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Dark matter annihilation to leptons, χχ → ℓℓ, is necessarily accompanied by electroweak radiative
corrections, in which a W or Z boson is radiated from a final state particle. Given that the W and
Z gauge bosons decay dominantly via hadronic channels, it is thus impossible to produce final
state leptons without accompanying protons, antiprotons, and gamma rays. Significantly, while
many dark matter models feature a helicity suppressed annihilation rate to fermions, radiating a
massive gauge boson from a final state fermion removes this helicity suppression, such that the
branching ratios Br(ℓνW ), Br(ℓ+ℓ−Z), and Br(νν̄Z) dominate over Br(ℓℓ). W/Z-bremsstrahlung
thus allows indirect detection of many WIMP models that would otherwise be helicity-suppressed, or
v2 suppressed. Antiprotons and even anti-deuterons become consequential final state particles. This
is an important result for future DM searches. We discuss the implications of W/Z-bremsstrahlung
for “leptonic” DM models which aim to fit recent cosmic ray positron and antiproton data.

PACS numbers: 95.35.+d, 12.15.Lk, 95.85.Ry

I. INTRODUCTION

An abundance of cosmological and astrophysical evidence
attests to the existence of dark matter (DM), whose pres-
ence is inferred via its gravitational influence [1–3]. How-
ever, the fundamental particle properties of DM remain
essentially unknown. One important means of probing
DM’s particle nature is via indirect detection, whereby
we search for products of DM annihilation (or decay) em-
anating from regions of DM concentration in the Universe
today.

The dark matter annihilation cross section is often
parametrized as 〈vσA〉 = a + bv2 + · · · , where 〈vσA〉 is
the thermally-averaged annihilation cross section. The
constant a comes from s-wave annihilation, while the ve-
locity suppressed bv2 term receives both s-wave and p-
wave contributions; the Lth partial wave contribution to
the annihilation rate is suppressed as v2L. Given that
v ∼ 10−3c in galactic halos, even the p-wave contribution
is highly suppressed and thus only the s-wave contribu-
tion is expected to be significant in the Universe today.
However, in many DM models the s-wave annihilation
into a fermion pair χχ → f̄ f is helicity suppressed by a
factor (mf/Mχ)2 (only → t̄t modes remain of interest,
and then only for a certain range of χ mass).

When computing DM annihilation signals, it is nor-
mally assumed that only the lowest order tree-level pro-
cesses make a significant contribution. However, there
are important exceptions to this statement. Dark matter
annihilation into charged particles, χχ → f̄f , is neces-
sarily accompanied by the internal bremsstrahlung pro-
cess χχ → f̄fγ, where the photon may be radiated from
one of the external particle legs (final state radiation,
FSR) or, possibly, from a virtual propagator (virtual
internal bremsstrahlung, VIB). On the face of it, the
radiative rate is down by the usual QED coupling fac-
tor of α/π ∼ 500. However, and significantly, photon

bremsstrahlung can lift the helicity suppression of the s-
wave process [4], which more than compensates for the
extra coupling factor. Such a striking enhancement can
arise when a symmetry of the initial state χχ is satis-
fied by the three body final state f̄fγ, but not by the
two body final state f̄ f . For bremsstrahlung of photons,
only VIB is effective in lifting the helicity suppression,
as FSR is dominated by soft or collinear photons (such
that the two and three body final states have the same
symmetry properties) as discussed in Ref. [5].

In this paper we examine electroweak
bremsstrahlung [6–11], i.e., bremsstrahlung of Z or
W± electroweak gauge bosons to produce f̄fZ and
ℓ̄νW final states. The virtue for W/Z bremsstrahlung
to lift initial-state velocity and final-state helicity sup-
pressions, alluded to in [8, 11], has not been previously
explored. We show that W/Z-bremsstrahlung can also
lift suppression and become the dominant annihilation
channel. Thus, W/Z bremsstrahlung allows indirect
detection of many WIMP models that would otherwise
be helicity-suppressed, or v2 suppressed. This is an
important result for future DM searches.

There are a number of important distinctions be-
tween electromagnetic (EM) and electroweak (EW)
bremsstrahlung. An obvious one is that EM
bremsstrahlung produces just photons, whereas EW
bremsstrahlung and subsequent decay of the gauge
bosons leads to leptons, hadrons and gamma rays, of-
fering correlated “multi-messenger” signals for indirect
dark matter searches. Another distinction is that W/Z-
bremsstrahlung from final state particles (FSR) is suf-
ficient to lift a suppression. This is due to the nonzero
gauge boson masses, and the coupling of the gauge bosons
to the non-conserved axial current which leads to a differ-
ent form for the polarization sum than in the case of the
photon (or a gluon in the similar QCD process). In con-
trast, for the EM process, VIB is required for the photon
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to lift a suppression. Because an additional propagator
appears for VIB, suppression-lifting EM bremsstrahlung
is itself suppressed by an additional factor of M2

χ/M2
η rel-

ative to electroweak’s FSR, where Mη is the mass of the
internal exchange-particle. Only in the event of a near-
degeneracy Mχ ∼ Mη is this relative suppression of EM
bremsstrahlung negligible.

DM annihilation to charged leptons has been the sub-
ject of much recent attention, due to recently measured
cosmic ray anomalies which point to an excess of cos-
mic ray positrons above those that may be attributed to
conventional astrophysical processes. PAMELA has ob-
served a sharp excess in the e+/(e−+e+) fraction at ener-
gies beyond approximately 10 GeV [12], without a corre-
sponding excess in the antiproton/proton data [13, 14],
while Fermi and HESS have reported more modest ex-
cesses in the (e−+e+) flux at energies of order 1 TeV [15].
These signals have led to a re-examination of positron
production in nearby pulsars [16], emission from super-
nova remnants [17], acceleration of e+e− in cosmic ray
sources [18], and propagation in conventional cosmic ray
models [19]. As an alternative to these astrophysical
mechanisms, it has also been proposed that the excess
e+ and e− are produced via dark matter annihilation
in the Galactic halo, with an abundance of DM models
proposed to accomplish this end. A recent overview of
e±-excess data and possible interpretations is available
in [20].

However, some of the most popular models suffer from
helicity or v2-suppression. A prototypical example of
suppressed production of Standard Model (SM) fermion
pairs is provided by supersymmetry: Majorana neutrali-
nos annihilate into a pair of SM fermions via t- and u-
channel exchange of SU(2)-doublet sfermions. To over-
come the suppression, proponents of these models have
invoked large “boost” factors. These boost factors may
be astrophysical in origin, as with postulated local over-
densities of dark matter, or they may arise from particle
physics, as with the Sommerfeld enhancement that arises
from light scalar exchange between dark matter particles.
Although not ruled out, these factors do seem to be a con-
trivance designed to overcome the innate suppression.

A further problem with suppressed models is the
overproduction of antiprotons from unsuppressed W/Z
bremsstrahlung. Given that hadronic decay modes of
the W and Z bosons will lead to significant numbers of
both antiprotons and gamma rays, this will impact the
viability of models that might otherwise have explained
the observed positron excess. Even in models which do
not feature a suppression, the W/Z-bremsstrahlung has
important phenomenological consequences, as the decay
products of the gauge bosons make a pure leptonic e+e−

signal impossible [11].

In Section II we discuss the circumstances under which
dark matter annihilation may be suppressed, and in Sec-
tion III explain how W/Z bremsstrahlung is able to cir-
cumvent such a suppression. In Section IV we consider
a representative model, and explicitly calculate the cross

sections for both the lowest order annihilation process,
and for the W/Z bremsstrahlung process. We discuss
implications of these results in Section V. Calculational
details are collected in five Appendices.

II. UNDERSTANDING SUPPRESSION USING

FIERZ TRANSFORMATIONS

In this section we describe the origin of v2 and helicity
suppressions. We shall make use of Fierz transformation
and partial wave decomposition to determine under what
circumstances these suppressions will or will not arise.

Dark matter candidates may be scalar, fermionic, or
vector in nature; if fermionic, they may be either Dirac
or Majorana. Permissible annihilation models include s-,
t-, and u-channel exchanges of a new particle, and the
various possibilities are listed in Refs. [21–23]. In every
case, it is useful to classify the partial waves available to
the decay process, and to analyze the dependence on the
mass of the SM particle-pair in the final state. In this
article, we focus on fermionic Majorana dark matter.

For fermionic dark matter, the natural projection of
2 → 2 processes into partial waves makes use of the
Fierz transformation. In the next subsection we con-
sider DM annihilation via the process χχ → f̄ f , and
explain the use of Fierz transforms to convert the matrix
elements for t/u-channel annihilation, which are of the
form (χ ΓAl)(l̄ ΓBχ), to a sum of s-channel amplitudes
of the form (χ Γ1χ)(l̄ Γ2l). In the following subsection
we then categorize the Fierzed s-channel amplitudes into
partial waves and fermion-pair spin states, which deter-
mines whether the amplitudes are velocity suppressed,
mass-suppressed, or unsuppressed. In the third and final
subsection, we put our findings together to determine
which class of models will have a suppressed 2 → 2 anni-
hilation. We show that in a certain popular class of sup-
pressed models, the 2 → 3 W/Z-bremsstrahlung process
is unsuppressed, and in fact dominant for 2 Mχ > MW .
We will find in Section III that a generalization of the
Fierz transformation offers useful insight into the non-
suppression of the 2 → 3 process.

