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If long-range attractive forces exist and are stronger than gravity then cosmic halo formation
can begin in the radiation-dominated era. We study a simple realization of this effect in a system
where dark matter fermions have Yukawa interactions mediated by scalar particles, analogous to
the Higgs boson in the standard model. We develop a self-consistent description of the system
including exact background dynamics of the scalar field, and precise modelling of the fermion density
fluctuations. For the latter, we provide accurate approximations for the linear growth as well as
quantitative modelling of the nonlinear evolution using N-body simulations. We find that halo
formation occurs exponentially fast and on scales substantially larger than simple estimates predict.
The final fate of these halos remains uncertain, but could be annihilation, dark stars, primordial
black holes, or even the existence of galaxy-sized halos at matter-radiation equality. More generally,
our results demonstrate the importance of mapping scalar-mediated interactions onto structure
formation outcomes and constraints for beyond the standard model theories.

I. POPULAR SUMMARY

Dark matter is essential to describe the Universe on
the largest scales, from our own galaxy to the edge of
the observable Universe. Still, we have no evidence of
its fundamental properties other than its gravitational
interaction; dark matter may be tiny elementary parti-
cles, or it may be massive black holes. We show that one
of the simplest particle interactions, the Yukawa interac-
tion, causes dark matter structures called halos to form
very rapidly even in the scorching early Universe. In do-
ing so, we open a new avenue to test the fundamental
nature of dark matter and its role in the early Universe.

A variety of new physics models contain additional
scalar fields that, just like the Higgs field, can mediate at-
tractive forces amongst fermionic particles via Yukawa in-
teractions. We find that even though dark-sector Yukawa
forces may be unimportant today, they can be very strong
and long ranged in the early Universe. We first compute
exact solutions for the scalar field dynamics, then show
how the coupling to dark matter fermions leads to non-
linear halo formation via numerical simulations.

Dark matter structures in the early universe could form
black holes, generate baryon asymmetry and magnetic
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fields by annihilation and produce gravitational waves.
These possibilities can all be tested in the near future
and have the potential to illuminate both dark matter
and the early Universe.

II. SUPPLEMENTAL MATERIAL CAPTION

Evolution of the dark matter fermion density field from
initially-small Gaussian fluctuations into nonlinear fluc-
tuations due to Yukawa forces. The three movies corre-
spond to constant, low, and high frequency cases. When
oscillations are taken into account, the periodic infinite
range of the Yukawa force allows for substantially larger
halos to form.

III. INTRODUCTION

The Higgs boson discovery [1, 2] has confirmed the
existence of scalar fields interacting with fermions via
Yukawa couplings. Supersymmetry, axions, string the-
ory and other theories beyond the standard model predict
a broad range of new scalar fields, while new fermionic
particles could make up the dark matter in the Universe.
We will focus on the long-range effects of the Yukawa
interactions, which are important on the length scales
shorter than the Compton wavelength of the scalar medi-
ator. Yukawa forces are attractive, and they can be much
stronger than gravity, leading to an instability similar to
gravitational collapse in the early universe [3, 4].
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Obviously, the heavier the scalar field, the shorter is
the range of the attractive forces. However, even for
the Higgs boson, there is a window where the Higgs-
mediated interactions could be considered long-range on
the scale of the horizon in the early universe. In the
case of the Higgs boson during the radiation dominated
era, the effective mass at temperature T ≫ 102 GeV is
mH(T ) ∼ mH(0) + gT ∼ gT . The long-range forces
mediated by the Higgs boson are relevant on the dis-
tance scales R = ϵH−1, where H ∼ T 2/MPlanck and
ϵ < 1, if mH(T ) ∼ gT < H/ϵ, that is, for temperatures
T > ϵgMPlanck. Any halos that could form under the
action of such attractive force would have an upper limit
on their masses Mh < ϵMPlanck/g

2 ∼ 102ϵMPlanck. In
particular, if a black hole were to form from such a halo,
it would have the mass smaller than 102MPlanck, and it
would quickly evaporate. However, since a broad vari-
ety of scalar fields other than the Higgs are predicted by
models of new physics, it is of interest to examine the
corresponding instability and growth of perturbations in
the early universe.

Scalar fields are also ubiquitous in cosmology and grav-
ity, from the field responsible for cosmic inflaton to per-
haps dark energy and dark matter. The growth of cosmic
structures due to additional scalar “fifth forces” has been
studied in the past, mainly focused on dark matter cou-
pled to a scalar field dark energy [5, 6], the latter also
labelled quintessence [7]. The literature in interacting
dark matter and dark energy is vast: for a nice summary
of the literature up to 2003, see Section 2 of [8]; for a re-
cent review see [9]; for a large recollection of references,
see [10, 11]; for early numerical simulations, see [12]; and
for a coupling to neutrinos instead of dark matter, see
[13–18]. See also Ref. [19] for the effect of Yukawa inter-
actions on galaxy rotation curves.

In contrast to the late universe, long-range interactions
in the early universe could be so large that small pri-
mordial density fluctuations collapse to black holes [3].
However, it is expected that the fermion perturbations
will first collapse into virialized objects called halos [20]
before then forming primordial black holes (PBH) if the
halos can efficiently cool [4]. A detection of PBHs could
therefore be an indication of strong long-range interac-
tions in the early Universe.

However, in addition to long-range interactions, PBHs
could come from first order phase transitions [21, 22] and
the collapse of supersymmetric Q-balls [23–25], but the
common assumption is that they form by the collapse
of primordial fluctuations, as proposed first by Hawking
and Carr [26, 27] (see Refs.[28–32] for recent reviews).
PBHs might be a substantial fraction (if not all) of the
dark matter [33] (and references therein), they could be
responsible for some of the LIGO/VIRGO gravitational
waves (GWs) events [34–36] and might also be the seeds
of supermassive black holes [37, 38]. An appealing aspect
of long-range interactions is that, regardless of whether
PBHs form, the formation of such early compact struc-
tures has a rich phenomenology: they could lead to ob-

servable gravitational waves [39], cold electroweak baryo-
genesis [40] and magnetogenesis [41]. Thus, it is impor-
tant to explore the formation of such structures in the
non-linear regime and clarify their possible collapse to
PBHs.

Most of the literature in long-range interactions in cos-
mology assume an exponential type coupling to fermionic
dark matter, the so-called dilatonic coupling, which is
inspired by string theory and scalar-tensor theories of
gravity (see, e.g., [42, 43]). A standard Yukawa cou-
pling has been considered in, e.g., Refs. [4, 8, 18, 44].
In Ref. [44] new solutions were found in the relativistic
fermion regime. In this work, we take a particle physics
perspective and consider a renormalizable theory with
a scalar field with a quadratic or quartic potential in-
teracting with heavy fermion dark matter via a Yukawa
coupling in the very early, radiation dominated, universe.

We provide below a brief overview of the organization
of the paper. In this way, the reader mainly interested in
the resulting halo formation might jump directly to the
relevant part. We start in §IV by reviewing the expec-
tation that Yukawa interactions between non-relativistic
fermions and a scalar field lead to an exponential growth
of fluctuations. This section also serves as a qualitative
orientation for the more detailed calculations in the rest
of the paper, which is divided into three main sections:

§V: Background dynamics. we present exact solu-
tions for the quadratic (§VA) and quartic (§VB)
potentials and discuss the implications for general
monomial potentials (§VC). We furthermore de-
scribe the parameter space where fermions always
remain non-relativistic, which is relevant for the
subsequent perturbative and N-body calculations.

§VI: Linear perturbations. We show in §VIA that
the instability of §IV also occurs at linear level in
the general relativistic setting for a general poten-
tial. In §VIB we specialize to the quartic potential,
give the linear solutions and show that Yukawa in-
teractions have a longer range than expected.

§VII: N-body simulations. We first determine the
scale free form of the particle equations of motion
in §VIIA, and then describe how we evolve them
in §VIIB. The results of our simulations are shown
in §VIIC.

We discuss potential fates of these halos in §VIII and
conclude in §IX. Details of the calculations and simula-
tions can be found in the appendices. Throughout the
paper we assume that the heavy fermions constitute a
fraction (or all) of the total dark matter. From now on,
we work in natural units where ℏ = c = 1. A list of the
relevant parameters with meaning and definitions used
in this paper is provided in appendix A, Table I.
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IV. MOTIVATION: EXPONENTIAL GROWTH

To motivate the formation of halos in the radiation
era, let us first make a Newtonian fluid analysis of the
fermions ψ, following the approach of [20, 45, 46]. This
analysis allows us to demonstrate the qualitative features
of the model, and especially the exponential growth of
structure, before we provide specific details in the follow-
ing sections. Since there is no creation or annihilation of
fermion particles, the mean fermion number density nψ
in the universe is conserved, that is

ṅψ + 3Hnψ = 0 , (4.1)

where dots are derivatives with respect to cosmic time
t, i.e. ˙≡ d/dt. H = ȧ/a is the Hubble parameter for a
Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric
with scale factor a(t) satisfying

3M2
plH

2 = ρr + ρm + ρψ , (4.2)

whereM−2
pl = 8πG is the reduced Planck mass, ρr ∝ a−4

is the radiation energy density and ρm ∝ a−3 is the mat-
ter energy density excluding the dark matter fermions.
We note that the scalar field energy density may con-
tribute to either radiation or matter, depending on its
potential. In this section we just assume that it does not
switch between the two regimes. We furthermore only
consider sufficiently early times such that the dark en-
ergy density can be neglected.

Yukawa interactions between the fermions and the
scalar field φ lead to a time dependent effective dark
matter mass meff(t) [4, 44], since in general φ = φ(t).
Thus, the fermion energy density, that is ρψ = meffnψ
(with nψ ∝ a−3), is not conserved due to exchange with
the scalar field, namely

ρ̇ψ + 3Hρψ = Bρψ , (4.3)

where B = ṁeff/meff .
1 The evolution of the fermion den-

sity contrast δψ = δnψ/nψ is then given by the continuity
equation

δ̇ψ + θψ = 0 , (4.4)

where θψ = ∇⃗ · v⃗p is the divergence of the spatial velocity
v⃗p of the fluid. Due to the time dependent mass, the
velocity equation has an extra friction term in addition
to Hubble [45],

θ̇ψ + (2H +B) θψ = − 1

a2
∇2ϕ , (4.5)

where ϕ represents the potential forces (e.g. from gravity
and the scalar field). Equations (4.4) and (4.5) can then

1 Note that Eq. (4.3) recovers (4.1) after using ρψ = meffnψ .

be combined into a single second order equation, that
reads

δ̈ψ + (2H +B) δ̇ψ −
1

a2
∇2ϕ = 0. (4.6)

Now, we need to specify the potential forces in the sys-
tem. The first contribution is from gravity which scales
as ϕG ∝ −1/r. On subhorizon scales ϕG satisfies the
Poisson equation given by

1

a2
∇2ϕG =

1

2
M2

pl [ρrδr + ρmδm + ρψδψ] . (4.7)

Note that, in principle, the gravitational potential in-
cludes contributions from both the matter sector and
the radiation perturbations in the Universe. Fortunately,
even though it may be the case that ρrδr ≫ ρmδm+ρψδψ,
cold dark matter effectively only feels self-forces during
the radiation era, since the contribution from the radia-
tion (and tightly coupled baryons) averages to zero [47].
Although the dark sector could have many components,
we shall assume for simplicity that only fermions are clus-
tered so that the right-hand side of Eq. (4.7) is dominated
by ρψδψ.
The second contribution comes from the scalar field

acting as a Yukawa mediator, which typically scales as
ϕY ∝ ϕG exp[−r/ℓ] [4], where ℓ = ℓ(t) is in general a time
dependent length scale of the interaction. Let us assume
the Yukawa force is stronger than gravity by a factor of
2β2 ≫ 1. Then, the Yukawa potential is screened relative
to the Poisson equation, which leads us to

1

a2
[
∇2 − ℓ−2

]
ϕY = 2β2 1

a2
∇2ϕG. (4.8)

Setting ϕ = ϕG + ϕY and working in Fourier space, we
find from (4.6) that

δ̈ψ+(2H +B)δ̇ψ

=
3

2
H2 ρψ

ρr + ρm + ρψ
δψ

[
1 +

2β2

1 + (kℓ)−2

]
. (4.9)

We thus see a separation of scales: when k ≪ (βℓ)−1

growth is driven by gravity alone, whereas for k ≫ (βℓ)−1

it is the attractive Yukawa force which dominates.
While the time dependence of meff(t) and ℓ(t) is im-

portant, it is instructive to first consider the simple setup
where they are constant, e.g., ṁeff = 0 and ℓ = ℓ̄,
as in [4]. Working at early times when dark energy
is totally negligible, Eq. (4.9) can be converted to a
scale-dependent variation of the Meszaros Equation [48],
namely

δ′′ψ +
2 + 3x

2x(1 + x)
δ′ψ =

3

2x(1 + x)
δψfψ

[
1 +

2β2

1 + (kℓ̄)−2

]
,

(4.10)

where ′ = d/dx with x = a/aeq, aeq being the scale factor
when ρr = ρm + ρψ and fψ = ρψ/(ρm + ρψ) ≤ 1. If we
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now take the radiation limit x ≪ 1 the general solution
to (4.10) is given by

δψ = c1I0(
√
6αx) + c2K0(

√
6αx) , (4.11)

α = fψ

[
1 +

2β2

1 + (kℓ̄)−2

]
, (4.12)

where I0 and K0 are modified Bessel function of order 0.
For small arguments, the growing mode is I0(

√
6αx) ∼

1 as is traditional in the radiation era, whereas for
large arguments it becomes exponential I0(

√
6αx) ∼

e
√
6αx/

√
2π
√
6αx. We therefore expect that halo for-

mation becomes possible for 6αx ≫ 1. This is never
possible if gravity is the only force, since x ≪ 1 and
α ∼ fψ < 1. However, on scales where the Yukawa force
is strong, which corresponds to α ∼ 2β2fψ, an exponen-
tial growth can occur for x≫ 1/(12β2fψ). We conclude
that Yukawa forces could lead to nonlinear evolution and
the formation of small halos before any significant gravi-
tational collapse occurs.

