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Crystalline materials are promising candidates as substrates or high-reflective coatings of mirrors
to reduce thermal noises in future laser interferometric gravitational wave detectors. However,
birefringence of such materials could degrade the sensitivity of gravitational wave detectors, not only
because it can introduce optical losses, but also because its fluctuations create extra phase noise in
the arm cavity reflected beam. In this paper, we analytically estimate the effects of birefringence
and its fluctuations in the mirror substrate and coating for gravitational wave detectors. Our
calculations show that the requirements for the birefringence fluctuations in silicon substrate and
AlGaAs coating will be in the order of 10−8 rad/

√
Hz and 10−10 rad/

√
Hz at 100 Hz, respectively,

for future gravitational wave detectors. We also point out that optical cavity response needs to be
carefully taken into account to estimate optical losses from depolarization.

I. INTRODUCTION

The first detections of gravitational waves from binary
black holes [1] and binary neutron stars [2, 3] by Ad-
vanced LIGO [4] and Advanced Virgo [5] inaugurated
gravitational wave physics and astronomy. Improve-
ments in the sensitivity of these laser interferometric de-
tectors in recent years enabled routine detections and
more precise binary parameter estimation [6]. Further
improvements in the astrophysical reach of these detec-
tors will allow us to study the origin of massive black
holes, the neutron star equation of state, alternative grav-
ity theories, and cosmology.

The fundamental limitation to the sensitivity of these
detectors at the most sensitive frequency band is set by
thermal vibrations of mirror surface [7]. KAGRA [8, 9]
and other concepts of future gravitational wave detectors
plan to utilize cryogenic crystalline test mass mirrors for
thermal noise reduction, instead of fused silica mirrors at
room temperature. KAGRA uses sapphire test masses,
and plan to cool them down to 22 K [10]. Voyager is an
upgrade plan of LIGO to use 123 K silicon to increase
the astrophysical reach by a factor of 4–5 over Advanced
LIGO design [11]. The next generation detectors such
as Einstein Telescope [12, 13] also plan to use silicon
test masses at cryogenic temperatures for the low fre-
quency detectors, and Cosmic Explorer [14, 15] considers
using them for an upgrade. In addition, crystalline coat-
ings such as AlGaAs coating [16] and AlGaP coating [17]
are considered as promising candidates to reduce coating
Brownian noise, instead of amorphous silica and tantala
coating.

Although crystalline materials are promising to reduce
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thermal noise, it has been pointed out that slight bire-
fringence of mirror substrates and coatings could cause
optical losses due to depolarization of the light, and cause
degradation of interferometric contrast [18]. The bire-
fringence and its inhomogeneity of sapphire input test
masses of KAGRA were found to be higher than ex-
pected [19, 20], and around 10% of power was lost on
reflection due to depolarization, when arm cavities are
not on resonance [9]. Ideally, crystalline silicon is a cu-
bic crystal and optically isotropic, but could have strain-
induced birefringence from crystal dislocations and due
to support in the mirror suspension system. Birefrin-
gence measurements in silicon mirrors have revealed that
the amount of the static birefringence is ∆n ∼ 10−7 or
less at laser wavelengths of 1.55 µm [21] and 2 µm [22]
at room temperature, which satisfies the optical loss re-
quirements for future detectors. Also, previous cavity ex-
periments using AlGaAs coatings reported birefringence
at 1 mrad level [16, 23, 24].
These past studies have focused on the static birefrin-

gence and optical losses from the depolarization. How-
ever, recent measurement of thermal noises in crystalline
mirror coatings at cryogenic temperatures reported ex-
cess birefringent noise, which could limit the sensitivity
of future gravitational wave detectors [25]. Theoretical
calculations on thermal fluctuations of birefringence in
crystalline mirror coatings have also revealed that the
noise from these fluctuations could be similar to Brown-
ian noise [26]. It is also worth noting that experiments
to search for vacuum magnetic birefringence, such as
PVLAS and OVAL, has been suspected to be limited
by thermal birefringence noise of mirrors [27–31]. These
temporal birefringence fluctuations could also limit op-
tical cavity based axion dark matter searches using the
birefringence effect from axion-photon coupling [32–36].
In this paper, we study the effects of birefringence and

its fluctuations to gravitational wave detectors based on
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FIG. 1. The schematic of a Fabry-Pérot cavity with mir-
ror crystal axes and input beam polarization axis illustrated.
With respect to the ITM ordinary axis, the input polarization
is rotated by θpol and the ETM ordinary axis is rotated by θ.

Fabry-Pérot-Michelson interferometer. We show that the
polarization axis and the crystal axes of arm cavity mir-
rors need to be aligned to avoid optical losses and to
reduce noises from birefringence fluctuations. We also
show that the cavity response to birefringence needs to
be correctly taken into account for estimating the noises
and the optical losses of arm cavities. We start by an-
alytically describing the cavity response to birefringence
in Sec. II. In Sec. III, we focus on noises from substrate
birefringence and coating birefringence, and derive re-
quirements for their fluctuations for future gravitational
wave detectors. In Sec. IV, we expand our formulation
to include spatial higher order modes, and discuss power
losses from inhomogeneous birefringence of the substrate
and the coating. Our conclusions and outlook are sum-
marized in Sec. V.

Throughout the paper, we use 0.1% as a requirement
threshold for the optical losses from polarization. In this
way the optical losses from polarization will be small
enough, as future gravitational wave detector designs re-
quire total optical loss to be less than 10% [50].