A. Fierz Transformations in the Chiral Basis

Helicity projection operators are essential in chiral
gauge theories, so it is worth considering the reformu-
lation of Fierz transformations in the chiral basis [24].
(A discussion of standard Fierz transformations may be
found in, e.g. Ref. [25].) We place hats above the gener-
alized Dirac matrices constituting the chiral basis. These
matrices are

{Γ̂B} = {PR, PL, PRγµ, PLγµ,
1

2
σµν} , and

{Γ̂B} = {PR, PL, PLγµ, PRγµ,
1

2
σµν} , (1)
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where PR ≡ 1
2 (1 + γ5) and PL ≡ 1

2 (1 − γ5) are the usual
helicity projectors. Notice that the dual of PRγµ is PLγµ,
and the dual of PLγµ is PRγµ. The tensor matrices in this

basis contain factors of 1
2 : Γ̂T = 1

2σµν and Γ̂T = 1
2σµν .

These facts result from the orthogonality and normaliza-
tion properties of the chiral basis and its dual, as ex-
plained in detail in Appendix A.

Using completeness of the basis (see Appendix A), one
arrives at a master formula which expands the outer
product of two chiral matrices in terms of their Fierzed

forms:

(Γ̂D) [Γ̂E ] =
1

4
Tr [Γ̂D Γ̂C Γ̂E Γ̂B] (Γ̂B ] [Γ̂C) , (2)

where the parentheses symbols are a convenient short-
hand for matrix indices [26] (see the appendix for de-
tails). Evaluating the trace in Eq. (2) leads to the Fierz
transformation matrix in the chiral-basis:
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. (3)

Non-explicit matrix elements in (3) are zero, and we have

introduced a shorthand T̂ for either Γ̂T = 1
2σµν or Γ̂T =

1
2σµν .

The importance of this transformation for us is that
it converts t-channel and u-channel exchange graphs into
s-channel form, for which it is straightforward to eval-
uate the partial waves. The block-diagonal structures,
delineated with horizontal and vertical lines, show that
“mixing” occurs only within the subsets {PR⊗PR, PL ⊗
PL, T̂ ⊗T̂ , γ5 T̂ ⊗T̂}, and {PR⊗PL, PRγµ⊗PLγµ}. The
Fierz transform matrix is idempotent, meaning its square
is equal to the identity matrix. This follows from the
fact that two Fierz rearrangements return the process to
its initial ordering. A consequence of the block-diagonal
form is that each sub-block is itself idempotent.

In Eq. (3) we have included one non-member of the ba-

sis set, namely γ5 T̂ ; it is connected to T̂ via the relation

γ5 σµν =
i

2
ǫµναβσαβ . (4)

Explicit use of γ5 T̂ in Eq. (3) is an efficient way to express
the chiral Fierz transformation.

So far we have not used the qualifier in the assumption,
that the dark matter is Majorana. Majorana particles
are invariants under charge conjugation C, which implies
that vector and tensor bilinears are disallowed. Another
way of understanding this is to note that interchanging
the two identical Majorana particles in a t-channel dia-
gram generates an accompanying u-channel diagram with
a relative minus sign (from fermion anticommutation).

When Fierzed, these two amplitudes cancel for V and
T couplings (exactly so in the Four-Fermi limit where
the differing momenta in the t- and u-channel propaga-
tors can be ignored – refer to Appendix B for details).
We must thus drop V and T couplings appearing in the
Fierzed bilinears of the χ-current.

B. Origin of v2 and Helicity Suppressions

One can use partial wave decomposition (see. e.g.,
the textbooks [27–29], or the convenient summary in the
Appendix of [8]) to expand the scattering amplitudes as
a sum of angular momentum components. Partial waves
do not interfere, and the Lth partial wave contribution
to the total cross section σv is proportional to v2L. The
annihilating χ particles are very non-relativistic today, so
an unsuppressed s-wave (L = 0), if present, will dominate
the annihilation cross section. The DM virial velocity
within our Galaxy is about 10−3 (in units of c), leading
to a suppression of v2 ∼ 10−6 for p-wave processes.

On the other hand, the SM fermions produced in the
2 → 2 annihilation are highly relativistic (except possi-
bly for tt̄ production). For many annihilation channels
the spin state of the fermion pair gives rise to a helic-
ity suppression by a factor of (ml/Mχ)2, where ml is the
fermion mass.

Unfortunately, many popular models for annihilation
of Majorana dark matter to charged leptons are sub-
ject to one or more of these two suppressions, the v2

and/or (mℓ/Mχ)2 suppressions. This includes some of
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the models proposed to accommodate the positron and
e+e− excesses observed in PAMELA, Fermi-LAT, and
HESS data. In Section III, we show that in the class of
models which have suppressed rates for χχ → ℓ+ℓ−, the
2 → 3 graph obtained by adding a radiative W± or Z to
the final state particles of the 2 → 2 graph becomes dom-
inant. The radiated W ’s and Z’s will decay to, among
other particles, antiprotons. Since an excess generation
of antiprotons is not observed by PAMELA, this class of
models is ruled out by the present work.

Consider products of s-channel bilinears of the form
(χ Γ1χ)(l̄ Γ2l). To further address the question of which
products of currents are suppressed and which are not, we
may set v2 to zero in the χ-current, and m2

ℓ to zero in the
lepton current, and ask whether the product of currents
is suppressed. If the product of currents is non-zero in
this limit, the corresponding amplitude is unsuppressed.
In Table I we give the results for the product of all stan-
dard Dirac bilinears. (The derivation of these results is
outlined in Appendix C.) Suppressed bilinears enter this
table as zeroes. 1

One can read across rows of this table to discover that
the only unsuppressed s-channel products of bilinears for
the 2 → 2 process are those of the pseudo-scalar, vector,
and tensor. (For completeness, we also show results for
the pseudo-tensor bilinears, although the pseudo-tensor
is not independent of the tensor, as a result of Eq. 4.) For
Majorana dark matter, the vector and tensor bilinears
are disallowed by charge-conjugation arguments and one
is left with just the unsuppressed pseudo-scalar.

C. Class of Models for which χχ → ℓℓ Annihilation

is Suppressed

We now put the results of the previous two subsec-
tions together to explain which class of models have a
v2 and/or (mℓ/Mχ)2 suppressed 2 → 2 annihilation. We
have seen that, for Majorana DM, s-channel annihilation
with a P coupling is unsuppressed, while S and A con-
tributions are suppressed (and V and T forbidden). Let
us now consider t-channel or u-channel processes.

Any t-channel or u-channel diagram that Fierz’s to an
s-channel form containing a pseudoscalar coupling will
have an unsuppressed L = 0 s-wave amplitude. From
the matrix in Eq. (3), one deduces that such will be the
case for any t- or u-channel current product on the left
side which finds a contribution in the 1st, 2nd, 5th, or
7th columns of the right side. This constitutes the t-

1 It is seen that the only bilinears in the table without velocity-
suppression are those of the pseudo-scalar, the three-vector part
of the vector, the zeroth component of the axial vector, and the
time-space part of the tensor (or equivalently, the space-space
part of the pseudotensor). It is also seen that the only bilinears
without fermion mass-suppression are the scalar, pseudoscalar,
three-vector parts of the vector and axial vector, and the tensor.

or u-channel tensor, same-chirality scalar, and opposite
chirality vector products (rows 1 through 4, and 6 and
8 on the left). On the other hand, the t- or u-channel
opposite chirality scalars or same-chirality vectors (rows
5, 7, 9, and 10 on the left) do not contain a pseudoscalar
coupling after Fierzing to s-channel form. Rather, it is
the suppressed axial-vector and vector (Dirac fermions
only) that appears.

Interestingly, a class of the most popular models for
fermionic dark matter annihilation to charged leptons,
fall into this latter, suppressed, category. It is precisely
the opposite-chirality t- or u-channel scalar exchange that
appears in these models, an explicit example of which will
be discussed below. Thus it is rows 5 and 7 in Eq. (3)
that categorize the model we will analyze. After Fierzing
to s-channel form, it is seen that the Dirac bilinears are
opposite-chirality vectors (i.e., V or A). Dropping the
vector term from the χ-current we see that the 2 → 2
process couples an axial vector χ-current to a relativis-
tic SM fermion-current which is an equal mixture of A
and V . Accordingly, this model has an s-wave amplitude
occurring only in the L = 0, J = 1, S = 1 channel, with
the spin flip from S = 0 to S = 1 (or equivalently, the
mismatch between zero net chirality and one unit of he-
licity) costing a fermion mass-insertion and a (mf/Mχ)2

suppression in the rate.

Let us pause to explain why this t- or u-channel scalar
exchange with opposite fermion chiralities at the vertices
is so common. It follows from a single popular assump-
tion, namely that the dark matter is a gauge-singlet Ma-
jorana fermion. As a consequence of this assumption,
annihilation to SM fermions, which are SU(2) doublets
or singlets, requires either an s-channel singlet boson or a
t- or u-channel singlet or doublet scalar that couples to χ-
f . In the first instance, there is no symmetry to forbid a
new force between SM fermions, a disfavored possibility.
In the second instance, unitarity fixes the second vertex
as the hermitian adjoint of the first. Since the fermions of
the SM are left-chiral doublets and right-chiral singlets,
one gets chiral-opposites for the two vertices of the t- or
u-channel.

Supersymmetry provides an analog of such a model. In
this case the dark matter consists of Majorana neutrali-
nos, which annihilate to SM fermions via the exchange
of (“right”- and “left”-handed) SU(2)-doublet slepton
fields. In fact, the implementation in 1983 of supersym-
metric photinos as dark matter provided the first explicit
calculation of s-wave suppressed Majorana dark mat-
ter [30]. However, the class of models described above
is more general than the class of supersymmetric models.

