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Abstract

Investigation into the applicability of the equivalence principle in quantum mechanics has taken

many forms, with varying conclusions. Here, a dynamical semi-classical description of a wave

packet in terms of its center of mass and higher quantum fluctuations is applied to the case of

a quantum particle in gravitational free fall. The analysis provides an intuitive account of the

origin of mass-dependence in quantum-gravitational dynamics through an effective potential that

enforces the uncertainty principle. This potential has two implications: (i) The lowest order

quantum fluctuations encoding the width and spreading of the wave packet obey an uncertainty

relation whose observance is mass-dependent. (ii) In an inhomogeneous gravitational field tidal

effects couple the center of mass motion to the quantum fluctuations. The combined effect results

in a clear demonstration of how some conceptions of the weak equivalence principle, based on mass

dependence, are violated. The size of this violation is within sensitivities of current Eötvös and

clock-based return time experiments.
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I. INTRODUCTION

For over a century, general relativity has been a cornerstone for our understanding of

gravity. However, despite its remarkable success, general relativity presents inconsistencies

with quantum theory. A significant area of conflict between the two theories has been their

different predictions for the mass-dependence of gravitational phenomena. The present

study revisits this conflict and clarifies how mass-dependence emerges as one incorporates

quantum effects into gravitational physics in the weak-field regime. At the same time, we

will construct useful new methods that may be applied to derivations of quantum dynamics

relevant for potential experiments in this context.

In general relativity, gravity manifests as the metric geometry of spacetime and particle

trajectories are determined by the geodesics of this spacetime. In the weak-field limit of the

theory, the geodesic equation is expressed in terms of the perturbation tensor hab as [1]

d2xi

dt2
=

1

2

∂h00
∂xi

. (1)

This result yields a set of coupled ordinary differential equations for the coordinates xi of

a freely falling particle, determined without any information about the particle mass. The

principle of weak equivalence elevates this model-dependent result to a general physical prin-

ciple often stated as the independence of the future history of a particle in gravitational free

fall from its specific properties. Tino et al. recently provided a comprehensive review [2] of

the status of the equivalence principle and its tests, which presents compelling experimental

support for the mass-independence of particles in gravitational free fall.

Quantum theory contests this claim. Indeed, quantum theory’s necessary dependence on

mass is evident in the commutation relation [x̂, p̂] = iℏ. The presence of the dimensionful

quantity ℏ in this relation makes it generally impossible to rescale the equations of quantum

theory in a way which eliminates the implicit mass-dependence from any calculation. The

manner in which quantum theory’s predictions either violate or adhere to the equivalence

principle in specific cases is increasingly well-understood theoretically. For example, Green-

berger’s early study [3] demonstrates that applying quantum theory to a particle bound in an

external gravitational potential leads to mass-dependent predictions for observables, includ-

ing energy levels, frequencies, and orbital radii. Mass-dependence has also been predicted

for physically more relevant dynamical wave packet states in [4].
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Following this analysis, Greenberger proposed the abandonment of the equivalence prin-

ciple within quantum theory [3]. In support of this proposal, Sonego demonstrated how the

weak equivalence can be dispensed with as a fundamental principle without compromising

the formal apparatus of general relativity [5]. Okon and Callender view these developments

as indicating that the question of whether quantum phenomena adhere to or violate the

equivalence principle has been resolved [6]. These authors contend that further quantum

tests of the equivalence principle are unlikely to yield substantial theoretical insights. Yet, in

embracing this standpoint, it remains essential to address the mechanism behind the vanish-

ing of mass-related influences on gravitational phenomena in the classical limit—a challenge

that the authors of this study contend has yet to be satisfactorily met.

For example, in Greenberger’s study [3] the disappearance of mass in the classical limit is

explained via a quantization condition where the quantum number characterizing the state

becomes proportional to the particle mass in the classical limit (therefore cancelling it from

all results) without explaining how this equivalence arises. This present study provides a

new analysis which better clarifies how mass-dependence emerges as quantum effects are

incorporated into gravitational physics in the weak-field regime.