II. CAVITY RESPONSE TO BIREFRINGENCE

Let us consider a Fabry-Pérot cavity formed by an in-
put test mass (ITM) and an end test mass (ETM) mir-
rors as shown in Fig. 1. We consider birefringence of
ITM substrate, ITM high-reflective coating, and ETM
high-reflective coating. The ordinary axis of the ETM
coating is rotated by θ with respect to that of ITM. The
input beam is linearly polarized and its polarization is
rotated by θpol with respect to the ordinary axis of ITM.
We assume that the crystal axes of ITM substrate are
aligned with those of its coating. This will not affect the
results of this paper, as we will treat the substrate bire-
fringence and the coating birefringence independently in
the following sections.

For calculating the cavity response to birefringence, we
can use the Jones matrix formalism [37]. In the basis of
ITM crystal axes, the electric field of the input beam can

be written as

E⃗in = (v1e⃗o + v2e⃗e)Ein =
(
e⃗o e⃗e

)
v⃗inEin, (1)

where e⃗o and e⃗e are the unit vectors along with the ITM
ordinary and extraordinary axes, and v⃗in ≡ (v1 v2)

T is
the unit vector representing the input polarization.
We suppose the ITM substrate is loss less, and the am-

plitude reflectivity and the amplitude transmission of the
whole ITM is determined by the high-reflective coating.
Then the amplitude transmission of ITM can be written
as

T1 =

(
t1 0

0 t1e
−i 1

2∆ϕt1

)
, (2)

where ∆ϕt1/2 is the phase difference between the ordi-
nary and extraordinary axes in the ITM transmission
from both the substrate and the coating birefrigence, and
t1 is the amplitude transmission of ITM. Here, we as-
sumed that the amplitude transmission is the same for
both axes. Similarly, the amplitude reflectivity of ITM
and ETM from the high-reflective coating side can be
written as

Rj =

(
rj 0

0 rje
−i∆ϕrj

)
, (3)

where ∆ϕrj is the phase difference between the ordinary
and extraordinary axes in ITM and ETM reflection, and
rj is the amplitude reflectivity of ITM and ETM. j = 1
is for ITM and j = 2 is for ETM. Also, the amplitude
reflectivity of ITM from the substrate side can be written
as

S1 =

(
−r1 0
0 −r1e−i∆ϕs1

)
, (4)

where ∆ϕs1 is the phase difference between the ordinary
and extraordinary axes in the ITM reflection from the
substrate side. From the energy conservation and the
time reversal symmetry, ∆ϕt1 = ∆ϕr1 + ∆ϕs1 . Here,
we use the convention that rj and t1 are real, and the
sign is flipped for reflection from the ITM substrate side.
We keep the coordinate axis to be the same even if the
propagation direction flips on mirror reflections, so that
the sign for both polarizations will be the same.
For arm cavities in gravitational wave detectors, r1 and

r2 are designed to be r2 ≃ 1, and r1 < r2, such that al-
most all the light is reflected back. From the phase of the
cavity reflected beam, cavity length changes from gravi-
tational waves are read out. In the following subsections,
we calculate the polarization eigenmodes in the cavity,
and the phase of the cavity reflected beam.

A. Polarization eigenmodes in the cavity

The electric field inside the cavity that propagates from
ITM to ETM can be written as

E⃗cav = (I −A)
−1
T1E⃗in, (5)
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with I being the identity matrix. Here,

A ≡ R1R(−θ)R2R(θ)e
−iϕ, (6)

where ϕ = 4πL/λ is the phase acquired in the cavity
round-trip, with L and λ being the cavity length and the
laser wavelength, and

R(θ) ≡
(
cos θ − sin θ
sin θ cos θ

)
, (7)

with the derivation described in Appendix A. Note that
ϕ includes phase acquired in the ITM and ETM reflection
for their ordinary axes. The resonant polarization mode
is the eigenvectors of

Mcav ≡ (I −A)
−1
T1. (8)

The cavity enhancement factors for each mode will be
the eigenvalues of Mcav.

When θ = 0, the ITM axes and the ETM axes are
aligned, and the eigenvectors will be

v⃗a =

(
1
0

)
, v⃗b =

(
0
1

)
, (9)

which means that the resonant modes are linear polar-
izations along the ITM ordinary axis e⃗o and the extraor-
dinary axis e⃗e. The cavity enhancement factors will be

wa =
t1

1− r1r2e−iϕ
, wb =

t1e
−i 1

2∆ϕt1

1− r1r2e
−i(ϕ+∆ϕr1

+∆ϕr2
)
.

(10)
The resonant frequency difference between two eigen-
modes therefore will be

∆ν =
∆ϕr1 +∆ϕr2

2π
νFSR, (11)

where νFSR = c/(2L) is the free spectral range of the
cavity.

When θ = π/2, the ITM ordinary axis and the ETM
extraordinary axis are aligned, and the eigenvectors again
will be the same as the ones given in Eq. (9). The cavity
enhancement factors will be

wa =
t1

1− r1r2e
−i(ϕ+∆ϕr2 )

, wb =
t1e

−i 1
2∆ϕt1

1− r1r2e
−i(ϕ+∆ϕr1 )

.

(12)
The resonant frequency difference between two eigen-
modes therefore will be

∆ν =
∆ϕr1 −∆ϕr2

2π
νFSR. (13)

Since we defined the ITM and ETM axes such that
∆ϕri have the same sign for ITM and ETM, when θ = 0,
the phase difference between the axes are added and the
resonant frequency difference is maximized. When θ =
π/2, it is minimized, as the phase difference is cancelled.
When 0 < θ < π/2, the resonant frequency difference
will be in between the maximum and the minimum.