While this simple picture is appealing, it has neglected
the time dependence of meff(t) and ℓ(t) due to the evolu-
tion of the scalar field mediator, which can induce signif-
icant changes. For instance, in the cosmologically mass-
less scalar field limit, the system evolves towards mini-
mizing meff and eventually oscillates around meff = 0,
which is the exact relativistic fermion regime [44]. While
on a time-average fermions remain non-relativistic [44], it
is unclear whether the repeated relativistic phases could
prevent the Yukawa driven collapse of small scales fluc-
tuations. We are therefore interested in avoiding such
regime so that the intuition developed in this section is
still valid. The next three sections systematically extend
the calculation of this section: in §V we compute exact
functional forms of ℓ(t) and meff(t); in §VI we solve the
linear growth equations including these time dependent
parameters; while in §VII we go beyond this linear theory
and compute the fluctuations using N-body simulations.

V. BACKGROUND EVOLUTION

The system under consideration is composed of non-
relativistic fermions ψ, a scalar field φ, interacting via a
Yukawa coupling with strength y, and a radiation fluid
with energy density ρr and pressure pr = ρr/3. We also
include a general dark matter sector with energy density
ρm. We take that, for all practical purposes, radiation
dominates the energy density of the early universe. Then,
assuming that ψ and φ are completely decoupled from,
or weakly interacting with, the radiation fluid, the La-
grangian of the fermion-scalar system reads

L(ψ,φ) = ψ̄iΓµDµψ − |mψ + yφ|ψ̄ψ

− 1

2
∂µφ∂

µφ− V (φ) , (5.1)

where V (φ) is a general potential for the scalar field and
we used the chiral symmetry of the fermions to fix the

sign of the mass to be positive. For later intuition, we
note from (5.1) that we may interpret the Yukawa inter-
action as an effective mass for the fermions, namely

meff = mψ + yφ . (5.2)

In the action the mass is positive definite and therefore
it appears as |meff |. The effective mass (5.2) is the basic
parameter linking the fermions to the scalar field, and
one can express all other quantities, like energy density,
pressure, momentum, etc. in terms of it. For more details
see [44].
From now on we approximate the fermions (in ther-

modynamical equilibrium) as a perfect fluid with en-
ergy density ρψ and pressure pψ. In the non-relativistic
limit, the fermion fluid has an energy density given by
ρψ = meffnψ and pψ ≪ ρψ (for more details on the rela-
tivistic limit in this set up see [44]). In that same limit,
it is also possible to identify an effective potential for the
scalar field, which is given by

Veff = V (φ) +
meff

|meff |
yφnψ . (5.3)

Eq. (5.3) leads to the consistent equations of motion in
the grand canonical ensemble [44]. Note that one may
also arrive at (5.3) from the Lagrangian (5.1) by making
use of the fermion asymmetry, i.e. that there are only
particles and no antiparticles. In that case, we have that
nψ ≈ ψ̄ψ (although the correct definition is nψ = ψ̄γ0ψ).
The background equations of motion are given by the

Friedmann equation, energy density conservation and the
Klein-Gordon equation. The Friedmann equation reads

3H2 = ρr + ρm + ρψ + 1
2 φ̇

2 + V (φ) . (5.4)

The energy conservation of radiation and dark matter re-
spectively leads to ρr ∝ a−4 and ρm ∝ a−3. The number
density conservation implies nψ ∝ a−3. In addition to
the Friedmann equation we have the Klein-Gordon equa-
tion, namely

φ̈+ 3Hφ̇+
∂Veff
∂φ

= 0. (5.5)

From now on, for simplicity, we will refer all quantities
with respect to their values at radiation-matter equality,
that is when

ρr,eq = ρm,eq + ρψ,eq =
3

2
H2

eqM
2
pl , (5.6)

where Heq ≈ 35Mpc−1 ≈ 2.2 × 10−37 GeV. We use the
subscript “eq” to refer to evaluation at equality. We then
rewrite the value of nψ at equality as

nψ,eq ≈
ρψ,eq
mψ

=
fψ
mψ

3

2
H2

eqM
2
pl , (5.7)

where we introduced the parameter

fψ ≡
ρψ,eq

ρm,eq + ρψ,eq
, (5.8)
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which quantifies the fraction of total dark matter in the
form of fermions ψ. When radiation dominates the uni-
verse, we have from (5.4) that

H(a≪ aeq) ≈
Heq√
2

(
a

aeq

)−2

. (5.9)

The background equations are fully solved once we solve
the dynamics of φ.
In the cosmologically massless limit of the scalar field,

that is when |∂V/∂φ| ≪ |Hφ̇|, we have that the scalar
field grows as [44]

φ ≈ −2ynψ,eq
H2

eq

a

aeq
= −φo

a

aeq
, (5.10)

where we defined for later convenience the parameters

φo ≡ 3βfψMpl and β ≡ yMpl

mψ
. (5.11)

The parameter β is representative of the strength of the
Yukawa interaction. The larger the β, the faster the
growth of the scalar field. In (5.10) we take as initial
conditions φ(0) = 0. We can do so without loss of gener-
ality in the massless regime as a constant value of φ can
be reabsorbed by a constant shift in mψ. However, when
we consider the potential of the scalar field, the value of
φ = 0 will in general not coincide with the minimum of
V (φ). Nevertheless, for analytical simplicity we will later
assume that it does.

Note that by referring all quantities to the time of
radiation-matter equality in Eq. (5.10), we assumed that
the fermions are non-relativistic throughout the entire
evolution.2 This is not necessarily the case as the
fermion-scalar system evolves towards the energy min-
imum which lies at meff = mψ + yφc = 0, at which point
the fermions become exactly relativistic. In some sense,
one may say that the system evolves toward a conformal
invariant state where all fields are massless (except for
any additional, subdominant, dark matter). In fact, the
energy density of fermions and the scalar field also de-
cay as radiation [44]. The exact relativistic regime would
occur at the critical point given by

φc = −
mψ

y
at

ac
aeq

=
Mpl

φoβ
=

1

3β2fψ
. (5.12)

After reaching the critical point, the scalar field oscil-
lates around it [44]. While it may be possible, it is not
clear whether fluctuations can grow during this oscillat-
ing regime. We therefore leave this case for a future work,
and instead focus on the non-relativistic fermion regime
where exponential growth occurs, as shown in § IV.

2 This would change if the fermions become relativistic. However,
the solutions derived are still valid if instead of the time of equal-
ity we choose another arbitrary pivot time. The only equations
that would not apply are (5.6) and (5.7).

We shall be interested in the case when the critical
point is never reached and the fermions remain non-
relativistic. We then require the condition that:

(i) meff > 0 at all times, or alternatively |φ| < |φc|.

However, condition (i) is not sufficient to ensure that
fermions remain non-relativistic. To do so, we have two
possible conditions:

(iia) The fermions are, for some reason, in thermal equi-
librium with the radiation bath so we need that
T ≪ mψ in the temperatures of interest.

(iib) The fermions are degenerate and so we need that
m3
ψ ≫ 3π2nψ.

In addition to (iia) or (iib), we require that:

(iii) there are many fermion particles per Hubble vol-
ume, that is nψ ≫ H3.

Condition (iii) is to ensure that later N-body simulations
have enough particles inside a Hubble volume. We pro-
ceed to derive general bounds on the model parameters.
First, for condition (i), a natural way to avoid the

meff ∼ 0 regime is to consider a sufficiently large mass
for the scalar field. In this way, the scalar field’s poten-
tial might dominate over the Yukawa interaction in (5.5)
before reaching φc. A necessary condition is then that
the potential satisfies

|∂V/∂φ|φ=φc > |ynψ|φ=φc . (5.13)

There is a large parameter space where this condition is
satisfied. For instance, using the early solution (5.10) we
find that |ynψ| ∝ φ−3. Then, at early times when the
scalar field is cosmologically massless we have

∂Veff
∂φ

≈ ∂V

∂φ
− ynψ,eq

(
φ

φo

)−3

. (5.14)

This means that if the potential V (φ) increases for in-
creasing |φ|, there will be a critical value for the parame-
ters of V (φ) above which (5.13) is satisfied. For example,
for V (φ) = 1

nVo(|φ|/φo)n we need Vo > H2
eqφ

2
o so that

the fermions never reach meff = 0.
Second, we may turn conditions (iia),(iib) and (iii) into

upper bounds on β by requiring that they are satisfied
before reaching the critical point φc (5.12). In doing so,
we find that, if fψ ∼ 1, there is a general upper bound
on the value of β given by

β ≪ 1010 . (5.15)

We show the conditions (iia),(iib) and (iii) evaluated at
a = ac in figure 1 and provide the detailed formulas in
appendix B.
The evolution of φ after the potential dominates de-

pends on the shape of the potential V (φ). For this rea-
son, let us consider two typical cases: a quadratic and
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
log10mψ[GeV]

0
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4

6

8

10

12

14
lo

g 1
0
β

β = 102

T � mψ

m3
ψ � nψ

nψ � H3

FIG. 1. Parameter space of β in terms of the bare mass of the
fermions mψ. We plot conditions (iia),(iib) and (iii) respec-
tively in red, red and green. The shaded regions shows the
parameter space for β such that fermions are non-relativistic,
in light and dark green respectively for degenerate and non-
degenerate fermions. See how in general β < 1010.

a quartic potential. As we shall see, while both cases
allow for full analytical solutions, the quartic potential
turns out to be more suitable for N-body simulations, as
the comoving mass of the scalar field, which determines
the length scale of the Yukawa force, is independent of
the scale factor. We also expect that the quartic term is
the dominant contribution to the potential at the high
energy scale of the very early universe. We then discuss
qualitatively general power-law potentials.

A. Quadratic potential

For a quadratic potential given by V = 1
2m

2
φφ

2, the
Klein-Gordon equation (5.5) can be simplified to

d2φ

dξ2
+

3

2ξ

dφ

dξ
+ φ+ φ∗ξ

−3/2 = 0 . (5.16)

where we defined

ξ ≡ mφt and φ∗ ≡
φo

2
√
2

√
Heq√
2mφ

. (5.17)

The particular solution to (5.16) with initial condition
φ(0) = 0 is given by

φ = φ∗

(
21/4ξ1/4J1/4(ξ)Γ[1/4]F

[
1
4 ;

3
4 ;

5
4 ;−

ξ2

4

]

+ 23/4ξ3/4J−1/4(ξ)Γ[3/4]F
[
1
2 ;

5
4 ;

3
2 ;−

ξ2

4

] )
, (5.18)

where Jν(x) is the Bessel function of order ν, Γ[x] is the
Gamma function and F [a; b; c;x] is the hypergeometric
function. We find that the solution (5.18) first grows as

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
log10mψ[GeV]

−30

−20

−10

0

10

lo
g 1

0
m
ϕ
[G

eV
]

β = 102

meff > 0

T � mψ

m3
ψ � nψ

nψ � H3

FIG. 2. Parameter space of mφ in terms of mψ for a fixed
β = 102. We show conditions (i), (iia), (iib) and (iii) respec-
tively in red, red, red and green. The parameter space where
degenerate fermion are non-relativistic is shown with shaded
regions, in light and dark green respectively for degenerate
and non-degenerate fermions. Note that only the red line de-
pends on β through Eq. (5.19). Thus, increasing the value of
β, rises the red line and shrinks the parameter space for mφ.

