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Compact binaries with unequal masses and whose orbits are not aligned with the observer’s line of

sight are excellent probes of gravitational radiation beyond the quadrupole approximation. Among

the compact binaries observed so far, strong evidence of octupolar modes is seen in GW190412

and GW190814, two binary black holes observed during the first half of the third observing run of

LIGO/Virgo observatories. These two events, therefore, provide a unique opportunity to test the

consistency of the octupolar modes with the predictions of general relativity (GR). In the post-

Newtonian (PN) approximation to GR, the gravitational-wave phasing has known dependencies

on different radiative multipole moments, including the mass octupole. This permits the use of

publicly released posteriors of the PN phase deformation parameters for placing constraints on

the deformations to the different PN components of the radiative mass octupole denoted by δµ3n.

Combining the posteriors on δµ3n from these two events, we deduce a joint bound (at 90% credibility)

on the first three PN order terms in the radiative octupoles to be δµ30 = −0.07+0.11
−0.12, δµ32 =

0.48+0.93
−1.15, and δµ33 = −0.32+1.67

−0.62, consistent with GR predictions. Among these, the measurement

of δµ33 for the first time confirms the well-known octupolar tail contribution, a novel nonlinear effect

due to the scattering of the octupolar radiation by the background spacetime, is consistent with the

predictions of GR. Detection of similar systems in the future observing runs should further tighten

these constraints.

I. INTRODUCTION

It is well known that the leading order gravitational

wave (GW) emission is quadrupolar according to general

relativity. However, subdominant higher multipoles get

turned on if the binary has a mass asymmetry and when

the line of sight of the observer is not aligned with the

orbital angular momentum vector of the binary [1–9].

To date, the LIGO-Virgo-KAGRA (LVK) Collaboration

has reported ∼90 confident detections of compact binary

mergers [10–13]. Among these events, two compact bi-

nary mergers – GW190412 [14] and GW190814 [15] –

have shown clear evidence of the presence of octupolar

(ℓ = 3,m = 3) mode, the first correction beyond the

quadrupole. These two events, therefore, should facili-

tate a test of the gravitational octupolar structure of the

compact binary dynamics.

The gravitational dynamics of a compact binary sys-

tem is typically divided into three stages of evolution: in-

spiral, merger, and ringdown. While the post-Newtonian

(PN) approximation to general relativity (GR) [16] is

employed to model the adiabatic inspiral stage of a com-

pact binary coalescence, one requires numerical solutions

to the Einstein equations [17], and the black hole (BH)

perturbation theory [18] to describe the highly nonlin-

ear merger stage, and the ringdown phase, respectively.

As numerical relativity simulations are computationally

expensive, currently there are two main modeling ap-

proaches towards producing the complete gravitational

waveform (i.e., a single waveform that captures all three

stages of binary evolution) for parameter inference: Ef-
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fective One Body (EOB) approach [19, 20] and Phe-

nomenological approach [21, 22]. Both these methods

make the best use of the analytical and numerical un-

derstanding of compact binary dynamics.

The gravitational waveform from a coalescing compact

binary within GR, in the frequency domain, has the fol-

lowing form

h̃(f ; λ⃗, ι, φN ) =
∑
ℓ≥2

ℓ∑
m=−ℓ

Y ℓm−2 (ι, φN ) h̃ℓm (f ; λ⃗), (1)

where Y ℓm−2 are spin-weighted spherical harmonics of spin

weight −2, (ι, φN ) describes the location of the observer

in the binary’s sky and λ⃗ denotes the intrinsic param-

eters (e.g., masses and spins) as well as other relevant

extrinsic parameters (e.g., luminosity distance (dL), ref-

erence time and reference phase) of the binary. Each GW

mode (h̃ℓm) has an amplitude, Aℓm(f ; λ⃗), and a phase,

ψℓm(f ; λ⃗) (i.e., h̃ℓm = Aℓm(f ; λ⃗) ei ψℓm(f ;λ⃗)). In alterna-

tive theories of gravity, the gravitational dynamics of a

compact binary could differ from the prediction of GR

during all the three stages and might modify the phase

and amplitude in the waveform.