When the resonant frequency difference is smaller than
the cavity linewidth, i.e., ∆ϕri ≪ 2π/F , and when the
effect from the ITM substrate birefringence is small, i.e.,
∆ϕt1 ≪ ∆ϕr1F/π, the resonant frequency difference can
be calculated with

∆ν ≃ 2π(argwa − argwb)

F
νFSR
2π

, (14)

at ϕ = 0, where

F =
π
√
r1r2

1− r1r2
(15)

is the finesse of the cavity. This can be further approxi-
mated as [38]

∆ν ≃ δEQ

2π
νFSR, (16)

where

δEQ ≡
√

(∆ϕr1 −∆ϕr2)
2 + 4∆ϕr1∆ϕr2 cos

2 θ, (17)

when δEQ ≪ 1, with the derivation described in Ap-
pendix B. Also, the cavity eigenmodes are linear polar-
izations approximated as

v⃗a =

(
cos θEQ

sin θEQ

)
, v⃗b =

(
− sin θEQ

cos θEQ

)
, (18)

where the polarization angle is defined by

cos 2θEQ =

∆ϕ′r1
∆ϕr2

+ cos 2θ√(
∆ϕ′r1
∆ϕr2

− 1

)2

+ 4
∆ϕ′r1
∆ϕr2

cos2 θ

, (19)

with

∆ϕ′r1 ≡ ∆ϕr1 +
π

F
∆ϕt1 . (20)

When ∆ϕ′r1 ≫ ∆ϕr2 , θEQ is equal to zero, when ∆ϕ′r1 =
∆ϕr2 , θEQ is equal to θ/2, and when ∆ϕ′r1 ≪ ∆ϕr2 , θEQ

is equal to θ. Note that the polarization state resonat-
ing inside the cavity are elliptic polarizations given by
R1T1v⃗a,b/(r1t1), and are different from linear polariza-
tions given by Eq. (18).
The mis-match between the cavity polarization mode

and the input beam polarization can be calculated with

Λ2 = 1− |v⃗a · v⃗in|2 . (21)

When the input beam is linearly polarized with the po-
larization angle of θpol such that

v⃗in = R(θpol)

(
1
0

)
=

(
cos θpol
sin θpol

)
, (22)

Eq. (21) reduces to

Λ2 = sin2 (θEQ − θpol). (23)
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FIG. 2. The polarization eigenmodes of a Fabry-Pérot cavity
as a function of ETM rotation angle θ. The top panel shows
the round-trip phase difference between the eigenmodes in the
unit of ∆ϕr1 , i.e., 2π∆ν/(νFSR∆ϕr1), which is proportional
to the resonant frequency difference. The middle panel shows
the polarization angle of the eigenmodes θEQ calculated using
Eq. (19). The bottom panel shows the mis-match of the input
beam polarization to the eigenmodes, when it is linear and
aligned with ITM axes, calculated using Eq. (21). Different
color of the lines correspond to different ∆ϕr2/∆ϕr1 ratio.
Blue lines for ∆ϕr2 = 0 case in the bottom two plots are zero.

The mis-match will be less than than 0.1 % when
|θEQ−θpol| is smaller than 1.8 degrees. For gravitational
wave detectors, this is required for both arm cavities.
This means that the axes of two arm cavities need to
be aligned to the same degree. Note that mis-match do
not directly mean that there is a same amount of power
loss. The actual power loss also depend on the amount
of birefringence, as we will discuss in Sec. IV.

Figure 2 shows the polarization eigenmodes of the cav-
ity as a function of ETM rotation angle θ, calculated
using Eqs. (16) and (19). As we have discussed earlier,
the resonant frequency difference will be the maximized
at θ = 0, and minimized at θ = π/2. When θ = π/2
and ∆ϕr1 = ∆ϕr2 , the phase difference between ordinary
and extraordinary axes is completely cancelled, and two
modes will be degenerate. In this case, two linear po-
larizations and two circular polarizations will be cavity
eigenmodes, since two modes have the same resonant fre-
quency.

The bottom panel of Fig. 2 shows the mis-match cal-
culated using Eq. (21), assuming the input polarization
is linear and aligned with either of the ITM axes. The
mis-match is nulled at θ = 0 and θ = π/2. To minimize
the mis-match and to make the resonant frequency dif-

ference large, aligning the ETM rotation such that θ = 0
and aligning the input polarization to one of the ITM
axes will be the optimal choice. The requirement on the
alignment will be not severe, since the dependence on the
ETM rotation angle goes with θ2 at θ = 0.
For deriving the cavity reflected beam, we need to cal-

culate the electric field inside the cavity that propagates
from ETM to ITM. This can be written as

E⃗′
cav = R(−θ)R2R(θ)e

−iϕMcavE⃗in (24)

≡M ′
cavE⃗in. (25)

The eigenvectors of M ′
cav is the same as those of Mcav

within our approximations discussed above, but the cav-
ity enhancement factors will be slightly different. When
θ = 0, the cavity enhancement factors will be

w′
a =

t1r2e
−iϕ

1− r1r2e−iϕ
, w′

b =
t1r2e

−i(ϕ+ 1
2∆ϕt1

+∆ϕr2 )

1− r1r2e
−i(ϕ+∆ϕr1

+∆ϕr2
)
,

(26)
and when θ = π/2, those will be

w′
a =

t1r2e
−i(ϕ+∆ϕr2

)

1− r1r2e
−i(ϕ+∆ϕr2

)
, w′

b =
t1r2e

−i(ϕ+ 1
2∆ϕt1 )

1− r1r2e
−i(ϕ+∆ϕr1

)
.

(27)
Compared with wa and wb, those have extra phase ϕ from
the cavity round trip and extra phase ∆ϕr2 for the cor-
responding axis for one additional reflection from ETM.