(5.10) and then reaches the first maximum at ξ1 ≈ 1.3
with amplitude φ1 ≈ −1.8φ∗.
Let us obtain the conditions so that the fermions never

reach the relativistic limit in the quadratic case. Here we
explicitly write only condition (i), which yields

mφ

Heq
> 2.6f2ψβ

4 , (5.19)

and we show all conditions for the quadratic potential in
figure 2. We report the explicit expressions of conditions
(iia), (iib) and (iii) in appendix B. In figure 2, we see
a vast parameter space where the fermion remains non-
relativistic.
After reaching the maximum at ξ1, the scalar field de-

cays as φ ∝ a−3/2 and oscillates around φ = 0. Then,
the energy density of the scalar field effectively behaves
as an additional dark matter component.

B. Quartic potential

In the case of a quartic potential given by V = 1
4λφ

4,
the Klein-Gordon equation (5.5) can be simplified con-
siderably with the following redefinition:

φ = φeq

(
a

aeq

)−1

v(a/aeq) . (5.20)

With the above variable, the Klein-Gordon equation (5.5)
reduces to

1

µ2

d2v

d(a/aeq)2
+ v3 = 1 where µ2 ≡ 2λφ2

eq

H2
eq

, (5.21)
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and we fixed for convenience

φeq ≡ −
(ynψ,eq

λ

)1/3
= −φo

µ2
. (5.22)

The parameter µ2 in (5.21) is related to the comoving
effective mass of the scalar field by

M2
φ ≡ a2Vφφ =

3

2
a2eqH

2
eqµ

2v2(a) . (5.23)

Also note that by using the value of φeq and Heq we have
that

µ =

(
y
√
2λ
nψ,eq
H3

eq

)1/3

=

(√
2λ

3fψβMpl

Heq

)1/3

≈ 3.6× 1018(
√
λfψβ)

1/3 . (5.24)

From Eq. (5.24) we see that unless λ is extremely small,
that is λ < 5× 10−111/(fψβ)

2, we expect that in general
µ ≫ 1. It is interesting to note that the first step in
Eq. (5.24) relates the largeness of µ to condition (iii)
evaluated at matter-radiation equality, i.e. nψ,eq ≫ H3

eq,
assuming λ and y are not too small.
We find that there is an exact solution to (5.21) with

the initial condition φ(0) = 0 in terms of elliptic func-
tions.3 The solution reads

v(ζ) = 22/3
1− Cnα(ζ)√

3 + 1 + (
√
3− 1)Cnα(ζ)

, (5.25)

where Cnα(ζ) is the Jacobian elliptic function of order
α (see appendix A) and we defined ζ ≡ 21/6 31/4 µa/aeq
and α ≡ 2−3/2(

√
3 − 1). The Jacobian elliptic function

Cnα(ζ) is periodic with period equal to 4Kα where Kα

is the complete elliptic integral of the first kind. In our
case we have that Kα ≈ 1.6.
The solution φ(a) (5.20) with v(a) given by (5.25),

first grows as (5.10) and reaches a maximum value at
ζmax ≈ 2.77, which corresponds to

φmax ≈ 0.78µφeq at amax/aeq ≈ 1.87µ−1 . (5.26)

Using (5.26), we can study the conditions under which
the fermions remain non-relativistic. As we did for the
quadratic potential, we explicitly write only condition (i),
which yields

λ > 8× 10−110f4ψβ
10 , (5.27)

and report the details in appendix B. In figure 3 we show
all constraints on λ and the available parameter space.
We see that for λ ∼ O(1) there is a wide range of param-
eter space.

After reaching the maximum value φmax the scalar field
decays as a−1 and oscillates. During the oscillations we

3 Note that, without such initial condition, v = 1 is also a solution
to (5.21). However, it implies φ = φc far enough in the past.

5

10

15

lo
g

1
0
β

λ = 1

5 10 15
log10mψ[GeV]

−50

0

50

lo
g

1
0
λ

β = 102

0 5 10 15
log10 β

mψ = 1010GeV

meff > 0

T � mψ

m3
ψ � nψ

nψ � H3

FIG. 3. Parameter space of λ, mψ and β where fermions are
non-relativistic. We show in red, red, red and green the con-
ditions (i), (iia), (iib) and (iii). The shaded region show the
allowed parameter space, in light and dark green respectively
for degenerate and non-degenerate fermions. In the top figure
we show β in terms of mψ for λ = 1. Note that, in contrast to
the two other panels, the red line also yields an upper bound
for β. For a fixed value of mψ, the top figure could also be
understood as the parameter space for the Yukawa coupling
y. In the bottom left panel we have λ in terms of mψ for
β = 102. In the bottom right panel, we show λ in terms of β
for a fixed mψ = 1010 GeV.

find that the average value of v and v2 are respectively
given by

⟨v⟩ ≈ 0.68 and ⟨v2⟩ ≈ 0.98 , (5.28)

where the brackets refer to oscillation average (defined
later in (6.26)). Note that in contrast to the quadratic
potential, the energy density of scalar field now decays
like radiation and the oscillations never cross the initial
value φ(0) = 0. The latter is due to the fact that, for
a quartic potential, the first derivative of V (φ) and ynψ
decay in the same way with the scale factor. Then as φ
approaches the minimum, the Yukawa interaction starts
to dominate again and the system resembles the initial
state. Thus, it never crosses the initial condition im-
posed.

In figure 4, we show an illustration of the behaviour
of φ in the massless, quadratic, quartic and sixtic cases
separately. For easier comparison, we chose the values
of the parameters such that the coefficients of the Klein-
Gordon equation for each separate case in terms of v(a)
are all unity.4

4 In general, the Klein-Gordon equation for a monomial potential
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0 2 4 6 8 10
a/ac

−1.00

−0.75

−0.50

−0.25

0.00

0.25

ϕ
/|ϕ

c|
V = 0 ϕ2 ϕ4 ϕ6

FIG. 4. Evolution of the scalar field in terms of the scale fac-
tor, normalized to the critical value φc (5.12). For illustrative
purposes, we fixed the parameters such that all curves have
similar amplitude. In particular, for a given single mono-
mial potential of the type V ∝ φn, we fixed µ⋆ = 1 and
φ⋆ = Mpl/β in the Klein-Gordon equation given in footnote
4. In red, green, red and purple we separately show the cases
of massless scalar field, quadratic, quartic and sixtic poten-
tials respectively. All cases share the same early time growth.
Then, in the massless case the scalar field oscillates around
the critical point. In the other three cases, the potential term
dominates before reaching the critical point and the scalar
field decays and oscillates.

C. Power-law Potential

Let us now discuss the behaviour of an arbitrary mono-
mial following a power-law, namely V (φ) ∝ φ2n with
n ≥ 1. This is possible from an effective field theory
point of view. At early times, the system behaves ex-
actly as explained at the beginning of §V: the scalar field
grows due to the Yukawa interaction and decays after the
potential dominates. From the effective potential (5.3),
we expect that the decay of the scalar field either follows
the time evolution of the effective minimum of (5.3) or it
oscillates as if no Yukawa interaction is present. In the
first case, the scalar field would decay as

φmin ∝ n
1

2n−1

ψ ∝ a− 3
2n−1 . (5.30)

In the second case, it is known that [49]

φno−y ∝ a−
3

n+1 . (5.31)

V = V⋆(φ/φ⋆)2n/(2n) can be rewritten as

1

µ2
⋆

d2v

da2
+ a4n−2v2n−1 + sign

[
1 +

βφ⋆

Mpl

v

a

]
= 0 , (5.29)

where used that φ = φ⋆v(a)/a and we defined φ⋆ = V⋆/(ynψ,eq)
and µ2

⋆ = (2V⋆)/(Heqφ⋆)2. At early enough times with the initial
condition φ(0) = 0 we always have that φ ≈ −φ⋆a .

The subscripts “min” and “no-y” respectively refer to
effective minimum and no Yukawa. The solution which
decays slower will dominate the scalar dynamics. After
comparing the exponents in (5.30) and (5.31), we see
that the oscillations without Yukawa interaction (5.31)
dominate for n < 2, while the field oscillates around the
effective minimum (5.30) for n > 2. This also implies
that for n < 2 the oscillations go through φ = 0, while
for n > 2, the field φ never returns to the origin (only
asymptotically). In the particular case where n = 2,
which corresponds to φ4, both exponents are equal and
the solution goes back and forth from φ = 0 to O(φmin).
From the above background dynamics we can quali-

tatively understand the growth of perturbations in each
case by looking at the comoving effective mass for the
scalar field,

M2
φ = a2Vφφ . (5.32)

The effective mass determines the Yukawa comoving
length scale, namely ℓ = M−1

φ , which sets the naive
cut-off for the Yukawa force. In other words, not much
structure is expected on scales larger than ℓ. Note that
we used the word naive as ℓ is in general time dependent.
Using the solutions (5.30) and (5.31), we see that ℓ de-
creases with a for n < 2 while it increases for n > 2. For
n = 2 the amplitude of ℓ is independent of a.
The above discussion implies the following for the

growth of perturbations:

• For a quadratic potential (n = 1), the Yukawa in-
teraction becomes less relevant as the universe ex-
pands. In this case, we expect that halos will have
a clear typical mass, or alternatively a peaked mass
function as in ref. [4] (with some changes in their
estimates because the growth stops at some point).

• For the quartic potential (n = 2), one obtains a
non-decaying time-oscillating ℓ. As we shall show
later, the time-oscillations of ℓ lead to a longer
range of the Yukawa interaction (and a larger char-
acteristic mass) than for a constant ℓ.

• For n > 2, the comoving range of the Yukawa inter-
action increases with the expansion of the universe.
This means that eventually the instability will be
of the size of the cosmic horizon. This is also what
occurs for dilatonic (exponential) couplings, as in
refs. [3, 20], which could be roughly thought as the
limit of n≫ 1. One must then invoke an additional
mechanism to stop the long-range interactions, oth-
erwise fluctuations on all (subhorizon) scales are
constantly growing.

To anticipate the focus of the simulations, we will even-
tually specialize on the quartic potential with a Yukawa
coupling to the fermions because: (1) we expect that the
quartic term is the dominant contribution in renormaliz-
able theories in the very early universe for large field val-
ues and (2) the comoving length scale ℓ of the interaction
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does not redshift with a, which allows our simulations to
resolve ℓ throughout their evolution.
In passing, since we are interested in renormalizable

theories, we shall find an upper bound onmφ by requiring
that the quadratic potential never dominates before ∆N
e-folds after the critical point ac (5.12). Doing this yields

mφ < 10−18e−∆N GeV f
4/3
ψ β7/3λ1/6 . (5.33)

As we shall later see, 4 e-folds are sufficient to create
non-linear structures. Then, for β ∼ 1010, ∆N ∼ 4 and
fψ, λ ∼ O(1) we have mφ < 5TeV. Smaller β or a larger
number of e-folds will require a smaller bare mass mφ.

VI. LINEAR PERTURBATIONS

Having established the background scalar field dynam-
ics, we now investigate the growth of fermion number
density fluctuations. We first show that even though
the scalar field exits the cosmologically massless regime
at some point, there is still an exponential growth on
sufficiently small scales. We then derive and solve the
linearized fluid equations governing the fermion pertur-
bations, finding that fluctuations grow on larger than
anticipated scales. We lastly study the limit where the
scalar field oscillations rapidly, finding that it converges
to a time-independent force law. We note that while
we largely focus on the quartic potential in this section,
our justification for the exponential growth is valid for
a general potential where the fermions do not enter the
relativistic regime.

A. Collapse Instability

The Yukawa force is most effective for modes which are
subhorizon and below the Yukawa length scale, which is
set by the mass of the scalar field. Thus, we expect that a
Jeans-like instability appears for wavenumbers such that

k ≫ H and k2 ≫M2
φ = a2Vφφ , (6.1)

whereH = aH is the conformal Hubble parameter. Since
the exponential growth takes place at small scales and in
a short amount of time, compared to the Hubble time,
we shall work under the quasi-static approximation, i.e.,
we neglect time derivatives of the gravitational potential.

