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1 Introduction

The idea of using one well understood quantum system to simulate another one that is less
well understood has a long history [1]. It became appealing to many research areas with the
recent rapid development of quantum information technologies. In the area of nuclear and
particle physics, quantum simulation has attracted significant and yet still growing research
interests [2–42], because of its potential to avoid the sign problem that obstructs traditional
numerical approaches to compute the real-time dynamics of gauge theories that form the
cornerstone of the Standard Model.

Gauge theories are relativistic quantum field theories invariant under local gauge trans-
formations. The local gauge invariance poses many challenges to efficiently and accurately
simulate gauge theories on near-term quantum computers. In many Hamiltonian formula-
tions of lattice gauge theories such as the Kogut-Susskind Hamiltonian [43], quantum link
model [44, 45] and loop-string-hadron formulation [46–48], interactions are local, but not all
local degrees of freedom correspond to physical states. Only states satisfying local gauge
invariance (Gauss’s law) are physical. As a result, noise in quantum hardware or errors in-
troduced by quantum algorithms (such as the Trotterization errors) can lead to unphysical
results in the simulation. Many generic error mitigation techniques such as the zero-noise
CNOT extrapolation [49–51] are not sufficient to fully recover physical results due to the
limited gate fidelity and systematic errors of algorithms [10].

There have been many studies trying to address this problem, such as integrating out
Gauss’s law (see e.g., Refs. [52, 53]), adding a gauge violation penalty term [54–61], averaging
over different gauge choices from a dynamical drive and quantum control (the so called “dy-
namical decoupling” [62]), using symmetry protection [63] and post-selection [64], and mapping
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local Gauge invariance into conservation laws on specific quantum hardware [65–67]. How-
ever, many of these methods have limitations: Integrating out Gauss’s law completely is hard
and, when possible, it usually leads to non-local interactions that are less efficient to simulate
on quantum hardware without all-to-all connections. Gauge violation penalty terms that are
quadratic contain two-body interactions that are not necessarily local, and approaches with
one-body penalty terms [68] require the preparation of an initial physical state, which can
itself require solving the gauge error problem. Using symmetry protection and post-selection
does not necessarily reduce errors since symmetry-preserving and symmetry-violating errors
can interfere destructively and thus removing only the symmetry-violating error can increase
the error [64]. Mapping gauge invariant interactions onto processes on quantum hardware that
are protected by conservation laws are constrained to specific types of interactions and certain
quantum technology platforms. Therefore, it would be extremely useful if one could find a
generic formulation that is local but does not suffer from the problem of the error-induced
admixture of unphysical states for universal quantum computers.

Here, we provide such an example for 2 + 1 dimensional SU(2) gauge theory at strong
coupling. By considering a honeycomb lattice and truncating the electric basis at jmax = 1

2 ,
we are able to map bijectively the 2 + 1D SU(2) lattice gauge theory onto a 2D spin model
with local interactions. In this procedure, the local gauge invariance, i.e., Gauss’s law is
fully accounted for and only the physical Hilbert space is included in the description, which
means time evolution driven by the constructed Hamiltonian is robust against error-induced
unphysical states. The simple Hamiltonian will also enable a numerical test of the eigenstate
thermalization hypothesis (ETH) for part of the Hilbert space of the 2 + 1D SU(2) theory, as
a two-dimensional extension of the plaquette chain study [69].

This paper is organized as follows: In Section 2 we will present the Hamiltonian of 2 + 1

dimensional SU(2) gauge theory on a honeycomb lattice and describe how it can be mapped
onto a 2D spin model when the electric field Hilbert space is truncated to jmax = 1

2 . In
Section 3 we will construct momentum eigenstates in the case of periodic boundary condition
and calculate matrix elements of the Hamiltonian and Wilson loop operators. A brief summary
will be given in Section 4.

