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We examine the use of hadronic event generators, such as Pythia or Herwig, to estimate the
production rate of loosely-bound hadronic molecules, such as the deuteron and the X(3872). In
the case of the deuteron, we point out that there are large uncertainties in the normalization of the
predictions using event generators, because baryon pair distributions are not among the inputs used
to tune the event generators. Predictions using Pythia for anti-deuteron production in Υ decay are
compared to measurements by the CLEO Collaboration. They suggest that Pythia overpredicts
the probability of producing pairs of baryons, at least in Υ decay into three gluons, and that
the standard value of the coalescence parameter underpredicts the probability for formation of a
deuteron from a neutron and proton with small relative momentum. In the case of the X(3872), we
discuss a proposed upper bound on the prompt cross section at the Tevatron that has been used as
an argument against the X(3872) being a loosely-bound charm meson molecule. We demonstrate
that this proposed upper bound is invalid by showing that the analogous upper bound for the
anti-deuteron would be smaller than the observed anti-deuteron cross section.

PACS numbers: 12.38.-t, 12.39.St, 13.20.Gd, 14.40.Gx

I. INTRODUCTION

Quantum mechanics predicts that a bound state that is sufficiently close to a 2-body threshold and that couples
to that threshold through a short-range S-wave interaction has universal properties that depend only on its binding
energy. Such a bound state is necessarily a loosely-bound molecule in which the constituents are almost always
separated by more than the range. One of the universal predictions is that the root-mean-square (rms) separation of
the constituents is (4µEX)−1/2, where EX is the binding energy of the resonance and µ is the reduced mass of the
two constituents. As the binding energy is tuned to zero, the size of the molecule increases without bound. A classic
example of a loosely-bound S-wave molecule is the deuteron, which is a bound state of the proton and neutron with
binding energy 2.2 MeV. The proton and neutron are correctly predicted to have a large rms separation of about
3.1 fm.

An even more ideal example of a loosely-bound S-wave molecule is the charmonium-like state X(3872), provided
that its JPC quantum numbers are 1++. Measurements of its mass in the decay mode J/ψ π+π− indicate that it is
below the threshold for D∗0D̄0 by 0.42±0.39 MeV [1–4]. If its quantum numbers are 1++, it has an S-wave coupling to
D∗0D̄0. In that case, it must be a loosely-bound molecule whose constituents are the superposition D∗0D̄0 +D0D̄∗0.
The constituents are predicted to have a large rms separation of 4.9+13.4

−1.4 fm.
The production rate of a deuteron or anti-deuteron in high energy collisions is an important problem for several

reasons. Anti-deuterons can be produced by the annihilation or decay of very massive dark-matter particles. Thus
they provide a low-background channel for the indirect detection of dark matter [5]. The production of deuterons and
anti-deuterons has been observed in relativistic heavy ion collisions [6, 7]. Their production serves as a probe of the
expanding and cooling hadronic fluid at the time of its freeze-out into free-streaming hadrons. The production of an
anti-deuteron has also been observed in many high energy physics experiments, including Υ decays [8, 9], pp̄ collisions
[10], photoproduction [11], Z0 decays [12], and deep inelastic electron scattering [13]. To explain the production rate
quantitatively in these experiments is a challenge. The production rate of the X(3872) is important for understanding
the nature of some of the new cc̄ mesons above the open charm threshold that have been discovered in recent years
[14]. Thus far, the X(3872) has been observed only in decays of B mesons and through inclusive production in pp̄
collisions. It has been claimed that the observed prompt production rate of the X(3872) at the Tevatron is orders of
magnitude too large to be compatible with its identification as a loosely-bound S-wave molecule [15]. A subsequent
analysis challenged this conclusion [16]. The resolution of the controversy has important implications for studies of
the X(3872) in experiments at the Large Hadron Collider.

Estimating the production rate of a loosely-bound S-wave molecule in high energy collisions is also an interesting
problem. Intuitively, one expects the cross section to be very small, because one would expect the binding of the
constituents into a molecule to be easily disrupted by the enormous energies available in a high energy collision. On
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the other hand, since the constituents of the molecule are almost always outside the range of their interactions, they
must be subject to a very strong force during the small fraction of time in which they are close together. This strong
force also operates between constituents that are produced with small relative momentum in a high energy collision.
The production rate of the molecule involves the interplay between this very strong force and the very weak binding.

One tool that can be helpful in estimating the production rate of a loosely-bound S-wave hadronic molecule is a
hadronic event generator, such as Pythia [17] or Herwig [18]. These event generators can be interpreted as purely
phenomenological models for hadron production with numerous parameters that have been adjusted to fit data from
many high energy physics experiments. They should provide accurate predictions for observables that are sufficiently
similar to the ones that have been used to tune the parameters, but one should be wary of applying them to new
phenomena. They may be able to take into account the effects of generic hadronic interactions, but they should not
be expected to take into account the effects of finely-tuned interactions, such as those responsible for the existence of
loosely-bound hadronic molecules. Event generators have been used to estimate the production rate of anti-deuterons
in the annihilation of dark-matter particles [19]. They have also been applied to the production rate of the X(3872)
in hadron colliders [15, 16, 20].

In this paper, we address some of the issues involved in using hadronic event generators to estimate the production
rate of loosely-bound S-wave hadronic molecules. In Section II, we discuss the use of an event generator to estimate
the production rate of the anti-deuteron. In Section III, we compare measurements of anti-deuteron production in Υ
decays by the CLEO Collaboration with predictions from an event generator. In Section IV, we discuss the controversy
involving the use of event generators to estimate the prompt production rate of the X(3872). We discuss our results
in Section V.