To study the perturbations, we work in the Newton
gauge in which the metric reads

ds2 = a2(−(1 + 2Ψ)dη2 + (1 + 2Φ)dx2) , (6.2)

where η is the conformal time, defined by dt = adη. We
perturb the other variables as ρr → ρr(1 + δr), ρm →
ρm(1 + δm), nψ → nψ(1 + δψ) and φ → φ + δφ. In
the absence of anisotropic stress, the i− j component of
Einstein’s equations yields Φ + Ψ = 0. See appendix C

for more details. For simplicity, we present the equations
in terms of e-folds, namely

dN = Hdη = Hdt = Heq

(
a

aeq

)−2

dt . (6.3)

The number of e-folds N later coincides with what is
called the “superconformal” time in the N-body simula-
tions. Then, in the limit where k ≫ H, the gravitational
potential Φ is determined by the Poisson equation, which
comes from the 0 − 0 component or Hamiltonian con-
straint, and it is given by

2
k2

H2
Φ =

a2

H2M2
pl

(ρrδr + ρmδm + ρψδψ + Vφδφ)

+
a2ρψ
H2M2

pl

yδφ

meff
+

1

M2
pl

dφ

dN

dδφ

dN
. (6.4)

It should be noted that we abused notation with meff

which denotes only the background value of meff . Also
note that in (6.4) we have neglected time derivatives of
Φ and we will do so in the subsequent equations. The
Klein-Gordon equation for the scalar field fluctuations
δφ reads

d2δφ

dN2
+
dδφ

dN

+
k2 + a2Vφφ
H2

δφ+
y

meff

a2ρψ
H2

δψ = 0 . (6.5)

The number density and momentum conservation for the
fermion fluids yield

d2δψ
dN2

+
d ln |meff |

dN

dδψ
dN
− k2

H2
Φ+

k2

H2

y

meff
δφ = 0 . (6.6)

The equations of motion for δr and δm are the standard
ones (given in appendix C) but, as we shall see, they are
not relevant for the following discussion. Also, since we
are assuming that meff > 0 we drop the absolute value
hereon.
We now proceed as follows. With the expectations of

an exponential growth of δψ driven by δφ, we neglect
all components in equations (6.5) and (6.6) except for
δψ and δφ. Since the instability leads to an exponential
growth for k2 ≫ a2Vφφ we also neglect the friction and
the potential term in (6.5). Lastly, since we are always
in the regime where |φ| < |φc| by condition (i) we take
meff ≈ mψ. We check a posteriori the validity of these as-
sumptions. By doing all the mentioned above, we rewrite
(6.5) and (6.6) as

d2

dN2

( δφ
Mpl

δψ

)
+

(
κ2 φo

Mpl

a
aeq

βκ2 0

)( δφ
Mpl

δψ

)
= 0 , (6.7)

where φo is given by (5.11), and κ is the ratio of the
wavenumber to the Hubble parameter, κ ≡ k/H. We
find that the eigenvalues of the system are given by

γ2± =
κ2

2

(
1±

√
1 +

4

κ2
φo
|φc|

a

aeq

)
, (6.8)
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where we used that |φc| = mψ/y (5.12). The eigenvectors
are given by

e⃗± =

(
γ2
±

βκ2

1

)
. (6.9)

Note that we always have γ2− < 0. This means that if we
neglect the time dependence in a and κ, there is always
an instability and we have that

δψ ∼ eΓN , (6.10)

where Γ2 ≡ −γ2−. Now, let us study two limits. On one
hand, for κ2 ≫ φo

|φc|
a
aeq

the growth rate is given by

Γ2 ≈ φo
|φc|

a

aeq
=

a

ac
. (6.11)

On the other hand, when κ2 ≪ φo
|φc|

a
aeq

the growth rate

reads

Γ2 ≈ κ
√

φo
|φc|

a

aeq
= κ

√
a

ac
. (6.12)

From Eq. (6.11), we see that Γ ≪ 1 for a < ac,
namely during the cosmologically massless regime (see
also the discussion around (5.12)). Eq. (6.12) is not ap-
plicable in this regime since it would imply κ ≪ 1 but
it was only valid on subhorizon scales. Thus, although
the Yukawa force is effectively a very long-range interac-
tion, it is very weak during the cosmologically massless
regime. The physically interesting regime where Γ ≫ 1
occurs for a≫ ac (5.12) when the scalar field is no longer
in the cosmologically massless regime and has non-trivial
dynamics. We then conclude that for wavenumbers such
that k ≫ H and k ≫Mφ the number density of fermions
grow exponentially.

Before we end this section, let us check that the as-
sumption that Φ, δr and δm are not important for the
exponential growth. First, when the exponential growth
takes place the scalar field fluctuations are well approxi-
mated by

δφ

Mpl
≈ − Γ2

βκ2
δψ . (6.13)

This means that for κ ≫ Γ the scalar field fluctuations
are subdominant, which is always the case for a > ac and
k > kc, where kc = Hc. This is an important result for
the N-body simulations as it implies that one can treat
the Yukawa interaction as an additional force without
taking into account the scalar field fluctuations. Second,
the requirement that Φ does not play a role in (6.6) yields

Φ≪ β
δφ

Mpl
= −Γ2

κ2
δψ . (6.14)

Thus, if Γ≪ κ, the amplitude of Φ is consistently small.
This in turn implies from (6.4) that δr, δm ≪ Γ2δψ. We

see that in the regime where κ ≫ 1, Γ ≫ 1 and Γ ≪ κ
only the fermion fluctuations dominate the cosmological
perturbations. In that regime we can thus only consider
the fermion fluctuations whose evolution is dictated by
an effective potential given by the scalar field. We can
then write

d2δψ
dN2

+
d lnmeff

dN

dδψ
dN

= − k
2

H2
ϕY , (6.15)

and

−k
2 +M2

φ

H2
ϕY = β2 a2ρψ

H2M2
pl

δψ , (6.16)

where we defined

ϕY ≡
y

meff
δφ , (6.17)

consistent with the notation of § IV. Note that because
the exponential growth occurs during the oscillations of
φ, the term friction term in (6.15) containing meff and
the effective mass of the scalar field in (6.5) could be
important.

B. Linear Evolution

From now on, we focus solely on fermion number den-
sity fluctuations, since they quickly dominate cosmologi-
cal perturbations due to their exponential growth on sub-
horizon scales. We then combine equations (6.15) and
(6.16) into a single equation for δψ,

s
d2δψ
ds2

+

(
1 +

d logmeff

d log s

)
dδψ
ds

=
1

4

meff

mψ

δψ
1 + (kℓ)−2

,

(6.18)

where we have introduced a new time variable given by

s = 12β2fψ
a

aeq
, (6.19)

so that the system is independent of β and fψ. In terms
of redshift we have that (1 + z) = 12β2fψ(1 + zeq)/s ≈
4× 104 β2fψ/s.
Let us now specialise to the quartic potential of §VB,

where ϕ oscillates as a function of ζ = ωs, as do meff

and ℓ. In terms of the new variable s, the frequency of
oscillations in ϕ, given by (5.25), reads

ω =
1

2

µ

25/633/4fψβ2
≈ 4× 1017

( √
λ

f2ψβ
5

)1/3

, (6.20)

which for fψ, λ ∼ O(1) and β ≪ 1010 (see the upper
bound (5.15)) is in general very large. The frequency ω
enters into the dynamics via the effective mass, that is

meff

mψ
= 1−

√
3

2s ω2

1− Cnα(ωs)√
3 + 1 + (

√
3− 1)Cnα(ωs)

, (6.21)



11

and the typical Yukawa length scale, namely

ℓ−1 = ℓ̄−1 31/4
√
2

1− Cnα(ωs)√
3 + 1 + (

√
3− 1)Cnα(ωs)

, (6.22)

where we defined

(keqℓ̄)
−1 ≡ 2−1/3 31/4µ = 6

√
2fψβ

2ω , (6.23)

and keq = Heq. With the definition (6.23) we find that
⟨ℓ⟩ ∼ 0.8 ℓ̄−1. Thus, we see that while the correction to
the mass is suppressed for ω ≫ 1, yielding meff ≈ mψ,
the Yukawa length scale ℓ varies between ℓ̄ and infinity.
And, although one might naively conclude that for high
frequencies the oscillations average out, the fact that the
Yukawa force becomes very long range periodically en-
hances the power of fluctuations on scales larger than
ℓ̄.

For later numerical purposes, we set the initial con-
ditions when ωs < 1. The reason behind our choice is
twofold. First, the regime ωs < 1 is useful to select the
growing mode and, second, the final results are not very
dependent on the initial conditions. For instance, it is not
so clear when exactly should one set the initial conditions
in the regime ωs > 1, where the scalar field quickly oscil-
lates. The only issue with the ωs < 1 regime is that some
of the simulation modes are initially superhorizon, since
kH ℓ̄ = 1/(sω) where kH = H = a2eqHeq/

√
2/a. But,

Eq. (6.18) has been derived in the subhorizon regime.
Nonetheless, we expect that this will not affect our main
results, as the big exponential growth occurs for s ≳ 4
when modes have entered the horizon. We leave a de-
tailed study of the fully relativistic initial conditions for
future work. We then obtain the initial conditions at
early times (ωs < 1), where meff/mψ ≃ 1 − s/8 and

ℓ̄/ℓ ≃ (ωs)2/(2
√

2
√
3) and so we can assume that meff is

constant and ℓ≫ k−1. In this limit we find that

dδψ
ds
≃ 1

4

meff/mψ

1 + d lnmeff/d ln s

δψ
1 + (kℓ)−2

≃ 1

4
δψ, (6.24)

Note that Eq. (6.18) is precisely the same as Eq. (4.10)
and the solution in Eq. (6.24) corresponds to the
expansion of the growing mode: I0(

√
s≪ 1) ≃ 1 + s/4.

We numerically solve the linearized fluid equations for
the fermion density transfer functions δψ/δψ,i where we
set δψ,i at si = 10−4. We show the resulting transfer
functions as a function of kℓ̄ at s = 50 for ω = 1/2,
4Kα(≃ 6.4) and 100 in Fig. 5. The most dramatic effect
is that the force has substantially longer range than in
the constant ℓ case. We also find that increasing ω leads
to diminishing changes, and as long as there is roughly
a full oscillation (ωs ≃ 4Kα) before s = 1 the growth
is unchanged. That is, even a relatively small value of
ω ≃ 4Kα should represent the dynamics of very large
frequencies as well. Note that a value of ω ∼ O(1) re-

quires β ∼ 1010 × λ1/10f−2/5
ψ , which is borderline of the

non-relativistic conditions (i)-(iii) (also see Fig. 3). We

10−3 10−2 10−1 100 101

k ¯̀

100

101

102

δ ψ
/δ

ψ
,i

ω = 1/2

ω = 4Kα

ω � 4Kα

I0(
√
Āk ¯̀s)

I0(
√
Ak ¯̀s)

FIG. 5. Linear perturbations evaluated at s = 50 for low
(ω = 1/2) and high (ω = 4Kα ∼ 6.4 and ω = 100 ≫ 4Kα) fre-
quencies. As the frequency ω increases the solutions approach
the oscillation averaged growing mode solution (dashed grey).
In all cases the oscillations in ℓ lead to a substantial increase
in large scale perturbations compared to the ℓ = ℓ̄ case (dot-
ted black).

also note that conditions (i)-(iii) require non-relativistic
fermions right before the start of the scalar field oscilla-
tions. At earlier times, conditions (i)-(iii) become more
strict. For example, using Eq. (5.24) and (6.20) we find a
lower bound on s by requiring that nψ/H

3 > 1, namely

s > smin ≈
1

ω

(
βmψ

√
λ

Mpl

)1/3

. (6.25)

While for ω ≫ 1 we easily have smin ≪ 1, for ω ∼ 1 the
parameter space much more restricted to small values of
λ (as earlier times also require a larger value of mψ due
to higher temperatures).
Now, let us consider the limit when ω ≫ 1 (or ζ ≫ 1),

which is the general expectation from (6.20). In this case,
we shall find a good analytical approximation to the solu-
tion of (6.18) by replacing highly oscillating background
functions by their average over half period, that is

⟨f(ζ)⟩ = 1

2Kα

∫ 2Kα

0

dζ1f(ζ1) . (6.26)

We find that meff/mψ quickly approaches unity, and os-
cillation averages simply lead to O(1) numbers. The
more interesting term is the time average of the Yukawa
potential that contains ℓ. As we have that 0 < ℓ−1 ≲
2ℓ̄−1, the right hand side in (6.18) oscillates between 1
and 1/(1+ (kℓ̄)−2). For later use, let us call this term as