There exist proposals in the literature to probe the

prediction of the harmonic structure of gravitational ra-

diation from binary black hole coalescence in GR [23–

27]. Using GW190412 and GW190814, Ref. [28] tested

the consistency between the dominant and sub-dominant

modes and found the chirp mass estimated from the

ℓ = 3,m = 3 mode to be within ±1% of the one esti-

mated from the quadrupolar ℓ = 2,m = 2 mode.

In a more recent work [29], the consistency of the am-

plitudes of the h21 and h33 modes of the GW spectrum

with GR predictions was investigated using these two

events and found no evidence for any violation of GR.

mailto:ppmp75@cmi.ac.in


2

This test assumes the phases of sub-dominant harmonics

(ψℓm;ℓ>2) follow GR and investigates whether the ampli-

tudes of sub-dominant harmonics (Aℓm;ℓ>2) are consis-

tent with the GR prediction.

In this paper, we argue that if a signal contains non-

quadrupolar modes, apart from the amplitude, the phase

evolution will also carry their unique imprints [1, 25, 26,

30]. As GW detectors are more sensitive to phase evo-

lution, this could be used to test GR, complementing

the approach of [29]. However, we will focus only on

the inspiral phase in this work, which is well-modeled

by PN approximation to GR, and discuss constraints on

the PN structure of octupolar emission in GR. For this,

we will make use of the unique map between the mass-

type octupole coefficients at different PN orders and the

bounds on the 1PN, 2PN, and 2.5PN logarithmic phas-

ing deformation parameters for these two events in the

parametrized tests of GW phasing reported in [31, 32].

Further, we will consider only the leading order appear-

ance of the octupole coefficients in the GW phase for this

mapping.

The remainder of the paper is organized as follows.

In Sec. II, we briefly review the parametrized tests of

GW phasing. In sec. III, we introduce the octupolar

parametrization. We derive the relations between differ-

ent PN pieces in the mass-type octupole moment and

different PN phasing terms in Sec. IV. In Sec. V, we

describe the Bayesian framework to infer the octupole

parameters. Our results and conclusions are presented

in Sec. VI.

II. PARAMETRIZED TESTS OF GW PHASING

The frequency domain GW phase from the inspiral

part of the waveform (computed using the stationary

phase approximation [33, 34]) for the leading quadrupo-

lar harmonic [4, 35] takes the form

Ψ(f) = 2πf tc − ϕc

+
3

128 ν v5

[
i=7∑
i=0

(ϕi + ϕil ln v) v
i +O(v8)

]
,

(2)

where v = (πGMf/c3)1/3 is the PN expansion param-

eter, M is the binary’s redshifted total mass, ν is the

symmetric mass ratio of the binary, ϕi and ϕil denote

the non-logarithmic and logarithmic PN phasing coeffi-

cients, respectively.

Due to the lack of accurate waveforms in alternative

theories of gravity, “theory-agnostic” approaches are of-

ten adopted to test GR with GW data. These “null

tests” of GR make use of our best knowledge of compact

binary dynamics in GR and look for possible deviations

from GR without reference to specific alternatives (See

Ref [31, 32, 36, 37] for more details.). One of the most

generic tests of GR that has been routinely performed

with LIGO/Virgo data is the parametrized test of GW

phasing [38–46].

The parametrized tests rely on measuring any devia-

tions in the PN coefficients ϕi and ϕil in the GW phas-

ing, which are uniquely predicted by GR, from compact

binary mergers. A parametrized waveform model intro-

duces additional degrees of freedom to capture signatures

of possible GR violation by modifying the phasing coef-

ficients as

ϕb = ϕGR
b (1 + δϕ̂b), (3)

(b = i, il) (see Sec. VA of Refs. [31, 32] for more details).