II. EVENT-GENERATOR MODEL FOR DEUTERON PRODUCTION

The coalescence model is a purely phenomenological model for deuteron and anti-deuteron production [21]. Ac-
cording to this model, the differential distribution for a deuteron of momentum P is the product of the differential
distributions for a neutron and a proton with equal momenta 1

2
P multiplied by a Lorentz boost factor E/2mN and

by a phenomenological constant. That constant is often expressed as the volume 4πp3
0/3 of a sphere in momentum

space. The coalescence model can be “derived” from two assumptions:

1. A neutron and a proton will bind to form a deuteron if they are produced with relative momentum less than p0.

2. The joint probability distribution for producing n and p factors into the product of independent probabilities
for n and p.

From an analysis of data on anti-deuteron production in proton-proton and proton-nucleus collisions with nucleon-
nucleon center-of-mass energies in the range 20 to 53 GeV, the coalescence parameter has been determined to be
p0 = 79 MeV [22]. We will use p0 = 80 MeV to avoid the implication that this parameter can be determined with
two digits of accuracy. We will refer to this value as the standard coalescence parameter for the deuteron.

Kadastik, Raidal, and Strumia recently pointed out that the coalescence model fails dramatically for the production
of anti-deuterons in the annihilation of a pair of heavy dark-matter particles [19]. It predicts incorrectly that the
probability for producing an anti-deuteron scales as 1/M2, where M is the mass of the dark-matter particle. However
the probability is actually a slowly varying function of M . The reason the coalescence model fails is that a pair of
dark-matter particles annihilates predominantly into two jets, and the d̄ is almost always produced by the coalescence
of n̄ and p̄ within the same jet. While the separate probability distributions for n̄ and p̄ are spherically symmetric,
the joint probability distribution for n̄ and p̄ is sharply peaked for n̄ and p̄ in the same direction. Thus assumption 2
of the coalescence model breaks down completely.

Kadastik, Raidal, and Strumia proposed an alternative model for the production of anti-deuterons that gives the
correct scaling behavior when the production is dominated by jets [19]. They retained assumption 1, but assumption
2 was replaced by an alternative assumption:

2 ′. The joint probability distribution for producing n and p can be calculated using a hadronic event generator,
such as Pythia or Herwig.

The model consisting of assumptions 1 and 2 ′ implies a simple equation for the inclusive deuteron cross section:

σ[d] = σnaive[np(k < p0)]. (1)

The subscript “naive” on the right side refers to the np cross section being calculated using a method that is not
informed about the fine-tuning of interactions that is responsible for binding the n and p into d. In Ref. [19], the
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authors used this model to calculate the d̄ yield per dark-matter annihilation event for various pairs of jets, using
Pythia as their event generator. For a dark-matter particle with a mass M of about 100 GeV, the yields are larger
than those predicted by the coalescence model by more than an order of magnitude and the discrepancy increases like
M2.

It should be obvious from its formulation that this model is a purely phenomenological model with no fundamental
justification. However this model also has a practical problem in that it relies on Pythia or Herwig to give the
distribution for pairs of baryons. Measurements of single-baryon momentum distributions in various high energy
physics experiments have been used to tune these event generators, but, to the best of our knowledge, information
about baryon pairs has not been used. Thus one should allow at least for an unknown normalizing factor Knp in its
predictions for np pair distributions. This can be expressed as an alternative to the assumption 2 of the event-generator
model:

2 ′′. The joint probability distribution for producing n and p can be calculated using a hadronic event generator,
such as Pythia or Herwig, up to a normalizing factor Knp.

The model consisting of assumptions 1 and 2 ′′ implies a simple equation for the inclusive deuteron cross section:

σ[d] = Knp σnaive[np(k < p0)]. (2)

We will refer to this model as the event-generator model.
In the spirit of hadronic event generators, the normalizing factor Knp and the coalescence parameter p0 should be

treated as phenomenological parameters that must be determined from data. Their values need not be the same in
all high energy physics processes. Their values for large transverse momentum processes, which are dominated by
jets, could be different from their values for low transverse momentum processes. They could have different values
for processes initiated by quarks and antiquarks than for processes initiated by gluons. In the absence of data that
can be used to determine p0 and Knp separately, the most reliable predictions of the event-generator model will be
for ratios of observables in which Knp cancels.

The ALEPH Collaboration has measured the inclusive decay rate of the Z0 into an anti-deuteron [12]. The number
of anti-deuterons per hadronic Z0 decay is

B[Z0 → d̄+X ]

B[Z0 → hadrons]
= (5.9 ± 1.8 ± 0.5) × 10−6. (3)

In Ref. [19], the production rate of d̄ in Z0 decay was calculated using the Pythia event generator. Taking the
measurement in Eq. (3) as the input, the coalescence parameter was determined to be p0 = 81 ± 9 MeV. This is
consistent to within errors with the standard value p0 = 80 MeV. In the event-generator model, the branching ratio
in Eq. (3) is sensitive only to the combination Knpp

3
0. Hadronic decays of the Z0 are dominated by its decay into

a quark and antiquark, each of which hadronizes into a jet. Thus a conservative conclusion from the calculation in
Ref. [19] is that Knpp

3
0 ≈ (80 MeV)3 for d̄ production in a jet initiated by a quark or antiquark.

III. ANTI-DEUTERON PRODUCTION IN Υ DECAYS

The high energy process for which there is the most information about anti-deuteron production is Υ decay. In
this section, we compare measurements of anti-deuteron production in Υ decay by the CLEO Collaboration [9] with
predictions of the event-generator model.