To illustrate our arguments, we choose a simple ex-
ample of the class of model under discussion. This is
provided by the leptophilic model proposed in Ref. [31]
by Cao, Ma and Shaughnessy. Here the DM consists of
a gauge-singlet Majorana fermion χ which annihilates to



5

s-channel bilinear Ψ̄ ΓD Ψ v = 0 limit M = 0 limit

parallel spinors antiparallel spinors parallel spinors antiparallel spinors

scalar Ψ̄Ψ 0 0
√

s 0

pseudo-scalar Ψ̄ iγ5 Ψ −2iM 0 −i
√

s 0

axial-vector Ψ̄ γ5 γ0 Ψ 2M 0 0 0

Ψ̄ γ5 γj Ψ 0 0 0
√

s (±δj1 − iδj2)

vector Ψ̄ γ0 Ψ 0 0 0 0

Ψ̄ γj Ψ ∓2M δj3 −2M (δj1 ∓ iδj2) 0 −
√

s (δj1 ∓ iδj2)

tensor Ψ̄σ0j Ψ ∓2iM δj3 −2iM (δj1 ± δj2) −i
√

s δj3 0

Ψ̄σjk Ψ 0 0 ±
√

s δj1δk2 0

pseudo-tensor Ψ̄ γ5 σ0j Ψ 0 0 ±i
√

s δj3 0

Ψ̄ γ5 σjk Ψ ∓2M δj1δk2 −2M (δj2δk3 ∓ iδj3δk1) −
√

s δj1δk2 0

TABLE I. Extreme non-relativistic and extreme relativistic limits for s-channel bilinears. In order for a term with an initial-
state DM bilinear and a final-state lepton bilinear to remain unsuppressed, the DM bilinear must have a non-zero entry in the
appropriate cell of the “v = 0 limit” columns, and the lepton bilinear must have a non-zero term in the appropriate cell of the
“M = 0 limit” columns. Otherwise, the term is suppressed. (The tensor and pseudo-tensor are not independent, but rather
are related by γ5 σµν = i

2
ǫµναβ σαβ .) We recall that antiparallel spinors correspond to parallel particle spins (and antiparallel

particle helicities for the M = 0 current), and vice versa. Amplitudes are shown for u ΓD v = [v ΓD u]∗. The two-fold ±
ambiguities reflect the two-fold spin assignments for parallel spins, and separately for antiparallel spins.

leptons via the SU(2)-invariant interaction term

f
(

ν ℓ−
)

L
ε

(

η+

η0

)

χ + h.c. = f(νLη0 − ℓLη+)χ + h.c.

(5)
where f is a coupling constant, ε is the 2 × 2 antisym-
metric matrix, and (η+, η0) form the new SU(2) doublet
scalar which mediates the annihilation. (This model was
originally discussed in Ref. [32], and an expanded discus-
sion of its cosmology may be found in Ref. [33].)

As discussed above, the u- and t-channel ampli-
tudes for DM annihilation to leptons, of the form
(χPLl) (l̄PRχ), become pure (χPLγµχ) (l̄PRγµl) under
the chiral Fierz transformation. The product of the Ma-
jorana and fermion bilinears then leads to an AA term
and an AV term. However, reference to Table I shows
that neither of these terms leads to an unsuppressed am-
plitude: in all cases, either the lepton bilinear is sup-
pressed by mℓ, the DM bilinear by v, or both are sup-
pressed. Thus, Majorana DM annihilation to a lepton
pair is suppressed in this model, in accordance with the
explicit calculation in Ref. [31].

III. LIFTING THE SUPPRESSION

Allowing the lepton bilinear to radiate a W or Z bo-
son (as shown in Fig. (1)) does yield an unsuppressed
amplitude. In the rate, there will be the usual radia-
tive suppression factor of α2

4π
∼ 10−3. But, this will

be partially compensated by a 3-body phase space fac-
tor ∼ (Mχ/MW )2/8π2 relative to 2-body massless phase
space, which exceeds unity for dark matter masses ex-

ceeding ∼TeV. (When M2
χ ≫ M2

W , the rate for radiative
production of W ’s is so large that resummation tech-
niques become necessary. The result is the well-known
ln2(Mχ/MW ) taming of the production rate [34].) More
importantly, the v2 suppression for Majorana annihila-
tion to 2-body final states will be lifted by the 3-body
W -bremsstrahlung process. In Section IV we show, by
explicit calculation, that the 2 → 3 radiative process that
leads to antiprotons dominates for any Mχ that allows
the W to be produced on-shell, i.e., for 2Mχ > MW .

The next inevitable question is “Why is the radiative
2 → 3 process unsuppressed?” To answer this question,
we invoke a more general Fierz rearrangement applicable
to 2 → N processes, N ≥ 3. The relevant equation,
derived in Appendix A states that any 4 × 4 matrices X
and Y may be expressed as

(X) [Y]= (X11) [11Y]

=
1

4
(XΓB Y ] [ ΓB )

=
1

42
Tr [XΓB Y ΓC ] (ΓC ] [ΓB ) , (6)

where the Dirac matrices here are taken in the standard
basis defined in Eq. (A1).

From Table (I) we see that setting ΓC to γ5 γ0, the
only structure available to a non-relativistic Majorana
current other than the pseudoscalar, and ΓB to either γj

or γ5γ
j, provides an unsuppressed product of the Majo-

rana dark matter bilinear and the charged lepton bilinear.
Moreover, for the W/Z-bremsstrahlung process, X and
Y in the general Fierz equation are the un-Fierzed cou-
plings PL and q−2 PR /q PL /ǫ, respectively. So we will have
shown that the radiative process is unsuppressed if we
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FIG. 1. t-channel (A and C) and u-channel (B and D) contributions to χχ → e+νW−. Emission from the scalar propagator
is not included, as it is suppressed by 1/M2

η . Note that all fermion momenta flow with the arrow except p2, so q1 = p1 + Q,
q2 = −p2 − Q.

can show that q−2 Tr [PL (γj or γ5γ
j)PR /q PL /ǫ γ5 γ0] is

unsuppressed. This trace reduces to q−2 Tr [PR γ0 γj /q /ǫ].
The expansion of this trace as scalar products contains
terms such as q0 · ǫj and (~ǫ× ~q)j , which are nonzero and
unsuppressed by fermion masses. Thus, the 2 → 3 pro-
cess contains an unsuppressed s-wave amplitude.

Physically, the un-suppression works because the
gauge boson carries away a unit of angular momentum,
allowing a fermion spin-flip such that there is no longer a
mismatch between the chirality of the leptons and their
allowed two-particle spin state.

One may ask why emission of a gamma-ray rather
than a W/Z boson is less effectual. It has been known
for some time [4, 5] that gamma-ray emission in the fi-
nal state does produce an unsuppressed s-wave contribu-
tion, but at second order rather than lowest order in the
inverse mass-squared M−2

η of the t- and u-channel ex-
change particle(s). The reason is that gamma-ray emis-
sion from the final state fermions (FSR) is dominated
by infra-red and collinear singularities, each of which
puts the intermediate lepton on-shell (virtuality q2 → 0).
Including the q−4 from the squared propagator in the
phase space integral (see Eq. (20)), one gets the factor
∫ s

M2
V

dq2

q6 (s− q2) (q2 −M2
V ), where MV is the mass of the

radiated boson (photon or W or Z). For a gamma-ray,
with M2

V = 0, one readily sees the infra-red and collinear

singularities in
∫

0
dq2

q4 . An on-shell particle is observable,

so the spin states of the q2 → 0 intermediate fermion
do not interfere. Thus, as q2 → 0, the trace for gamma

emission, Tr [γ0 γj /q /ǫ] = Tr [γ0 γj (P 2
R+P 2

L)/q /ǫ] goes over

to Tr [γ0 γj PR] [PR/q /ǫ] + Tr [γ0 γj PL] [PL/q /ǫ]. The first
trace in each term of this sum vanishes. Consequently,
the gamma-emission amplitude remains suppressed at or-
der M−2

η . However, at order M−4
η , the gamma-ray may

be emitted from the internal particle η (VIB). For VIB,
phase space does not favor q2 = 0, and an unsuppressed
amplitude results.

The emission of a massive W (or Z) boson contrasts
significantly from the emission of a massless photon.
With the W emission, the relevant phase space integral

over virtuality q2 is
∫ s

M2
W

dq2

q6 (s−q2) (q2−M2
W ). The min-

imum virtuality of the intermediate fermion is q2 = M2
W ,

and the mean virtuality for s ≫ M2
W is greater again by

the factor 2 ln(s/M2
W ). With no infra-red or collinear sin-

gularities for W/Z-emission, an unsuppressed amplitude
results already at order M−2

η .

Before looking at an explicit example in which elec-
troweak bremsstrahlung is seen to lift a suppression, we
pause to summarize some important facts for the 2 → 2
annihilation process:

• Fierz transformation is used to re-express t- and u-
channel amplitudes of the form (χ Γ̂Al)(l̄ Γ̂Bχ) as a
sum of s-channel (not to be confused with s-wave)

amplitudes of the form (χ Γ̂Cχ)(l̄ Γ̂Dl).

• For Majorana dark matter, only S, P , and A s-
channel bilinears are allowed, with the V and T
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bilinears forbidden by the self-conjugate properties
of Majorana particles.