B. Phase of cavity reflected beam

The noises due to temporal fluctuations of birefrin-
gence will be imprinted in the phase of the cavity re-
flected beam. The electric field of the cavity reflection
can be written as

E⃗refl =MreflE⃗in (28)

where

Mrefl ≡ S1 + T1M
′
cav. (29)

The first term corresponds to the prompt reflection from
ITM, and the second term is the ITM transmitted beam
from the cavity circulating beam. In general, when the
input beam polarization component is

v⃗in = av⃗′a + bv⃗′b, (30)

the polarization component of the reflected beam is

Mreflv⃗in = a(S1 + w′
aT1)v⃗

′
a + b(S1 + w′

bT1)v⃗
′
b. (31)

Since the resonant condition of each eigenmode is gener-
ally different, it is generally |w′

a| ≠ |w′
b|. Therefore, the

polarization component of the cavity reflected beam will
be different from the input polarization.
When we use a Faraday isolator to extract the cavity

reflection, we extract the polarization component which
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is the same as the input polarization. Therefore, the
phase of the cavity reflected beam can be calculated with

arg (Eout) = arg (Erefl∥) = arg (EinMreflv⃗in · v⃗in). (32)

In the case when the input beam polarization is aligned to
the ITM ordinary axis, this reflected phase is the phase
of (1,1) component of Mrefl, and that for the ITM ex-
traordinary axis is (2,2) component of Mrefl.
Let us first consider the effects from ITM. If we set

∆ϕr2 = 0 and the input beam is linearly polarized with
the polarization angle of θpol as shown in Eq. (22), the
reflected electric field in the polarization parallel to v⃗in
and in the orthogonal polarization will be

Erefl∥

Ein
=Mreflv⃗in · v⃗in

= (−r1 + w′
at1) cos

2 θpol

+(−r1e−i∆ϕs1 + w′
bt1e

−i 1
2∆ϕt1 ) sin2 θpol, (33)

Erefl⊥

Ein
=Mreflv⃗in ·R(θpol)

(
0
1

)
=

[
(−r1 + w′

at1)− (−r1e−i∆ϕs1 + w′
bt1e

−i 1
2∆ϕt1 )

]
× sin (2θpol)

2
. (34)

These are similar to the electric fields of the bright reflec-
tion port and the dark anti-symmetric port for a Fabry-
Pérot-Michelson interferometer that has an unbalanced
beam splitter.

The effects from the ETM birefringence can be calcu-
lated by setting ∆ϕs1 = ∆ϕt1 = 0, and replacing ∆ϕr1 to
∆ϕr2 and θpol to θ+ θpol. If we combine the effects from
ITM and ETM, the phase of the reflected beam around
the resonance can be approximated as

arg

(
Erefl∥

Ein

)
= (∆ϕs1 − 2∆ϕt1) sin

2 θpol

− F
π

[
ϕ+∆ϕr1 sin

2 θpol

+ ∆ϕr2 sin
2 (θ + θpol)

]
,

(35)

with the approximation that ∆ϕri ≪ 2π/F and r2 = 1.
It is clear that both the ETM rotation angle θ and the in-
put beam polarization angle θpol changes the phase of the
cavity reflected beam, and will contribute to the phase
noise, unless θpol and θ + θpol are either 0 or π/2, where
the effects are quadratic to these angles. The fluctuations
of phase differences between ordinary and extraordinary
axes also create phase noises, unless θpol and θ+ θpol are
both 0.

It is worth noting that, even if we use this phase to lock
the cavity, this does not generally mean that the cavity
is locked on resonance to one of its polarization eigen-
modes, as the cavity reflected beam contains the phase
fluctuations from both polarization eigenmodes. To avoid
the mixing of phase noises from two polarization eigen-
modes, it is actually better to have higher static coating

TABLE I. Interferometer parameters of Advanced LIGO
(aLIGO), A+, Voyager, Cosmic Explorer (CE), Einstein Tele-
scope Low Frequency (ET-LF), and ET High Frequency (ET-
HF) used for calculating requirements. L: arm length, F :
arm finesse, t: ITM thickness, λ: laser wavelength.

L F t λ Ref.

aLIGO 4 km 450 20 cm 1064 nm [4]

A+ 4 km 450 20 cm 1064 nm [39]

Voyager 4 km 3000 55 cm 2050 nm [11]

CE 40 km 450 27.3 cm 2050 nm [15]

ET-LF 10 km 900 57 cm 1550 nm [13]

ET-HF 10 km 900 30 cm 1064 nm [13]

birefringence, i.e., ∆ϕri ≫ 2π/F . If the static coating
birefringence is high such that one of the eigenmodes is
out of resonance when the other is resonant, only ∆ϕs1
and ϕ terms remain in Eq. (35).

III. NOISES FROM BIREFRINGENCE

In this section, we calculate the phase noises from
temporal fluctuations of birefringence, and derive the re-
quirements for the current and future gravitational wave
detectors. For calculating the requirements, we have used
the interferometer parameters summarized in Table I,
and the displacement sensitivity curves shown in Fig. 3.
At the last part of this section, we also discuss the noise
from the amplitude fluctuations in the orthogonal po-
larization at the anti-symmetric port of the Fabry-Pérot
Michelson interferometer. Although different interferom-
eters plan to use different materials for the mirrors, dis-
cussions presented here do not depend on the choice of
materials.

A. Phase noises from substrate birefringence

The phase changes from the ITM substrate birefrin-
gence can be calculated from Eq. (35) by setting ∆ϕr1 =
∆ϕr2 = 0, and ∆ϕs1 = ∆ϕt1 . In this case, Eq. (35)
reduces to

arg

(
Erefl∥

Ein

)
= −∆ϕs1 sin

2 θpol −
F
π
ϕ. (36)

Therefore, the length noise couplings from the fluctua-
tions of θpol and ∆ϕs1 can be calculated as

δL

δθpol
=

λ

4π

δ[arg (Erefl∥)]

δθpol

(
δ[arg (Erefl∥)]

δϕ

)−1

=
λ

4F
∆ϕs1 sin 2θpol, (37)

δL

δ(∆ϕs1)
= − λ

4F
sin2 θpol. (38)
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FIG. 3. The designed displacement sensitivity for differ-
ent gravitational wave detectors. The strain sensitivity data
are taken from Refs. [40–42], and corrected to displacement
sensitivities by removing frequency-dependent responses to
gravitational waves [43].