A. CLEO measurements

The CLEO Collaboration has studied the production of the deuteron and the anti-deuteron in a data sample of
2.2× 107 Υ(1S) decays [9]. The rates for the deuteron and anti-deuteron are presumably equal, but the backgrounds
are smaller for the anti-deuteron, because the CLEO detector is made of matter rather than antimatter. They also
studied the production of the anti-deuteron d̄ in e+e− annihilation off the resonance. In e+e− annihilation, the
production process is initiated by the decay of a virtual photon into a light quark-antiquark pair. In Υ decay, the
production process is initiated either by the annihilation of bb̄ into a virtual photon, which then decays into a light
qq̄ pair, or by the direct annihilation of bb̄ into partons, such as 3 gluons. The virtual-photon contributions to the
inclusive partial width of Υ into d̄ and to the total hadronic width of Υ can both be determined from measurements
off the resonance. CLEO therefore found it convenient to express their results in terms of the “direct” branching
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FIG. 1: Fraction of Υ → ggg events generated by Pythia with an n̄p̄ pair in the final state as a function of the relative
momentum k between the n̄ and p̄. The dotted line is a phase space distribution proportional to k2.

fraction, in which the virtual-photon contributions have been subtracted from both the numerator and denominator.
Their result for the direct branching fraction was

Bdir[Υ → d̄+X ] = (3.36 ± 0.23 ± 0.25)× 10−5. (4)

One can interpret this as the inclusive branching fraction into d̄ from the annihilation of Υ into 3 gluons. For d̄
production from the decay of a virtual photon, CLEO set an upper bound on the inclusive branching fraction of
about 10−5. Thus the production rate of d̄ is significantly larger in gluon-initiated processes than in qq̄-initiated
processes.

The presence of the anti-deuteron in an Υ decay event implies that the event also includes at least two baryons.
The CLEO Collaboration studied the nature of the associated baryons. Their results were consistent with the d̄ being
accompanied by nn, np, and pp with probabilities 25%, 50%, and 25%, respectively. They also found 3 events out
of their 338 d̄ candidates in which the d̄ was accompanied by a d. The ratio of these numbers of events provides an
estimate of the branching ratio for inclusive d̄+ d and inclusive d̄:

Bdir[Υ → d̄+ d+X ]

Bdir[Υ → d̄+X ]
≈ 0.009. (5)

The naive assumption that N events can have fluctuation of ±
√
N implies that the error bar is at least as large as

±0.006.

B. Event-generator model

The event-generator model can be used to predict the production rate of an anti-deuteron from the annihilation
of Υ into 3 gluons. We have generated 140 × 106 Υ → ggg events using Pythia. The fraction of Υ → ggg events
that include an n̄p̄ pair is displayed in Figure 1 as a function of the relative momentum k between the n̄ and p̄. The
fraction of events follows a phase space distribution proportional to k2 out to about 200 MeV. We can therefore use
the phase space distribution to calculate the fraction of n̄p̄ events with k < p0. The prediction of the event-generator
model for the direct branching fraction into d̄ is

Bdir[Υ → n̄p̄(k < p0) +X ] = 1.1 × 10−4 Knp

( p0

80 MeV

)3

. (6)

If we set Knp = 1 and p0 = 80 MeV, this prediction is larger than the CLEO measurement of the direct branching
fraction in Eq. (4) by about a factor of 3.5.
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FIG. 2: Fraction of Υ → ggg → n̄p̄(k1 < 80 MeV) + X events generated by Pythia with an np pair in the final state as a
function of the relative momentum k2 between the n and p. The dotted line is a phase space distribution proportional to k2

2 .

The production of inclusive d̄ + d events can be studied in the event-generator model by counting the events
with both an n̄p̄ pair and an np pair, each of which has relative momentum smaller than p0. The fraction of
Υ → ggg → n̄p̄(k1 < p0) +X events that include an np pair in the final state as a function of the relative momentum
k2 between n and p is shown in Fig. 2. The fraction of events follows a phase space distribution proportional to k2

2

out to about 200 MeV. We can therefore use the phase space distribution to calculate the fraction of np events with
k2 < p0. The prediction of the event-generator model for the ratio of the direct branching fractions into d̄+d and d̄ is

Bdir[Υ → n̄p̄(k1 < p0) + np(k2 < p0) +X ]

Bdir[Υ → n̄p̄(k1 < p0) +X ]
= 1.6 × 10−3

( p0

80 MeV

)3

. (7)

The numerator is proportional to a single factor of Knp, because the presence of the n̄p̄ pair requires an accompanying
antibaryon pair. Thus the normalizing factor Knp cancels between the numerator and denominator. If we set
p0 = 80 MeV in Eq. (7), this prediction is smaller than the estimate of the branching ratio from CLEO data in Eq. (5)
by about a factor of 6.

The parameters Knp and p0 of the event-generator model can be adjusted so that the predictions of the model
in Eqs. (6) and (7) agree with the CLEO results in Eqs. (4) and (5). Setting Eqs. (6) and (4) equal, we get
Knpp

3
0 = (53± 5 MeV)3. Setting Eqs. (7) and (5) equal, we get the estimate p0 ≈ 140 MeV. Allowing for a statistical

error of ±1/
√

3 in Eq. (5), the estimate for p0 ranges from 105 MeV to 163 MeV. Combining the two results, we obtain
the estimate Knp ≈ 0.05 with an error that is at least ±0.03. The large errors in our estimates for p0 and Knp come
from the small number of d̄+ d candidates observed in the experiment. It is somewhat surprising that Knp is one or
two orders of magnitude smaller than 1. Pythia predicts that 3.6% of the Υ → ggg events include np and therefore
also two antibaryons. In these events, almost half the 9.46 GeV of available energy goes into the rest energy of the
four baryons and antibaryons. The predictions of an event generator for rare events like these can be expected to have
large errors unless they are tuned to data. Since double baryon production was not used in the tuning of Pythia, it is
plausible that there is a large error in its prediction for inclusive np production. If Pythia significantly overpredicts
the probability of creating an np pair, the standard coalescence parameter p0 = 80 MeV must also underpredict the
probability of their binding to form d, at least in the process Υ → ggg.