2 2+1D SU(2) Gauge Theory on Honeycomb Lattice

2.1 Kogut-Susskind (KS) Hamiltonian

The Hamiltonian density of 2 + 1D SU(2) gauge theory in the continuum can be written as

H =
1

2g2
Ea

i E
a
i +

1

4g2
F a
ijF

a
ij , (2.1)

where Ea
i denotes the electric field along the i-th spatial direction with the SU(2) adjoint

index a ∈ 1, 2, 3, F a
ij represents the non-Abelian magnetic field (field strength tensor), and g

is the coupling with mass dimension [g] = 0.5. Compared with the standard notation in the
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Figure 1. Left panel: Honeycomb lattice in 2 spatial dimensions with three unit vectors defined
pointing from a red dot to the three adjacent black dots. Right panel: Single plaquette shown by solid
lines with six external links depicted by dashed lines. The black dot vertex is labeled as (a, x, b).

continuum, we have absorbed a factor of g into the definition of Fµν . Later, we will absorb
another factor of a/g2 into the definition of the electric field where a is the lattice spacing.

Now we want to construct a lattice version of the Hamiltonian on a 2D plane. For the
standard square lattice each vertex connects four links. A physical state at the vertex then
cannot be uniquely defined by the j values on the four links, where j denotes the label of an
electric basis state, and a fifth j value is required to define a unique vertex state. Alternatively,
when each vertex connects only three links as in the case of a square plaquette chain, physical
vertex states can be uniquely determined by the corresponding j values. This motivates us to
consider a honeycomb lattice in two spatial dimensions.

As shown in Fig. 1, the vertices defining a honeycomb lattice can be labeled as black
or red such that no link connects two black or two red vertices. In order to formulate the
discretized gauge field Hamiltonian on honeycomb lattice we define three unit vectors pointing
from a red site to an adjacent black site

ê1 =
(√3

2
,
1

2

)
, ê2 = (0,−1) , ê3 =

(
−

√
3

2
,
1

2

)
, (2.2)

which satisfy
∑

i êi = (0, 0). We represent Wilson lines (link variables) that start at a red
dot and point along these directions to be U . Those link variables that point in the opposite
directions and end on a red dot are labeled as U †. For example, the link variable from vertex
1 to vertex 2 in plaquette A can be written as

U(n1, ê1) = exp[iaê1 ·A(n1)] = exp

[
ia
(√3

2
Ax(n1) +

1

2
Ay(n1)

)]
, (2.3)
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where a is the lattice spacing between connected black and red dots. The gauge field A ≡ Aaσa

is a SU(2) matrix (here the superscript a is a SU(2) adjoint index implicitly summed over and
σa denotes a Pauli matrix). The argument of the gauge field n1 denotes the position of vertex
1 in plaquette A. The link variable from vertex 2 to vertex 3 can be written as

U †(n3, ê2) = exp[−iaê2 ·A(n3)] = exp[iaAy(n3)] , (2.4)

where n3 denotes the position of vertex 3 in plaquette A. Similarly the remaining link variables
along a hexagonal plaquette are given by

U(n3, ê3) = exp[iaê3 ·A(n3)]

U †(n5, ê1) = exp[−iaê1 ·A(n5)]

U(n5, ê2) = exp[iaê2 ·A(n5)]

U †(n1, ê3) = exp[−iaê3 ·A(n1)] . (2.5)

Expanding in powers of a, the plaquette operator at A is given by

9A = Tr[U †(n1, ê3)U(n5, ê2)U
†(n5, ê1)U(n3, ê3)U

†(n3, ê2)U(n1, ê1)]

= Tr

[
1 + ia2

3
√
3

2
Fxy(n1)−

1

2
a4

27

4
F 2
xy(n1) + · · ·

]
. (2.6)

At lowest order in the lattice spacing a we therefore obtain the result

Tr[F 2
xy(n1)] =

4

27a4
[4− 9(n1)− 9†(n1)] . (2.7)

Using the fact that the plaquette variable in SU(2) is real, 9 = 9†, the magnetic energy part
of the KS Hamiltonian can be written as

Hmag =

∫
d2x

1

4g2
F a
ij(x)F

a
ij(x) =

3
√
3

2
a2
∑
n

1

g2
Tr[F 2

xy(n)] =
4
√
3

9g2a2

∑
n

(
2− 9(n)

)
, (2.8)

where the sum n runs over the red dots on the honeycomb lattice and the factor 3
√
3/2 comes

from the area of the hexagon or the parallelogram formed by four nearest black or red dots.
For the electric part of the Hamiltonian we decompose the two-component electric field

into three parts

Ea
1 = ê1 ·Ea , Ea

2 = ê2 ·Ea , Ea
3 = ê3 ·Ea , (2.9)

which satisfy (Ea)2 = (Ea
x)

2 + (Ea
y )

2 = (Ea
1 )

2 + (Ea
2 )

2 + (Ea
3 )

2. Thus, the electric part of the
Hamiltonian is

Hel =
g2

2

3
√
3

2

∑
n

3∑
i=1

3∑
a=1

(Ea
i )

2(n) , (2.10)
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where again the sum over n denotes either the black or the red vertices of the honeycomb
lattice and the factor 3

√
3/2 again comes from the hexagon area.