B. Phase noises from coating birefringence

Next, we consider the phase changes from the coating
birefringence. From Eq. (35), it is clear that the second
term from ∆ϕr1 and ∆ϕr2 contributes more to the phase
of the reflected beam, compared with the first term from
∆ϕs1 and ∆ϕt1 , since the phase acquired inside the cav-
ity is enhanced by a factor of F/π. The length noise
couplings from the fluctuations of θpol, θ, and ∆ϕri can
be calculated as

δL

δθpol
=

λ

4π
[∆ϕr1 sin 2θpol

+∆ϕr2 sin [2(θ + θpol)]], (39)

δL

δθ
=

λ

4π
∆ϕr2 sin [2(θ + θpol)], (40)

δL

δ(∆ϕr1)
= − λ

4π
sin2 θpol, (41)

δL

δ(∆ϕr2)
= − λ

4π
sin2 (θ + θpol). (42)

C. Requirements on birefringence fluctuations

Noise couplings discussed above are nulled when θpol =
0 and θ = 0. For KAGRA test masses, the sapphire
c-axis was aligned to the cylindrical plane of the test
mass within 0.1 deg [20]. For deriving the requirements
to birefringence fluctuations for the substrate and the
coating, we assume that the input beam polarization and
the ETM axes are aligned to the ITM axes to θpol = 1 deg
and θ = 1 deg, respectively.
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FIG. 4. The requirements on birefringence fluctuations from
the axis rotations (top) and from the phase difference be-
tween ordinary and extraordinary axes (middle) for different
gravitational wave detectors. The bottom plot shows the re-
quirement on the substrate birefringence converted from the
phase difference requirements on ∆ϕs1 in the middle plot, as-
suming uniform ∆n, using Eq. (43). The solid lines are for
the substrate that have a static birefringence of ∆n = 10−7

and the dashed lines are for the coating that have a static
birefringence of ∆ϕri = 1 mrad. For deriving these require-
ments, we assumed that the input beam polarization and the
ETM axes are aligned to the ITM axes to θpol = 1 deg and
θ = 1 deg, and no safety margin is considered.
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The solid lines in Fig. 4 show the derived requirements
for the substrate birefringence fluctuations. We assumed
that the ITM substrate have uniform birefringence ∆n,
and ∆ϕs1 can be written using the mirror thickness t as

∆ϕs1 =
4π

λ
∆nt. (43)

We used the static birefringence value of ∆n = 10−7,
which is a typical measured value for silicon [21, 22].
The dashed lines in Fig. 4 show the derived require-
ments for the coating using the static birefringence value
of ∆ϕri = 1 mrad, which is a typical measured value
for AlGaAs coating [16, 23, 24]. The requirements do
not change for other materials when they have the same
amount of static birefringence. For deriving the require-
ment for ∆ϕrj , we used Eq. (42), as this gives more strin-
gent requirement than Eq. (41). All the requirements

are divided by
√
2 to take into account of birefringence

noises between two arm cavities to be incoherent, assum-
ing both cavities have similar level of birefringence. The
requirements will be relaxed for common effects in two
arms, such as the fluctuations in the input beam polar-
ization angle and birefringence induced by laser intensity
fluctuations.

The requirements on the axis rotations for future grav-
itational wave detectors is in the order of 10−10 rad/

√
Hz.

We note that the requirements on θpol and θ presented
here are also the requirements for the polarization fluctu-
ation requirement for the input beam and the roll motion
of the mirrors. As for the roll motion of the mirrors, the
vertical seismic motion create less than 10−11 rad/

√
Hz

level of roll motion above 10 Hz for the Advanced LIGO
suspensions, if we conservatively assume that the cou-
pling from vertical to roll motion is unity [35, 44]. There-
fore, the birefringence noise from the roll motion of the
mirrors is small enough.

The requirements on the phase differences between or-
dinary and extraordinary axes for future gravitational
wave detectors are in the order of 10−8 rad/

√
Hz for the

substrate, and 10−10 rad/
√
Hz for the coating. Birefrin-

gence at 10−8 rad/
√
Hz level can be feasibly evaluated

with shot noise limited interferometry at the laser power
of P = 10 mW level, as the shot noise limited phase
sensitivity of a Michelson interferometer is given by

ϕshot =

√
hc

2λP
, (44)

where h is Planck constant and c is the speed of light.
Evaluation of birefringence at 10−10 rad/

√
Hz level re-

quires 10-W class laser or cavity enhancements. Measure-
ments can be done at relatively lower power compared
with gravitational wave detectors, as the phase noise from
birefringence is attenuated by sin2 θ and sin2 (θ + θpol),
by aligning the polarization axis and the mirror crystal
axes. In the evaluation setup, the phase noise can be
enhanced by intentionally misaligning the axes.

One of the possible sources of birefringence fluctuations
is magnetic field fluctuations due to Faraday effect. Mea-
sured magnetic field fluctuations at various gravitational
wave detector sites are in the order of 10−12 T/

√
Hz

at 10 Hz [45], and the Verdet constant for silicon is

15 rad/(T·m) [46]. These give 10−11 rad/
√
Hz level of

∆ϕs1 for mirror thicknesses in Table I, which is below
the requirements given above.
We note that, when deriving the requirements shown

in Fig. 4, no safety margin was considered. This means
that the designed sensitivity will be fully limited by one
of the noises when that noise spectrum is the same as the
requirement curve, and all the other noises are negligibly
small. To achieve the design sensitivity, each noise should
be negligibly smaller than the requirement, e.g., by a
factor of 10.