The outline for the paper is the following. In Section II we review an uncommon geometric

formulation of quantum mechanics. We discuss the kinematical and dynamical aspects of

the theory, its relation to the wave function formulation, and highlight the role geometrical

quantum theory plays in providing a structure on which to define a consistent semiclassical

hierarchy. In Section III, this framework is applied to the problem of quantum particle

motion in an external gravitational field. We obtain equations of motion incorporating

mass-dependent quantum effects which permit us to address a number of issues surrounding

the quantum theory of motion in a gravitational background field.

Section III C introduces the Eötvös framework for parametrizing violations of the weak

equivalence principle. We apply our analysis to compute non-zero quantum corrections to

the Eötvös parameter. The corrections we develop depend on wave packet contributions

which typical Eötvös experiments may not be sensitive to. However, as established by

the foundational studies [7–9], atom interferometers are well-suited to testing weak-field

aspects of general relativity due to their precise control over test matter preparation and

observation. Our analysis is particularly relevant to atom interferometric Eötvös tests, as

these experiments involve quantum matter manipulation. In Section III E we indicate how
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our methods can be used to obtain the interferometer phase, generalizing the methods used

in [10].

Atom interferometric Eötvös tests probe the particle only at the set of positions defined

by the laser pulse sequence used. Limitations of this design are detailed in [11]. Clock

experiments provide a complementary framework for testing the equivalence principle with

quantum matter. In these experiments one characterizes motion in a gravitational potential

as barrier scattering and tracks the return time for a particle launched into the potential.

If particles of differing masses and matching initial conditions are found to return in dif-

ferent times, this would signal a violation of the weak equivalence principle. Time of flight

measurements depend on properties integrated across a particle’s entire trajectory. These

experiments may therefore be sensitive to violations in the weak equivalence principle not

easily seen in Eötvös experiments.

In Section IIID we address also the problem of geodesic motion of quantum particles from

this point of view. We provide a new analysis of the return time of a quantum object thrown

up in a gravitational field which benefits from the fully dynamical equations of motion for

a quantum particle we develop here.

We conclude in Section IV with a brief discussion of the general features of our analysis

which may prove useful in future studies.

II. CANONICAL EFFECTIVE METHODS

The mathematical structures underlying classical and quantum physics appear very dif-

ferent, a fact which can complicate the understanding of conflicting predictions like the

mass-dependence of particle motion. However, this difference can be better understood

thanks to a geometric formulation of quantum mechanics in which the classical limit may

be carefully defined. Here we review the elements of this theory only as they are relevant to

the problem posed in modeling a quantum particle in a gravitational field. Mathematically

precise treatments of the general theory may be found in the references [12], [13], [14], [15],

and also [16].
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A. The space of states and observables

As starting point in modeling a quantum system, we make a choice of a unital operator

algebra A specifying the relevant observables. In this paper we choose the algebra generated

by position and momentum operators satisfying the canonical commutation relation

[x̂, p̂] = iℏ. (2)

In the analytical description of quantum theory, we would next choose a representation of

this algebra by operators acting on a separable complex Hilbert space H and define states

as positive trace-class linear operators on H. For example, in this formulation one typically

denotes a pure state ρ in terms of a representative ψ ∈ H as ρ = |ψ⟩⟨ψ|/⟨ψ|ψ⟩. It is easy

to show that a state thus defined is insensitive to arbitrary complex (and possibly time

dependent) rescaling of the representative:

|ψ⟩ 7→ f(t)|ψ⟩ (3)

for f(t) ∈ C at fixed t. This result indicates that we may equivalently identify the pure states

of a quantum system with the rays of H. The collection of rays of H form the projective

Hilbert space.

