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Understanding the dynamics of bound state formation is one of the fundamental questions in
confining quantum field theories such as Quantum Chromodynamics (QCD). One hadronization
mechanism that has garnered significant attention is the breaking of a string initially connecting a
fermion and an anti-fermion. Deepening our understanding of real-time string-breaking dynamics
with simpler, lower dimensional models like the Schwinger model can improve our understanding
of the hadronization process in QCD and other confining systems found in condensed matter and
statistical systems. In this paper, we consider the string-breaking dynamics within the Schwinger
model and investigate its modification inside a thermal medium, treating the Schwinger model as
an open quantum system coupled to a thermal environment. Within the regime of weak coupling
between the system and environment, the real-time evolution of the system can be described by a
Lindblad evolution equation. We analyze the Liouvillian gaps of this Lindblad equation and the
time dependence of the system’s von Neumann entropy. We observe that the late-time relaxation
rate decreases as the environment correlation length increases. Moreover, when the environment
correlation length is infinite, the system exhibits two steady states, one in each of the sectors with
definite charge-conjugation-parity (CP) quantum numbers. For parameter regimes where an initial
string breaks in vacuum, we observe a delay of the string breaking in the medium, due to kinetic
dissipation effects. Conversely, in regimes where an initial string remains intact in vacuum time
evolution, we observe string breaking (melting) in the thermal medium. We further discuss how the
Liouvillian dynamics of the open Schwinger model can be simulated on quantum computers and

provide an estimate of the associated Trotter errors.

I. INTRODUCTION

Real-time simulations of lattice field theories have re-
cently received significant attention in fundamental nu-
clear and particle physics. While these simulations pose
computational challenges, especially in higher dimen-
sions, recent advancements in quantum computing and
error correction [1, 2] offer the potential to eventually en-
able large-scale simulations [3-8]. The real-time dynam-
ics of field theories can be simulated within the Hamilto-
nian formulation developed by Kogut and Susskind [9].
Different than in the path integral formulation of lat-
tice field theory that relies on a spatial and temporal
lattice discretization, time is kept as a continuous vari-
able within the Hamiltonian formulation and only the
spatial directions are discretized. The need to simulate
exponentially large Hilbert spaces makes large-scale clas-
sical simulations intractable. This necessitates the devel-
opment of quantum algorithms to simulate for example
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high energy scattering processes [10-13] or field theories
at finite chemical potential, which are relevant to nu-
clear and particle physics [14-34]. In particular, lower
dimensional lattice field theories that share features with
quantum chromodynamics (QCD) have received an in-
creased attention recently. An example is the Schwinger
model [35, 36], which corresponds to quantum electro-
dynamics (QED) in 1+1 dimensions. This U(1) gauge
theory coupled to fermions exhibits confinement and chi-
ral symmetry breaking. Besides the similarities with
QCD, lower dimensional field theories are an important
testing ground for developing simulation protocols in or-
der to eventually build up toward simulations of QCD.
Recent work investigated quantum and tensor network
simulations of the U(1) gauge theory and the Schwinger
model [16, 37-51] and studied Hamiltonian dynamics of
non-Abelian lattice field theories [52-70], in particular,
several efforts aim to understand the thermalization of
non-Abelian lattice gauge theory as an isolated quantum
system [71-73].

One of the most intriguing aspects of the Schwinger
model is the string-breaking mechanism. This involves
a pair of fermion and anti-fermion at a certain distance,
connected by a string of electric flux. When the string is
sufficiently long, it breaks in real-time, ultimately form-
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FIG. 1. Illustration of the string breaking process for the
Schwinger model in a thermal medium.

ing two or more tightly bound fermion anti-fermion pairs,
analogous to mesons. The initial energy stored within
the string transforms into the kinetic energies of these
pairs, which thus separate with corresponding velocities.
Details of this mechanism largely depend on the fermion
mass and the coupling strength between fermions and the
gauge field.

The string-breaking process in the Schwinger model
presents fascinating parallels to quark confinement in
QCD, where quarks and gluons hadronize into baryons
and mesons. This is one of the universe’s most compelling
enigmas. The phenomenon of string breaking, viewed
as a model for hadronization, is also represented in the
simulations of high energy particle collisions carried out
by Monte Carlo event generators like PyTHIA[74]. Ad-
ditionally, in Ref.[75], initial-state string dynamics and
string junctions were found to be necessary for describ-
ing particle production in heavy ion collisions within a
three-dimensional dynamical initialization model.