• Considering the product of an s-channel χ-current
with an s-channel fermion-current, we find that the
pseudo-scalar is the only member of the set (S,
P , A) which is unsuppressed. The other combi-
nations are either helicity (mℓ/mχ) or velocity (v)
suppressed.

• The annihilation process χχ → ℓℓ via t- and u-
channel exchange of a scalar is suppressed. Im-
portantly, electroweak bremsstrahlung lifts this
suppression at lowest order in the propagator
mass-squared (M−2

η in amplitude), whereas photon
bremsstrahlung lifts the suppression at the next or-
der (M−4

η in amplitude).

Amplification of the latter remark is the purpose of
this paper.

IV. EXPLICIT CALCULATION OF

SUPPRESSION-LIFTING WITH

ELECTROWEAK BREMSSTRAHLUNG

To explicitly demonstrate that emission of a W± or
Z boson does lift helicity suppression, we calculate the

cross section for χχ → e∓
(−)
ν W± below in the leptophilic

model of Ref [31]. The interaction term for this model is
that given above in Eq. (5).

A. Example of Helicity-Suppressed Rate: Ma’s

Model

In the model of ref. [31], the cross section for the 2 → 2
process χχ → e+e− or νν̄ with Majorana DM is given as

v σ =
f4v2r2

24π M2
χ

(1 − 2r + 2r2) , (7)

where ml ≃ 0 and Mη± = Mη0 have been assumed, and
r = M2

χ/(M2
η + M2

χ). The suppressions discussed in Sec-
tion II are apparent in Eq. (7). The helicity suppressed
s-wave term is absent in the ml = 0 limit, and thus only
the v2-suppressed term remains.

This 2 → 2 cross-section can be calculated by inclusion
of two Feynman diagrams, a t-channel exchange of η and
the associated u-channel exchange obtained by crossing
the Majorana particles. The relative sign between the
graphs is negative, due to the fermion exchange. Sum-
ming and squaring, one has three terms including the
interference term. Alternatively, one may Fierz trans-
form the fermion bilinears in the two contributing am-
plitudes. The relative minus sign is compensated by the
special Majorana minus sign described in Eq. (B2). Ref-
erence to Eq. (3) then shows that one gets (PL) [PR] →
1
2 (PLγµ] [PRγµ)×2, where the final factor of 2 counts the

two contributing amplitudes, which are identical in the
four-fermi limit M2

η ≫ t and u. We are left with just one

amplitude, f2

M2
η
[v(k2)(

1
2γ5)v(p2)] [u(p1)PLγµv(p2)]. The

surviving Dirac structure for the Majorana current is
pure axial vector, since the vector (and tensor) part of a
Majorana current vanishes. With just a single product
of bilinears, the remaining part of the 2 → 2 calculation
is straightforward. One arrives at

v σ =
f4 M2

χ

16π M4
η

[

m2
l

s
+

2

3
v2 + O(v4)

]

, (8)

in agreement with the four-fermi, mℓ = 0 limit of Eq. (7).
Here, the helicity suppression of the s-wave amplitude,
proportional to a helicity flip, in turn proportional to a
mass insertion, is manifest.

B. W Emission and Unsuppressed S-wave

We now turn to the calculation of the cross section
for the process χχ → e+νW− (equal to that for χχ →
e−ν̄W+). The four contributing Feynman diagrams are
shown in Fig. 1. Note that we consider bremsstrahlung
only from the final state particles2 (FSR), and neglect
emission from the virtual scalar (VIB). Strictly speak-
ing, the distinction between FSR and VIB is somewhat
artificial in the sense that the partition depends upon
the choice of gauge. However, we shall work in unitary
gauge, in which emission from the internal line is sup-
pressed by a further power of M2

η due to the additional
scalar propagator; consequently, we expect our results to
be valid to order M−2

η in amplitude, i.e. order M−4
η in

rate.

We retain the assumptions ml ≃ 0 and Mη± = Mη0 .
The matrix element for the top-left diagram is

MA =
igf2

√
2q2

1

1

t1 − M2
η

(

v̄(k2)PLv(p2)
)

×
(

ū(p1)γ
µPL /q1u(k1)

)

ǫQ
µ . (9)

where i g√
2
γµPL is the coupling at the ℓνW vertex, and

2 In [10] it was pointed out that subtle gauge cancellations between
radiation from the initial state particles and the final state par-
ticles can remove the leading order terms, leaving a greatly sup-
pressed net rate. The example calculation [10] assumed a new
U(1) gauge particle that connects the initial dark matter to the
final Standard Model states. The lessons learned do not apply
to our calculation, since we assume the dark matter is a singlet
under the relevant electroweak gauge group (so there is no ini-
tial state radiation of W/Z’s), and since the sector connectors
are new scalar bosons rather than new gauge bosons. Similar
remarks decouple the lessons learned from our earlier work [8],
contrary to remarks made in [10].
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t1, t2, u1, u2 are the standard Mandelstam variables,

t1 = (k1 − q1)
2 = (p2 − k2)

2

t2 = (k1 − p1)
2 = (−q2 − k2)

2

u1 = (k2 − q1)
2 = (p2 − k1)

2

u2 = (k2 − p1)
2 = (−q2 − k1)

2. (10)

Upon applying Eq (3) to Fierz transform the matrix el-
ement, we obtain

MA =
igf2

√
2q2

1

1

t1 − M2
η

ǫQ
µ

1

4
[(

v̄(k2)u(k1)
)(

ū(p1)PLγµPL /q1v(p2)
)

+
(

v̄(k2)γ5u(k1)
)(

ū(p1)PLγ5γ
µPL /q1v(p2)

)

+
(

v̄(k2)γ5γαu(k1)
)(

ū(p1)γ
αγµPL /q1v(p2)

)]

=
igf2

√
2q2

1

1

t1 − M2
η

ǫQ
µ

1

4

×
(

v̄(k2)γ5γαu(k1)
)(

ū(p1)PLγαγµ
/q1v(p2)

)

. (11)

The first two terms after the first equality are zero due
to the helicity projection operators, leaving only an axial
vector term. (Vector and tensor χ-bilinears have been
omitted, as they will cancel between u and t channel di-
agrams in the heavy Mη limit, as discussed above.) Note

that although this matrix element resembles that of an s-
channel annihilation process, the γ matrices in the lepton
bilinear would be in a different order for a true s-channel
annihilation process involving W/Z-bremsstrahlung from
one of the final state leptons.

Similarly, the matrix element for the top-right diagram
can be written as

MB =
−igf2

√
2q2

1

1

u1 − M2
η

1

4

(

v̄(k2)γ5γαu(k1)
)

×
(

ū(p1)PLγαγµ
/q1v(p2)

)

ǫQ
µ , (12)

and those for the bottom diagrams,

MC =
−igf2

√
2q2

2

1

t2 − M2
η

1

4

(

v̄(k2)γ5γαu(k1)
)

×
(

ū(p1)PL /q2γ
µγαv(p2)

)

ǫQ
µ , (13)

MD =
igf2

√
2q2

2

1

u2 − M2
η

1

4

(

v̄(k2)γ5γαu(k1)
)

×
(

ū(p1)PL /q2γ
µγαv(p2)

)

ǫQ
µ . (14)

Performing the sum over spins and polarizations, we find

∑

spin, pol.

|M|2 =
∑

spin, pol.

| (MA + MC) − (MB + MD) |2

=

(

gf2

√
2

)2
1

16
Tr [( /k2 + Mχ)γα( /k1 + Mχ)γβ ]

(

gµν − QµQν

M2
W

)

(

1

q4
1

(

1

t1 − M2
η

+
1

u1 − M2
η

)2

Tr
[

/p1γ
αγµ

/q1 /p2 /q1 γνγβPR

]

− 1

q2
1q

2
2

(

1

t1 − M2
η

+
1

u1 − M2
η

)(

1

t2 − M2
η

+
1

u2 − M2
η

)(

Tr
[

/p1γ
αγµ

/q1 /p2 γβγν
/q2 PR

]

+ Tr
[

/p1 /q2γ
µγα

/p2 /q1 γνγβPR

]

)

+
1

q4
2

(

1

t2 − M2
η

+
1

u2 − M2
η

)2

Tr
[

/p1 /q2γ
µγα

/p2 γβγν
/q2 PR

]

)

(15)

We evaluate this in terms of scalar products using the
standard Dirac Algebra, leading to a result too lengthy
to record here.

The thermally-averaged rate is given by

v dσ =
1

2s

∫

1

4

∑

spin, pol.

|M|2 dLips3 (16)

where the 1
4 arises from averaging over the spins of the

initial χ pair, and v =

√

1 − 4M2
χ

s
is the mean dark matter

relative velocity, as well as the dark matter single-particle

velocity in the center of mass frame3.
The three-body Lorentz Invariant Phase Space is

dLips3 = (2π)4
d3~p1

2E1

d3~p2

2E2

d3 ~Q

2EW

δ4(P − p1 − p2 − Q)

(2π)9
(17)

and P = k1 + k2. This factorizes into the product of
two two-body phase space integrals, convolved with an

3 Informative discussions of the meaning of v are given in [35], and,
including thermal averaging, in [36].
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FIG. 2. The ratio R = v σ(χχ → e+νW−)/v σ(χχ → e+e−)
for the example model [31], with M2

η ≫ M2
χ. We have used

v = 10−3c, appropriate for the Galactic halo.

integral over the fermion propagator momentum,

dLips3 =
∫ s

M2
W

dq2
1

2π

(

d3~q1

2Eq1

d3~p2

2E2

δ4(P − q1 − p2)

(2π)2

)

×
(

d3~p1

2E1

d3 ~Q

2EW

δ4(q1 − Q − p1)

(2π)2

)

=
∫ s

M2
W

dq2
1

2π
dLips2(P 2, q2

1 , p
2
2) dLips2(q2

1 , Q2, p2
1).(18)

Evaluating the two-body phase space factors in their re-
spective center of momentum frames, and using p2

1 =
p2
2 = 0, we have

dLips2(x2, y2, 0) =
x2 − y2

8πx2

dΩ̄

4π
. (19)

This allow us to write the three-body phase space as

dLips3 =
1

26(2π)4

∫ s

M2
W

dq2
1 (20)

× (s − q2
1)(q2

1 − Q2)

sq2
1

dφ d cos θP d cos θq,

where φ is the angle of intersection of the plane defined
by χχ → ee∗ with that defined by eνW , and θP and θq

are defined in P (CoM) and q rest frames respectively.