In GR, these phenomenological dimensionless deviation

parameters (δϕ̂b) are identically zero, whereas in alterna-

tive theories of gravity, one or more of these parameters

could be different from zero. Combining data from dif-

ferent GW events detected during the first, second, and

third observing runs of LIGO/Virgo, the current bound

on the PN deviation parameters are found to be consis-

tent with GR (see Fig. 6 and Fig. 7 of Ref. [32]).

For the two asymmetric binary events, GW190412

and GW190814, we will use the results of the

parametrized tests, obtained by applying parameterized

IMRPhenomPv3HM (denoted as “Phenom” in this paper)

[8] and SEOBNRv4HM ROM (denoted as “SEOB”)[9] wave-

form approximant to the data. Phenom waveform is

a frequency-domain phenomenological waveform model

that includes the effects of two-spin precession along

with higher multipole moments [8], whereas SEOB is

a frequency-domain non-precessing reduced-order EOB

model that incorporates the higher order modes [9].

In the current LVK analyses [31, 32, 37], the reported

bounds on δϕ̂b come from the fractional deviations ap-

plied to the non-spinning portion of the phase (see

Sec. VA of Refs. [31, 32] for detailed discussions).

III. PARAMETERIZED MULTIPOLAR

GRAVITATIONAL WAVEFORMS

The radiative multipole moments of a compact binary

system contain information about source physics (masses

[16, 30, 47], spins [4, 16, 48–60], tidal deformability [61–

67], spin induced quadrupole moment [51, 68–71] etc.)

and account for various nonlinear interactions and phys-

ical effects (such as ‘tail’ effects [30, 72, 73], tails of

tails [74], tail square [75], memory effects [76–79], spin-

orbit effects [48, 80], spin-spin effects [48, 59] etc.) that

occur at different PN orders in GR. In alternative theo-

ries of gravity, one or more radiative multipole moments

of a compact binary could be different from those in GR

(see for instance Refs. [81–83]). One can put constraints

on such theories by studying the multipolar structure of

asymmetric compact binary systems like GW190412 and

GW190814.

Refs. [25, 26] came up with a novel theory-agnostic

method to test the multipolar structure of the gravita-
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tional field radiated from an inspiralling compact binary.

Using the multipolar post-Minkowskian (MPM) formal-

ism [30, 47, 72, 84–92], Ref. [25] derived the parametrized

multipolar gravitational wave phasing up to 3.5PN or-

der for non-spinning binaries and Ref. [26] extended it

for non-precessing binaries. The MPM formalism re-

lates the radiation content in the far zone, encoded in

the mass- and current-type radiative multipole moments

{UL, VL}, to the stress-energy tensor of the source. In

order to model possible deviations in the multipole struc-

ture, Ref. [25, 26] adopted the following parametriza-

tion for radiative multipole moments: UL → µl UL,

VL → ϵl VL. By construction, the phenomenological

multipole parameters µl, ϵl are equal to unity in GR.

With this parametrization, the contributions from vari-

ous radiative multipole moments to the GW phasing can

be tracked separately, thereby facilitating tests of the

multipolar structure of the PN approximation to GR.

In this work, we go one step further and probe the dif-

ferent PN orders in the radiative mass octupole moment

of a compact binary as it evolves through the adiabatic

inspiral phase. We propose the parametrization

Uijk −→
∑
n

1

cn
µ3n U

(n),GR
ijk , (4)

where, Uijk is the mass-type radiative octupole moment,

U
(n),GR
ijk is the (n/2)-th PN correction to Uijk in GR and

µ3n is the corresponding octupole coefficient. Note that

there is no 1/c (i.e., 0.5PN) contribution in the mass

octupole moment in GR. The 1.5PN correction term in

the octupole moment arises due to the tail effect, caused

by the scattering of the outgoing octupolar wave off the

background spacetime associated with the total (ADM)

mass of the source [30, 72–75]. By definition µ3n is unity

in GR and appears at different PN orders in the phasing

formula. For instance, µ30 first appears at 1PN, µ32 at

2PN and µ33 at 2.5PN (logarithmic) order. We next

discuss how the existing bounds on the PN deformation

coefficients δϕ̂b, based on the parametrization in Eq. 3,

reported in [31, 32] can be mapped to the bounds on µ3n

in the parametrization derived above.