Recently, high-energy collider measurements of jet sub-
structure [76, 77] have facilitated the direct imaging of
the transition between the hadron and parton angular
scaling regions, providing a hint of how the confinement
scale is set within jets. This can be explicitly observed
through measurements of correlations as a function of
angle, between the asymptotic energy flux, and is fur-
ther enhanced by probing these intricate correlations be-
tween hadrons with different quantum numbers [78-85].
Nevertheless, the theoretical understanding of these mea-
surements, especially in the transition from the universal
parton scaling region to the free hadron scaling region—a
deeply nonperturbative process—remains a challenging
task.

Enhancing our grasp of real-time non-perturbative
methods using simpler, lower dimensional models like the
Schwinger model could significantly improve our under-
standing of such real-world collider measurements. Such
an understanding could unravel the mystery of quark
confinement and has implications for precision measure-
ments of Standard Model parameters [86], studies of the
quark-gluon plasma (QGP) in heavy ion collisions [87—
89], and the investigation of cold nuclear matter effects
at the future Electron-Ion Collider [90]. Furthermore,

an analogous confinement process occurs in several quasi
one-dimensional compounds in condensed matter and
statistical systems [91-96]. Hence, studying real-time
string-breaking dynamics with the Schwinger model pro-
vides a more realistic approach to understanding confine-
ment dynamics in these systems as well.

In this work, we explore the dynamics of the string-
breaking mechanism in vacuum and in the presence of a
medium, as illustrated in Fig.1. The static string in the
Schwinger model has been studied at both finite tem-
perature and chemical potential [97-100] (different lat-
tice field theories at finite temperature and/or chemi-
cal potential were also studied in Refs. [101-105]). It
was observed that the string tension decreases as tem-
perature and/or chemical potential increase. We extend
these studies to the dynamical case, where a thermal en-
vironment modifies the real-time evolution of the string-
breaking process. We find that this environment delays
the string-breaking process and reduces the velocity at
which the fermion anti-fermion pairs separate. This be-
havior can be attributed to a quantum drag force act-
ing on the fermion pairs, aligning with findings in the
static case. To study real-time dynamics, we consider the
Schwinger model interacting with a thermal scalar field
via a Yukawa-type coupling. We work in the Brownian
motion limit where the environment temperature is high
compared to the system’s typical energy levels [106]. In
this limit, memory effects are negligible and the dynam-
ics are Markovian, allowing us to express the evolution
of the Schwinger model as an open quantum system in
terms of a Lindblad equation [107-109]. The open quan-
tum system framework has been extensively studied for
quarkonium dynamics inside the QGP [110-128].

One key aspect of non-equilibrium physics in the open
quantum system is the late-time relaxation dynamics to-
ward equilibrium. These relaxation dynamics are gov-
erned by the Liouvillian gap, which is given by the eigen-
value of the Liouvillian spectrum whose real part is clos-
est to 0. This gap is a fundamental quantity of the open
quantum system analogous to the energy gap of a Hamil-
tonian describing a closed quantum system. We deter-
mine the Liouvillian spectrum and corresponding eigen-
modes of the open Schwinger model for different choices
of the environmental correlator (long and short-range
correlations), study its dependence on the system size,
and compare it to the free fermion model. We find that
a long-range correlated environment leads to slower ther-
malization of the system since the energy and information
exchange between the system and environment is slowed
when long-range correlations are present in the environ-
ment. Moreover, we find that special care needs to be
taken in the case of an infinitely long correlation length.
In this case, the Liouvillian dynamics of the open quan-
tum system preserve the charge conjugation and parity
(CP) symmetry of the system. We decompose the Hilbert
space into a CP-even and odd sector. Only in the case
of infinite environment correlation, the two sectors evolve
independently and there exist two equilibrium states, one



in each sector. To study the impact of the environment
correlation length on the relaxation dynamics, we study
the von Neumann entropy of the system that quantifies
its decoherence due to the interaction with the environ-
ment. These results are closely related to the study and
classification of field-theoretical dissipative phase transi-
tions [129]. Our results provide a starting point for more
detailed studies in the future.