IV. THE X(3872) PRODUCTION CONTROVERSY

Hadronic event generators have been used by two different groups to estimate the production rate of the X(3872).
Their estimates differ by orders of magnitude and lead to opposite conclusions about whether the X(3872) can be a
loosely-bound charm meson molecule. In this section, we present a critical evaluation of those estimates.
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A. Estimates of the X(3872) production rate

The quantum numbers of the X(3872) have been narrowed down experimentally to two possibilities, 1++ or 2−+,
by the observation of its decay into J/ψγ [23] and by an analysis of its decays into J/ψ π+π− [24]. The observation
of its decay into D0D̄0π0 [25], whose threshold is lower by only about 7 MeV, disfavors spin 2 because of angular
momentum suppression. On the other hand, a recent analysis of decays into J/ψ π+π−π0 favors negative parity [26].
Thus whether the quantum numbers of the X(3872) are 1++ or 2−+ remains an open experimental question. We will
assume that they are 1++, in which case the X(3872) must be a loosely-bound charm meson molecule whose particle
content is

X =
1√
2

(

D∗0D̄0 +D0D̄∗0
)

. (8)

Thus, if the event-generator model can be used to calculate the production rate of loosely-bound hadronic moelcules,
it should be applicable to the X(3872).

The production ofX(3872) in high energy hadron collisions comes from two mechanisms: the production of b hadrons
followed by their weak decay into X(3872) and the prompt production of X(3872) through QCD mechanisms. The
prompt cross section for X(3872) at the Tevatron can be estimated from measurements by the CDF Collaboration
[27]. The cross section for X(3872) with transverse momentum pT > 5 GeV and rapidity |y| < 0.6 is [15, 16]

σ[X(3872)] Br[X → J/ψ π+π−] = 3.1 ± 0.7 nb, (9)

up to corrections for acceptances and efficiencies that are expected to be small. From measurements of decays of
X(3872) produced in B meson decays, one can infer that the branching fraction for X(3872) to decay into J/ψ π+π−

is less than about 10% [16]. Thus the experimental lower bound on the cross section for X(3872) is about 30 nb.
Two groups have used event generators to estimate the prompt cross section for the X(3872) at the Tevatron pp̄

collider [15, 16]. Both estimates are expressed in terms of naive cross sections for the inclusive production of D∗0D̄0

and D0D̄∗0 with relative momentum k integrated up to some maximum kmax. Hadronic event generators, such as
Pythia or Herwig, can be used to calculate the naive cross sections for the charm meson pairs. These event generators
are tuned to reproduce charm meson distributions in various high energy experiments, but they have not been tuned
to reproduce charm meson pair distributions. Thus one should allow at least for an unknown normalizing factor KD∗D̄

in their predictions for charm meson pair distributions.
The dramatic discrepancy between the estimates in Refs. [15, 16] does not depend on the event generators. In

Ref. [15] (BGPPS), the authors proposed an upper bound on the prompt cross section for the X(3872):

σ[X(3872)] <
1

2
KD∗D̄

(

σnaive[D
∗0D̄0(k < kmax)] + σnaive[D

0D̄∗0(k < kmax)]
)

. (10)

Their prescription for kmax was proportional to the binding momentum γX =
√

2µEX of the X(3872), where µ is
the reduced mass of D∗0D̄0. In Ref. [16] (AB), the authors proposed an order-of-magnitude estimate for the prompt
cross section for the X(3872):

σ[X(3872)] ≈ 3πγX

kmax

KD∗D̄

(

σnaive[D
∗0D̄0(k < kmax)] + σnaive[D

0D̄∗0(k < kmax)]
)

. (11)

Their prescription for kmax was the inverse of the range of the interactions between the charm mesons, give or take a
factor of 2. Taking 1/mπ as an estimate of the range, their prescription reduced to kmax = mπ, give or take a factor
of 2. Now the naive cross sections in Eqs. (10) and (11) scale like k3

max from phase space. The ratio of the estimate
in Eq. (11) with kmax = mπ to the proposed upper bound in Eq. (10) with kmax = γX is therefore 6π(mπ/γX)2.
For EX = 0.4 MeV, this ratio is about 530. Thus the estimate in Eq. (11) is more than two orders of magnitude
larger than the proposed upper bound in Eq. (10). This dramatic discrepancy implies that there must be a serious
conceptual error in the derivation of either the upper bound in Eq. (10) or the estimate in Eq. (11) or both.

In Ref. [15], BGPPS used both Pythia and Herwig to calculate the upper bound in Eq. (10) for the prompt
X(3872) cross section at the Tevatron. They used measurements of D0D∗− production at the Tevatron to determine
the normalizing factor KD∗D̄. The upper bounds on σ[X ] calculated by BGPPS using kmax = 35 MeV were 0.11 nb
using Pythia and 0.07 nb using Herwig. These theoretical upper bounds are more than two orders of magnitude
smaller than the experimental lower bound of about 30 nb implied by Eq. (9). BGPPS concluded that the X(3872)
was unlikely to be a loosely-bound charm meson molecule.

This conclusion was challenged in Ref. [16]. AB pointed out that the constituents of a loosely-bound S-wave molecule
need not be created with relative momentum of order the binding momentum γX . Rescattering of the constituents



7

allows the formation of a bound state from constituents that are created with much larger relative momentum. They
argued that a more appropriate value for kmax in the upper bound in Eq. (10) is the inverse of the effective range
for the charm mesons. The effective range is not known, but a reasonable order-of-magnitude estimate is 1/mπ. If
the upper limit kmax = 35 MeV used in Ref. [15] is replaced by kmax = mπ, the upper bound is increased by about a
factor of 60. This removes much of the discrepancy between the upper bound in Eq. (10) and the experimental lower
bound implied by Eq. (9).