Akℓ̄ ≡
〈

1

1 + (kℓ)−2

〉
, (6.27)

while we let Ākℓ̄ be its evaluation for constant ℓ = ℓ̄.
We then note that as we decrease the value of kℓ̄, the
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term 1/(1+ (kℓ)−2) starts to be mostly negligible except
when ζ ∼ 4nKα with n ∈ Z+. For kℓ̄ ≪ 1 the term
1/(1+(kℓ)−2) behaves as a pulse-like function. With this
knowledge, we approximate each pulse by a Gaussian,
namely we take

1

1 + (kℓ)−2
≈
∑

n

exp

[
− 1

2σ2
(ζ − 4nKα)

2

]
. (6.28)

We determine the width of the Gaussian σ by finding the
time ζ where 1/(1 + (kℓ)−2) = e−1/2. For kℓ̄ ≪ 1, we
find that this occurs when ℓ−1 ≪ 1 and we can use the
approximation that ℓ−2 ≈ ℓ̄−2(ζ − 4nKα)

4/(8
√
3). In

this way we find that

σ2 = 23/231/4
(√
e− 1

)1/2
kℓ̄ ≃ 3kℓ̄. (6.29)

We are now ready to compute an analytical approxima-
tion for the time average of (6.28). After integration we
find that

Akℓ̄≪1 ≈
√
π

2

σ

2Kα
Erf

[
Kα√
2σ

]
. (6.30)

We compare this approximation to the exact oscillation
average in Fig. 6 and find that it is accurate to around
1.2% for kℓ̄≪ 1. Importantly, for kℓ̄≪ 1 we find that

〈
1

1 + (kℓ)−2

〉

kℓ̄≪1

∝
√
kℓ̄ , (6.31)

as opposed to the naive (kℓ̄)2 expectation if ℓ were con-
stant. This translates into a longer range interaction and
larger power on large scales. We fit the oscillation aver-
age with the following asymptotically correct form,

Akℓ̄ =
(

1

1 + (k∗/k)2

)1/4

(6.32)

with k∗ℓ̄ ≃ 2.16 which is accurate to better than 1.5%
regardless of kℓ̄ (simply using k∗ℓ̄ = 2 is accurate to
around 5%).

With the time average (6.27), we find that Eq. (6.18)
has the same solution as Eq. (4.10), but with Akℓ̄ instead
of Ākℓ̄, namely

δψ ≈ δψ,iI0(
√
Akℓ̄s) . (6.33)

We show this approximation in Fig. 5 as a dashed grey
curve, and find that it agrees very well with the compu-
tation of the transfer functions at higher frequencies. Be-
cause Akℓ̄ decreases for kℓ̄≪ 1 slower than (kℓ̄)2, we find
that fluctuations on kℓ̄ < 1 are significantly enhanced
with respect to the case of constant ℓ. We can also eval-
uate when a mode k enters the non-linear regime, i.e.
when δψ(kℓ̄) ∼ 1. We find that this is given by

snl ≈
1

4Akℓ̄
W 2

[
−
δ2ψ,i
π

]
, (6.34)
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FIG. 6. Comparison of the oscillation average of the Yukawa
force law in the high frequency limit (solid), the constant ℓ
case (dashed) and our approximation for kℓ̄≪ 1 (dotted). For
comparison, a similar plot for the gravitational force would
be a scale independent constant but with an amplitude sup-
pressed by a factor of 2β2 ≫ 1

where W (x) is the Lambert function of order −1. Let
us briefly contextualize how quickly modes k ≳ ℓ̄−1 be-
come nonlinear. Based on the analysis of §VIA the fast
exponential growth occurs after a = ac (5.12) which cor-
responds to s(ac) = 4, and can also be observed in the
expansion of Eq. (6.33). For δψ,i ∼ 10−4 and kℓ̄ ≫ 1,
snl ∼ 130 corresponds to just 3.5 e-folds. Fluctuations
become nonlinear very fast.

On the other hand, for kℓ̄ ≪ 1 and δψ,i ≪ 1, we
have that |W (x)| increases as a combination of ln(x) and
ln(ln(x)). So a rough order of magnitude estimate would
be to replace W 2(x) ∼ ln2(x), which leads us to

snl ≈
0.37√
kℓ̄

ln2

(
δ2ψ,i
π

)
. (6.35)

From this equality, we see that if we require that the
mode with k = H never hits δψ = 1 then

s < snl(k = H) ≈ 0.14ω ln4

(
δ2ψ,i
π

)
. (6.36)

Nevertheless, since ω ≫ 1 this limit is easily satisfied. We
also see that, unless the scalar field decays or fermions
collapse to PBHs, the scale k < keq enters the non-linear
regime at a ∼ aeq if

β ∼ 2× 104

( √
λ

f5ψ(k/keq)
3

)1/11

ln12/11

(
δ2ψ,i
π

)
. (6.37)

If we take, for example, δψ,i ∼ 10−4, k ∼ keq and fψ ∼ 1
this implies β ∼ 6× 105.
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VII. N-BODY SIMULATIONS

Having demonstrated that the fermion density under-
goes exponential growth for the quartic potential, our
next goal is to study the resulting nonlinear structure
that forms from scalar forces, which requires the use of
cosmological simulations. While this scenario is physi-
cally quite different from gravitational structure forma-
tion, it shares many similarities with gravitational evo-
lution and so can be studied using standard cosmologi-
cal N-body algorithms, a review of which can be found
in [50]. Nonetheless, there are several important differ-
ences that need to be taken into account: the simulations
are run in the radiation era, rather than matter-dark en-
ergy era; the particle mass evolves with time, whereas
it is usually constant; and the scalar force has a time
varying length scale, rather than the scale-free gravity.
Some aspects of our calculation, such as time stepping
criteria and initial conditions, are loosely based on the
CUBEP3M code [51]. We also use the spherical overden-
sity halofinder of CUBEP3M, defining halos as having
200× the mean density and at least 100 particles.

A. Equations of Motion

Our first goal is to specify the equations of motion that
need to be solved in the N-body simulations. The Hamil-
tonian for a massive relativistic particle may be written
in general as H = − 1

2g
µνpµpν . However, in the non-

relativistic limit where p0 ≫ |p⃗| we have that the Hamil-
tonian can also be written, in conformal coordinates, as

H ≈ p0
a
≈ p⃗2

2ameff
+ ameffϕY , (7.1)

where we used that −gµνpµpν = meff + δmeff and that
δmeff = meffϕY . We also dropped the time dependent
rest mass meff and the gravitational potential. In this
way we can identify VY ≡ ameffϕY as the attractive
Yukawa potential. Then Hamilton’s equations are given
by,

dx⃗

dη
≃ p⃗

ameff
, (7.2)

dp⃗

dη
≃ −ameff∇⃗ϕY , (7.3)

where η is conformal time, x is a comoving position and
p⃗ = ameff v⃗p is the conjugate momentum.
For the simulations, it is more convenient to use equa-

tions that reproduce Newton’s laws rather than hav-
ing friction terms [50, 52, 53]. We therefore utilize
the super-conformal time adtN = dη which in the ra-
diation era (H = Hr/a

2, Hr = a2eqHeq/
√
2) coincides

with e-folds N = HrtN , and define particle velocities as
v⃗N = p⃗/meff , the potential as ϕN = a2ϕY and forces

via f⃗N = −meff∇⃗ϕN . We then non-dimensionalize the

system in the following way:

tN = H−1
r ts , (7.4)

x = (L/nc)xs ↔ ∇ = (nc/L)∇s , (7.5)

vN = (LHr/nc)vs , (7.6)

p = (mψLHr/nc)ps , (7.7)

ϕN = (LHr/nc)
2ϕs , (7.8)

meff = mψms , (7.9)

ℓ = (L/nc)ℓs = nℓ(L/nc)(ℓ/ℓ̄) , (7.10)

where L will be the box size of the simulation, nc is the
number of grid cells which will be used in the force calcu-
lation, and nℓ/nc = ℓ̄/L. Hamilton’s equations are then
given by

dx⃗s
dts

= v⃗s , (7.11)

dp⃗s
dts

= f⃗s , (7.12)

with v⃗s = p⃗s/ms and f⃗s = −ms∇⃗sϕs. In these units,
Eq. (6.16) becomes

(
∇2
s − ℓ−2

s

)
ϕs =

s

4
δψ , (7.13)

where s, defined in Eq. (6.19), can be parameterized as

s = sie
ts−ti . (7.14)

Lastly, from Eq. (6.21) we have

ms = 1−
√
3

2s ω2

1− Cnα(ωs)√
3 + 1 + (

√
3− 1)Cnα(ωs)

, (7.15)

while from Eq. (6.22)

ℓ−1
s = n−1

ℓ 31/4
√
2

1− Cnα(ωs)√
3 + 1 + (

√
3− 1)Cnα(ωs)

. (7.16)

Eqs. (7.11)-(7.16) are the full N-body equations of mo-
tion in the Newtonian approximation. It is important to
note that the frequency ω implicitly depends on L since
ω ∝ (keqℓ̄)

−1 , explicitly, we have that L = (nc/nℓ)ℓ̄
and so LHr = (nc/nℓ̄)(aeq/(12fψβ

2ω)). However, in the
high-frequency limit, these equations no longer depend
on the oscillation frequency ω and they become scale-free
(i.e., independent of L). Furthermore, the particle veloci-
ties, specifically v⃗p = v⃗N/a = (v⃗s/nℓ̄)/(sω), may become
relativistic unless ω ≫ 1 (which also corresponds to the
subhorizon regime as discussed in §VIB). The simula-
tions are also invariant to specific values of the fermion
mass, mψ , and assume that gravitational forces from
the radiation or other matter components (which are not
evolved in the simulation) are negligible. The free param-
eters that need to be chosen are the initial scale factor
si, the oscillation frequency ω and the value of the mean
Yukawa length nℓ, which in turn set λ, β and fψ in phys-
ical parameters.
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B. Numerical Methods

We now briefly explain our methodology for the numer-
ical simulations, focusing on differences with respect to
standard gravity calculations [50]. Because the particle
mass varies with time, we evolve positions and momenta
(instead of velocity) according to Eqs. (7.11) and (7.12)
using the drift-kick-drift algorithm,

x⃗s ← x⃗s + v⃗sdts/2 , (7.17)

p⃗s ← p⃗s + f⃗sdts , (7.18)

x⃗s ← x⃗s + v⃗sdts/2 , (7.19)

where we evaluate v⃗s = p⃗s/ms(ts) first at ts and then at
ts+dts, while fs is evaluated at ts+dts/2. Although there

are many algorithms to compute f⃗s, we have opted to use
the simple and robust particle-mesh method [54] which
involves solving Eq. (7.13) on a grid. We first obtain the
density contrast δψ by interpolating particles to a cubic
grid of n3c = 10243 cells using the Cloud-In-Cell (CIC)

method. We then obtain f⃗s completely in Fourier space
via

f⃗s =
ik⃗s

k2s + ℓ−2
s

s

4
msδψ , (7.20)

using discrete modes k⃗s chosen to match fourth order
accurate finite difference approximations to the gradient
and Laplacian. Having computed the force on the grid,
we then interpolate the grid force back to the particles,
again using CIC to conserve momentum. We ensure that
the simulation timestep satisfies dts ≤ ϵx/max[vs] and

dts ≤
√
ϵx/max[fs/ms] where we have set ϵx rather con-

servatively to be 1/10 the mean inter-particle distance.
We furthermore also prevent s from changing too rapidly,
requiring both ds and d ln s to be less than ϵs = 0.1.
We next consider how the time varying mass and

length scale, Eqs. (7.15) and (7.16), affect our calcula-
tion. In this work we consider three different setups: one
where we keep ms = 1 and ℓs = nℓ fixed, one in the low-
frequency regime with ω = 1/2, and one with ω = 4Kα

to realize the high-frequency limit. As we discussed pre-
viously, using values of ω ∼ 1 can cause particle veloc-
ities to become relativistic and can have superhorizon
modes within the volume, whereas the simulations as-
sume purely Newtonian evolution. However, as demon-
strated in Fig. 5, even low values of ω can represent the
evolution at very high frequencies. Our two choices of ω
therefore need to be interpreted as taking the numerical
limit of ω →∞ where the Newtonian approximations be-
come valid. When considering the time dependence, ms

is quite straightforward as it only depends on the dimen-
sionless quantities s and ω. ℓs on the other hand has a
residual dependence on the parameter nℓ. In other words,
even though the system of equations is independent of L,
the finite resolution of the grid leads to a dependence of
our results on the mean length scale. In Appendix D we

investigate how this potentially affects our results, and
have chosen nℓ = 12 as a good choice to resolve both
wavenumbers larger and smaller than 1/ℓ̄. In addition to
spatial resolution, we also ensure sufficient temporal res-
olution to track the oscillations in ms and ℓs which we do
via logarithmic limiters d logms ≤ ϵm and d log ℓs ≤ ϵℓ.
Because ms simply oscillates near its mean, this condi-
tion is straightforward and we set ϵm = 0.1 throughout,
except during the first period where we instead rely on
d ln s. Unfortunately, ℓs diverges periodically and the
logarithmic limiter cannot be maintained. Instead, we
use ϵℓ = 0.1 while ℓs ≤ nc, and simply ensure that ds
does not increase until ℓs returns below nc.