Finally, we study the resource requirements for quan-
tum simulations of the Schwinger model as an open quan-
tum system. For this case study, we focus on a quantum
algorithm that interleaves short time steps in the sys-
tem’s Hamiltonian evolution with a time evolution oper-
ator comprising the Lindblad operators that act on the
system and an additional register of ancilla qubits. By
using a first-order Trotter decomposition for both unitary
operators, we find that, in practice, the Trotter errors as-
sociated with the Lindblad evolution may not necessarily
increase the total error when compared to the vacuum
calculation of the Schwinger model. This is due to some
cancellations of errors in the quantum algorithm for sim-
ulating the Lindblad evolution, which is an encouraging
sign for quantum simulations of open systems in the near
to intermediate-term future.

The remainder of this paper is organized as follows. In
Section II, we introduce the lattice formulation of the
Schwinger model as an open quantum system includ-
ing the decomposition into separate CP sectors. In Sec-
tion III, we present results for the Liouvillian spectrum
and study its relation to the decoherence of the system
and relaxation dynamics toward equilibrium. In Sec-
tion IV, we present numerical studies of the string break-
ing process in vacuum and the medium and study its de-
pendence on system parameters. We estimate the Trotter
errors of a quantum algorithm for simulating open quan-
tum systems in Section V and conclusions are drawn in
Section VI.

II. THE SCHWINGER MODEL AS AN OPEN
QUANTUM SYSTEM

The Lagrangian of the Schwinger model is given by

L=(il) —m)p — iF’“’FHW (1)

with a two-component fermion field ¢, the covariant
derivative D, = 0,, —ieA,, the U(1) gauge field A, and
the field strength tensor F,, = 0,4, —0,A,,. The Hamil-
tonian of the Schwinger model can be discretized on a
spatial lattice in the axial gauge Ag = 0 using the stag-
gered fermion formulation and the Jordan-Wigner trans-

form [9]
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Here a denotes the lattice spacing, and n represents
the index of the lattice position z = na. Through-
out the paper, we will quote parameter values of the
Schwinger model in units of a. Moreover, the (anti-
)fermion creation/annihilation operators are given by
ot/o~ (07 /ot) on even (odd) sites with o = (0, +
ioy)/2. Due to the U(1) nature of the theory, we will
use electrons interchangeably for fermions and positrons
for anti-fermions. Here L correspond to the raising and
lowering operators associated with the states of the elec-
tric field that lives on the links between lattice sites n and
n—+ 1. The states of the electric field are labeled by their
eigenvalues €2¢2, which are obtained by acting on these
states with the electric field operator squared e? E%(n) at
site n. We assume open boundary conditions, which lead
to an unambiguous definition of the environment corre-
lator in the Lindblad equation that will be introduced
below. Under open boundary conditions, the upper limit
of the first sum in Hg is Ny — 2, where Ny is the number
of fermion sites. This is twice the number of physical sites
N in the stagger fermion formulation so that Ny = 2N
is an even number. In the case of open boundary condi-
tions, Ny — 1 gauge links are needed to connect nearest
neighbors for Ny fermion sites.

Physical states have to satisfy Gauss’s law, which can
be written as

€n+1 - En = —0

For the n = 0 and n = Ny — 1 sites, imposing Gauss’s
law requires information about ¢y and £, which are not
part of the links that we keep track of for dynamics but
are determined by the open boundary conditions:

In, =0. (4)

Other boundary conditions can also be studied, which
correspond to cases where the system has a nonzero to-
tal charge and/or a uniform background electric field. In
one spatial dimension, one can completely integrate out
the electric fields by repeatedly using Eq. (3), starting at
one end, which leads to non-local interactions between
fermions. We will not pursue this here and simply trun-
cate the electric field flux at |€,|max = 1 for all sites
n. Studies with higher truncation or electric fields com-
pletely integrated out are left for the future.