In Ref. [16], AB used Pythia to calculate the estimate in Eq. (11) for the prompt X(3872) cross section at the
Tevatron. They also used Madgraph to generate the Monte Carlo events more efficiently. They followed Ref. [15] in
using measurements of D0D∗− production at the Tevatron to determine the normalizing factor KD∗D̄. The required
factor ranges from 0.7 to 1.6 depending on the specific data used to determine the normalization. For EX = 0.3 MeV
and kmax = mπ, they obtained the estimate σ[X ] ≈ 6 nb. The experimental lower bound of about 30 nb implied
by Eq. (9) can be accomodated by choosing kmax > 300 MeV. Given the large uncertainties, AB concluded that the
observed prompt production rate of the X(3872) at the Tevatron is compatible with its identification as a loosely-
bound charm meson molecule.

The dramatic difference in the conclusions of Refs. [15] and [16] concerning the nature of the X(3872) comes from
the dramatic conflict between the upper bound in Eq. (10) and the estimate in Eq. (11). We proceed to reexamine
the derivation of these results. For simplicity, we carry out the discussion in the specific context of the deuteron.
This avoids the notational complexity associated with constituents of the X(3872) being the superposition of charm
mesons given in Eq. (8).

B. Upper bound of Ref. [15] applied to the deuteron

We first consider the upper bound in Eq. (10), which was derived by BGPPS in Ref. [15]. The analogous upper
bound for the inclusive production of the deuteron is

σ[d] < Knp σnaive[np(k < kmax)]. (12)

The prescription of BGPPS for kmax will be described below. Their derivation of this upper bound begins by expressing
the inclusive cross section as the square of the production amplitude, summed over additional particles in the final
state. The production amplitude is approximated by the product of the momentum-space wavefunction ψ(k) for the
deuteron and the production amplitude for an np pair with relative momentum k, integrated over the vector k. The
range of the integral over k can be restricted to the region 0 < k < kmax in which the integrand has significant support.
By applying the Schwartz inequality to the square of the production amplitude, one can derive the inequality

σ[d] ≤ σ[np(k < kmax)]

∫

d3k

(2π)3
|ψ(k)|2 θ(k < kmax). (13)

The last factor is the incomplete normalization integral for the wavefunction of the molecule, so it is less than 1. If the
cross section σ for np with k < kmax is dominated by generic hadronic scattering processes, it can be approximated by
a naive cross section σnaive that is not informed about the binding mechanism for the molecule. It σnaive is calculated
using an event generator, one should also allow for a normalization factor Knp for the production of a pair of baryons.
This gives the upper bound in Eq. (12).

While the derivation of the upper bound in Eq. (12) is plausible, its validity hinges on the value of kmax. The right
side of Eq. (12) is a strictly increasing function of kmax, so the inequality is certainly satisfied for sufficiently large
kmax. The issue is whether the prescription for kmax used by BGPPS is valid for a loosely-bound molecule. Their
prescription was not stated clearly in Ref. [15], but a partial clarification is given in Ref. [28]. It can be expressed
as kmax = k0 + ∆k, where k0 and ∆k are the typical momentum and the momentum spread in the bound state.
Their prescription for k0 seems to be the binding momentum: k0 = γd ≡

√
mNEd. Their prescription for ∆k seems

to be the minimum spread in the momentum that is allowed by the uncertainty principle for a wavefunction whose
rms separation is γ−1

d : ∆k = γd/2. (The universal prediction for the rms separation in a loosely-bound molecule is

γ−1

d /
√

2.) Since both k0 and ∆k are proportional to γd, we can summarize their prescription by kmax = 1.5 γd. We
proceed to critically examine this prescription.

The prescription kmax = k0 + ∆k in Ref. [15] is completely arbitrary. One could equally well have used the
prescription kmax = ak0 + b∆k, where a and b are numerical coefficients that are not too much larger than 1. This
is important, because the naive cross section in Eq. (12) scales like k3

max and is therefore very sensitive to kmax. A
factor of 2 change in kmax will change the upper bound by almost an order of magnitude.

The prescriptions for k0 and ∆k used in Ref. [15], which are both proportional to γd, are not only arbitrary but they
are physically incorrect. More natural choices would have been the mean momentum k̄ and the standard deviation
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∆k for a loosely-bound molecule with binding momentum γd. The universal wavefunction in momentum space for
such a molecule is

ψ(k) =

√
γd

π(k2 + γ2
d)
. (14)

With this wavefunction, k̄ is logarithmically ultraviolet divergent and ∆k is linearly ultraviolet divergent. The
ultraviolet divergences are cut off by the range of the interaction between the constituents. In the case of the
deuteron, an appropriate choice for the range is the effective range rt = 1.76 fm for np scattering in the spin-triplet
channel. The physical interpretation of the divergences is that k̄ is proportional to γd, with a coefficient that scales
as log(1/γdrt), and that ∆k scales as 1/rt.

That the upper bound in Eq. (12) with the prescription kmax = 1.5 γd is not valid can also be demonstrated on
phenomenological grounds. We can regard Eq. (1) with p0 = 80 MeV as an empirical deuteron cross section determined
from the analysis in Ref. [22]. The binding momentum of the deuteron is γd = 46 MeV, so 1.5 γd ≈ 70 MeV. Since
kmax = 70 MeV is smaller than p0 = 80 MeV, the proposed upper bound is smaller than the empirical deuteron cross
section. A more plausible choice for the upper limit kmax in Eq. (12) is 1/rt ≈ 110 MeV. If we set kmax = 110 MeV,
the upper bound is larger than the empirical deuteron cross section in Eq. (1) by about a factor of 2.6.