The electric fields can be made to live either on black vertices or red vertices without
changing the above form of Hel. The commutation relations between E and U can be easily
written out if we make the electric fields live on links rather than on black or red vertices. Then
there will be two types of electric fields living on a same link: One induces gauge transformation
of the link variable on the black end while the other induces gauge transformation on the red
end. Either one can be used in Hel. All in all, we can write

[Ea
Bi(n+ êi/2), U(n, êj)] = −δijU(n, êj)T

a , (2.11)

where B denotes the electric field that is gauged on a black vertex. The argument of the
electric field indicates it lives on a link. Similarly we have

[Ea
Ri(n+ êi/2), U(n, êj)] = −δijT aU(n, êj) , (2.12)

where R denotes the electric field that is gauged on a red vertex. The “red” and “black”
electric fields are the analogues of “left” and “right” electric fields on a square lattice. They
are generators of local gauge transformation and have non-trivial commutation relations1

[Ea
Bi(n+ êi/2), E

b
Bj(m+ êj/2)] = −iεabcδijδnmE

c
Bi(n+ êi/2)

[Ea
Ri(n+ êi/2), E

b
Rj(m+ êj/2)] = iεabcδijδnmE

c
Ri(n+ êi/2) , (2.13)

where εabc is the Levi-Civita symbol and serves as the structure constant of the SU(2) group.
Altogether, the KS Hamiltonian on the honeycomb lattice reads

HKS =
∑
n

(
3
√
3g2

4

3∑
i=1

3∑
a=1

(Ea
i )

2(n) +
4
√
3

9g2a2
(
2− 9(n)

))
. (2.14)

The constant in the magnetic energy represents an overall shift of all energy eigenvalues and is
often omitted in the literature. In addition to the Hamiltonian, physical states |ψphy⟩ satisfy
Gauss’s law

3∑
i=1

Ea
i |ψphy⟩ = 0 , (2.15)

1The signs on the right hand sides of Eq. (2.13) are consistent with those of Eqs. (2.11) and (2.12), which
are obtained from the commutation relation between an electric field and a Wilson line in the continuum. If
we were working with a square lattice, it would be more convenient to redefine Ea

Bi with −Ea
Bi (On a square

lattice, “black” corresponds to “right”. In this way, the negative sign on the right hand sides of Eq. (2.11) and
the first line of Eq. (2.13) would disappear. For a square lattice, this is more convenient since each vertex
contains both “left” and “right” types of electric fields and redefining them such that they transform link
variables in the same way simplifies the construction of singlets at vertices. On the other hand, each vertex on
a honeycomb lattice only involves one type of electric fields, either “black” or “red” and thus the construction
of singlets at each vertex is already simple.
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for all a’s and all black and red dots.
The matrix elements of the KS Hamiltonian can be easily evaluated in the electric field

representation, where the matrix elements of the electric energy operator are diagonal [10,
18, 70, 71]. Denoting the SU(2) representation of the electric field by j = 0, 12 , 1, . . . the
contribution from each link is given by

⟨J |
3∑

a=1

(Ea)2|j⟩ = j(j + 1)δJj . (2.16)

The matrix elements of the plaquette operator can be evaluated using the techniques described
in [72]:

⟨{J}|9|{j}⟩ ≡ ⟨{J}|
6∏

V=1

MV |{j}⟩ =
6∏

V=1

(−1)ja+Jb+jx
√
(2Ja + 1)(2jb + 1)

{
jx ja jb
1
2 Jb Ja

}
,

(2.17)

where MV denotes the part of the honeycomb plaquette operator at the vertex V = (a, x, b),
where a, b are the two internal plaquette links attached to the vertex, and x denotes the
external link at the vertex, as shown in Fig. 1. The symbol {j} is a collection of the six initial
j values of the plaquette links (the a, b type) while {J} labels those of the final state, after the
honeycomb plaquette operator has been applied. The jx value of the external link does not
change. The curly bracket containing six j-values in two rows denotes the Wigner 6j-symbol
whose explicit expression can be found in Refs. [73, 74].