IV. MAPPING THE PN BOUNDS TO THE

OCTUPOLE PARAMETERS

Each of the parameters µ3n appears at multiple PN

orders in the GW phasing. For example, µ30 appears

at 1PN, 2PN, 2.5PN (logarithmic) and 3.5PN orders.

Therefore if there is a deviation from GR in one of the

µ3n, it will result in a dephasing of each of the PN phas-

ing coefficients at the order in which this octupole pa-

rameter contributes 1. Here we neglect the modification

1 We assume the corrections to the radiative mass-type

quadrupole moment µ2n follows GR. This is a reasonable as-

to all PN orders except the leading order at which they

first appear. This is a reasonable assumption to make be-

cause if there is a deviation in any of the µ3n, the leading

order at which they appear would be most sensitive to

such a deviation.

Therefore, the goal now will be to obtain constraints

on µ30, µ32, and µ33 using the bounds on 1PN, 2PN,

and 2.5PN logarithmic phase deformation parameters,

respectively, along with other relevant intrinsic binary

parameters for particular GW events. Further, while es-

timating bounds on one of the µ3n, we assume all other

mass-type octupole parameters as well as rest of the

multipole parameters to take their values in GR (i.e.,

µ3n′;n′ ̸=n = µl;l ̸=3 = ϵl = 1) in the spirit of single-

parameter test, i.e., varying one deformation parameter

at a time.

The expression for 1PN phasing coefficient in the

parametrized multipolar GW phase (see Eq. (2.16) of

Ref. [25]) is given by

ϕ2 =

(
1510

189
− 130

21
ν

)
+

(
µ30

µ2

)2 (
−6835

2268
+

6835

567
ν

)
+

(
ϵ2
µ2

)2 (
− 5

81
+

20

81
ν

)
= ϕGR

2 −K1(ν)

[(
µ30

µ2

)2

− 1

]
−K2(ν)

[(
ϵ2
µ2

)2

− 1

]
, (5)

where,

ϕGR
2 =

(
3715

756
+

55

9
ν

)
, (6a)

K1(ν) =

(
6835

2268
− 6835

567
ν

)
, (6b)

K2(ν) =

(
5

81
− 20

81
ν

)
, (6c)

and µ2 and ϵ2 are the mass and current quadrupole pa-

rameters, respectively.

Comparing the parametrized PN phasing of Eq. (3) to

Eq. (5) we have the following relation between δϕ̂2 and

µ30:

δϕ̂2 =

K1(ν)

[
1−

(
µ30

µ2

)2
]
+

[
1−

(
ϵ2
µ2

)2
]
K2(ν)

ϕGR
2

. (7)

In the spirit of null tests, we find it more convenient to

employ octupole deformation parameters δµ3n defined

for mass octupole by imposing µ3n = 1 + δµ3n for the

different PN pieces. The aim now would be to derive

sumption confirmed by the previous tests of GR performed on

GW events of nearly equal mass systems for which all PN defor-

mation parameters are fully functions of different µ2n.
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bounds on δµ30, δµ32 and δµ33 using GW observations

assuming µl;l ̸=3 = ϵl = 1 and δµ3n′;n′ ̸=n = 0 2.