C. Estimate of Ref. [16] applied to the deuteron

We next consider the estimate in Eq. (11), which was derived by AB in Ref. [16]. The analogous order-of-magnitude
estimate for the case of the deuteron is

σ[d] ≈ 3

4

(

3πγd

kmax

)

Knp σnaive[np(k < kmax)], (15)

where kmax = 1/rt, give or take a factor of 2. This estimate is based on a rigorous relation between the cross
section for a loosely-bound S-wave molecule and the cross section for its constituents that follows from the Migdal-
Watson theorem [29]. According to the Migdal-Watson theorem, the production amplitude for the constituents can
be expressed as the product of their scattering amplitude (γd + ik)−1, where γd is the binding momentum of the
molecule, and a slowly varying function of the relative momentum k that depends on the short-distance details of the
production process. The production amplitude for the molecule has the same short-distance factor. Eliminating the
short-distance factor, we obtain a rigorous relation between the cross sections for the molecule and its constituents.
In the case of the deuteron, the relevant np scattering channel is the 3S1 channel and the relation is

dσ

dk
[np(3S1, k)] =

k2

πγd(k2 + γ2
d)
σ[d]. (16)

If we integrate over the relative momentum up to kmax, the relation becomes

σ[d] =
πγd

kmax − γd arctan(kmax/γd)
σ[np(3S1, k < kmax)]. (17)

This rigorous relation holds for any kmax in the region kmax ≪ 1/rt, where rt is the S-wave effective range, up to
corrections suppressed by kmaxrt. Eq. (17) implies that the cross section for d is equal to that for np if kmax = 4.5 γd:

σ[d] = σ[np(3S1, k < 4.5 γd)]. (18)

This relation does not apply to the deuteron, because the condition 4.5 γd ≪ 1/rt is violated. However the analogous
relation might apply to more weakly bound molecules, such as the X(3872).

If we take the limit γd → 0 in the rigorous relation in Eq. (17), we see that the deuteron cross section decreases to

0 as E
1/2

d as its binding energy decreases to 0. This agrees with the conventional wisdom that the cross section for
a loosely-bound molecule should go to 0 as its binding energy goes to 0. However naive phase space considerations

suggest that the cross section should decrease as E
3/2

d . For example, in the coalescence model, the order-of-magnitude
of the coalescence parameter p0 is often estimated by assuming that it is proportional to the binding momentum γd,

which would imply that the cross section decreases as E
3/2

d . The actual suppression factor E
1/2

d is much milder than

the naive suppression factor E
3/2

d .
In Ref. [16], AB used the rigorous relation in Eq. (17) to obtain an order-of-magnitude estimate of the cross section

for a loosely-bound molecule. They chose kmax to be the scale of the relative momentum k at which the universal
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FIG. 3: Average number of hadrons in Υ→ ggg → n̄p̄(k1 < 80 MeV) + X events generated by Pythia with respect to kh, the
smaller of the relative momenta of the hadron h with respect to n̄ and p̄.

differential cross section dσ/dk, which approaches σ[d]/πγd at large k, becomes comparable to the naive differential
cross section, which scales as k2 for small k. The resulting estimate for σ[d] is given in Eq. (15). The factor of 3/4
accounts for 3 of the 4 spin states of np being in the spin-triplet channel in which there is binding. Since the naive
cross section in Eq. (15) scales like k3

max, the estimate for σ[d] is proportional to k2
max. An estimate of the momentum

kmax at which dσ/dk becomes comparable to the dσnaive/dk is required to complete the estimate of σ[d].
As an estimate of kmax, AB proposed the reciprocal of the effective range, give or take a factor of two. In the

case of the deuteron, the central estimate would be 1/rt ≈ 110 MeV. Comparing with the phenomenological estimate
in Eq. (1), we see that this would correspond to a coalescence parameter p0 = (9πγd/4r

2
t )1/3 ≈ 160 MeV. Varying

kmax by a factor 2, this theoretical estimate of the coalescence parameter p0 varies from 100 MeV to 250 MeV. This
estimate is larger than the standard value 80 MeV obtained in Ref. [22]. It is interesting to note that the estimate of
p0 obtained from data on Υ decays in Section III B is also larger than the standard value.

D. Hadronic activity

In Ref. [20], the authors raised an issue concerning hadronic activity near a loosely-bound molecule. If additional
hadrons are produced that have small momentum relative to the molecule, their interactions with the constituents of
the molecule can complicate the production process. The order-of-magnitude estimate in Eq. (15), which was based
on the Migdal-Watson theorem, did not take into account the possibility of additional hadrons with small relative
momentum. The authors suggested that this cast doubts on the applicability of the Migdal-Watson theorem to an
estimate of the production rate in cases where there is significant hadronic activity near the molecule.

In the case of anti-deuteron production in Υ decays, the only experimental information on the hadronic activity is
that in the single d̄ + d candidate event that was displayed in Ref. [9], the d̄ and d were accompanied by 6 charged
pions. One can use an event generator to predict the hadronic activity. In Fig. 3, we show the prediction of Pythia
for the number of additional hadrons h produced in the events Υ → ggg → n̄p̄(k1 < p0) + X as a function of the
smaller of the relative momenta of the hadron h with respect to n̄ and p̄, which we denote by kh. The average number
of additional hadrons with kh < 100 MeV is about 0.3. More than 60% of the events have no such additional hadron.
Thus hadronic activity near the anti-deuteron does not seem to be a serious complication in Υ → ggg.

In the case of the production of the X(3872) at the Tevatron, the hadronic activity is larger because the Tevatron
is a high-energy hadron collider. In Ref. [20], event generators were used to predict the hadronic activity near a pair
of charm mesons with small relative momentum. They found that in events that include a charm-meson pair with
k < 300 MeV, there are typically two or three additional hadrons whose relative momentum with respect to one of
the charm mesons satisfies kh < 100 MeV. Less than 10% of the events have no such additional hadrons. Since the
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estimate in Eq. (15) can accommodate the experimental lower bound on the prompt cross section for X(3872) only if
kmax > 300 MeV, this level of hadronic activity is significant.