D. Amplitude noise at the anti-symmetric port

So far, we have considered the phase noise in the arm
cavity reflected beams in gravitational wave detectors. In
gravitational wave detectors, the differential arm length
caused by gravitational waves will be read out as the
interference fringe changes at the anti-symmetric port.
Birefringence fluctuations will also create power fluctua-
tions in the orthogonal polarization, and it will be a noise
source when the output Faraday isolator has a finite ex-
tinction ratio ϵ, and the orthogonal polarization is not
completely rejected. A slight misalignment of the axes
between the input Faraday isolator and the output Fara-
day isolator would also cause a finite extinction ratio.
From Eq. (34), the power of the cavity reflected beam

in the orthogonal polarization from the birefringence in
ITM can be written as

Prefl⊥|res
Pin

≃ 1

4

(
∆ϕs1 − 2∆ϕt1 −

F
π
∆ϕr1

)2

sin2 (2θpol),

(45)

when the cavity is on resonance. Here, Pin = |Ein|2 is
the input power to the cavity, and we used that r2 = 1,
r1 ≃ 1 and t21 = 1 − r21, which are good approximations
for arm cavities of gravitational wave detectors. We also
assumed that the amount of birefringence is uniform and
small, i.e., ∆ϕri ≪ 2π/F , ∆ϕs1 ≪ 1 and ∆ϕt1 ≪ 1.
As we can see from Eq. (34), the orthogonal polariza-

tion is vanished when there is no birefringence, or θpol
is not 0 or π/2. The orthogonal polarization component
is generated from the reflected electric field unbalance
between two eigenmodes. Therefore, when the amount
of birefringence is small, the phase of Erefl⊥ is always
around π/2 away from the phase of Erefl∥. This means
that the orthogonal polarization in the cavity reflection
is always in the quadrature phase with respect to the
gravitational wave signal, independent of the resonant
condition of the cavity.
In the case of gravitational wave detectors, the anti-

symmetric port therefore will be either at the bright or
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the dark fringe for the orthogonal polarization, when it
is at the dark fringe for the main polarization. When the
both arms are completely symmetric and the amount of
birefringence is the same, the anti-symmetric port will be
at the bright fringe for the orthogonal polarization. This
is the same as the reason why the polarization signal from
axion dark matter is present at the anti-symmetric port,
as discussed in Ref. [35]. In reality, the beam splitter
in the Fabry-Pérot-Michelson interferometer adds extra
phase difference between two polarization axes due to
∼45 deg incident angle, and the fringe will be slightly
shifted.

To derive the requirements for the extinction ratio ϵ of
the output Faraday isolator, let us assume that the power
of the orthogonal polarization component at the anti-
symmetric port can be roughly estimated from the power
from one of the arms. By requiring the power fluctuation
from the orthogonal polarization from one of the arms to
be less than the shot noise of the local oscillator beam in
the main polarization, we can require

ϵ <
1

Prefl⊥|res

√
2hcPLO

λ
, (46)

where PLO is the power of the local oscillator beam at
the anti-symmetric port. When the requirements for the
birefringence fluctuations derived in the previous subsec-
tions are met, the noise from the birefringence fluctua-
tions are lower than the shot noise of the gravitational
wave detector. Therefore, the requirement can be rewrit-
ten as

ϵ ≲

√
PLO

Pin

(
∆ϕs1 − 2∆ϕt1 −

F
π
∆ϕr1

)−1

. (47)

For gravitational wave detectors operating with DC read-
out scheme [47], PLO and Pin are in the order of 10 mW
and 10 kW for power-recycled case, respectively. As-
suming that the birefringence terms ∆ϕs1 , ∆ϕt1 , and
∆ϕr1F/π are in the order of 1 rad, the requirement to the
extinction ratio will be ϵ ≲ 0.1%. This means that the
input Faraday isolator and the output Faraday isolator
has to be aligned within 1.8 degrees.

IV. OPTICAL LOSSES FROM
INHOMOGENEOUS BIREFRINGENCE

Birefringence and its inhomogeneity in cavities create
power losses from depolarization. The mode content of
the cavity reflected beam in the orthogonal polarization
will be different depending on the locations of birefrin-
gence and the resonant condition of the cavity. In this
section, we discuss the power of cavity reflected beam in
the orthogonal polarization to estimate the optical loss.

To show that the different locations of birefringence
create different mode content, we first consider the ef-
fects from ITM, as we have considered in Eqs. (33) and

(34). From Eq. (34), the power losses to orthogonal po-
larization when the cavity is out of resonance will be

Prefl⊥|off
Pin

≃ 1

4
(∆ϕs1)

2 sin2 (2θpol), (48)

under same approximations used to derive Eq. (45).
So far, we have only considered the birefringence uni-

form over the substrate and the coating. When there
is a perturbation from a uniform birefringence, spatial
higher order modes are generated. The amount of the
higher order modes in the orthogonal polarization can
be estimated from inhomogeneous birefringence ∆ϕHOM

s1 .
The power in the higher order modes when the cavity is
on resonance and out of resonance will be

PHOM
refl⊥

∣∣
res

Pin
≃ 1

4

(
∆ϕHOM

s1 −∆ϕHOM
t1

)2
sin2 (2θpol),

(49)