Lastly, we need to specify the initial conditions of the
simulation. As in Section VIB, a natural choice of the
initial scalefactor, si, is before Yukawa forces become
large, i.e. when si ≪ 1. Because we are considering very
small scales that are not at all constrained, we opt for
a very simple choice of initial fluctuations: a heuristic
scale-invariant spectrum of Gaussian fluctuations with
an initial amplitude of ∆2

i = ⟨δ2i ⟩ = 10−5. We ini-
tially displace Np = 2 × (nc/2)

3 particles from a body-
centered-lattice [55, 56] using the Zel’dovich approxima-

tion to find the displacement field −∇⃗ · Ψ⃗ = δψ(si)
[57]. We start the simulation with initial velocities

V⃗ (si) = (1/4)siΨ⃗, which corresponds to the growing
mode δψ(s) = δψ(si)I0(

√
s)/I0(

√
si).

As a test of our simulation setup, we compute the
dimensionless power spectrum ∆2(k) and show it as a
function of kℓ̄ = ksnℓ for the three oscillation choices in
Fig. 7 at s = 10 and s = 50, corresponding to a lin-
ear time and just before nonlinearity ensues. In general
we find good agreement on large scales with our linear
calculation, while there is some softening on small-scales
due to the particle mesh calculation. We note that at
s = 10 the ω = 1/2 case has not completed a full os-
cillation yet (s = 4Kα/ω ∼ 12.8) and so there is an
increase on all scales due to the asymmetric change in
ms and corresponding increase in particle velocity. Be-
fore moving on, let us briefly compare this setup to the
standard cold dark matter (CDM) scenario where the
CDM only interacts gravitationally. For that case, the
exact solution in the radiation era has the subhorizon
limit δCDM ∝ (γE − 1/2 + log

[
kη/
√
3
]
) where γE is the

Euler-Mascheroni constant [47]. Such a result requires
an expansion of both I0 and K0 in Eq. 4.11 for x ≪ 1.
In other words, both the growing and decaying modes of
CDM are excited due to the energy density of the primor-
dial plasma. For the Yukawa force, we have only solved
the perturbations in the subhorizon limit and so have
opted for simpler initial conditions with just the grow-
ing mode with the expectation that exponential growth
quickly dominates the initial perturbations.
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FIG. 7. Dimensionless power spectra at s = 10 and s =
50 normalized by ∆2

i = 10−5 for the low-frequency, high-
frequency and non-oscillating simulations. The bands around
each case are the linear perturbation calculations.

C. Halo Formation

With the cosmological simulations we are now ready
to investigate how structure forms under Yukawa forces
instead of gravity. Fig. 8 shows a visualization of the
fermion density field. The three rows correspond to the
non-oscillating case, the low-frequency (ω = 1/2) case
and the high-frequency case (ω = 4Kα ≃ 6.4, which
should be representative of the ω → ∞ limit). We
see that fragmentation initially resembles that of grav-
ity with distinct web-like features. However, the finite
scalar mass (e.g. finite ℓ) leads to a substantially differ-
ent final state of well-separated halos. We furthermore
see that the final density field, shown at s = 200 in the
right third, is substantially different between the simula-
tions with oscillations and without, with the latter hav-
ing many small halos throughout, whereas the former has

bigger but fewer halos due to the ∝
√
kℓ̄ scaling.

To be more quantitative we compute the halo mass
function, dnhalo/d logMhalo as a function of the mass of
the halo, Mhalo. We normalize masses to

MY ≡
4π

3
ρψ,eqa

3
eqℓ̄

3 , (7.21)

which is the mass of a halo with an initial radius equal
to the Yukawa length scale aeqℓ̄, and corresponds to
(4π/3)Np(nℓ/nc)

3 ≃ 2× 103 N-body particles. We show
the results in Fig. 9 at s = 100 and s = 200, which corre-
spond to halfway and completely through the simulation
time evolution shown in Fig. 8. At s = 100, the halo
mass functions are qualitatively similar in all three sim-
ulations, with a slight excess/deficit of light/heavy halos
in the non-oscillating scenario. Later however the simu-
lations begin to substantially differ. The non-oscillating
case tends to halos of a similar mass yielding a sharp
peak in the mass function. On the other hand, both os-
cillating scenarios have a similar halo mass function that

extends to much larger scales.
We now briefly estimate the typical mass of the largest

halos as a function of time. We leave a detailed study in-
cluding radiative cooling as in [4] for future work. We
proceed as follows. We assume that the largest halos at
a given time are those that form when the density fluc-
tuations with wavenumber k enter the non-linear regime,
that is when δψ(knl, s) ∼ 1 (6.33). Then, we take that
the initial radius of a halo is O(a/knl) and so the mass
of the halo is given by

Mmax(s) =
4π

3
ρψ

(
a

knl(s)

)3

=MY

(
knl(s)ℓ̄

)−3
, (7.22)

where knl(s) is the wavenumber that enters the non-linear
regime at time s given by inverting Eq. (6.34), explicitly

knl(s)ℓ̄ =
1

8s2

W 4
[
− δ

2
ψ,i

π

]

√

1−
W 8

[
−
δ2
ψ,i
π

]
256s4

, (7.23)

where we used k∗ℓ̄ ∼ 2 in (6.32). Using ℓ̄−1 from
Eq. (6.23) we find that

MY =
23/2π

37/4
mψ

yλ1/2
≈ 6× 10−6 g

β
√
λ

. (7.24)

The physical length scale ℓ̄Y is given by

ℓ̄Y = aeqℓ̄ =
2−1/63−1/4

(nψ,eqy
√
λ)1/3

≈ 0.23 km

(fψ β λ1/2)1/3
. (7.25)

Thus, the basic halos are small and light unless λ≪ 1.
The mass (7.24) would be the typical mass of the halos

if the mass of the scalar field, or alternatively ℓ, were
constant. However, as we have seen in §V, the actual
Yukawa force has a much longer range than ℓY due to
the time-oscillations of the mass. This causes the halos
to keep merging constantly over time until the long-range
interaction stops. For example, let us consider that φ has
a tiny mass mφ so that the quadratic term does not play
a role in the early evolution of the system but eventually
dominates the potential. Once this occurs, the comoving
Yukawa length scale decreases with the scale factor, that
is ℓ = (amφ)

−1 without oscillations, quickly shrinking
the comoving range of the interaction. In particular, the
quadratic term dominates for

a

aeq
>
acut
aeq
≈ µHeq

mφ

≈ 4× 10−5fψ
√
λ

(
β

105

)1/3(
10−3 eV

mφ

)
, (7.26)

where µ is given by Eq. (5.24) and the subscript “cut”
refers to the time when the long range interaction is cut
off. The maximum halo mass (7.22) at that time then
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FIG. 8. Visualization of fermionic dark matter density field assuming no oscillations (top) and oscillations with ω = 1/2 and
4Kα (middle and bottom). The left two-thirds show the time evolution between si = 10−4 and sf = 200. Each pixel column
is a density slice equally separated in s and the cubic volume has been periodically wrapped once. The magenta curve shows
the time evolution of the effective mass, meff/mψ, scaled such that 0 is at the bottom and 1 is at the top, while the cyan curve
is the time evolution of ℓ (omitted in bottom row for clarity). The right third shows the 2D density field at the final redshift.
Movies showing this evolution are available in the Supplemental Material [58]. It is interesting to note that the final structure
in the Yukawa case is different from usual ΛCDM simulations during CDM domination. In particular, due to the effectively
finite range of the Yukawa interaction we do not see any cosmic web like structure.

reads

Mmax(acut)

≈ 2× 1016 f8ψ
√
λ
( mφ

10−3eV

)−6
(
β

105

)13

g ,

(7.27)

where we took δψ,i ∼ 10−4. As an extreme case we

take that acut ∼ aeq, and mφ ∼ 10−8eV(β/105)1/3. We
can then roughly evaluate the non-linear scale (7.23) at
radiation-matter equality, where s = 12fψβ

2, which gives

knl(s = 12fψβ
2)ℓ̄ ∼ 230

f2ψβ
4
. (7.28)
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FIG. 9. Halo mass function for constant, low frequency and
high frequency simulations at s = 100 and s = 200. While
initially similar, the periodic increases in force range eventu-
ally lead to larger halos than the constant case.

Then, the maximum halo mass (7.22) is roughly

Mmax(s = 12fψβ
2) ≈ 5× 1042

f6ψ√
λ

(
β

105

)11

g . (7.29)

Thus, as time goes on, tiny halos merge several times
and the resulting halos are huge, even by cosmological
standards as 5 × 1042 g ∼ 2.5 × 109M⊙. The maximum
halo mass only depends on the time where the long-range
forces disappears by, e.g., the decay of the scalar field or
the formation of PBHs. The physical size of the halo can
be estimated to be

Rmax(a0) ∼
(

Mmax

4π∆ρψ/3

)1/3

=
1 + zeq
∆1/3knlℓ̄

ℓ̄Y

≈ 40
f
5/3
ψ

λ1/6

(
β

105

)11/3

kpc . (7.30)

where we used ∆ ∼ 200 in the last step.
Below we list three examples in which the parameters

in the model enter the allowed range for which exponen-
tial growth may occur based on the discussion in §V:

• Example 1 : we require O(0.1) values for the
Yukawa and quartic coupling; β = 107, mψ =
1011GeV, y = 0.4 and λ = 0.3. This yields a small
Yukawa scale and basic halo mass with ℓ̄Y = 1m,
MY = 10−10 g.

• Example 2 : we allow only for small values of the
quartic coupling and aim for large β; β = 109,
mψ = 5 × 108GeV, y = 0.2 and λ = 10−19. This
time the scale and mass is slightly larger than in
example 1 with ℓ̄Y = 0.4 km, MY = 4µg.

• Example 3 : we aim for a large halo mass allowing
for tiny couplings; β = 105, mψ = 106GeV, y =
4× 10−8 and λ = 10−50. Now we have a large and
massive basic halo with ℓ̄Y = 106 km,MY = 1017 g.

The maximum halo mass depends on the concrete evolu-
tion of the scalar field until equality, which is beyond the
validity of our approximations. Let us emphasize that
the constraints on the parameter space, presented in §V
and in Appendix B, used in the above examples only con-
cern the approximate validity of the N-body simulations
but not the theory space. However, the system beyond
the constrained parameter space will, at some point, en-
ter the relativistic fermion regime or will have too few
particles per Hubble volume. Let us also note that the
examples are meant to be extreme, and do not strictly
match the simulation requirements (in particular, high
enough fermion number density and ω ≫ 1 are not en-
forced).

Before moving on to the discussions, let us show that
if the halos virialize, the virial velocities can be non-
relativistic. We first compute the virial gravitational po-
tentials of the halos and then use Eq. (4.8) to estimate
the virial Yukawa potential. First, we find that the basic
halos have

GMY

ℓ̄Y
≈ 2× 10−38

(
fψ
β2λ

)1/3

, (7.31)

which using Eq. (7.22) leads us to

|ϕG| ≈
GMmax

Rmax
≈ 3× 10−9

f
13/3
ψ

λ1/3

(
β

105

)22/3(
acut
aeq

)4

.