The geometric formulation arises as an alternative to the analytical formulation by taking

seriously that the projective Hilbert space, and not H itself, provides the correct space

of states. As a subspace, the projective Hilbert space has the structure of a symplectic

manifold called the quantum phase space Γ (for additional detail on this, see [12, 13]). Two

consequences of this characterization follow. First, the physical states contain all physical

information about the system. Choice of a specific wave function state ψ ∈ H from its

projection onto Γ is non-unique and requires additional (non-physical) information. This

point will be especially relevant in our discussion of the interferometer phase in Section III E.

Second, the phase space characterization facilitates identifying the classical phase space as

a sub-manifold of the quantum phase space.

In the geometric formulation of quantum mechanics, as in classical mechanics, a point

p ∈ Γ specifies the state of the system. Observables are constructed as smooth real-valued

functions on the quantum phase space F : Γ → R. A useful set of observables for the algebra

generated by (2) is the set consisting of the action of the state on the algebra generators, ⟨x̂⟩
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and ⟨p̂⟩, together with higher central moments of the state defined in a completely symmetric

ordering as

∆
(
xo−mpm

)
≡

〈
(x̂− ⟨x̂⟩)o−m(p̂− ⟨p̂⟩)m

〉
symm

(4)

where o ≥ 2 and 0 ≤ m ≤ o are integers. The utility of these functions are several. For one,

they summarize statistical information about the state and we refer to these observables as

moments of the quantum state. For a given moment observable we will call the quantity

o the moment’s order. Second, these observables are used to establish the semiclassical

condition of a quantum state. We say a state is semiclassical if the moment observables

evaluated on this state satisfy the hierarchy condition

∆(xapb) = O(ℏ(a+b)/2). (5)

Such conditions are satisfied for Gaussian states, but also by more general states because

the specific coefficients of ℏ(a+b)/2 are not determined by the condition (5).

B. Poisson structure and dynamics

The symplectic structure on the state space of quantum mechanics can be expressed

through a Poisson bracket. A Poisson bracket acts on functions on a symplectic or Poisson

manifold, which we introduce by using arbitrary operators Â and B̂ acting on the Hilbert

space. The expectation values gÂ(ψ) = ⟨ψ|Â|ψ⟩ and gB̂(ψ) = ⟨ψ|B̂|ψ⟩ can then be inter-

preted as functions on the Hilbert space because they depend on the state ψ in which they

are computed. The condition that ψ be normalized implies unique values on each ray of the

Hilbert space, and we can view gÂ and gB̂ as functions on the projective Hilbert space. The

normalization condition does not completely eliminate the rescaling freedom (3), which is

still possible by a phase factor f(t) with |f(t)|2 = 1. However, the expectation value func-

tions gÂ and gB̂ are independent of this remaining freedom. Therefore, they only capture

physical information about quantum states.

Given these functions on state space, their Poisson bracket is defined by

{gÂ, gB̂} =
1

iℏ
⟨[Â, B̂]⟩ = 1

iℏ
g[Â,B̂] . (6)

This definition can directly be applied to powers and products of the basic operators x̂ and

p̂, and to moments (4) if we use linearity and the Leibniz rule. Elementary discussion and
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applications of this structure can be found in [17]. In particular, a semiclassical truncation

in which only moments up to a given order a + b in the hierarchy (5) are used leads to

Poisson submanifolds that are in general not symplectic. The Poisson tensor of the bracket

(6) restricted to such a subspace is then non-invertible, such that there are so-called Casimir

functions C which have vanishing Poisson brackets with all other functions in the same

truncation.

The Poisson structure allows us to associate to each observable a vector field generating

a Hamiltonian flow on the phase space. The dynamics are specified by the Hamiltonian

vector field of a distinguished observable, the quantum Hamilton function obtained from

the Hamiltonian operator Ĥ for the quantum system as H = ⟨Ĥ⟩. Dynamics are obtained

directly from the phase space structure:

d

dt
A = {A,H}. (7)

Based on (6), this dynamics is equivalent to the familiar Ehrenfest theorem for the dynamics

of expectation values.