PHOM
refl⊥

∣∣
off

Pin
≃ 1

4
(∆ϕHOM

s1 )2 sin2 (2θpol), (50)

respectively. Note that the coefficient for ∆ϕHOM
t1 is 1,

as opposed to 2 for ∆ϕt1 in Eq. (45), since higher order
modes do not resonate in the cavity and higher order
modes are generated in the ITM transmission of intra-
cavity beam.
For considering the effect from the ITM substrate bire-

fringence, we can set ∆ϕr1 = 0, ∆ϕs1 = ∆ϕt1 and
∆ϕHOM

s1 = ∆ϕHOM
t1 . In this case, the amount of the fun-

damental transverse mode in the orthogonal polarization
stays the same when the cavity is out of resonance or on
resonance. However, the amount of higher order modes
in the orthogonal polarization is suppressed to the sec-
ond order, as we can see from Eq. (49). This is similar to
the Lawrence effect for the thermal lensing of ITM [48].
It is worth noting that the cavity reflected power in the
main polarization Prefl∥ could increase when the cavity
is on resonance due to this effect, if the optical loss in
the cavity is small compared with the optical loss from
inhomogeneous birefringence.
For KAGRA sapphire ITM, the transmission wavefront

error difference between two polarizations was measured
to be around 60 nm in RMS [19, 20], which corresponds
to the round-trip phase difference ∆ϕHOM

s1 of 0.7 rad in
RMS. If we attribute this all to inhomogeneous refrac-
tive index difference using Eq. (43), this corresponds to
∆nHOM of 2×10−7 in RMS, using the KAGRA sapphire
mirror thickness being 15 cm and laser wavelength be-
ing 1064 nm. For sapphire, the amount of birefringence
along c-axis can be calculated with [49]

∆n =
no(n

2
o − n2e)ψ

2

n2e
, (51)

where ne = 1.747 and no = 1.754 are the refractive in-
dices in the c-axis and in axes orthogonal to the c-axis,
respectively, and ψ ≪ 1 is the inclination of the light
propagation direction with respect to the c-axis. Us-
ing this equation, the amount of birefringence observed
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in KAGRA can be explained by ψHOM being 0.2 deg
in RMS. This is larger than nominal orientation of the
beam propagation axis with respect to the c-axis, which
was aligned within 0.1 deg [20]. This suggests that θpol
is also inhomogeneous and uncontrolled.

Using Eq. (50), this inhomogeneous birefringence cre-
ate power loss to orthogonal polarization of around 10%
when the arm cavity is out of resonance, if θpol is around
π/4. This is consistent with the measured value in KA-
GRA, as reported in Ref. [9]. The reduction of the power
loss to orthogonal polarization on resonance was also ob-
served, which is consistent with the Lawrence effect de-
scribed above. In KAGRA case, the power of the or-
thogonal polarization inside the power recycling cavity
was reduced by a factor of three when the arm cavity
was locked on resonance.

To make the optical loss due to inhomogeneous bire-
fringence of ITM substrate always smaller than 0.1%,
∆ϕs1 and ∆ϕHOM

s1 need to be smaller than 0.06 rad in
RMS. Achieving this with surface figuring alone could be
challenging, as surface figuring cannot compensate for
the phase difference between two axes. This requirement
can be eased by aligning the input polarization axis to
θpol = 0 or π/2.
When considering the effect from the ITM coating bire-

fringence, we can set ∆ϕs1 = ∆ϕr1 . However, ∆ϕs1
is not exactly ∆ϕt1 , as the penetration length for the
coating is different from the coating thickness. There-
fore, the Lawrence effect does not completely suppress
the higher order modes. If we can set ∆ϕs1 = l∆ϕt1 ,
where 0 < l < 1 is the ratio of the penetration length
over the coating thickness, the higher order modes in the
orthogonal polarization increase when the cavity is locked
on resonance, for l < 0.5. The fundamental transverse
mode in the orthogonal polarization increases for high
finesse cavities with F/π ≫ 1.

The mode content in the orthogonal polarization from
the ETM coating birefringence can be obtained by re-
placing ∆ϕr1 to ∆ϕr2 and θpol to θ + θpol in Eqs. (45),
(48), (49) and (50), and by setting ∆ϕs1 = ∆ϕt1 = 0, as

Prefl⊥|res
Pin

≃ 1

4

(
F
π
∆ϕr2

)2

sin2 [2(θ + θpol)], (52)

Prefl⊥|off
Pin

≃ 0, (53)

PHOM
refl⊥

∣∣
res

Pin
≃ 0, (54)

PHOM
refl⊥

∣∣
off

Pin
≃ 0. (55)

Therefore, as for the effects from the ETM coating bire-
fringence, the power in the orthogonal polarization in-
creases when the cavity is locked on resonance, and the
fundamental transverse mode dominates, because the
higher order modes are suppressed in the cavity.

The discussions above highlights the fact that the op-
tical losses from birefringence needs to be correctly taken

into account to measure the optical losses in the arm cav-
ity. It also suggests that, by measuring the mode content
of the beam in the orthogonal polarization when the cav-
ity is out of resonance and on resonance, we can estimate
where the optical losses from birefringence is mainly com-
ing from.
Future gravitational wave detector designs call for

10 dB of detected squeezing, requiring that the total op-
tical loss be less than 10% [50]. From Eqs. (45) and (52),
|θ| and |θ+θpol| needs to be less than 1.8 degrees, requir-
ing the optical loss from birefringence be less than 0.1%,
when the birefringence terms ∆ϕs1 , ∆ϕt1 , and ∆ϕrjF/π
are in the order of 1 rad. Similar to the discussions
around Eq. (23), the polarization of the injected squeezed
vacuum also needs to be aligned to less than 1.8 degrees
to achieve the optical loss of less than 0.1%.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have discussed the effects of birefrin-
gence and its fluctuations in the mirror substrate and
coating for laser interferometric gravitational wave de-
tectors. We have shown that the polarization axis of the
beam and the crystal axes of mirrors need to be aligned to
minimize the optical losses and the noises from birefrin-
gence fluctuations. The optical losses from birefringence
can be feasibly reduced to less than 0.1%, when the axes
are aligned within a few degrees. We have also shown
that the requirements for the birefringence fluctuations
in the substrate and the coating will be in the order of
10−8 rad/