With the above assumption we can express δµ30 in

terms of δϕ̂2 as

δµ30 = −1±

√
1 − δϕ̂2

ϕGR
2

K1(ν)
. (8)

Among the two solutions, we will adopt the one which

respects the GR limit (i.e., δµ30 vanishes when δϕ̂2 →
0). Similarly, we also obtain the expressions for δµ32

and δµ33 as (see Sec. 1 of supplementary material for a

derivation):

δµ32 =
ϕGR
4 δϕ̂4
K3(ν)

, (9)

δµ33 =
ϕGR
5l δϕ̂5l
K4(ν)

. (10)

The expressions of ϕGR
4 , K3(ν), ϕ

GR
5l , and K4(ν) are pro-

vided in Sec. 1 of the supplementary material.

Having obtained the mapping, now the problem essen-

tially amounts to using the posterior samples of {δϕ̂b, ν}
for any event and computing the corresponding poste-

riors on {δµ3n} using the above equations. The exact

procedure followed is discussed next.

V. INFERRING OCTUPOLE PARAMETERS

Given the LIGO/Virgo data, d, we are interested in

deriving P̃ (δµ3n|d, H), the posterior probability distri-

bution on δµ3n, for a flat prior on δµ3n (here H de-

notes the hypothesis, which is the parametric model

we employ.). Towards this, we use Eqs. (8), (9), and

(10), along with the two-dimensional posterior distri-

bution P (δϕ̂b, ν|d, H), for different GW events. For

example, to derive P̃ (δµ30|d, H) we will use Eq. (8)

and P (δϕ̂2, ν|d, H). The probability distribution

P (δϕ̂b, ν|d, H) is computed for flat priors on δϕ̂b and

mass ratio. Therefore in the Bayesian framework the

samples of δµ3n, derived from P (δϕ̂b, ν|d, H), need to

be reweighted to obtain posterior P̃ (δµ3n|d, H) that as-

sume flat priors on δµ3n as

P̃ (δµ3n|d, H) ∝
[ ∫

dν d(δϕ̂b)P (δµ3n|δϕ̂b, ν, H)

P̃ (δϕ̂b, ν|d, H)

]
× Π̃(δµ3n|H)

Π(δµ3n|H)
.

(11)

2 This would amount to assuming, for instance, δµ30 = 0 at all

orders except at 1PN where it first appears. This is justified only

if the posterior on δµ30 derived from 1PN is consistent with GR

which is exactly what we find in this work. The same argument

would apply to all higher-order δµ3n that we deal with in this

work.

In the above equation, the tilde denotes flat priors

or posteriors derived assuming flat prior on the cor-

responding parameters. Hence Π̃(δµ3n|H) denotes flat

prior on δµ3n and P̃ (δϕ̂b, ν|d, H) denote posterior as-

suming flat priors on δϕ̂b and mass ratio. The prior dis-

tribution, Π̃(δµ3n|H), is chosen to be uniform between

[-30, 30]. While P (δµ3n|δϕ̂b, ν, H) takes care of the co-

ordinate transformation between (δϕ̂b, ν) to δµ3n (using

Eqs. (8)-(10)), Π(δµ3n|H) in the above equation is sim-

ply P (δµ3n|δϕ̂b, ν, H) for the flat prior on δϕ̂b and mass

ratio. A detailed derivation of the above equation is pro-

vided in Sec. 2 of the supplementary material.

As GW190814 and GW190412 are the only two events

for which a confident detection of higher modes was pos-

sible, we will restrict to these two events for our pur-

poses. We use the parameter estimation samples for δϕ̂b
and symmetric mass ratio (ν) from the GWTC-3 Data

Release [93] for these two events, analyzed with different

waveform approximants, and estimate the bounds on the

parameters δµ3n following this procedure.

While estimating the posterior probability distribution

of δµ30, we need to ensure that the values of δµ30 ob-

tained from a pair of (δϕ̂2, ν) should be real by imposing

the condition (See Eq. (8)),

δϕ̂2 ≤ K1(ν)

ϕGR
2

. (12)

In order to realize this, we discard those samples of δµ30

which do not meet the above condition. If we need to re-

move relatively large number of samples, that means the

event is uninformative. We find that for events except

GW190814 and GW190412, majority of the samples do

not meet this condition. This simply is a reflection of

the fact that we are trying to test deviation in octupole

moment when its presence is barely there in the signal.