The discretized Hamiltonian has a CP symmetry given



FIG. 2. Example of how physical states transform under the
CP operator. Green (blue) dots are unoccupied (occupied)
fermion sites. Fermions (electrons) only live on even sites
while anti-fermions (positrons) only live on odd sites. The left
and right arrows on the links indicate negative and positive
electric fluxes, respectively.

by
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Under the CP operator, physical states of the theory
transform as illustrated in Fig. 2

Next, we consider the Schwinger model coupled to an
environment, which is described by a scalar field theory
at thermal equilibrium, as in Ref. [130]. The total Hamil-
tonian takes the form

H=Hs+Hg+Hyp, (6)

where the three terms describe the system, the environ-
ment, and their interaction, respectively. The system
Hamiltonian Hg is given in Eq. (23). The environment
Hamiltonian describes a thermal scalar field theory. The
interaction Hamiltonian H; describes the coupling be-
tween the Schwinger model and the scalar field theory.
Different models of the scalar field interaction terms may
be considered. Here we consider a Yukawa-type interac-
tion

Hy= A / dr ¢(2)d(2)(x) (7)

While the system and environment can be strongly cou-
pled, we assume that the interaction between them is
sufficiently weak such that the time evolution of the
Schwinger model itself is Markovian and a Lindblad equa-
tion can be used to describe its time evolution. We con-
sider the quantum Brownian motion limit valid at high
temperatures, which allows us to assume that the total
density matrix factorizes as p(t) = ps(t) ® pg, where pg
denotes the density matrix of the Schwinger model and
pg = e PHE /Tr(e=#HE) is the density matrix of the en-
vironment at thermal equilibrium. The Lindblad master

equation for pg can be written as [106, 130]

dps(t) _ J+a 3 D

dt
1,22

x (L(e2)osL! (e1) — 5{L (e1) L(a2), ps}) - (8)

—i[Hg, ps(t) (z1 — 22)

Here 1 = nia and zo = nga are discrete spatial coor-
dinates. The environment correlator D(z) only depends
on the relative distance between x; and x2. It can be
expressed as

+o0o
d(t1 — t2)Tr[p(t1, 21)9(t2, ¥2)pE] »

9)

where ¢(t,z) denotes the scalar field in the interaction
picture at thermal equilibrium. The Lindblad operators
are L(z) = ¢y (z)— 45 [¥¢(x), Hs] whose notation should
be distinguished from the symbol L} for the raising and
lowering operator of the electric field introduced earlier.
On a discrete lattice, we have

D(z1 — 22) = )\2/

— 00

1

Lna) = O(n) ~ = (0(n). H]
Ofm) = (-1 = EL (10)

In principle, the environment correlator D(x) can be cal-
culated, which depends on the model for the scalar field
theory. For example, for small-size quarkonium inside
the QGP, the relevant environment correlator has been
formulated [114, 122] and studied in both the weak cou-
pling [131, 132] and strong coupling limits [133, 134].
Here instead of calculating the correlator D(z) for a spe-
cific scalar field theory model, we directly model the func-
tional form of the correlator. In order to test the depen-
dence of our results on the correlation length of the envi-
ronment, we use three different models for the correlator:

1. For short-range correlations, we use a delta func-
tion: Dg(x) = Dydo., where Dy is a constant and

x is discrete.

2. For various intermediate-range correlations, we use

a Gaussian:
22
202) . (11)

3. For long-range correlations, we use a constant func-
tion D.(z) = Dy.

Dg(z) = Dy exp ( -

The normalizations of these three types of correlators
are chosen such that they agree at x = 0. By consider-
ing these different choices, we can assess the numerical
impact of the environmental correlation length on our
results below.



Eigenvalues for § correlator

Eigenvalues for G(o = 1) correlator

Eigenvalues for G(o = 3) correlator Eigenvalues for constant correlator

Tm(\)

Py

NN

) —7 —6 -5 —4 -3 -2 -1 0 -8 -7 =6 -5 -4 -3 =2 -1
Re(\) Re(A)

L
Re()) Re()\)

FIG. 3. Scatter plots of the Liouvillian eigenvalues of the open Schwinger model for N = 4 lattice sites (Ny = 8) with
e=0.8, m=0.5, §=0.1, and Dy = 1 for different types of environmental correlators.