By definition, the quantum Hamilton function H = ⟨Ĥ⟩ is a function on quantum phase

space obtained by evaluating the expectation value of the Hamiltonian operator in a generic

state. When we parameterize states by their basic expectation values ⟨x̂⟩ and ⟨p̂⟩ together

with the central moments, H becomes a function of these variables. A general expression

for this function showing its dependence on these variables can be obtained from a series

expansion centered around the basic expectation values:

H = ⟨H(⟨x̂⟩+ (x̂− ⟨x̂⟩), ⟨p̂⟩+ (p̂− ⟨p̂⟩))⟩

= Hclass(⟨x̂⟩, ⟨p̂⟩) +
∞∑
o=2

o∑
m=0

1

o!

(
o

m

)
∂ oH

∂xo−m∂pm
∆
(
xo−mpm

)
.

(8)

The structure of the series expansion is revealing. First, we see that quantum dynamics

reduce to their underlying classical analog when H can be expressed as a quadratic function

of x and p. This characteristic contributes to the prevalence of quadratic potentials in

modeling quantum systems and explains the extensive research devoted to systems governed

by quadratic potentials in the literature, for example in that of [18], where the Newtonian

gravitational potential is approximated by its second order series expansion. Second, when

dealing with non-quadratic potentials, the remaining terms in this expansion reveal the

emergence of quantum effects. States whose fluctuations are non-zero are extended. In the
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higher-order terms, quantum fluctuations of the state couple to the external field through

a derivative expansion of the potential. This coupling structure shows how the non-local

nature of quantum dynamics appears for extended states in inhomogeneous fields.

In the non-quadratic setting the quantum effects can dominate or act as perturbations

depending on the relative magnitude of higher-order terms. If the Hamiltonian remains poly-

nomial, the series terminates at a finite order and perturbation theory may not be necessary.

Otherwise for non-polynomial interactions, we must consider the convergence properties of

the series (8). In this case, systems satisfying the moment hierarchy condition, equation

(5), are well-behaved as higher-order terms are suppressed by powers of ℏ. Truncating the

expansion at a finite order yields a closed semiclassical dynamics with controlled errors. This

dynamics agrees with the classical dynamics at zeroth order in ℏ but introduces perturba-

tive couplings from higher moments. These perturbative effects may capture interesting

quantum properties of the system as demonstrated in [19] for the case of tunneling. In this

work, we apply this method to analyze the emergence of mass-dependence of trajectories in

gravitational free-fall for quantum systems.

C. Canonical structure

The first non-trivial quantum effects appear at second order in moments. Up to second

order there are two basic expectation values and three fluctuation moments. Their non-

vanishing Poisson brackets are

{⟨x̂⟩, ⟨p̂⟩} = 1

{∆(x2),∆(xp)} = 2∆(x2)

{∆(xp),∆(p2)} = 2∆(p2)

{∆(x2),∆(p2)} = 4∆(xp).

(9)

The odd dimension implies that the phase space is not symplectic. Moreover, the brackets

are not canonical, but the Darboux theorem (or its generalization to Poisson manifolds [20])

guarantees that we can transform to canonical coordinates. In this case, if we make the

transformation

∆(x2) = s2, ∆(xp) = sps, ∆(p2) = p2s +
U

s2
(10)
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then s is a configuration variable for the wave packet width and ps its conjugate momentum

such that

{s, ps} = 1. (11)

This transformation, without the background of Poisson geometry, has been found several

times independently in a variety of fields [21–23]. A derivation from Poisson geometry and

generalizations to higher orders and two degrees of freedom can be found in [24, 25].

In (10), the variable U , a Casimir function, is a conserved quantity with dimensions of

action squared satisfying

∆(x2)∆(p2)−∆(xp)2 = U. (12)

(Geometrically, hypersurfaces of constant U in phase space are symplectic leaves of the

Poisson manifold that admit canonical coordinates (x, p) and (s, ps).) The transformation

to canonical variables therefore shows that U is the phase space uncertainty volume for the

wave packet, and the second-order dynamics conserves its value. If higher-order moments

are considered, we would find that the product of second-order moments in equation (12)

need not be conserved exactly, but still satisfy the usual uncertainty inequality. Likewise

higher order moments are subject also to uncertainty relations. Higher order relations are

developed for quantum states in [26], although we will not need them here.