2.2 Map to Spin Model with Truncation at jmax = 1
2

We now discuss the truncation of the Hilbert space for the KS Hamiltonian to the electric
field representations j = 0, 12 . While this truncation would not yield meaningful results for
physically interesting observables when the coupling constant is small, it allows us to search
for ETH-type behavior for modestly large lattices. If the gauge theory constrained to this
reduced Hilbert space exhibits quantum chaos, it appears plausible that this property is also
present in the unconstrained Hilbert space. Furthermore, this truncation provides an example
where Gauss’s law is completely integrated out and yet the interactions are still local. In this
sense, the model with this truncation provides a good starting point and benchmark for future
quantum simulation studies of lattice gauge theories that are robust against unphysical states
induced by errors.

In the truncated Hilbert space there exist four different vertex states labeled as 0, A,B,C
satisfying Gauss’s law, which we denote by their link representations j ≡ (ja, jx, jb) where a, b
are the internal links at the vertex and x is the external link, as shown in Fig. 1:

j0 = (0, 0, 0), jA =

(
1

2
, 0,

1

2

)
, jB =

(
1

2
,
1

2
, 0

)
, jC =

(
0,

1

2
,
1

2

)
. (2.18)
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Figure 2. Bijective map between physical states in 2+1D SU(2) lattice gauge theory with a truncation
of jmax = 1

2 and spin states in 2 spatial dimensions. Black dashed lines on the left represent link
variables in the electric basis j = 0 while blue solid lines stand for link variables in j = 1

2 . On the left,
a plaquette operator at 0, 0 is first applied, followed by the application of another plaquette operator
at 0, 1, which results in a two-plaquette Wilson loop with the joint link variable in j = 0. In the spin
model, these two plaquette operators correspond to two σx Pauli matrices at the site 0, 0 and 0, 1 with
coefficients as shown. The coefficients can be obtained from Eqs. (2.17) and (2.19).

The nonvanishing reduced matrix elements of MV between these vertex states are:

⟨jA|MV |j0⟩ = ⟨j0|MV |jA⟩ = ⟨jB|MV |jC⟩ = −i, ⟨jC |MV |jB⟩ =
i

2
. (2.19)

The asymmetry of the (BC) and (CB) vertices may look strange, but if we use Eq. (2.19) to
work out matrix elements of the plaquette operator on the honeycomb lattice, we find that the
matrix elements are real and symmetric. This is because under the Gauss’s law constraint any
plaquette state has an even number (0, 2, 4, 6) of external links with j = 1

2 , and the numbers
of (BC) and (CB) type vertices are the same.

All states that can be reached from the ground state are obtained by applying the pla-
quette operators 9i,j where i, j denote the plaquette position as shown in Fig. 2. For N
plaquettes the dimension of this truncated Hilbert space is 2N since the repeated application
of the plaquette operator to the same plaquette results in the identity: 92

i,j = 1. Plaquette
operators for different plaquettes commute: 9i,j9i′,j′ = 9i′,j′9i,j . It is convenient to map this
space onto the Hilbert space for N spins where the spin-down configuration is assigned to the
plaquette ground state and the spin-up configuration denotes that the plaquette operator has
been applied to the plaquette [69], as shown in Fig. 2. The KS Hamiltonian on the truncated
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Hilbert space can then be expressed in terms of the Pauli matrices σνi,j , where i, j denote the
plaquette positions and ν = x, y, z. The electric Hamiltonian is represented in terms of σzi,j ’s
while the magnetic part is represented by σxi,j ’s, with coefficients determined by Eqs. (2.17)
and (2.19).