VI. RESULTS AND CONCLUSIONS

The posteriors of the leading and two subleading oc-

tupole deformation parameters δµ30, δµ32, and δµ33

for GW190412 and GW190814 obtained by the above-

mentioned procedure are shown in Fig. 1. Among the

detected events, GW190814 provides the tightest con-

straints on all the octupole parameters. This is expected

as GW190814 is the most unequal mass binary (mass

ratio, q = 0.112+0.008
−0.009) among the GW events in the

GWTC-3 and asymmetric systems get stronger contri-

butions from non-quadrupolar moments.

In addition to the individual event analysis in Fig. 1,

we have also obtained the combined bounds on δµ3n us-

ing data from multiple events under the assumption that

the same value of δµ3n is shared across all the events.

The joint constraints on these parameters are obtained

by multiplying the individual likelihoods from the events,

GW190412 and GW190814, analyzed with Phenom and

SEOB waveforms. In the joint analysis the most tightly
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FIG. 1. Bounds on δµ3n for GW190412 and GW190814 analyzed with Phenom (in red color) and SEOB (in blue color) waveform

approximants are shown. Left-most panels show the bounds for GW190412, whereas the middle panels show the result for

GW190814. The combined bounds are shown in the rightmost panels. The colored vertical dashed lines mark the 90% credible

intervals and median values. The gray dashed vertical lines indicate the GR prediction (δµ3n = 0). The posterior distributions

of δµ3n show consistency with GR.

constrained parameter is δµ30 and the most weakly con-

strained parameter is δµ33. The posterior on higher-

order mass octupole deformation parameters, such as

δµ34, are mostly uninformative and not shown here. De-

tections of unequal mass binaries in the future with a

larger signal-to-noise ratio (SNR) will enable us to probe

higher PN pieces in the mass octupole moment.

Bounds from the two different kinds of waveform ap-

proximants show excellent agreement with each other.

On all occasions the posterior distributions on δµ3n are

statistically consistent with δµ3n = 0 within 90% cred-

ible interval. This is the first reported bound on the

different PN pieces in mass-type octupole moment of

compact binary complementing the previous consistency

tests in Refs. [28, 29]. It is interesting that the bounds

on δµ33 also confirm the consistency of the octupolar tail

radiation with the predictions of GR.

The posterior distributions on current quadrupole de-

formation parameters are also largely uninformative and

not reported here. In the future, the detections of high

mass-ratio and highly spinning binaries with larger SNR

will enhance the contribution of the current quadrupole

to the flux making its measurement with good precision

possible.

Lastly, it is instructive to ask if the GR violations in

the δϕ̂b posteriors can be captured by the mapping pro-

posed in this work. This is examined in Fig. 1 of the

supplementary material (see the texts in Sec. 3 of the

supplementary material for more details). We consider a

GW190814-like system and simulate GR violations with

different σ-values in the δϕ̂b-posteriors. We find that the

derived posteriors on δµ3n, through this mapping, will
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be able to detect deviations at different σ-values in the

δϕ̂b-posteriors from GR.

To conclude, the parametrized multipolar waveforms

could play a pivotal role in testing GR with current

and next-generation GW detectors. The next-generation

GW detectors will observe more diverse classes of com-

pact binaries, thereby allowing us to probe even higher

multipoles of compact binaries, and the parametrization

introduced here will be crucial in such scenarios. De-

velopment of an infrastructure that can directly sample

over the multipole parameters is planned for future work

which should be able to probe the multipole structure

without relying on the approximate mapping we have

invoked here. The direct inference of multipole param-

eters from the GW data could provide even more strin-

gent constraints as one will potentially gain information

from multiple PN coefficients in the phase. Moreover,

the inclusion of multipole parameters in the amplitude

will likely play a critical role in this framework.
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