We choose to measure U in units of the minimum action squared

U = λUmin = λ
ℏ2

4
(13)

where λ ≥ 1 is dimensionless. The correct value of λ for a given problem will depend on the

preparation of the state. To keep the calculation transparent and focus on the concepts, we

consider the case λ = 1, which is correct for Gaussian states, as explained below.

D. Generation of wave function states from moments

Canonical effective methods work directly with the observable quantum statistics ⟨x̂⟩, ⟨p̂⟩,

and ∆(xapa). These statistics may be measured and predicted independently of a specific

choice of wave function state. Nonetheless, questions arise about whether these statistics

encode all the physical information about the state, if there is redundancy in this choice

of statistics, and how these statistics are related to the alternative description of quantum
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states using wave functions. In this section we provide a procedure for generating a wave

function state ψ(x) from specified moment data.

1. General considerations

Extracting moments from wave function states is straightforward. However, the inverse

task, constructing a wave function state compatible with specified moment data, is more

challenging. Indeed, in general neither existence nor uniqueness of such a state is guaranteed.

The mathematical literature refers to the task of determining a distribution that generates

a given set of moments as the problem of moments. A historical perspective on the moment

problem, along with its extension into complex function theory, is presented in [27].

In simple terms, we can ensure the existence of a real-valued distribution whose moments

match a given sequence of numbers mj by confirming that the Hankel matrices (Hn)ij =

mi+j, i + j ≤ n are positive definite for all n ∈ N. An accessible proof of this statement

can be found in [28]. However, in our subsequent application, we will assume that a wave

function state exists based on physical reasoning, without examining the positivity of Hankel

matrices constructed from the moments.

The uniqueness problem is nuanced. Non-uniqueness in the choice of a wave function

state appears in two ways. First, a conventional wave function state encodes information

for an infinite set of moments. This allows for the existence of multiple non-identical states

that share identical low-order statistics, making it impossible to reconstruct a unique state

for our truncated moment system. Second, even when selecting a wave function compatible

with the provided moments, an additional freedom persists due to the complex rescaling (3).

Consequently, we present a procedure for obtaining a specific state from the space of states

compatible with the provided data. Our procedure generates a wave function state in the

polar form

ψ(x, t) =
√
ρ(x, t) exp(iθ(x, t)) (14)

by first building the probability density ρ and then the phase, θ, out of moment data. The

extension of this procedure to states described by density matrices is discussed in [25].

Results obtained through moment evolution and this procedure should agree with exper-

imental results, but may not agree with results obtained from the Schrödinger wave function

theory. Such disagreements do not have physical implications because they merely corre-

10



spond to different rescaling choices of the form (3). Examples of disagreement with the

Schrödinger theory are presented in the applications, Sections IIIA and III B. An agree-

ment of this method when used to determine the interferometer phase identified by certain

experiments is presented in Section III E.

2. Density reconstruction

If the unknown probability density ρ can be expressed as a polynomial in x, the re-

construction problem is linear and has a unique solution. However, due to normalization

constraints, ρ typically is not polynomial. Nonetheless, the simplicity of reconstructing

polynomials suggests a general approach: we decompose ρ into a polynomial basis that

approximate it. We then reconstruct these approximations order-by-order to achieve the

desired level of accuracy.