We evaluate the scalar products that arise from Eq.(15)
in terms of the invariants q2

1 , Q2 = M2
W , s, t1, and u1,

and the angles θP , θq, and φ. We then use Eq. (16) to
evaluate the cross section. As we have neglected dia-
grams suppressed by M−2

η relative to those in Fig. 1, we

present our results to leading order in M−4
η (i.e., we take

M2
η ≫ t1, t2, u1, u2). To leading order in powers of Mχ

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.10

1.00

0.50
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2.00

0.30

0.15

1.50

0.70

xW=EW �MΧ

dN
�d

x W

FIG. 3. The W spectrum per χχ → eνW event for the ex-
ample model, with Mχ = 300 GeV and M2

η ≫ M2
χ.

and MW in the numerator, we find

v σ =
g2f4

512M2
WM4

η π3

{

M4
χ

(

1

3
ln

[

4M2
χ

M2
W

]

− 7

18

)

+ M2
χM2

W

(

ln

[

4M2
χ

M2
W

]

{

1 + ln

[

2MWMχ

M2
W + 4M2

χ

]}

− 1 + Li2

[

4M2
χ

M2
W + 4M2

χ

]

− Li2

[

M2
W

M2
W + 4M2

χ

]

)

+ O(M4
W )

}

. (21)

The Spence function (or “dilogarithm”) is defined as

Li2(z) ≡ −
∫ z

0
dζ
ζ

ln |1 − ζ| =
∑∞

k=1
zk

k2 . The full expres-

sion (retaining sub-leading terms in Mχ in the numer-
ator) is specified in Appendix D. Clearly, the leading
terms are neither helicity nor velocity suppressed.

The effectiveness of the W -strahlung processes in lift-
ing suppression of the annihilation rate can be seen Fig. 2,
where we plot the ratio of the W -strahlung cross section
to that of the lowest order process, RW = v σ(χχ →
e+νW−)/v σ(χχ → e+e−). We see that W -strahlung
dominates over the lowest order annihilation process, for
all DM masses above the W production threshold. The
W -bremsstrahlung rate rises approximately as M4

χ. As

M2
χ increases, eventually phase space allows multi-W/Z

radiative production, with such a large rate that resum-
mation techniques become necessary, taming the growth
with a ln2(Mχ/MW ) factor [34]. The onset of multi-W/Z
dominance has been discussed in [6–8].

To obtain the energy spectrum of the W , we compute
the differential cross section in terms of EW by making
the transformation

d cos(θq) →
−4

√
sq2

(s − q2)(q2 − M2
W )

dEW . (22)
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FIG. 4. The primary lepton spectrum per χχ → eνW for the
example model, with Mχ = 300 GeV and M2

η ≫ M2
χ.

We find [37], again to leading order M−4
η ,

v dσ

dEW

=
g2f4

512EW M2
W M4

η π3

×
{

2EW

√

E2
W − M2

W

(

M2
W − 6E2

W + 8EW Mχ − 2M2
χ

)

+
(

4E4
W − 8E3

W Mχ + (2E2
W − M2

W )
(

2M2
χ + M2

W

)

)

× ln

[

EW +
√

E2
W − M2

W

EW −
√

E2
W − M2

W

]}

. (23)

The W spectrum per χχ → eνW event is given in Fig. 3.
We use the scaling variable xW ≡ EW /Mχ, and plot

dN/dxW ≡ ( 1
σ

e+νW−
)

dσ
e+νW−

dxW
. The kinematic range of

xw is [MW

Mχ
, (1+

M2
W

4M2
χ
)], with the lower limit corresponding

to a W produced at rest, and the upper limit correspond-
ing to parallel lepton momenta balancing the opposite W
momentum. As evident in Fig. 3, the W boson spectrum
has a broad energy distribution, including a significant
component at high energy EW ∼ Mχ.

The energy spectrum of the the primary leptons is cal-
culated in similar fashion. We present the analytic result
in Appendix D (along with more detailed expressions for
v σ and v dσ/dEW ). Here the range of the scaling vari-

able xℓ ≡ Eℓ/Mχ is [ 0, 1− M2
W

4M2
χ
]. Both limits arise when

one lepton has zero energy and the other is produced
back-to-back with the W . The lepton spectrum is shown
in Fig. 4. Note that this lepton spectrum is valid for ei-
ther e+ or ν from the annihilation χχ → e+νW−, and
for either e− or ν̄ from the annihilation χχ → e−ν̄W+.
The primary lepton spectrum in Fig. 4 features a sharp
cut off near Eℓ = Mχ, and a dip in the spectrum that is
due to an absorptive interference effect.

To obtain the full lepton spectrum, the contributions
from the subsequent decays of the gauge bosons to lep-
tons must be included. (The contribution from the lowest
order 2 → 2 process χχ → e+e− or νν̄ is negligible. We

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

xl=El �MΧ

dN
�d

x l

FIG. 5. The secondary lepton spectrum (i.e., from W → νℓℓ)
per W for the example model, with Mχ = 300 GeV and M2

η ≫
M2

χ. (The branching ratio for W → νl, 11% per flavor, is not
included here.)

also neglect final state leptons resulting from µ decay and
from the τ decay chain. These leptons are softer than
those we consider.) For leptons from W -decay, the range

of the scaling variable xℓ is [
M2

W

4M2
χ
, 1]. These limits arise

when all four final state lepton momenta are collinear.
Particle spectra from the W decay may be calculated
in a simple but approximate way, as we describe in Ap-
pendix E leading to Eq. (E8). The resulting secondary
lepton spectrum is shown in Fig (5). Unsurprisingly, the
spectrum of secondary leptons is softer than the spec-
trum of primary leptons.

When combining the primary lepton and secondary
lepton spectra, the relative weights are model dependent.
For example, the primary ℓ-spectrum is weighted by
BR(χχ → Wνℓ)+2BR(χχ → Zℓℓ), while the secondary
ℓ-spectrum is weighted by BR(χχ → W +X)×BR(W →
νℓ) + BR(χχ → Z + X) × BR(Z → ℓℓ).

We note that the final charged-lepton spectra will by
modified by cosmic propagation effects. The injected e±

will suffer rapid energy losses from synchrotron and in-
verse Compton processes on the Universe’s background
magnetic and radiation fields (see, e.g., Ref. [38] for a
recent analysis). On the other hand, the injected neutri-
nos do not interact with the environment, and so their
spectra remain unmodified.

C. Unsuppressed Z Emission

Consider the process producing the ν̄νZ final state.
The cross sections for the Z-strahlung processes are re-
lated to those for W-strahlung in a simple way: The am-
plitudes producing ν̄νZ arise from the same four graphs
of Fig. (1), where e, W and η+ are replaced everywhere
by ν and Z and η0, respectively. The calculation of
the amplitudes, and their interferences, thus proceeds
in an identical fashion. After making the replacement



11

MW → MZ , the cross section for the annihilation pro-
cess χχ → νν̄Z differs from that for χχ → e+νW− by
only an overall normalization factor,

v σνν̄Z =
1

(2 cos2 θW )
× v σe+νW−

∣

∣

∣

∣

MW →MZ

≃ 0.65 × v σe+νW−

∣

∣

∣

MW →MZ

. (24)

Consider now the e+e−Z final state. Again, the am-
plitudes arise from the same four basic graphs of Fig. (1).
Since only the left-handed leptons couple to the dark
matter via the SU(2) doublet η, only the left handed
component of e− participates in the interaction with the
Z. Therefore, the couplings of the charged leptons to Z
and W take the same form, up to a normalization con-
stant. We thus find

v σe+e−Z =
2
(

sin2 θW − 1
2

)2

cos2 θW

× v σe+νW−

∣

∣

∣

MW →MZ

≃ 0.19 × v σe+νW−

∣

∣

∣

MW →MZ

. (25)

V. CONCLUSIONS

In an attempt to explain recent anomalies in cosmic ray
data in a dark matter framework, various non-standard
properties have been invoked such as dominant annihila-
tion to leptons in so-called leptophilic models. When the
dark matter is Majorana in nature, such annihilations
invariably are confronted by suppressions of such pro-
cesses via either p-wave velocity suppression or helicity
suppression. With the aid of Fierz transformation tech-
nology, which we have presented in some detail, we have
elucidated the general circumstances where suppressions
may be encountered.

It has been known for some time that photon
bremsstrahlung may have a dramatic effect on such sup-
pressions. We have shown that once one considers the
inclusion of three body final states due to electroweak
bremsstrahlung, one may also lift these suppressions and
obtain rates which may be several orders of magnitude
beyond those without such radiative corrections. In
fact, barring an unexpected mass-degeneracy, the EW-
bremsstrahlung lifts the suppression at one order lower
in a certain small ratio of squared masses than does EM-
bremsstrahlung, as explained in the text.