√
Hz and 10−10 rad/

√
Hz at 100 Hz, respec-

tively, for future gravitational wave detectors with mir-
rors that have ∆n = 10−7 level of substrate birefringence
and ∆ϕri = 1 mrad level of coating birefringence. When
the static coating birefringence is large such that the
resonant frequency difference between two polarization
eigenmodes are larger than the cavity linewidth, the re-
quirements on the coating birefringence fluctuations will
be relaxed. In addition, we have derived the equations for
estimating the amount of optical losses due to depolar-
ization from inhomogeneous birefringence of mirror sub-
strates and coatings. Our results provide the basic theory
to study the noises and optical losses from birefringence
fluctuations of mirrors in gravitational wave detectors.
In our model, we assumed that the amount of birefrin-

gence and mis-orientation of axes to be small. We also as-
sumed that two interferometer arms of gravitational wave
detectors to be close to symmetric. Detailed interferom-
eter modeling will be necessary to treat larger birefrin-
gence, mis-orientation of axes, inhomogeneity of birefrin-
gence and axes orientations, and asymmetry between two
arms including birefringent beam splitter effects. These
effects would create classical radiation pressure noise, as
intra-cavity power fluctuates from birefringence fluctua-
tions. Including the power and signal recycling cavities
to the model would also be important when these effects
are not negligible and the resonant condition in the re-
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cycling cavities are different between polarizations. We
leave these studies to future work.
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Appendix A: Derivation of electric fields

Here we derive the electric field inside the cavity in
Eqs. (5) and (25), and the electric field of the cavity
reflection in Eq. (28).

In the basis of ITM crystal axes, the amplitude reflec-
tivity of ETM can be written as R(−θ)R2R(θ) [37]. The
rotation matrix R(θ) is necessary to take into account
of the axes rotation between ITM and ETM. Therefore,
the Jones matrix for the cavity round-trip can be written
as a product of ITM reflection, ETM reflection, and the
phase shift accumulated in the round-trip as

A = R1R(−θ)R2R(θ)e
−iϕ. (A1)

The electric field inside the cavity that propagates from
ITM to ETM is a sum of the ITM transmitted field and
its multiple reflections inside the cavity, which can be
written as

E⃗cav = T1E⃗in +AT1E⃗in +A2T1E⃗in + · · · (A2)

=

∞∑
n=1

An−1T1E⃗in. (A3)

This is a sum of an infinite geometric series, and Eq. (5)
can be derived.

The electric field inside the cavity that propagates from
ETM to ITM have an additional reflection from ETM and
phase ϕ from a cavity round-trip, which lead to Eq. (25).
The electric field of the cavity reflection is the sum of
the field reflected from ITM substrate side and the intra-
cavity field transmitted through ITM. Therefore, it can
be written as

E⃗refl = S1E⃗in + T1E⃗
′
cav, (A4)

and Eq. (28) can be derived.

Appendix B: Derivation of equivalent phase
anisotropy

Here we derive the equivalent phase anisotropy in
Eq. (17). We consider the situation described in Ref. [38],
where the phase anisotropy and relative orientation of the
birefringent cavity are captured by a single equivalent
Jones transformation. To simplify the notation, we write
the Jones operators in the Pauli basis spanned by I, σ⃗
where I is the identity matrix, and σ⃗ = σoe⃗o+σee⃗e+σze⃗z
is the Pauli vector used to map rotations along the or-
dinary, extraordinary, and cavity axis unit vectors re-
spectively. For example, the Jones operator for a half-
waveplate with phase anisotropy δ oriented at an angle
θ away from the ordinary axis e⃗o may be written in this
representation as

W⃗(δ, θ) · σ⃗ = cos

(
δ

2

)
I − i sin

(
δ

2

)
(sin 2θσo − cos 2θσz)

(B1)
and reduced to cos

(
δ
2

)
I + i sin

(
δ
2

)
σz when aligned with

e⃗o (i.e. θ = 0).
Following Ref. [38], the equivalent waveplate

anisotropy δEQ comprises two waveplate operators
with phase anisotropies δ1, δ2 oriented at θ1 = 0, and
θ2 = θWP respectively. Then, the total operator

W⃗(δEQ, θEQ) · σ⃗ = [W⃗(δ1, 0) · σ⃗][W⃗(δ2, θWP) · σ⃗] (B2)

can be constructed by the individual operators. After
some manipulation, we obtain an equation for each com-
ponent beginning with

cos

(
δEQ

2

)
= cos

(
δ1
2

)
cos

(
δ2
2

)
(B3)

− sin

(
δ1
2

)
sin

(
δ2
2

)
cos 2θWP

from terms along I, and then

sin 2θEQ sin

(
δEQ

2

)
= cos

(
δ1
2

)
sin

(
δ2
2

)
sin 2θWP

(B4)

for terms along σo,

sin

(
δ1
2

)
sin

(
δ2
2

)
sin 2θWP = 0 (B5)

from terms along σe, and

sin

(
δEQ

2

)
cos 2θEQ = sin

(
δ1
2

)
cos

(
δ2
2

)
(B6)

+ cos

(
δ1
2

)
sin

(
δ2
2

)
cos 2θWP

for terms along σz.
Letting δEQ ≪ 1, δ1 ≪ 1, and δ2 ≪ 1, we may ex-

pand Equations (B3)-(B6) to second order in δEQ, δ1, δ2,
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keeping terms only of up to O(δ2). Then, Equation B3
becomes

1−
δ2EQ

8
≈ 1− δ21

8
− δ22

8
− δ1δ2

4
cos 2θWP. (B7)

from which Equation (17) may be easily derived and ap-
plied for the cases discussed in the text when δi = ∆ϕri .

Finally, inserting (17) back into (B6) gives

cos 2θEQ ≈ δ1 + δ2 cos 2θWP√
δ21 − δ22 + 4δ1δ2 cos 2θWP

. (B8)

from which Eq. (19) may be easily derived and applied
for the cases described in text when δi = ∆ϕri .
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