To go from gravitational potential to the effective Yukawa
potential by Eq. (4.8) we make use of our results for the
oscillation average of the Yukawa force on larger scales
that ℓ̄, that is Eq. (6.30), explicitly given by

〈
2β2

1 + (kℓ)−2

〉
≈ 2β2

√
knl(s)ℓ̄ ≈

26

fψ

aeq
a
, (7.32)

where in the last step we used Eq. (7.23). Then we find
that

|ϕY | ≈
〈

2β2

1 + (kℓ)−2

〉
|ϕG|

≈ 7× 10−8
f
10/3
ψ

λ1/3

(
β

105

)22/3(
acut
aeq

)3

. (7.33)

Thus, if the virial theorem holds, i.e. v2 ≈ |ϕY | particles
always move at non-relativistic velocities (v < 1) for

β < 106 × λ1/22f−5/11
ψ

(
acut
aeq

)−9/22

. (7.34)

Although this depend very much on the value of acut/aeq
we see that even for acut ∼ aeq we have β < 106 which is
compatible with conditions (i)-(iii) but which may lead
to a more restricted parameter space. We also note that
β < 106 roughly corresponds ω > 107 (6.20), well within
high frequency regime.
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VIII. DISCUSSION: HALO FATES

Our nonlinear results are only able to follow the first
stage of halo formation and not their subsequent evo-
lution. Firstly, let us explain the reason of behind the
smallness of (7.24). It turns out that the length scale
of the interaction is proportional to the number density
of fermions. Indeed, the effective potential for the scalar
field in the quartic potential (5.3) has a minimum at

φmin = −
(
4y

λ
nψ

)1/3

. (8.1)

The solution (5.20) exhibits the same behaviour. This
means that the larger the number of fermions, the larger
the value of φmin and the larger the effective mass of the
scalar field. For instance, we have that

ℓ̄Y ∝ V −1/2
φφ ∝ (λφ2)−1/2 ∝ (nψy

√
λ)−1/3 , (8.2)

Thus, although the Yukawa force is much stronger than
gravity and creates bound structures in the radiation
dominated universe, the typical volume of the basic ha-
los is inversely proportional to the number density. Then,
the total mass only depends on mψ, y and λ. We note
that this density dependent expectation value for the
scalar field also occurs in the so-called chameleon and
symmetron models [59–61] in the context of dark energy.
In the notation of such models, the Yukawa force would
be screened for scales R > (nψy

√
λ)−1/3, were not for

the time-oscillations in the Yukawa length scale ℓ, which
render the Yukawa force effectively with a much longer
range.

We now comment on various possibilities for the final
state of the system, depending on how the evolution of
the fermions proceeds. If the fermions have a small cross-
section to standard model particles, the rapid increase in
the cores of halos may lead to substantial or complete
annihilation of the fermions. The consequences of such
an effect for baryogenesis have been discussed in [40].
Note that in this case a different particle is required to
make up the dark matter. If no annihilation occurs, as
in the models of asymmetric dark matter [62, 63] the
coupling to the scalar field also allows the fermions to
cool via scalar radiation [4]. In this case, the halos first
cool to form dark stars with radiation pressure opposing
the attractive force. They can then further cool until
the fermion degeneracy pressure becomes the stabilizing
force. If this is also overcome, then they may collapse
to form primordial black holes which are decoupled from
the scalar field. The masses of any such collapsed objects
depends on how quickly they cool compared to the halo
growth rate via mergers.

If, on the other hand, no radiative behaviour occurs (or
is simply inefficient), then the fermions will simply make
up fψ of the present day matter with inhomogeneities
that will simply continue to grow. The maximum mass
of the halos at matter-radiation equality (e.g. Eq. (7.29))
is around the size of small galaxies, although with strong

dependence on fψ and β, and suggests the possibility
of using large-scale observations to constrain this sce-
nario. Let us emphasize that forming such large halos
is a very surprising result considering the “typical” mass
scale given by Eq. (7.24).
While such large halos at matter-radiation equality

may be difficult to reconcile with cosmological observa-
tions, lighter ones can simply be obtained if the fermions
are not all the dark matter, i.e. fψ < 1. Depending on
the compactness and number density of the final objects,
we may expect the rest of the dark matter to gravita-
tionally collapse through secondary infall [64] with steep
density profiles ρ ∝ r−9/4, similar to what is expected
for PBH [65, 66], or via continued hierarchical collapse.
Such dynamics will also be influenced by how the attrac-
tive force behaves in the matter era. Regardless, such
processes can then accelerate structure formation in ways
that, depending on specific mass scales, may explain or
be constrained by high redshift observations such as the
EDGES 21 cm signal [67], the excess of heavy galaxies
observed by the James Webb Space Telescope [68, 69],
or the currently unknown formation and growth mech-
anisms of supermassive black holes [70]. Note that if
fψ < 1, then it is necessary to specify the the rest of the
dark matter, and some models such as WIMPs may be
incompatible with fermions similar to the way they are
incompatible with PBHs [65, 71, 72]. Lastly, even though
we have focused on the early Universe there may also be
differences from standard CDM in the late Universe, sim-
ilar to models like asymmetric dark matter [73, 74].
One may wonder if such early dark matter halos are

already constrained by current observations, as e.g. one
places bounds on the amount of massive compact halo
objects, also known as MACHOs (see Ref. [75] and refer-
ences therein for details on the constraints). However, it
is not so clear whether current constraints on MACHOs
[75–77] apply to the early dark matter halos of this work.
First, in the absence of additional physics, the halos from
the long range Yukawa interaction are rather diffuse. For
instance, there are no significant constraints from CMB
and BBN, since the halos do not deposit any energy as ar-
gued in Ref. [20]. Second, at the present stage we do not
know the exact halo profiles nor how the yukawa force be-
haves during the matter dominated universe, both which
are important for a detailed study of microlensing con-
straints (although they are expected to be weak for dif-
fuse structures [20]). Nevertheless, we may constrain our
model by demanding that the halos are not too massive.
For example, requiring that Mmax < 109M⊙ we find a
lower bound on the bare mass of the Yukawa mediator,
namely

mφ > 4× 10−8 f
4/3
ψ λ1/12

(
β

105

)13/6

eV. (8.3)

Note that this bound may also be recasted as an upper
bound on β or fψ. In the future, one very promising
probe is gravitational lensing of gravitational waves by
dark matter substructures [78–80], which in the wave op-
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tics limit is sensitive to the number of dark matter halos
and their profile.

Before concluding, let us briefly compare our results
with existing works [3, 20] and argue that the two sys-
tem are considerably different. In [3, 20], the mass
of the fermions is dilatonically coupled to the scalar
field, namely in our notation meff = mψe

−βφ/Mpl . The
same exponential coupling acts as potential for φ. For
small values of φ, we have a Yukawa-like interaction
where y = mψβ/Mpl. However, the exponential running
changes the dynamics of the system when compared to
the ones studied in this work. With the exponential cou-
pling, the effective mass always decays as meff ∼ 1/a and
the energy density of both the fermions and the scalar de-
cays as radiation [3]. Nevertheless, the fermions remain
in the non-relativistic regime if they were initially non-
relativistic sincemeff/T = constant (T ∝ 1/a for thermal
radiation in an expanding universe). However, the sys-
tem by itself is never matter dominated unless there is
backreaction from the non-linear structures or one con-
siders, e.g., a bare mass for mψ. We also find that, in
the dilatonic coupling case, the effective scalar field mass
M2
φ decays with the scale factor and all perturbations

on subhorizon scales (k ≫ H) grow. This growth is a
power-law with δψ ∼ ap and p ∼ 1.62 [3], which is not as
fast as the exponential growth of this work.

IX. CONCLUSIONS

We have computed the dynamics of a realistic inter-
acting dark sector composed of just one scalar and one
family of fermion particles via a Yukawa coupling. We
showed that including a potential for the scalar field al-
lows for the fermions to remain non-relativistic behav-
ing as dark matter with an additional attractive force.
We then focused on a quartic potential for the scalar
field, which is motivated by renormalizable theories and
also convenient for the simulations. Confirming previous
studies [4], we find that this attractive force leads to sub-
stantial growth in the fermions allowing for the possibility
of nonlinear halo formation. We also find that the specific
type of coupling substantially changes the growth of per-
turbations and can lead to the formation of halos much
larger than has previously been assumed in simplified se-
tups. These halos could become dark stars, primordial
black holes, galaxy-sized halos at matter-radiation equal-
ity, or end up annihilating. Such halo formation might
also be accompanied by gravitational waves [39], cold
electroweak baryogenesis [40] or magnetogenesis [41].

While our results have demonstrated the nonlinear
halo formation in the scalar-fermion dark sector, they are
also limited in some ways. On the theory side, we have
assumed the radiation era throughout as we expected ha-
los to be small in the radiation era. Determining how the
system behaves into the matter epoch is of substantial in-
terest from the perspective of large-scale structure. We
furthermore did not solve the fully relativistic perturba-

tion equations, and instead used initial conditions based
on the subhorizon growing mode. Calculating the sub-
horizon growth with initial conditions that can vary on
superhorizon scales would therefore be valuable to make
our calculations more realistic.
We have also been limited by various aspects of the nu-

merical simulations beyond the lack of radiative physics.
Firstly, the simulations are fully Newtonian and in co-
moving coordinates, requiring the fermions to be non-
relativistic at all times, that the growth of perturbations
occurs on subhorizon scales and that ℓ is on average con-
stant. The first two requirements necessitate that the
scalar frequency ω ≫ 1. In practice we used ω ∼ 1
and argued based on our linear theory analysis that the
high-frequency case already achieved the correct ω →∞
dynamics. On the other hand, the ω ∼ 1 dynamics them-
selves are also within the interesting theoretical range of
possibility, but would require fully relativistic equations
of motion to model correctly. The last requirement on
ℓ makes other potentials such as the quadratic one diffi-
cult to simulate. We have also been substantially limited
by resolution. On small-scales, our use of just a particle-
mesh calculation does not allow for detailed investigation
of the halo interiors and less concentrated halos may in-
teract with the finite value of ℓ in unexpected ways. In-
cluding a subgrid pairwise force would circumvent this
issue and is important to include in the future. On large-

scales, we lack the ability to follow the
√
kℓ̄ scaling lim-

iting the maximum redshift and mass of the halos in our
simulation. This regime could however be studied using
the asymptotic high-frequency scaling alone.
Let us conclude by highlighting that the scalar-fermion

system we have considered is simple. The long-range
forces between matter particles can arise in models with
supersymmetry [25], as well as other dark matter mod-
els [11, 81–83]. We therefore expect the phenomenology
we have identified to be rather common in expanded dark
sectors in the radiation epoch. Moving from such a phe-
nomenological discussion of final states - radiation, stars,
black holes, or halos - to predictive modelling, as well
as generalizing to various other interacting dark sectors,
are therefore important steps towards understanding the
dynamics of the early Universe.
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Appendix A: Parameters and definitions

In this appendix we summarize the meaning of main
parameters and definitions used throughout the text.

1. Jacobi elliptic functions

Here we define the Jacobian elliptic functions. The
Jacobian elliptic functions are the inverse of the elliptic
integrals, explicitly given by

ζ = Fα(ϕ) =

∫ ϕ

0

dθ√
1− α2 sin2 θ

. (A1)

One then defines

Cnα(ζ) ≡ cosϕ , (A2)

from which is clear that Cnα(ζ) is periodic. The period
∆x defined by Cnα(ζ) = Cnα(ζ +∆ζ) is given by

∆ζ = Fα(2π) = 4Kα , (A3)

where Kα is the complete elliptic integral of the first
kind. For the case of §VB, that is α = 2−3/2(

√
3−1), we

find the period can also be expressed in terms of Gamma
functions as

Kα = 31/4
√
π
Γ[7/6]

Γ[2/3]
≈ 1.6 . (A4)

2. Parameters and Variables

In table I we provide a list of the main parameters
and variables. As an introduction section, §IV does
not make the same approximations (e.g. β2 ≫ 1 and
a ≪ aeq) as the remainder of the text and so the no-
tation differs. Nonetheless, if those approximations are
made then the transformation 6αx → Ākℓ̄s (see below
(6.27)) yield the same equations. Lastly, many parame-
ters are with respect to matter-radiation equality, defined
as when ρr = ρm + ρψ (i.e. excluding φ), and denoted
with subscript “eq”. In particular, keq = aeqHeq is the
comoving horizon size at that time.

Appendix B: Detailed conditions for non-relativistic
fermions

In this appendix we provide the limits used to draw
figures 1, 2 and 3.

Scalar Field, φ

Bare mass mφ

Quartic coupling λ
Potential V = m2

φφ
2/2 + λφ4/4 + ...

Effective mass Mφ = a
√
Vφφ

Dimensionless effective mass µ ∝Mφ/keq
Perturbation δφ

Fermions, ψ

Bare mass mψ

Number density nψ
Energy density ρψ = meffnψ
Matter fraction in ψ fψ = ρψ/(ρm + ρψ)
Perturbation δψ = δnψ/nψ

Yukawa Interactions

Yukawa coupling y
Interaction strength β = yMpl/mψ

Effective ψ mass meff = mψ + yφ
Effective φ potential Veff = V + sign[meff ]yφnψ
Long-range potential ϕY = yδφ/meff

Yukawa length scale ℓ =M−1
φ ∝ (keqµ)

−1

Effective scale factor s = 12fψβ
2a/aeq

Effective frequency (quartic) ω (ωs ∝ µa/aeq)

Gravitational Interactions

Scale factor a
Hubble parameter H = a−1da/dt = H/a
Metric potentials ϕG = Φ ≃ −Ψ
Matter density, w/out ψ, φ ρm
Radiation density, w/out ψ, φ ρr
Perturbations δr = δρr/ρr, δm = δρm/ρm

TABLE I. List of basic parameters of our model. In the main
text quantities with an upper “bar” are constant and refer to
the amplitude of the unbarred variable. For example, ℓ̄ is the
amplitude of ℓ.