Under the CP transformation, the operators O(n) that
appear in the Lindblad operators in Eq. (10) transform
as
n0:(Ny—1—n)—1

2 )

— (=1)

where we have used the fact that Ny is an even number.
One can then show that if the environment correlator
D(x) is constant, the Lindblad equation given in Eq. (8)
preserves the CP symmetry. As a result, if an initial
state pg(0) is CP-even (odd), the state will remain CP-
even (odd) throughout the time evolution. In this case,
one can construct two invariant subspaces of the entire
Hilbert space: one sector is CP-even and the other one
is CP-odd. The construction can be done as follows: We
consider each state in the entire Hilbert space. If the
state is invariant under the CP transformation, then the
state is CP-even. Otherwise, a symmetric linear combi-
nation of the original state and the state after the CP
transformation leads to a CP-even state while an an-
tisymmetric linear combination yields a CP-odd state.
The CP-even and odd sectors decouple in the time evo-
lution when the environment correlator is constant and
thermalize independently. However, we would like to em-
phasize this is not the case if the environment correlator
D(xz) is Gaussian or a delta function. An intuitive expla-
nation is as follows: individual Lindblad operator L(x) is
not CP invariant. However, when D(z1 — z2) is constant
in the Lindblad equation (8), the two sums over z; and
x2 can be performed independently and then )" L(x) is
CP invariant.

(12)

III. DECOHERENCE AND RELAXATION
DYNAMICS

The characterization and classification of the re-
laxation dynamics of open quantum systems to the
steady/thermal state has received significant interest in
recent years [135-145]. A common approach entails con-
sidering either the short or long time non-equilibrium
dynamics. At short time scales, the Lindblad evolution
can be approximated by a non-hermitian Hamiltonian.

In this paper, we primarily focus on long-time relax-
ation dynamics. The relevance of characterizing these
dynamics extends to investigations of non-equilibrium
and dissipative phase transitions. For example, while no
such transitions occur in the equilibrium state, a phase
transition could occur in the decay modes of the Li-
ouvillian. Moreover, the study of dissipative dynamics
contributes to understanding phenomena like topological
phases, domain walls, non-trivial boundary modes, and
exceptional points. While a comprehensive exploration
of these aspects within the quantum field theory limit of
the Schwinger model is beyond the purview of our cur-
rent work, we hope this section will provide a valuable
starting point for more in-depth future studies.

A. Liouvillian eigenmodes and relaxation dynamics

We start by rewriting the Lindblad master equation in
Eq. (8) in terms of a Liouvillian superoperator £ which
operates on the density matrix p as

d_
dt

As expected from the open quantum system, the den-
sity matrix diagonalizes over time due to thermalization
when expressed in terms of the energy eigenstate basis.
With our re-expression of the Lindblad equation as a Li-
ouvillian superoperator acting on this density matrix, we
are also able to understand how the system approaches
the thermal state, i.e. the non-equilibrium and relaxation
dynamics by carrying out a spectral analysis. That is, we
expand the density matrix describing the open quantum
system dynamics in terms of eigenmodes of the Liouvil-
lian. The right and left eigenmodes pf’L are defined as

(13)

Lot =Npjt, L7 =Npy

y (14)
where the subscript j = 1,---d? indexes the j-th eigen-
mode with the eigenvalue A;, and d is the size of the
Hilbert space. The left and right eigenmodes are orthog-

onal

(o 1pf') ~ dij - (15)



Here we define the inner product as (A|B) = Tr[AB].
The dimensionality of the Liouvillian is d? x d?, acting
on a vectorized density matrix of length d2. In Fig. 3,
we plot the eigenvalues for the open Schwinger model
using an N = 4 lattice with Ny = 8 fermion sites
for different types of interactions that we introduced in
Section II. In order to facilitate the visual comparison,
we limit the range of Re();) to [—8.5,0], although the
case with a constant environment correlator has a few
eigenvalues at much smaller (more negative) real values.
These spectra of eigenvalues clearly demonstrate that the
non-equilibrium dynamics are nontrivially modified for
different types of interactions with the medium. For ex-
ample, in the case where the interaction corresponds to a
delta function for the environment correlator, we observe
the emergence of a vertical band structure. This indi-
cates that different subspaces of the Hilbert space decay
at separate stages, see also Ref. [136] for example.