Such radiative processes may be lethal for models
attempting to produce positrons without overproduc-
ing antiprotons due to the subsequent hadronization
of the radiated gauge bosons. Given that electroweak
bremsstrahlung is the dominant annihilation channel for
the DM models under consideration, and both W and Z
decay to hadrons with a branching ratio of approximately
70%, a large hadronic component is unavoidable. Impor-
tantly in the context of recent cosmic ray data, there
will be sizable antiproton production. We also note that
dark matter searches triggering on anti-deuterons will

find a sample in the W - and Z-bremsstrahlung processes.
The Aleph experiment has measured an anti-deuteron
production rate of 5.9 ± 1.9 × 10−6 anti-deuterons per
hadronic decay of the Z [39]. We expect the rate for
anti-deuteron production in W -decay to be similar.

Even for models which do not suffer a suppression of
the lowest order process, we see that it is impossible
to have purely leptonic annihilation products, including
“leptophilic” models in which the dark matter has direct
couplings only to leptons. In a broader context the re-
sults presented here show the importance that may be
played by electroweak bremsstrahlung in future searches
of indirect dark matter detection. For any DM model for
which electroweak bremsstrahlung makes an important
contribution to observable fluxes, there will be large, cor-
related fluxes of e±, neutrinos, hadrons and gamma rays.
We will explore the detection of these signals in a future
article [40].
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Appendix A: Fundamentals of Fierzing

In this paper we have made use of standard Fierz trans-
formations, helicity-basis Fierz transformations, and gen-
eralizations of the two. In this Appendix, we derive these
transformations. The procedure for standard Fierz trans-
formation can be found in, e.g., [25], while more general
Fierz transformations are laid down in [24]. The starting
point is to define a basis {ΓB} and a dual basis {ΓB},
each spanning 4 × 4 matrices over the complex number
field C, such that an orthogonality relation holds. The
standard Fierz transformation uses the “hermitian” bases

{ΓB} = {11, iγ5, γ
µ, γ5γ

µ, σµν} , and

{ΓB} = {11, (−iγ5), γµ, (−γ5γµ),
1

2
σµν} , (A1)

respectively. Because of their Lorentz and parity trans-
formation properties, these basis matrices and their duals
are often labeled as S and S̃ (scalars), P and P̃ (pseu-

doscalars), V and Ṽ (vectors, four for V , four for Ṽ ),

A and Ã (axial vector, four for A, four for Ã), and T

and T̃ (antisymmetric tensor, six for T , six for T̃ ). As
usual, spacetime indices are lowered with the Minkowski
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metric, γ5 = γ5 = iγ0γ1γ2γ3, σµν ≡ i
2 [γµ, γν], (and

γ5σµν = i
2ǫµναβσαβ). Note the change of sign between

the the basis and dual for the P and A matrices. The
bases are “hermitian” in that γ0 Γ†

Bγ0 = ΓB, so that the
associated Dirac bilinears satisfy [Ψ̄1Γ

BΨ2]
† = Ψ̄2Γ

BΨ1

and [Ψ̄1ΓBΨ2]
† = Ψ̄2ΓBΨ1. Importantly, we have ΓB =

(ΓB)−1 in the sense of the accompanying orthogonality
relation

Tr [ΓC ΓB ] = 4 δB
C , B, C = 1, . . . , 16 . (A2)

Note that the factor of 1
2 in the definition of T̃ = 1

2σµν

(but not in T = σµν) provides the normalization required
by Eq. (A2):

Tr [ΓB ΓB](nosum) =
∑

C

Tr [ΓC ΓB] = 4 . (A3)

The orthogonality relation allows us to expand any 4×
4 complex matrix X in terms of the basis as

X = XB ΓB = XB ΓB , with

XB =
1

4
Tr [ XΓB ] , and XB =

1

4
Tr [ XΓB ] ,

i.e., X =
1

4
Tr [XΓB] ΓB =

1

4
Tr [XΓB] ΓB . (A4)

One readily finds that the particular matrix element
(X)ab satisfies

(X)cd δdb δac =
1

4
[(X)cd (ΓB)dc ] (ΓB)ab . (A5)

Since each element (X)cd is arbitrary, Eq. (A5) is equiv-
alent to a completeness relation

(11) [11] =
1

4
(ΓB ] [ΓB ) =

1

4
(ΓB ] [ΓB ) , (A6)

where we have adopted Takahashi’s notation [26] where
matrix indices are replaced by parentheses (· · · ) and
brackets [· · · ], in an obvious way. Thus, any 4× 4 matri-
ces X and Y may be expressed as

(X) [Y] = (X11) [11Y] =
1

4
(XΓB Y ] [ ΓB )

=
1

42
Tr [XΓB Y ΓC ] (ΓC ] [ΓB ) . (A7)

This equation is presented as Eq. (6) in the main text.
Alternatively, we may express any 4 × 4 matrices X and
Y as

(X) [Y] = (X11) [Y 11] =
1

4
(XΓB ] [Y ΓB ) (A8)

=
1

43
Tr [XΓB ΓC ] Tr [Y ΓB ΓD] (ΓC ] [ΓD ) .

The RHS’s of Eqs. (A7) and (A8) offer two useful op-
tions for Fierzing matrices. The first option sandwiches
both LHS matrices into one of the two spinor bilinears,
and ultimately into a single long trace. The second option

sandwiches each LHS matrix into a separate spinor bilin-
ear, and ultimately into separate trace factors. Eq. (A7)
seems to be more useful than (A8). One use we will make
of Eq. (A7) will be to express chiral vertices in terms of
Fierzed standard vertices. But first we reproduce the
standard Fierz transformation rules by setting X = ΓD

and Y = ΓE in Eq. (A7), to wit:

(ΓD) [ΓE ] =
1

42
Tr [ΓD ΓB ΓE ΓC ] (ΓC ] [ΓB) . (A9)

(An additional minus sign arises if the matrices are sand-
wiched between anticommuting field operators, rather
than between Dirac spinors.) Evaluation of the trace
in Eq. (A9) for the various choices of (B, C) leads to the
oft-quoted result [25]















(S) [S̃]

(V ) [Ṽ ]

(T ) [T̃ ]

(A) [Ã]

(P ) [P̃ ]















=
1

4















1 1 1 1 1

4 −2 0 2 −4

6 0 −2 0 6

4 2 0 −2 −4

1 −1 1 −1 1





























(S] [S̃)

(V ] [Ṽ )

(T ] [T̃ )

(A] [Ã)

(P ] [P̃ )















.

(A10)
More relevant for us, as will be seen, is the ordering
P, S, A, V, T , which leads to a Fierz matrix obtained
from the one above with the swapping of matrix indices
1 → 2 → 4 → 3 → 5 → 1. The result is















(P ) [P̃ ]

(S) [S̃]

(A) [Ã]

(V ) [Ṽ ]

(T ) [T̃ ]















=
1

4















1 1 −1 −1 1

1 1 1 1 1

−4 4 −2 2 0

−4 4 2 −2 0

6 6 0 0 −2





























(P ] [P̃ )

(S] [S̃)

(A] [Ã)

(V ] [Ṽ )

(T ] [T̃ )















.

(A11)
(The zeroes make it clear that Fierzing induces no cou-
pling between tensor interactions and vector and axial
vector interactions.) As an example of how to read this
matrix,

(A) [Ã] = −(P ] [P̃ ) + (S] [S̃) − 1

2
(A] [Ã) +

1

2
(V ] [Ṽ ),

(A12)
or, multiplying by spinors and giving the explicit forms
of the gamma-matrices,

(uγ5γ
µu) (v(−γ5γµ)v)

= − (uiγ5v) (v (−iγ5)u) + (uv) (vu) (A13)

−1

2
(uγ5γ

µv) (v (−γ5γµ)u) +
1

2
(uγµv) (vγµu) .

The Fierz matrix M for the standard basis is nonsin-
gular, and hence has five nonzero eigenvalues λj . Since
two swaps of Dirac indices returns the indices to their
original order, the matrix is idempotent, with M2 = 11,
or equivalently, M−1 = M . Accordingly, the five eigen-
values satisfy λ2

j = 1, so individual eigenvalues must be
λj = ±1. Also, the corresponding eigenvectors are in-
variant under the interchange of two Dirac indices. In
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TABLE II. Fierz-invariant combinations in the standard ba-
sis.

Fierz-invariant combination eigenvalue

3 (S ⊗ S̃ + P ⊗ P̃ ) + T ⊗ T̃ +1

2 (S ⊗ S̃ − P ⊗ P̃ ) + (V ⊗ Ṽ + A ⊗ Ã) +1

V ⊗ Ṽ − A ⊗ Ã −1

S ⊗ S̃ + P ⊗ P̃ − T ⊗ T̃ −1

2 (S ⊗ S̃ − P ⊗ P̃ ) − (V ⊗ Ṽ + A ⊗ Ã) −1

Table (II) we list the eigenvalues and “Fierz-invariant”
eigenvectors.

Helicity projection operators are often present in the-
ories where the DM couple to the SU(2) lepton doublet,
so it is worth considering Fierz transformations in the
more convenient chiral basis.