A straightforward but cumbersome calculation shows that the KS Hamiltonian can be
mapped onto the following Ising Hamiltonian:

aH = h+
∑
(i,j)

Π+
i,j − h++

∑
(i,j)

Π+
i,j

(
Π+

i+1,j +Π+
i,j+1 +Π+

i+1,j−1

)
+ hx

∑
(i,j)

(−0.5)ci,jσxi,j , (2.20)

where Π±
i,j = (1± σzi,j)/2 are the projection operators on the spin-up and spin-down states of

the plaquette (i, j), respectively. The sum contains terms that refer to spins that lie outside the
boundary of the system; these need to be fixed by imposing appropriate boundary conditions
(see below). The coefficients in Eq. (2.20) are given by

h+ =
27
√
3

8
ag2 , h++ =

9
√
3

8
ag2 , hx =

4
√
3

9ag2
,

ci,j = Π+
i,j+1Π

−
i+1,j +Π+

i+1,jΠ
−
i+1,j−1 +Π+

i+1,j−1Π
−
i,j−1

+Π+
i,j−1Π

−
i−1,j +Π+

i−1,jΠ
−
i−1,j+1 +Π+

i−1,j+1Π
−
i,j+1 . (2.21)

The expression of ci,j can be compactly written as

ci,j =
5∑

K=0

Π+
KΠ−

K+1 , (2.22)

where the index K comes from a periodic (K mod 6) chain {K = 0 : (i, j + 1), K = 1 :

(i+ 1, j), K = 2 : (i+ 1, j − 1), K = 3 : (i, j − 1), K = 4 : (i− 1, j), K = 5 : (i− 1, j + 1)}.
We note in passing that an equivalent way of writing the magnetic part of the Hamiltonian

is

hx
∑
(i,j)

σxi,j

5∏
K=0

[(1
2
− i

2
√
2

)
σzKσ

z
K+1 +

1

2
+

i

2
√
2

]
, (2.23)

which is more straightforward to implement on a quantum computer than the last term in
Eq. (2.20), since it is a local product of Pauli matrices. Expanding the product in Eq. (2.23)
leads to multiple terms of the form σzK · · ·σzK′σxi,j in which there are an even number of σz

matrices. The generic quantum circuit to implement the time evolution driven by these terms
is known [75]: One first applies Hadamard gates h to convert σx rotation to σz rotation
hσxh = σz and then realizes the generic rotation e−iθσz

1 ···σz
m by two sequences of Controlled-

NOT (CNOT) gates and a single qubit σz rotation

CNOT(1, 2)CNOT(2, 3) · · · CNOT(m− 1,m)e−iθσz
mCNOT(m− 1,m)

× CNOT(m− 2,m− 1) · · ·CNOT(1, 2), (2.24)

where CNOT(i, j) denotes a CNOT gate on the i-th and j-th qubits with the i-th one as the
control.
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Figure 3. Two equivalent states on a 2 × 2 honeycomb lattice with periodic boundary condition
are mapped onto two different spin states. This redundancy in the spin representation needs to be
removed.

2.2.1 Closed (Confining) Boundary Condition

One natural choice of boundary condition is to demand that all external links of plaquettes at
the boundary of the system that fall outside the boundary are in the singlet representation j =
0. This corresponds to the requirement that there exist no gauge electric fields perpendicular
to the boundary, n⃗ · E⃗ = 0, which is used in the MIT-bag model to impose color confinement
[76]. We call these boundary conditions closed or confining. In the mapping to the 2D
Ising model, the equivalent boundary condition is the requirement that all spins outside the
boundary are pointing downward, i.e., their expectation values of σz are −1.

2.2.2 Periodic Boundary Condition

With a periodic boundary condition, the Hamiltonian in Eq. (2.20) can be further simplified
by shifting the energy reference point resulting in the following expression

aH = J
∑
(i,j)

σzi,j(σ
z
i+1,j + σzi,j+1 + σzi+1,j−1) + hx

∑
(i,j)

(−0.5)ci,jσxi,j ≡ JHzz + hxHx , (2.25)

with J = −9
√
3ag2

32 and hx = 4
√
3

9ag2
. The coefficient ci,j is the same as in Eq. (2.22), and the

magnetic part is equivalent to Eq. (2.23). Unlike the case of a plaquette chain, the Hamiltonian
in Eq. (2.25) has no linear terms in σzi,j .