Assuming, for now, that there is no degeneracy for the
steady state, we can order the eigenvalues such that their
real parts are sorted in ascending order 0 = Re(XAg) >
Re(A1) > ... > Re(Ag2_1). The time evolution of the
general density matrix can then be written, for instance
with respect to the right eigenmodes, as

d*-1
p(t) =po+ Y _ cjediiplt. (16)
j=1

The coefficients c; are obtained by calculating the overlap
of the left eigenmodes with the initial state and including
an appropriate normalization factor

Lipt =0
W (a7)

This result is obtained by diagonalizing the Liouvillian
in Eq. (13). Since the eigenvalues satisfy Re(A;>1) < 0,
the density matrix p(t) eventually relaxes to pg, which is
referred to as the (non-equilibrium) steady state, which
can be shown to be 1— % for our Lindblad equation (8).

It is nothing but the thermal state e #s/T in the high-
temperature limit, up to corrections of the order (Hg /T)?
(recall that the quantum Brownian motion approxima-
tion involves an expansion in Hg/T [106]). We note that
po is the only eigenmode with a trace equal to 1, while
all the other eigenmodes have vanishing traces. Thus
none of the other eigenmodes satisfy the condition to be
a density matrix by themselves.

Analyzing the behavior of the open quantum system in
terms of the eigenmodes provides means to interpret the
non-equilibrium and relaxation dynamics. For example,
the approach of the general p(t) to pg will be dominated
by the first few Liouvillian eigenvalues A; and the corre-
sponding eigenmodes pf. In particular, for a given ob-

servable O, the expectation value (@>p(t) = Tr[Op(t)] will
approach the thermal expectation given by the steady-

state eigenmode (O),, and its long time rate of ap-
proach will be bounded by the real eigenvalue of the
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FIG. 4. Illustration of the gap sizes for different environmen-
tal correlators.

first non-stationary eigenmode with smallest i such that
(O)r #0, as et > N for i < j.

In general, the relaxation dynamics towards the sta-
tionary state cannot last longer than the rate of decay of
the eigenmode p¥. For this reason, it is common to de-
fine the Liouvillian or spectral gap A7, which dominates
the asymptotic long time decay rate of the Liouvillian,
as

A1 = [Re(Ay)]. (18)

The Liouvillian gap A; is one of the primary features
that characterize and are used to classify the dynamics of
open quantum systems. In many ways, it is analogous to
the spectral gap of closed quantum system Hamiltonians
and is associated with the longest lived eigenmode [136].

On the other hand, the relaxation time 7 is defined
as the maximum time at which the following inequality
is satisfied [141]

max(7) : [(O)pe=r) = (O)pol = € (O pt—0) = (O) ol
(19)

where the maximization operation is over arbitrary den-
sity matrices p(t). Then, from Eq. (16), one naively ex-
pects

1
TR ™~ Al . (20)
This expectation is not always met, and Liouvillian skin
effects from boundary conditions are a potential source
of deviation from this relation, which were discussed
for different quantum mechanical systems in the liter-
ature [138, 141, 144, 146]. In our case, we do not observe
such skin effects, but it would be interesting to study
systems with Liouvillian skin effects in the context of
quantum field theories as well.
As discussed in Section I, the Lindblad equation with
a constant environment correlator preserves CP symme-
try, leading to the existence of two distinct CP sectors.
This implies a degeneracy in the spectrum unless we sepa-
rate the system into these distinct CP sectors. Therefore,
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FIG. 5. The first two Liouvillian gaps, A; and As, as functions of the Gaussian width in the environment correlator. We
apply the arctan function to the width to smoothly map both zero and infinite widths onto a finite domain. As indicated in
the figure, when the Gaussian width o is zero, the correlator reduces to a delta function, and when o is infinite, the correlator
becomes a constant. The o dependence of the relaxation rate is explained in Appendix A.

we have two stationary states, pg*® and p3dd. That is,
our evolution equation in Eq. (16) is now modified to

