(1.686) 0.122(98) -2.624(2.144)

0.627 0.928(84) 0.0156(259) -1.528(2.749) 0.006(124) -3.145(4.036)

0.844 0.875(101) 0.0441(375) -5.246(4.259) 0.158(105) -6.439(4.348)

1.051 0.593(72) 0.0261(225) 4.263(3.707) 0.186(67) -12.490(4.742)

1.248 0.417(86) 0.0206(251) 4.874(5.781) 0.197(74) -20.847(8.769)

1.620 0.439(44)

1.802 0.224(159)

1.964 0.165(181)

TABLE V: DWF results for GM1, GE2, EMR (%), GC2 and CMR (%) along with their Q2-dependence

shown in the first column. The errors shown are statistical jackknife errors.
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Q2 (GeV2) CA5 CA6 GπN∆

DWF (Nf = 2 + 1), a−1 = 1.73 GeV, mπ = 330 MeV

0.141 0.849(19) 2.831(106) 12.446(371)

0.380 0.754(19) 1.547(55) 13.379(436)

0.605 0.608(24) 0.888(51) 13.187(633)

0.819 0.604(27) 0.755(47) 10.941(86)

1.022 0.500(23) 0.528(29) 9.943(727)

1.217 0.415(26) 0.383(28) 9.026(870)

1.584 0.399(44) 0.287(38) 5.379(1.448)

1.757 0.289(38) 0.193(28) 5.741(1.625)

1.925 0.263(45) 0.169(33) 7.055(1.359)

2.247 0.186(46) 0.093(29) 4.942(1.740)

DWF (Nf = 2 + 1), a−1 = 2.34 GeV, mπ = 297 MeV

0.154 0.825(42) 3.103(270) 15.292(1.005)

0.398 0.764(46) 1.680(138) 15.601(1.145)

0.627 0.601(61) 0.945(139) 11.803(1.784)

0.844 0.669(72) 0.907(127) 12.672(2.807)

1.051 0.502(158) 0.579(80) 11.556(2.098)

1.248 0.472(76) 0.501(85) 4.040(2.504)

1.620 0.134(278) -0.008(213) 16.132(17.140)

1.802 0.208(161) 0.105(117) 3.924(6.088)

1.964 0.087(163) 0.022(114) 2.302(6.978)

2.128 0.097(384) 0.084(275) -1.382(12.666)

TABLE VI: DWF results for CA5 , CA6 and GπN∆ along with their Q2-dependence shown in the first column.

The errors quoted are jackknife statistical errors.