One subtlety with a periodic boundary condition is an overall spin flip redundancy in
numerating states. In other words, two spin states that are related by an overall spin flip are
different in the spin model, but they correspond to the same state in the original 2+1D SU(2)
lattice gauge theory ∏

i,j

σxi,j |s⟩ ≡ |s⟩ . (2.26)
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This redundancy can be seen e.g., on a periodic 2× 2 lattice from Fig. 3, where two different
spin states are plotted and they are the same state in terms of the link variables. This
redundancy needs to be removed in practical calculations.

2.2.3 Representation of Wilson Loops

Often in practical applications, one wants to evaluate expectation values of gauge invariant
operators such as Wilson loops. Here we list the representation of 1-plaquette and 2-plaquette
Wilson loops in the spin model discussed above.

For a 1-plaquette Wilson loop operator, the spin model representation is the same as one
term in the magnetic part of the Hamiltonian. If the 1-plaquette operator O1 is located at
(i, j), its expression is

O1 ≡ −σxi,j
5∏

K=0

[(1
2
− i

2
√
2

)
σzKσ

z
K+1 +

1

2
+

i

2
√
2

]
, (2.27)

where the index K comes from a periodic (K mod 6) chain {K = 0 : (i, j + 1), K = 1 :

(i+ 1, j), K = 2 : (i+ 1, j − 1), K = 3 : (i, j − 1), K = 4 : (i− 1, j), K = 5 : (i− 1, j + 1)}.
For a 2-plaquette Wilson loop operator O2 located at (i, j), (i, j + 1), its representation

in the spin model is given by

O2 ≡ −σxi,jσxi,j+1

1 + 3σzi,jσ
z
i,j+1

4

7∏
K=0

(−0.5)Π
+
KΠ−

K+1

= −σxi,jσxi,j+1

1 + 3σzi,jσ
z
i,j+1

4

7∏
K=0

[(1
2
− i

2
√
2

)
σzKσ

z
K+1 +

1

2
+

i

2
√
2

]
, (2.28)

where the index K here forms a periodic (K mod 8) chain {K = 0 : (i, j + 2), K = 1 :

(i + 1, j + 1), K = 2 : (i + 1, j), K = 3 : (i + 1, j − 1), K = 4 : (i + 1, j − 2), K = 5 :

(i, j − 1), K = 6 : (i− 1, j), K = 7 : (i− 1, j + 1)}.

3 Momentum States and Matrix Elements with Periodic Boundary Con-
dition

With the periodic boundary condition, the spin model on the honeycomb lattice has trans-
lational invariance in three directions orthogonal to the three unit vectors êi. Only two of
them are linearly independent. We choose them to be x and y directions: x̂ ≡ (1, 0) and
ŷ ≡ (12 ,

√
3
2 ). Then we have

[T̂x, H] = 0 , [T̂y, H] = 0 , (3.1)

where T̂i denotes the translation operator along the i-th spatial direction by one lattice unit.
The vanishing commutators mean we can simultaneously diagonalize the Hamiltonian and

– 10 –



translation operators. The eigenstates of the two translation operators are states with specific
momenta, which can be written as

|a(kx, ky)⟩ =
1√
Na

Nx−1∑
rx=0

Ny−1∑
ry=0

e−ikxrx−ikyry T̂ rx
x T̂

ry
y |a⟩ , (3.2)

where |a⟩ is a representative state in the translational equivalent classes defined by T̂x and
T̂y. We assume there are Nx plaquettes along the x direction and Ny along the y direction.
The momenta are given by kx = 2πnx/Nx, ky = 2πny/Ny where nx ∈ {1, 2, · · · , Nx − 1}
and ny ∈ {1, 2, · · · , Ny − 1}. The normalization factor Na can be numerically obtained by
sweeping through all the states involved in Eq. (3.2) and calculating the norm of the linear
superposition state accounting for the redundancy discussed in Section 2.2.2. If the two sums
on the right hand side of Eq. (3.2) vanish, then the corresponding momentum state does not
exist. The state |a(kx, ky)⟩, whenever exists, is an eigenstate of T̂i with eigenvalue eiki for
i = x, y.