Following this idea, let Ln(x) be a complete, orthogonal set of polynomials with weight

function w on L2(w,R) and let un(x) be the associated orthonormal basis such that∫
R
un(x)uk(x)dx = δnk. (15)

with

un(x) =
1√
Nn

√
w(x)Ln(x). (16)

Having assumed the basis property of the un, any function f(x) in L2(w,R) can be expanded

with coefficients in R as

f(x) =
∞∑
n=0

cnun(x) (17)

with coefficients

cn =

∫
f(x)un(x)dx. (18)

In particular, we can reconstruct the density ρ from moment data if we choose f(x) =

ρ(x)/
√
w(x). In this case, the expansion coefficients reduce expectation values of polyno-

mials:

cn =

∫
ρ(x)√
w(x)

1√
Nn

√
w(x)Ln(x)dx =

1√
Nn

⟨Ln(x̂)⟩. (19)

Because Ln(x) is a polynomial in x, ⟨Ln(x̂)⟩ can be reconstructed from moments

⟨Ln⟩ =
n∑

k=0

ln,k⟨x̂k⟩. (20)
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Expressing the expectation value in coefficient form uses the so-called raw forms of the

moments, not the centralized ones. The two are nonetheless related by the binomial theorem

∆(xa) = ⟨(x̂− ⟨x̂⟩)a⟩ =
a∑

i=0

(
a

i

)
(−1)a−i⟨x̂⟩a−i⟨x̂i⟩ (21)

which is a matrix equation that can be inverted to solve for the ⟨x̂i⟩ from the provided

∆(xa).

Tracing these steps backwards gives finally the distribution reconstructed from its mo-

ments as

ρ(x) = w(x)
∞∑
n=0

1

Nn

⟨Ln(x̂)⟩Ln(x) = w(x)
∞∑
n=0

n∑
j=0

n∑
k=0

1

Nn

ln,jln,k⟨x̂j⟩xk. (22)

3. Phase reconstruction

Moments of the form ⟨x̂np̂⟩ can be used to reconstruct the phase. These non-symmetric

moments can be obtained as linear combinations of symmetrically ordered ones. The real

part of these moments are given from the definition as

R (⟨x̂np̂⟩) = R

∫
dxψ∗

(
xn

ℏ
i

d

dx

)
ψ (23)

= R

∫
dx

√
ρ exp(−iθ)xnℏ

i

[
d
√
ρ

dx
exp(iθ) +

√
ρi
dθ

dx
exp(iθ)

]
(24)

= ℏ
∫
dx xnρ

dθ

dx
. (25)

The function that multiplies the monomial powers of x in this is ℏρdθ/dx. Consequently,

we can apply the reconstruction procedure from before on this product with the outcome:

dθ

dx
=

w(x)

ℏρ(x)

∞∑
n=0

n∑
j=0

n∑
k=0

1

Nn

ln,jln,kR
(
⟨x̂j p̂⟩

)
xk. (26)

This result determines the phase derivative from moment data because the density’s depen-

dence on moments is already established. Together with equation (22), these results provide

the link between moments and wave function states.

The reconstruction procedure works by adapting a reference distribution—the selected

weighting function w(x)—to nearby distributions such that the result matches the specified

statistics. Here “nearby” means that only finitely many Taylor coefficients change. In a

finite truncation of the procedure there are many nearby distributions having the same
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statistics depending on the arbitrary choice of orthogonal polynomial system. We focus our

examples on the useful choice of generalized Hermite polynomials which are characterized

by the shifted and rescaled Hermite weight function exp(− (x−m)2

2α
). This choice allows us to

encompass not only Gaussian states but also provides a structured approach for handling

states that go beyond the Gaussian approximation.

Explicitly substituting generalized Hermite polynomials into the reconstruction provides

the first order in moments approximations

ρ(x;m,α) =
1√
πα2

e−
(x−m)2

α2

(
1 + 2

m2

α2
− 2m⟨x̂⟩

α2
− 2

mx

α2
+ 2

⟨x̂⟩x
α2

)
(27)

dθ

dx
(x;m,α) =

⟨p̂⟩

ℏ
(
1 + 2m2

α2 − 2m⟨x̂⟩
α2 − 2mx

α2 + 2⟨x̂⟩x
α2

) . (28)

Centering the generalized Hermite functions about the center of mass with the choice m =

⟨x̂⟩ simplifies these expressions to

ρ(x) =
e−

(x−⟨x̂⟩)2

α2

√
πα2

(29)

dθ

dx
=

⟨p̂⟩
ℏ

(30)

where α is still arbitrary because we have not assumed any second order statistics.