One derivation of chiral Fierz transformations utilizes
the following chiral bases (hatted) [24]:

{Γ̂B} = {PR, PL, PRγµ, PLγµ,
1

2
σµν} , and

{Γ̂B} = {PR, PL, PLγµ, PRγµ,
1

2
σµν} , (A14)

where PR ≡ 1
2 (1 + γ5) and PL ≡ 1

2 (1 − γ5) are the usual
helicity projectors. The orthogonality property between
the chiral basis and its dual is

Tr [Γ̂C Γ̂B ] = 2 δB
C , B, C = 1, . . . , 16 , (A15)

which implies the normalization

Tr [Γ̂B Γ̂B](no sum) =
∑

C

Tr [Γ̂C Γ̂B] = 2 . (A16)

Notice that because {γ5, γ
µ} = 0, the dual of PRγµ is

PLγµ, and the dual of PLγµ is PRγµ. Notice also that
the normalization for the chiral bases necessitates factors

of 1
2 in both T̂ = 1

2σµν and
˜̂
T = 1

2σµν , in contrast to the
tensor elements of the standard bases, given in Eq. (A1).

In the chiral basis, one is led to a general expansion

X =
1

2
Tr [X Γ̂B] Γ̂B =

1

2
Tr [X Γ̂B] Γ̂B , (A17)

and to a completeness relation

(11) [11] =
1

2
(Γ̂B ] [Γ̂B ) =

1

2
(Γ̂B ] [Γ̂B ) . (A18)

Thus, any 4 × 4 matrices X and Y may be expressed as

(X) [Y] = (X11) [11Y] =
1

2
(X Γ̂B Y ] [ Γ̂B )

=
1

4
Tr [X Γ̂C Y Γ̂B] (Γ̂B ] [Γ̂C ) . (A19)

Substituting X = Γ̂D and Y = Γ̂E into Eq. (A19), one
gets

(Γ̂D) [Γ̂E ] =
1

4
Tr [Γ̂D Γ̂C Γ̂E Γ̂B] (Γ̂B] [Γ̂C) . (A20)

TABLE III. Fierz-invariant combinations in the chiral basis.

Fierz-invariant combination eigenvalue

3 (PR ⊗ PR + PL ⊗ PL) + T̂ ⊗ ˜̂
T +1

2 PR ⊗ PL + PRγµ ⊗ PLγµ +1

2 PL ⊗ PR + PLγµ ⊗ PRγµ +1

PR ⊗ PR + PL ⊗ PL − T̂ ⊗ ˜̂
T −1

2 PR ⊗ PL − PRγµ ⊗ PLγµ −1

2 PL ⊗ PR − PLγµ ⊗ PRγµ −1

PRγµ ⊗ PRγµ −1

PLγµ ⊗ PLγµ −1

Evaluating the trace in Eq. (2) leads to the chiral-basis
analog of (A10) or (A11), presented in Eq. (3) of the
main text.

As a check, we note that the matrix M in Eq. (3) is
idempotent, M2 = 11, as it must be. The eigenvalues are
therefore ±1. Eigenvalues and Fierz-invariant eigenvec-
tors for the chiral basis are given in Table (III). The final
two eigenvectors in the Table simply express again the in-
variance of V ±A interactions under Fierz-transposition
of Dirac indices. This invariance is also evident in the
diagonal nature of the bottom two rows of the matrix
Eq. (3).

One may instead want the Fierz transformation that
takes chiral bilinears to standard bilinears. Since mod-
els are typically formulated in terms of chiral fermions,
a projection onto standard s-channel bilinears would be
well- suited for a partial wave analysis. Because differ-
ent partial waves do not interfere with one another, the
calculation simplifies in terms of s-channel partial waves.

Setting X = Γ̂D and Y = Γ̂E in Eq. (A7), we readily
get

(Γ̂D) [Γ̂E ] =
1

42
Tr [Γ̂D ΓB Γ̂E ΓC ] (ΓC ] [ΓB) . (A21)

We (should) get the same result by resolving the RHS
vector in Eq. (3) into standard basis matrices. The result
is
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



































(PR) [PR]

(PL) [PL]

(PRγµ) [PLγµ]

(PLγµ) [PRγµ]

(T̂ ) [T̂ ]

(γ5T̂ ) [T̂ ]

(PR) [PL]

(PL) [PR]

(PRγµ) [PRγµ]

(PLγµ) [PLγµ]





































=
1

8





































1 1 1 1 1 1 0 0 0 0

1 1 −1 −1 1 −1 0 0 0 0

4 −4 4 −4 0 0 0 0 0 0

4 −4 −4 4 0 0 0 0 0 0

6 6 0 0 −2 0 0 0 0 0

0 0 6 6 0 2 0 0 0 0

0 0 0 0 0 0 1 −1 1 −1

0 0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 0 −2 −2 −2 −2

0 0 0 0 0 0 −2 −2 2 2









































































(11] [11)

(γ5] [γ5)

(γ5] [11)

(11] [γ5)

(T ] [T̃ )

(γ5T ] [T̃ )

(γµ] [γµ)

(γ5γ
µ] [γ5γµ)

(γ5γ
µ] [γµ)

(γµ] [γ5γµ)





































(A22)

All relations are invariant under the simultaneous inter-
changes PR ↔ PL and γ5 → −γ5. The matrix in (A22),
relating two different bases, is not idempotent. In fact,
it is singular.

Appendix B: Cancellation of Vector and Tensor

Amplitudes for Majorana Fermions

Majorana particles are invariants under charge conju-
gation C. Accordingly, the Majorana field creates and
annihilates the same particle. This implies that for
each t-channel diagram, there is an accompanying u-
channel diagram, obtained by interchanging the momen-
tum and spin of the two Majorana fermions. The rela-
tive sign between the t- and u-channel amplitudes is −1
in accord with Fermi statistics. For example, consider
the Fierzed (i.e., s-channel) bilinear for χ-annihilation:
v̄(k1, s1)ΓBu(k2, s2). The associated Fierzed bilinear
from the (k1 ↔ k2)-exchange graph, with its relative
minus sign, is −v̄(k2, s2)ΓBu(k1, s1). Constraints relat-
ing the four-component Dirac spinors to their underly-
ing two-component Majorana spinors must be imposed.
These constraints, any one of which implies the other
three, are

u(p, s) = Cv̄T (p, s) , ū(p, s) = −vT (p, s)C−1 ,

v(p, s) = CūT (p, s) , v̄(p, s) = −uT (p, s)C−1 . (B1)

Here, C is the charge conjugation matrix. These Ma-
jorana conditions on the spinors allow us to rewrite the
exchange bilinear as (suppressing spin labels for brevity
of notation)

−v̄(k2)ΓBu(k1)) = uT (k2)C
−1ΓBCv̄T (k1)

=
[

v̄(k1)(C
−1ΓBC)T u(k2)

]T

= v̄(k1)(ηBΓB)u(k2) . (B2)

For the final equality, we have used (i) the fact that the
transpose symbol can be dropped from a number, and (ii)
the identity (C−1ΓBC)T = (ηB(ΓB)T )T = ηBΓB, where
ηB = +1 for Γ = scalar, pseudoscalar, axial vector, and
ηB = −1 for Γ = vector or tensor.

In the Four-Fermi or heavy propagator limit, where
the differing momenta in the t- and u-channel propaga-
tors can be ignored, one obtains an elegant simplification.
Subtracting the u-channel amplitude from the t-channel
amplitude, one arrives at the weighting factor (1 + ηB),
which is two for S, P, and A couplings, and zero for V
and T couplings. Thus, we must drop V and T couplings
appearing in the Fierzed bilinears of the χ-current. What
this means for the model under discussion is that after
Fierzing, only the axial vector coupling of the χ-current
remains, and the factor of 1+ηA = 2 is multiplied by the
(7-8)-element = 1

2 in the Fierz matrix of Eq. (3) to give
a net weight of 1.

Appendix C: Non-Relativistic and

Extreme-Relativistic Limits of Fermion Bilinears

We work in the chiral representation of the Dirac alge-
bra, and we follow the notation of [27]. Accordingly,

γ0 =

(

0 11

11 0

)

, ~γ =

(

0 ~σ

−~σ 0

)

, γ5 =

(

−11 0

0 11

)

.

(C1)
The rest-frame four-spinor is

u(~p = 0) =
√

M

(

ξ

ξ

)

, (C2)

where ξ is a two-dimensional spinor. The spinor with
arbitrary momentum is obtained by boosting. One gets

u(p) =







√
p · σ ξ

√
p · σ ξ






, (C3)

where σ ≡ (1, ~σ) and σ ≡ (1,−~σ).
In a standard fashion, we choose the up and down spin

eigenstates of σ3 as the basis for the two-spinors. These
basis two-spinors are

ξ+ ≡
(

1

0

)

, ξ− ≡
(

0

1

)

. (C4)
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In terms of the chosen basis, we have for the NR u-
spinors,

u±
NR−→

√
M

(

ξ±
ξ±

)

. (C5)

We get the ER limit of the u-spinors from Eq. (C3). After
a bit of algebra, one finds

u+
ER−→

√
2E







0

0

ξ+






, u−

ER−→
√

2E







ξ−
0

0






. (C6)

The arbitrary v-spinor is given by

v(p) =







√
p · σ η

−√
p · σ η






. (C7)

In the Dirac bilinear the two-spinor η is independent of
the two-spinor xi, and so it is given an independent name,
η. However, the basis η± remains ξ± as defined above.
It is the minus sign in the lower components of v relative
to the upper components that distinguishes v in eq. (C7)
from u in eq. (C3) in a fundamental way. After a small
amount of algebra, one finds the limits

v±
NR−→ v±(~p = 0) =

√
M

(

η±
−η±

)

, (C8)

and

v+
ER−→

√
2E







0

0

−η+






, v−

ER−→
√

2E







η−
0

0






. (C9)

Finally, we apply the above to determine the values of
Dirac bilinears in the NR and ER limits. The ū ≡ u† γ0

and v̄ ≡ v† γ0 conjugate spinors are are easily found from

the u and v spinors. We let Γ denote any of the hermitian
basis Dirac-matrices {11, i γ5, γµ, γ5 γµ, σµν}. Then, the
NR limit of ū(p1) Γ v(p2) is just

ū(p1) Γ v(p2)
NR−→ M

[

(ξ1, ξ1) Γ

(

η2

−η2

)]

. (C10)

Non-relativistic results for the various choices of basis Γ’s
and spin combinations are listed in Table I of the text.