__ e _even o odd
p(t) =cGpg™™ + cgro
Ne—1 No—1
°t R, °t R,odd
+ 2 : Cje)\]tpj cvcn+ 2 : CZGA’“th o . (21>
j=1 k=1

Here N, and N, are the dimensions of the Hilbert spaces
of the CP-even and CP-odd sectors, respectively. They
must satisfy the condition N, + N, = d2, where d is the
dimensionality of the total Hilbert space. While the di-
vision between the two CP sectors is clear when the CP
symmetry is exact, resulting for example in separate Li-
ouvillian gaps in each sector, it is anticipated that this
case will be approximated by a Gaussian environment
correlator D¢ (x) as its width o increases, even without
satisfying the exact CP symmetry. This is illustrated
in Fig. 4, where the constant correlator case D.(z) de-
picts the situation before the decomposition into definite
CP sectors. As the figure illustrates, the Liouvillian gap
denoted by A; that is present in the case of a delta func-
tion and Gaussian correlator reduces as the correlation
length of increases. An analytic explanation of this de-
pendence is given in Appendix A. Eventually, the Liou-
villian gap vanishes when the correlation length becomes
infinite. The vanishing of A; corresponds to the emer-
gence of two degenerate steady states, one in each CP
sector. Consequently, the decay rate towards the global
stationary state for pf* becomes so slow for a Gaussian
correlator with a very wide width that its relaxation dy-
namics at an earlier time scale are primarily dominated
by the next gap in the Liouvillian spectrum,

Ay = |Re(X2)], (22)

which corresponds to the eigenmode pf'. As the width
continues to increase, it eventually reaches the limit of a
constant environment correlator, where pf itself becomes
the stationary state in the CP-odd sector. In Fig. 5, we
study the behavior of the first Liouvillian gap, A, and
the second gap As, as functions of the environment cor-
relation length. The Gaussian correlator smoothly con-
nects the cases of a delta function and constant corre-
lator, which have zero and infinite widths, respectively.
We found that both gaps demonstrate a smooth behavior
while interpolating between the two limits. In particular,
we observe that the Lindblad equation with a large-width
Gaussian correlator has an approximate CP symmetry,
signaled by the vanishing gap A, which plays an impor-
tant role in its relaxation dynamics as we will see. We
also note that in the infinite correlation length limit, As
reaches a nonzero value.

A further intriguing aspect to explore is the relation-
ship between the Liouvillian gap and system size. With
the lattice spacing a fixed, it is expected that the size
of the Liouvillian gap decreases as the number of lattice
sites increases. This results in a slower thermalization
rate since there are more excited modes to equilibrate.
However, to obtain the QFT in the continuum limit, one
needs to first take a — 0 with the system volume fixed,
which we leave for future studies. Here we only focus on
the case with a fixed. In Fig. 6, we illustrate this phe-
nomenon by plotting the Liouvillian gap A; for the open
Schwinger model with a delta function environment cor-
relator. The figure demonstrates how the gap decreases
as the system size increases, which is explained in Ap-
pendix A. Also, for comparison, we include the case of
a 1+1D free fermion theory coupled with a thermal en-
vironment with the same delta function correlator. The
free fermion theory can be discretized by using the stag-
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FIG. 6. The first Liouvillian gap A; as a function of the
number of lattice sites N for the Schwinger model with differ-
ent couplings e and the free fermion model with environment
correlator described by a delta function in all cases. The N
dependence is explained in Appendix A.

ger fermion formalism and the Jordan-Wigner transform,
which is the non-interacting limit e — 0 of the discretized
Schwinger model. The free fermion model Hamiltonian
can be mapped onto a spin system analogous to the
Schwinger model, which gives

Ny—2
Hg = % Z (et (n)o~(n+1)+ o (n+1)o (n))
1n_Nf71
+ 3m (=)0, (n). (23)
n=0

In order to achieve a direct comparison with the
Schwinger model where the total net charge is fixed to
zero as a result of the open boundary condition with van-
ishing electric flux outside the lattice, we also constrain
the free fermion system to the sector with zero net charge.
The result of Ay for the free fermion case is shown in
red in Fig. 6, where the dashed line represents an exact
o N2 function. The four red points are well described
by this function, indicating the first gap A; in the open
free fermion model with a delta environment correlator
decreases quadratically with the system size. We note
that for other choices of environment correlators, the de-
pendence on NN is more complicated than a simple mono-
mial in N but it remains monotonically decreasing with
N.