1. Massless case

For the massless case we have that conditions (iia),(iib)
and (iii) respectively yield

β ≪ 4× 109f
−1/2
ψ

(
g∗(T )

106.75

)1/8 ( mψ

1010 GeV

)1/2
, (B1)

β ≪ 2× 1012f
−2/3
ψ

( mψ

1010 GeV

)2/3
, (B2)

and

β ≪ 3× 1010f
−1/3
ψ

( mψ

1010 GeV

)−1/6

. (B3)

2. Quadratic potential

For the case of a quadratic potential, we find the fol-
lowing. On one hand, for condition (iia) we require that
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T1 ≪ mψ, where T1 temperature of the radiation fluid at
that the time τ1 and which reads

T1
Mpl

≈ 0.33

√
mφ

Mpl

(
g∗(T )

106.75

)−1/4

. (B4)

Then, the condition T1 ≪ mψ yields

mφ ≪ 370

(
g∗(T )

106.75

)1/2

GeV . (B5)

To have non-zero parameter space between the bounds
(5.19) and (B5), we obtain the following upper bound on
β:

β ≪ 5× 109f
−1/2
ψ

(
g∗(T )

106.75

)1/8 ( mψ

1010 GeV

)1/2
. (B6)

On the other hand, for condition (iib) we require that
m3
ψ ≫ 3π2nψ evaluated at ξ1 which yields

mφ ≪ 3.4× 1013f
−2/3
ψ

( mψ

1010 GeV

)8/3
GeV . (B7)

We see that the case of degenerated non-relativistic
fermions is less restrictive in the value of mφ and the
upper bound on β now reads

β ≪ 3× 1012f
−2/3
ψ

( mψ

1010 GeV

)2/3
. (B8)

Lastly, condition (iii) also evaluated at ξ1 implies

mφ ≪ 2× 106f
2/3
ψ

( mψ

1010 GeV

)−2/3

GeV . (B9)

3. Quartic potential

We proceed as in the previous subsection but for the
quartic potential. First, for condition (iia), the tempera-
ture of the radiation fluid at amax is given by

T (amax)

Mpl
≈ 7× 10−29µ

(
g∗(T )

106.75

)−1/4

. (B10)

Then, by imposing T (amax)≪ mψ we obtain

λ <
1.4× 107

f2ψβ
2

(
g∗(T )

106.75

)3/2 ( mψ

1010 GeV

)6
. (B11)

By saturating the inequalities (5.27) and (B11) we also
obtain an upper bound on β given by (B6).
For condition (iib), we require mψ ≪ 3π2nψ(amax),

which yields

λ <
1.1× 1040

f4ψβ
2

( mψ

1010 GeV

)8
, (B12)

and again the resulting upper bound on β by saturat-
ing the parameter space coincides with the one in the
quadratic case (B8). Lastly, the condition (iii), that re-
quires more than one particle per Hubble volume, im-
poses

λ <
3× 1018

β2

( mψ

1010 GeV

)−2

. (B13)

Appendix C: Einstein equations

In this appendix we explicitly write the general equa-
tions used in this paper. We start with Einstein equations
which are given by

M2
plGµν = Tψ,µν + Tr,µν + Tm,µν

+ ∂µφ∂νφ−
1

2
gµν (∂αφ∂

αφ+ 2V (φ)) , (C1)

where the subscript r refers to radiation and TQ,µν with
Q = {r,m, ψ} is the energy-momentum tensor of a per-
fectly fluid, explicitly given by

TQ,µν = (ρQ + PQ)uQ,µuQ,ν + PQgµν , (C2)

and uQ,µ are the fluid’s 4-velocity. Second, the energy
conservation of the Fermi gas is given by

uµψ∇µρψ + (ρψ + Pψ)∇µuµψ +

(
∂Pψ
∂φ

)

T,µ

uµψ∇µφ = 0 .

(C3)

Then, we use the Bianchi identities and the conservation
of the energy momentum tensor for radiation, to derive
the Klein-Gordon equation which reads

∇ν∇νφ− Vφ −
meff

|meff |
ynψ = 0 . (C4)

In a similar manner, we find that the equation for the
velocity is given by

uνψ∇νuψ,µ +
(
δνµ − uψ,µuνψ

) 1

ρψ

y

meff
∇νφ = 0 . (C5)

Lastly, we have the fermion number density conservation,
namely

∇µ(nψuµψ) = 0 . (C6)

1. Cosmological perturbations on subhorizon scales

We also present here the main equations for cosmolog-
ical perturbations that are used in the text. We perturb
the FLRW metric in the shear-free gauge, in which the
line element reads

ds2 = a2(−(1 + 2Ψ)dη2 + (1 + 2Φ)dx2) . (C7)
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The energy densities are expanded as ρ→ ρ+δρ and the
velocities as uµ = a−1(1 − Φ, vi) for both the radiation
and fermion fluids. For the scalar field we take φ→ φ+
δφ. With this prescription, the 00 component of Einstein
equations, which is related to the Poisson equation, is
given by

2
k2

H2
Φ =

a2ρr
H2M2

pl

δr +
a2ρr
H2M2

pl

δm +
a2ρψ
H2M2

pl

δψ

+
a2ρψ
H2M2

pl

y

meff
δφ+

1

M2
pl

dφ

dN

dδφ

dN
+

a2Vφ
H2M2

pl

δφ .

(C8)

Then we have the Klein gordon equation:

d2δφ

dN2
+
dδφ

dN
+
k2

H2
δφ+

y

meff

a2ρψ
H2

δψ = 0 . (C9)

The energy density and momentum conservation for
fermions:

dδψ
dN
− k2

H vψ = 0 , (C10)

dvψ
dN

+ vψ −
1

HΦ+
1

H
y

meff
δφ = 0 . (C11)

And the energy density and momentum conservation for
radiation:

dδr
dN
− 4

3

k2

H vr = 0 , (C12)

dvr
dN

+
1

H

(
1

4
δr − Φ

)
= 0 . (C13)

If there is an additional dark matter component which
behaves like dust, we also have:

dδm
dN
− k2

H vm = 0 , (C14)

dvm
dN

+ vm −
1

HΦ = 0 . (C15)

2. Newtonian Approximation

For completeness we derive the equations in the New-
tonian regime, which consists in keeping the linear order
of metric perturbations but allowing for the non-linear
evolution of the non-relativistic matter fields. This is
justified since on subhorizon scales the gravitational po-
tential is suppressed with respect to the density fluctu-
ations. Here we do the same perturbative expansion as
in appendix C 1 but we also include the velocity pertur-
bation of the fermion fluid. With this prescription, the

relevant equations in real space and in terms of e-folds
are given by

dδψ
dN

+
1

aH
∇⃗ [(1 + δψ)v⃗ψ] = 0 , (C16)

dv⃗ψ
dN

+

(
1 +

d lnmeff

dN

)
v⃗ψ

+
1

aH
(v⃗ψ · ∇⃗)v⃗ψ +

1

aH
∇⃗ϕY = 0 , (C17)

(∇2 − ℓ−2)ϕY = a2β2M−2
pl ρψδψ , (C18)

where ϕY is the effective potential due to the Yukawa
interaction related to the scalar field by (6.17) and ℓ−2 =
M2
φ = a2Vφφ. These equations can be recast in a more

convenient form with the following redefinitions:

vψ =

(√
2a

aeq

)−1

Vψ , ϕY =

(√
2a

aeq

)−2

ϕN ,

∇⃗ = aeqHeq
⃗̃∇ , ℓ = a−1

eq H
−1
eq ℓ̃ . (C19)

We also introduce a new time variable by

s = 12fψβ
2 a

aeq
. (C20)

Then, we have that dN = d ln s. In this notation we
obtain

dδψ
d ln s

+ ⃗̃∇
[
(1 + δψ)V⃗ψ

]
= 0 , (C21)

dV⃗ψ
d ln s

+
d lnmeff

d ln s
V⃗ψ + (V⃗ψ · ⃗̃∇)V⃗ψ + ⃗̃∇ϕN = 0 , (C22)

(∇̃2 − ℓ̃−2)ϕN =
s

4
fψδψ , (C23)

where we used (5.7) to write nψ,eq in terms of Heq. It is
important to note that the equations above are indepen-
dent of Heq and β. Thus, we may solve them in general
and later translate the result to the physical variables.

Appendix D: Choice of ℓ̄

In this appendix, we consider how the value of ℓ̄ (nℓ)
relative to the simulation size L (nc) affects our calcula-
tion. First of all, we consider the calculation of the force
in Eq. (7.20). We run a set of pairwise force calculations
between two particles as a function of their separation
rs and the value of nℓ. We show the results in Fig. 10.
Despite the modification to include ℓ̄, the particle-mesh
calculation performs well for particles separated by more
than a few grid cells. As separations approach nc/2 the
periodic boundary conditions truncate the force, rather
than nℓ.
While the physical value of ℓ cannot affect the results

of the simulation, the numerical value nℓ certainly can via
artifacts associated with finite resolution. If the value is
small and approaches the grid size nℓ ∼ 1, then particles
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100 101 102

rs

0.0
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0.4

0.6
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1.0
r2 s

f s
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n = 8
n = 12
n = 16
n = 20
n nc

FIG. 10. Pairwise computation of the Yukawa force fs for
various choices of nℓ. rs is the particle separation (specified
in grid cells, with nc = 1024), and we normalized r2sfs to 1
for rs ≪ nℓ. 1σ fluctuations are computed by repeating the
calculation 100 times.

will not feel any force. We would like then, to choose
nℓ fairly large. However, if it is too large then our re-
sults will be affected by the simulations periodic bound-
ary conditions which will truncate the force law rather
than the Yukawa scale. This is particularly troublesome
for our scale free initial conditions, as nonlinear coupling
between modes within the simulation volume and those
larger than the box would not be resolved. This moti-
vates a choice of nℓ fairly small.

Fortunately, the invariance to a physical value of ℓ al-
lows for a useful test, analogous to scale-free tests for
large-scale structure simulations [87], as converged re-
sults should be insensitive to a specific choice of nℓ pro-
vided they are rescaled consistent with their dimensions.
We therefore run a set of simulations with constant ms

and ℓs, but varying the choice of nℓ. We note that even
though the initial density field is the same, the force law
effectively differs between the simulations and so the final
results are only statistically equivalent.

We show our results at s = 200 in Fig. 11. We see
that unlike the linear solution which grows arbitrarily,
halos virialize with more typical densities. We see that,
as expected, larger values of nℓ better probe small scales,
while smaller values are able to resolve the constant large
scales. In addition, we also consider the halo mass func-
tion of these simulations, shown in Fig. 12. Here we do
not see as good agreement upon rescaling, and simula-
tions with nℓ ≤ 8 having fairly different mass functions.
We also see a decrease in heavy halos when nℓ = 20 (and
also a little for 16), which is indicative of having too small
a volume for such large halos. Fortunately, nℓ = 12 and
nℓ = 16 appear reasonably converged in both the power
spectrum and the halo mass function.

When including time dependence of ℓ there is an ad-
ditional effect to consider which is that the minimum
value of ℓ is ∼ ℓ̄/2. For the high-frequency case, we ex-
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pect the simulation to match the effective force law in
(6.32); however, for the low frequency case substantial
amounts of the simulation time is spent around this min-
imum which may amplify force artifacts. We do a test
by running a low frequency simulation with nℓ = 16. We
show the power spectra at before the onset of nonlinear-
ity (s = 50) and after (s = 200) in Fig. 13. We find that
the two choices of nℓ lead to very similar results; how-
ever, we also find that the low frequency case has lower
power in the nonlinear regime of the simulation than the

high frequency case. It is not clear why this may occur,
but could be indicative of a lack of force at ℓ ∼ ℓ̄/2. In
general, without a subgrid force we expect that halos are
less concentrated and the power spectrum to be lower
regardless of our choices of nℓ or ω. This may have un-
expected consequences, as the limited range of the force
means that the distribution of matter in the halo, and
not just the halo mass, matters [88]. While we may ex-
pect the long-range periods to ameliorate this effect, it
remains to be seen whether there are differences in the
halo distribution when subgrid forces are included.
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