However hadronic activity near the molecule does not necessarily invalidate the use of the Migdal-Watson theorem.
The interaction between a generic low-momentum hadron and a constituent of a loosely-bound S-wave molecule is
much weaker than the interaction between the two constituents. For relative momentum k in the range γX < k < mπ,
the interaction between the constituents is so strong that it saturates the unitarity bound. For generic hadrons, the
interaction strength may be close to the unitarity bound for k ∼ mπ, but it does not increase at lower k. An exception
is a pion and D meson with relative momentum of about 40 MeV, which have a P-wave resonance through the D∗.
With this exception, it is plausible that the effects of low-momentum hadrons can be treated as perturbations to the
interactions between the constituents of the molecule.

V. DISCUSSION

The deuteron and the X(3872) (provided its quantum numbers are JPC = 1++) are manifestations of loosely-
bound S-wave hadronic molecules. As such, they have universal properties that are completely determined by their
binding energies. There have been several attempts in the literature to calculate their production rates based on
the predictions of hadronic event generators for the production rates of their constituents. In the coalescence model,
the production rate of the molecule is the production rate of a pair of its constituents integrated over the relative
momentum up to p0, as in Eq. (1). In the event-generator model defined in Section II, the production rate for the
pair of constituents is also multiplied by a normalizing factor K, as in Eq. (2). It should be emphasized that these
are purely phenomenological models. The closest thing to a rigorous justification is the relation between the cross
section for a loosely-bound S-wave molecule and the integrated cross section for its constituents in Eq. (17).

In the spirit of hadronic event generators, the coalescence parameter p0 and the normalizing factor K should be
treated as phenomenological parameters to be determined by experiment. Theoretical estimates of these parameters,
such as Eq. (15) with kmax = 1/rt, can only provide order-of-magnitude estimates. Quantitative predictions using
the event-generator model require the determination of p0 and K from data. The normalizing factor K is necessary,
because data on pairs of constituents are generally not among the inputs used to tune the event generator. Since the
naive cross section is proportional to p3

0, the inclusive cross section for production of a molecule is sensitive only to
Kp3

0. One way to determine K is from separate measurements of the production rate of a pair of constituents. For
example, in Refs. [15, 16], the cross section for D0D∗− was used to determine the normalizing factor KD∗D̄ for the
X(3872). Another way to determine K is from separate measurements of both the molecule and the molecule plus
its antiparticle. For example, CLEO data on inclusive d̄ and inclusive d̄ + d was used in Section III to estimate the
normalizing factor Knp for the deuteron.

We applied these considerations to the production of the anti-deuteron in Υ decays, confronting the predictions of
the event-generator model with measurements by the CLEO Collaboration. The measurement of the direct branching
fraction for inclusive d̄ in Eq. (4) determines the combination Knpp

3
0. The estimate of the branching ratio for inclusive

d̄+d and inclusive d̄ in Eq. (5) can then be used to obtain separate estimates for Knp and p3
0. These estimates suggest

that the inclusive production rate for n̄p̄ is overestimated by Pythia, perhaps by an order of magnitude, and that the
standard coalescence parameter p0 underpredicts the probability for formation of a d̄ from n̄ and p̄ with small relative
momentum.

We discussed the proposed upper bound on the production rate of a loosely-bound S-wave molecule that was
derived in Ref. [15]. If applied to the prompt cross section for the X(3872) at the Tevatron, the upper bound is more
than two orders of magnitude smaller than the observed cross section, leading the authors of Ref. [15] to conclude
that the X(3872) can not be a loosely-bound molecule. The analogous upper bound for the deuteron is given by
Eq. (12) with kmax = k0 + ∆k, where k0 = γd and ∆k = γd/2 are estimates of the typical momentum and the
momentum spread in the bound state. We demonstrated that the upper bound with this prescription for kmax is
invalid both on phenomenological and theoretical grounds. The phenomenological grounds are that the prescription
kmax = 1.5 γd ≈ 70 MeV is smaller than the standard coalescence parameter p0 = 80 MeV. This indicates that
the anti-deuteron cross sections used to determine p0 must exceed the proposed upper bound. The prescription for
kmax in Ref. [15] is not only arbitrary, but it is based on the inappropriate use of the minimal uncertainty principle
for a Gaussian wavefunction to estimate ∆k. A weakly-bound S-wave molecule maximizes the uncertainty, because
〈k2〉 = ∞. Thus the prescription in Ref. [15] underestimates the value of kmax required for Eq. (12) to be an upper
bound on the cross section. Since the naive np cross section scales like k3

max, the upper bound on σ[d] is underestimated
by a much larger factor. Similarly, the upper bound on the prompt cross section for the X(3872) at the Tevatron is
underestimated by more than an order of magnitude. We conclude that there is no clear conflict between the observed
cross section for X(3872) and the interpretation of the X(3872) as a loosely-bound charm-meson molecule.