Since we truncate the maximum electric flux at mag-
nitude 1 for the open Schwinger model, we also need to
include a similar constraint for the free fermion model
to make a direct comparison. To this end, we only
consider states where two neighboring occupied lattice
sites cannot both be electrons or positrons. For ex-
ample, [0,eT,e™,eT,e™,0) (where 0 denotes an unoccu-
pied fermion site) is included in both the constrained
and full free fermion models for an Ny = 6 lattice,

whereas |e™,0,e™,et,0,eT) is only included in the full
free fermion model, as this state would create electric
field flux value 2 > |;|max = 1 at some sites in our
constrained Schwinger case. In the second example, the
two electrons are on two occupied neighboring sites even
though they are separated by one fermion lattice site
that is unoccupied. The results for this constrained free
fermion model are shown by the green line in Fig. 6.
We see that as the coupling in the Schwinger model de-
creases, the gap results approach those in the constrained
free fermion case. The black, blue, and green dashed
lines are fits of the form o« N~¢. The fitted parameter
values are 1.316, 1.422 and 1.443 for the black, blue, and
green cases. We see that a monomial in NV can approx-
imately describe the N dependence of Ai, but not ex-
actly. Given the smooth transition from the constrained
Schwinger model to the constrained, free fermion case,
we predict that as e decreases, removing the constraint
will lead to a convergence towards the free fermion case
with the exponent approaching —2.

While there are several studies that discuss boundary
dissipative systems with bounds on the decay rate of the
first Liouvillian gap as a function of the system size [136,
147], a more detailed examination of this phenomenon for
the open Schwinger model is left for future work. We now
examine the von Neumann entropy of the system, which
illustrates that the Liouvillian gap discussed here plays
a significant role in describing the relaxation dynamics.

B. Decoherence and von Neumann entropy

The entropy of quantum systems is frequently studied
in the literature. In order to quantify the decoherence of
the open Schwinger model, we are going to consider the
von Neumann entropy Syn, which is given by

Syn = —tr[plog p]. (24)

The von Neumann entropy vanishes for a pure state
where p? = p and a finite value for S,n measures the
deviation from a pure state. In our case, the decoher-
ence results from the interaction with the thermal envi-
ronment. The von Neumann entropy is a generalization
of the Gibbs (and Shannon) entropy of thermodynamic
systems to the quantum case. The phenomenon of de-
coherence in the density matrix language is frequently
discussed in the literature of high energy heavy ion col-
lisions [110, 117, 148] and the concept of entropy has
also been discussed in the context of parton distribution
functions in Refs. [149-151] and jet physics in Ref. [152].

In the Schwinger model as an open quantum system,
the pure initial state of a string (or analogously the fully
unoccupied vacuum state) decoheres due to the interac-
tion with the thermal environment, which is described
by the Lindblad equation. Therefore, we obtain a fi-
nite value for the von Neumann entropy for ¢ > 0 which
increases as a function of time due to the continued in-
teraction with the environment until the system reaches
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FIG. 7. The von Neumann entropy Syx of the open Schwinger model for N = 4 lattice sites with e = 0.8, m = 0.5, 8 = 0.1, and
Do = 1. Left: Syn for different environmental correlators starting from the bare vacuum state in the full Hilbert space as the
initial state, which is CP-even. Right: Syn for the constant D. = Dy environment correlator where the CP sectors are studied
separately. In each individual sector we choose appropriate pure states as the initial states. Since the size of the Hilbert space
of each sector is smaller than that of the whole system, the maximal von-Neumann entropy of each sector depicted as dashed

lines on the right is smaller than the dashed line on the left.

its steady state. Once the system is in a thermal state,
the von Neumann entropy reaches its maximum value,
indicating the initial state fully decoheres. The von Neu-
mann entropy is generally bounded by

0 S SVN S IOgda (25)

where d is the dimension of the Hilbert space. As men-
tioned above, the lower limit is obtained for a pure state,
whereas the upper limit is realized for a maximally mixed
state proportional to the identity matrix pmm = éIL.
The thermal state generated at late times of the Lind-
blad evolution approximates the maximally mixed state
in the limit T — oo. Here, we explore numerically the
real-time dependence of the von Neumann entropy in the
Schwinger model as an open quantum system.

In Fig. 7, we plot the von Neumann entropy starting
from an initial pure state as a function of time for N = 4
lattice sites with parameters e = 0.8, m = 0.5, § = 0.1.
In the left panel, we study the time evolution in the full
Hilbert space of the Schwinger model (which includes
both CP-even and odd sectors) by starting from the bare
vacuum state that is CP-even and show the results for
different environmental cor