To give a succinct formula for the ER limit of
ū(p1) Γ v(p2), we take p̂1 = −p̂2 = 3̂, i.e. we work in
a frame where p̂1 and p̂2 are collinear, and we quantize
the spin along this collinear axis. The result is

ū(p1) Γ v(p2)
ER−→

√

4E1E2

[

ξ1 (Λ+, Λ−) Γ

(

Λ+

−Λ−

)

η2

]

,

(C11)
where the matrices Λ± are just up and down spin pro-
jectors along the quantization axis 3̂:

λ+ =

(

1 0

0 0

)

, Λ− =

(

0 0

0 1

)

. (C12)

Extreme-relativistic results for the various choices of ba-
sis Γ’s and spin combinations are listed in Table I of the
text.

Appendix D: Full Cross Section Results

We present here the full results of the cross section

calculations for the process χχ → e∓
(−)
ν W±, including

terms of all orders in Mχ. In Section IV we presented
only the leading order terms, which dominate in the large
Mχ limit. For Mχ not too much heavier than MW , it is
important to retain sub-leading terms.

The total cross section for χχ → e∓
(−)
ν W± is given by

v σe+νW− =
g2f4

213M2
W M4

η π3

{

(

7

32

M8
W

M4
χ

− 7

9

M6
W

M2
χ

+ 4M4
W − 16M2

W M2
χ − 56

9
M4

χ

)

+ ln

[

4M2
χ

M2
W

]

(

1

16

M8
W

M4
χ

+
4

3

M6
W

M2
χ

− 2M4
W + 16M2

WM2
χ +

16

3
M4

χ + 8M2
W

(

M2
W + 2M2

χ

)

ln

[

2MWMχ

M2
W + 4M2

χ

])

+ 8M2
W

(

M2
W + 2M2

χ

)

(

Li2

[

4M2
χ

M2
W + 4M2

χ

]

− Li2

[

M2
W

M2
W + 4M2

χ

]

)

+ O(v2, M−2
η , m2

ℓ)

}

. (D1)
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The W energy spectrum is

v dσe+νW−

dEW

=
g2f4

512EWM2
W M4

η π3

{

2EW

√

E2
W − M2

W

(

M2
W − 6E2

W + 8EW Mχ − 2M2
χ

)

(D2)

+
(

4E4
W − 8E3

W Mχ + (2E2
W − M2

W )
(

2M2
χ + M2

W

)

)

ln

[

EW +
√

E2
W − M2

W

EW −
√

E2
W − M2

W

]

+ O(v2, M−2
η , m2

ℓ)

}

,

while the lepton spectrum (for either the charged lepton or the neutrino) is

v dσe+νW−

dEℓ

=
g2f4

218M4
η (Mχ − Ee)π3

{

Ee

(

4(Mχ − Ee)Mχ − M2
W

)

M2
W M4

χ (M2
W + 4EeMχ) (Mχ − Ee)4

×
(

7 × 28E7
eM4

W + 28E6
eM3

χ

(

M2
W − 139

3
M2

χ

)

− 25E5
eM2

χ

(

M4
W +

146

3
M2

χM2
W − 984M4

χ

)

− 24E4
eMχ

(

M6
W − 13M4

WM2
χ − 232M4

χM2
W + 2704M6

χ

)

+ E3
e

(

−M8
W +

164

3
M6

W M2
χ − 560M4

WM4
χ − 4672M6

χM2
W +

191 × 29

3
M8

χ

)

+ 8E2
eMχ

(

1

3
M8

W − 6M6
W M2

χ + 116M4
WM4

χ +
1376

3
M6

χM2
W − 1600M8

χ

)

− 2EeM
2
χ

(

M8
W M2

χ − 4M6
W M2

χ + 400M4
WM4

χ + 960M6
χM2

W − 210M8
χ

)

+ 28M3
χ

(

M2
W + 2M2

χ

)

)

+ 28

(

2M2
χ + M2

W − 4E2
e(Mχ − Ee)

2

M2
W

)

ln

[

M2
W Mχ

(Mχ − Ee) (M2
W + 4EeMχ)

]

}

+ O(v2, M−2
η , m2

ℓ). (D3)

Appendix E: Approximate Spectrum for Boosted W

Decay Products

If any possible polarization of the produced W is ne-
glected, then a simple calculation results for the spectra
of the finals state particles from W decay. The lab frame
spectra of the decay product (of type or “flavor” F ) de-
pends on a one-dimensional convolution of the isotropic
spectrum in the W rest frame (RF energy E′), dNF

dE′
F

,
, with

the W spectrum in the lab frame, dN
dEW

. We now develop
this convolution.

Given the energy distribution dNW /dγ of produced
W ’s (with γ = EW /MW ), and the energy distribution
dNF /dE′

F of decay particle F in the W rest frame,
normalized to the multiplicity of F per W decay (i.e.,
there is a branching ratio W → F multiplier implicit in
dNF /dE′

F ) and assumed to be isotropic,4 one gets the
spectrum dNF /dEF of particle F in the lab via:

dNF (E)

dE
=

∫ 1

−1

d cos θ′

2

∫

dγ
dNW

dγ
(E1)

×
∫

dE′ dNF

dE′ δ(E − [γE′ + βγp′ cos θ′]) ,

4 If the W polarization is not neglected, then the W decay am-
plitude includes Wigner functions d1

µiµf
(θ), which introduce a

linear cos θ or sin θ term into Eq. (E1).

with p′ =
√

E′2 − m2
F , βγ =

√

γ2 − 1. The cos θ′ inte-
gral is easily done, and one gets

dNF (E)

dE
=

1

2

∫ ∞

1

dγ
√

γ2 − 1

dNW

dγ

∫ E′
+

E′
−

dE′

p′
dNF

dE′ ,

(E2)
with E′

± = γE ± βγp. Equivalently, we get

dNF (E)

dE
=

1

2

∫ ∞

mF

dE′

p′
dNF

dE′ ,

∫ γ+

γ−

dγ
√

γ2 − 1

dNW

dγ
,

(E3)

with γ± = (EE′ ± pp′)/m2
F and p =

√

E2 − m2
F . This

formulation neglects interferences between identical par-
ticles produced in both the primary and secondary chan-
nels, if any.

As given, Eq. (E3) applies to any particle type in the
W ’s final state. For example, it could be used to cal-
culate the antiproton or antineutron spectrum from W
production and decay, if the fragmentation functions for
W → p̄ or n̄, i.e. f(xB̄ ≡ 2EB̄/MW ) were input.

Here we perform a the convolution for the especially
simple case of W decay to two massless particles, say νe

and e. For massless leptons, we have

dNν

dE′ =
dNe

dE′ = BR(W → νe) δ(E′ − 1

2
MW ) , (E4)

with γ+ = (EW /MW )max = (s + M2
W )/2

√
sMW ≈

(4M2
χ +M2

W )/4MχMW , and γ− = (4E2 +M2
W )/4EMW .
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The spectrum in the lab is given by Eq. (E3) becomes
just

dNν

dE
=

dNe

dE
=

(BR)

MW

∫ γ+

γ−

dγ
√

γ2 − 1

dNW

dγ
. (E5)

The W -spectrum shown in Fig. (3) is approximately half
of an ellipse, suggesting the fit





ln
(

dN
dxW

)

− ln 0.07

ln 2.0 − ln 0.07





2

+

(

xW − 0.65

0.50 (1.01− 0.29)

)2

= 1 ,

(E6)
valid for 0.29 . xW . 1.01. Solving for dN/dxW then
gives

dN

dxW

= 0.07

(

2.0

0.07

)

√
1−7.7 (xW −0.65)2

. (E7)

Substituting into Eq. (E5) γ =
Mχ

MW
xW , dN

dγ
= MW

Mχ

dN
dxW

,

and dN
dxW

given in Eq. (E7), we obtain the desired one-
dimensional integral for the secondary lepton spectrum,
per W :

dNν(xℓ)

dxℓ

= 0.07 (BR)

∫ x+

x−

dxW
√

x2
W −

(

MW

Mχ

)2

×
(

2.0

0.07

)

√
1−7.7 (xW −0.65)2

. (E8)

The integration limits are x+ = 1 +
M2

W

4M2
χ
, and x− =

(

xℓ +
M2

W

4xℓ M2
χ

)

. The range of xℓ for the leptons from

W decay is [
M2

W

4M2
χ
, 1]. The relevant branching ratios [41]

are BR(W → νe) = 11%, BR(Z → νν̄) = 6.7%, and
BR(Z → ℓ+ℓ−) = 3.4%, each per single flavor mode,
e, µ, or τ . We show the resulting lepton spectrum, with-
out the BR factor, in Fig. (5).
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