The event-generator model should give the most accurate predictions for experiments that are the most similar
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to the ones used to determine the parameters K and p0. Predictions for the LHC using parameters determined at
the Tevatron should be particularly accurate. For the antideuteron, the inclusive differential cross section dσ/dy at
central rapidity y = 0 has been measured by the E735 collaboration [10]. This measurement can be used to determine
Knpp

3
0, which can then be used to predict cross sections for anti-deuteron production at the LHC. For the X(3872),

the prompt cross section in Eq. (9), which was obtained from CDF measurements at the Tevatron, can be used to
determine KD∗D̄ p3

0 Br[X → J/ψ π+π−]. This combination can then be used to predict the prompt production rate
of X → J/ψ π+π− at the LHC.

One of the drawbacks of the event-generator model is the enormous number of events that must be generated to
get reasonable statistics on the production rate of a pair of constituents with small relative momenta. In the case
of the X(3872), there is a more efficient way to calculate the production rate. The production of a charm meson
pair with small relative momentum requires the creation of a cc̄ pair with small relative momentum. In the NRQCD
factorization formalism, the production of the charm meson pair can be expressed as the sum of products of parton
cross sections for the creation of the cc̄ pair and NRQCD matrix elements for the formation of the charm mesons [30].
At leading order in αs, three of the four S-wave color/spin cc̄ channels have cross sections that are suppressed at large
transverse momentum pT by at least a factor of m2

c/p
2
T . The cc̄ channel that is not suppressed at leading order in

αs is color-octet 3S1. Thus the simplest NRQCD factorization formula that can approximate the predictions of the
event-generator model is to keep only the color-octet 3S1 term in the differential cross section:

dσ[X(3872)] = dσ̂[cc̄8(
3S1)] 〈OX

8 (3S1)〉. (19)

The multipicative constant 〈OX
8 (3S1)〉 plays the same role as KD∗D̄p

3
0 in the event-generator model. In Ref. [16],

the combination 〈OX
8 (3S1)〉 Br[X → J/ψ π+π−] was determined from the prompt cross section at the Tevatron in

Eq. (9) and then used to predict the differential cross section of X → J/ψ π+π− in various experiments at the LHC.
Similar results could presumably be obtained using the event-generator model, but the enormous number of Monte
Carlo events that would have to be generated makes it impractical. The NRQCD factorization approach is much
more efficient, because the parton differential cross section dσ̂[cc̄8(

3S1)] at leading order in αs is known analytically.

Acknowledgments

This research was supported in part by the Department of Energy under grant DE-FG02-91-ER40690.



12

[1] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 93, 162002 (2004) [arXiv:hep-ex/0405004].
[2] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 77, 111101 (2008) [arXiv:0803.2838 [hep-ex]].
[3] I. Adachi et al. [Belle Collaboration], arXiv:0809.1224 [hep-ex].
[4] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 103, 152001 (2009) [arXiv:0906.5218 [hep-ex]].
[5] Y. Cui, J. D. Mason and L. Randall, arXiv:1006.0983 [hep-ph].
[6] C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 87, 262301 (2001) [Erratum-ibid. 87, 279902 (2001)] [arXiv:nucl-

ex/0108022].
[7] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 94, 122302 (2005) [arXiv:nucl-ex/0406004].
[8] H. Albrecht et al. [ARGUS Collaboration], Phys. Lett. B 236, 102 (1990).
[9] D. M. Asner et al. [CLEO Collaboration], Phys. Rev. D 75, 012009 (2007) [arXiv:hep-ex/0612019].

[10] T. Alexopoulos et al. [E735 Collaboration], Phys. Rev. D 62, 072004 (2000).
[11] A. Aktas et al. [H1 Collaboration], Eur. Phys. J. C 36, 413 (2004) [arXiv:hep-ex/0403056].
[12] S. Schael et al. [ALEPH Collaboration], Phys. Lett. B 639, 192 (2006) [arXiv:hep-ex/0604023].
[13] S. Chekanov et al. [ZEUS Collaboration], Nucl. Phys. B 786, 181 (2007) arXiv:0705.3770 [hep-ex].
[14] S. Godfrey and S. L. Olsen, Ann. Rev. Nucl. Part. Sci. 58, 51 (2008) [arXiv:0801.3867 [hep-ph]].
[15] C. Bignamini, B. Grinstein, F. Piccinini, A. D. Polosa and C. Sabelli, Phys. Rev. Lett. 103, 162001 (2009) [arXiv:0906.0882

[hep-ph]].
[16] P. Artoisenet and E. Braaten, Phys. Rev. D 81, 114018 (2010) [arXiv:0911.2016 [hep-ph]].
[17] T. Sjostrand, S. Mrenna and P. Z. Skands, JHEP 0605, 026 (2006) [arXiv:hep-ph/0603175].
[18] G. Corcella et al., arXiv:hep-ph/0210213.
[19] M. Kadastik, M. Raidal and A. Strumia, Phys. Lett. B 683, 248 (2010) [arXiv:0908.1578 [hep-ph]].
[20] C. Bignamini, B. Grinstein, F. Piccinini, A. D. Polosa, V. Riquer and C. Sabelli, Phys. Lett. B 684, 228 (2010)

[arXiv:0912.5064 [hep-ph]].
[21] L. P. Csernai and J. I. Kapusta, Phys. Rept. 131 (1986) 223.
[22] R. Duperray et al., Phys. Rev. D 71, 083013 (2005) [arXiv:astro-ph/0503544].
[23] K. Abe et al. [Belle Collaboration], arXiv:hep-ex/0505037.
[24] A. Abulencia et al. [CDF Collaboration], Phys. Rev. Lett. 98, 132002 (2007) [arXiv:hep-ex/0612053].
[25] G. Gokhroo et al., Phys. Rev. Lett. 97, 162002 (2006) [arXiv:hep-ex/0606055].
[26] P. del Amo Sanchez et al. [BABAR Collaboration], arXiv:1005.5190 [hep-ex].
[27] G. Bauer [CDF II Collaboration], Int. J. Mod. Phys. A 20, 3765 (2005) [arXiv:hep-ex/0409052].
[28] N. Drenska, R. Faccini, F. Piccinini, A. Polosa, F. Renga and C. Sabelli, arXiv:1006.2741 [hep-ph].
[29] K.M. Watson, Phys. Rev. D 88, 1163 (1952); A.B. Migdal, JETP 1, 2 (1955).
[30] E. Braaten, Phys. Rev. D 73, 011501 (2006) [arXiv:hep-ph/0408230].