The matrix element of the electric part of Eq. (2.25) in the momentum state basis is given
by

⟨b(k′x, k′y)|Hzz|a(kx, ky)⟩ = δabδkxk′xδkyk′y

Nx−1∑
i=0

Ny−1∑
j=0(

zi,j(a)zi,j+1(a) + zi,j(a)zi+1,j(a) + zi,j(a)zi+1,j−1(a)
)
, (3.3)

where zi,j(a) = ±1 is the eigenvalue of the operator σzi,j applied to the state |a⟩.
The matrix element of the magnetic part of Eq. (2.25) in the momentum state basis can

be worked out similarly

⟨b(k′x, k′y)|Hx|a(kx, ky)⟩ =

δkxk′xδkyk′y

√
Nb

Na

Nx−1∑
i=0

Ny−1∑
j=0

e−ikxℓi−ikyℓj

5∏
K=0

[(1
2
− i

2
√
2

)
zK(a)zK+1(a) +

1

2
+

i

2
√
2

]
, (3.4)

where the index K depends on (i, j) and is given as above. The integers ℓi and ℓj are
determined by

σxi,j |a⟩ = T̂−ℓi
x T̂

−ℓj
y |b⟩ . (3.5)

Finally, we give explicit expressions for the matrix elements of the 1-plaquette and 2-
plaquette operators O1 and O2 in the momentum eigenstate basis. Without loss of generality,
we assume the O1 operator acts at (i, j) = (0, 0) and the O2 operator acts on the plaquette
pair at (0, 0), (0, 1). Similarly as for the matrix element of the magnetic Hamiltonian, we find

⟨b(k′x, k′y)|O1|a(kx, ky)⟩ =− 1

NxNy

√
Nb

Na

Nx−1∑
rx=0

Ny−1∑
ry=0

eiϕ(k⃗,⃗k
′;rx,ry) (3.6)
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×
5∏

K=0

[(1
2
− i

2
√
2

)
zK(a)zK+1(a) +

1

2
+

i

2
√
2

]
,

where the indices K denote the six plaquettes surrounding (−rx,−ry), the phase ϕ is

ϕ(k⃗, k⃗′; rx, ry) = (k′x − kx)rx + i(k′y − ky)ry − ik′xℓrx − ik′yℓry , (3.7)

and the two integers ℓrx and ℓry are determined by the condition

σx−rx,−ry |a⟩ = T̂−ℓrx
x T̂

−ℓry
y |b⟩ . (3.8)

A similar construction gives the matrix element of O2 as

⟨b(k′x, k′y)|O2|a(kx, ky)⟩ =− 1

NxNy

√
Nb

Na

Nx−1∑
rx=0

Ny−1∑
ry=0

eiϕ(k⃗,⃗k
′;rx,ry)

1 + 3z−rx,−ry(a)z−rx,1−ry(a)

4

×
7∏

K=0

[(1
2
− i

2
√
2

)
zK(a)zK+1(a) +

1

2
+

i

2
√
2

]
, (3.9)

where the indices K denote the eight plaquettes around (−rx,−ry), (−rx, 1− ry), and ℓrx and
ℓry are determined by

σx−rx,−ryσ
x
−rx,1−ry |a⟩ = T̂−ℓrx

x T̂
−ℓry
y |b⟩ . (3.10)

The momentum basis and the corresponding matrix elements may not be very useful for
quantum simulation, but they have been applied in studies of testing ETH for non-Abelian
gauge theories [69] and turned out to be very useful to enlarge the system size accessible on
a classical computer.

4 Conclusions

In this work we construct a simple 2D spin Hamiltonian that exactly describes the 2 + 1

dimensional SU(2) lattice theory with a truncation at jmax = 1
2 in the electric basis. During

the construction, Gauss’s law is fully accounted for, and the Hilbert space of the spin model
only contains physical states of the original SU(2) theory. Although Gauss’s law is fully im-
plemented, the interactions in the spin model are still local. As a result, the system can be
efficiently simulated on quantum hardware that does not have all-to-all connectivity. There-
fore, the simple 2D spin Hamiltonian can serve as a benchmark for future quantum simulation
studies of lattice gauge theory that tests their robustness against unphysical state admixture
caused by hardware noise and algorithm errors. Furthermore, this simple spin Hamiltonian
allows us to exactly diagonalize it for reasonably large system sizes, which is necessary to
test the ETH for a subset of the physical Hilbert space of the original SU(2) theory. We will
pursue this in future work.
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