For fixed choices of the first order data at a time t, the phase derivative may be integrated

with respect to x to give the phase profile of the instantaneous state as

θ(x, t) = θ(x0) +
⟨p̂⟩(t)(x− x0)

ℏ
. (31)

This linear phase profile matches that of a plane wave with momentum ⟨p̂⟩ so we refer to

the first order result as the plane wave approximation to the phase, see Figure 1. In this

approximation, the phase at any position is known if the phase at any other position and

the (mean) momentum of the state are known.

In Section III E, this first-order reconstruction will be shown already to reproduce the

interferometer phase identified for plane-wave states evolving in linear and quadratic poten-

tials as presented in [29] and [30]. We extend those results by carrying the reconstruction to

the next order (i.e. first non-trivial quantum order). Incorporating second order quantum
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FIG. 1: An abs-arg plot of a plane wave demonstrating its linear phase profile.

FIG. 2: A Gaussian state as defined in equation (35). The parameters for this state were chosen

to give a narrow momentum distribution about the same mean momentum as the plane wave in

Fig. 1.

fluctuations and choosing α2 = ∆(x2) provides the reconstructions

ρ(x) =
e
− (x−⟨x̂⟩)2

2∆(x2)√
2π∆(x2)

(32)

dθ

dx
=

⟨p̂⟩
ℏ

+ (x− ⟨x̂⟩) ∆(xp)

ℏ∆(x2)
. (33)

FIG. 3: A Gaussian state with the same mean momentum but with a wide momentum distribution

compared with Fig. 2.
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The probability density obtained in this case reproduces the well-known formula for

a Gaussian probability density parametrized by its first two statistical moments. More

interestingly, the phase derivative gains an additional term which is non-zero for x ̸= ⟨x̂⟩.

When looked at nearby to the wave packet center, the phase of a Gaussian state resembles

that of a plane wave with momentum ⟨p̂⟩ and has a well-defined wavelength, see Figures 2

and 3. Corrections to the plane wave phase due to spatial localization become important

when displacements from the wave packet center are significantly larger than the ratio of

second-order moments ∆(xp)/ℏ∆(x2).

The spatial dependence of corrections is better understood when the phase derivative

formula is expressed in canonical coordinates (10). In this form, the phase derivative is

given by:
dθ

dx
=
p

ℏ
+
x− ⟨x̂⟩

s

ps
ℏ

(34)

with s =
√
∆(x2) giving the standard width of the packet. This result resembles that of a

plane wave when either ps is small, indicating narrow momentum spread, or when looking

near the distribution center where (x− ⟨x̂⟩)/s < 1.

Figure 2 illustrates the case of a state with narrow momentum spread. Its phase closely

matches that of a plane wave for most of its weight. Conversely, when the momentum distri-

bution is wide (and ps > 0), the phase increases more rapidly than a plane wave for x > ⟨x̂⟩,

resulting in wavelength compression, and more slowly for x < ⟨x̂⟩, causing wavelength elon-

gation. These corrections to the plane wave result are evident in Figure 3 where parameters

are chosen for a Gaussian wave packet with a broad momentum distribution.

For fixed choices of statistics, the equation (33) (or its canonical form, equation (34))

may be integrated and combined with the density reconstruction, equation (32), to give the

instantaneous pure state reconstruction

ψ(x) =

(
1

2π∆(x2)

)1/4

exp

[
−(x− ⟨x̂⟩)2

4∆(x2)

(
1− i

∆(xp)

ℏ/2

)
+ i

⟨p̂⟩x
ℏ

+ iθ0

]
. (35)

The overall phase exp (iθ0) incorporates both the arbitrary integration constant from equa-

tion (33) as well as the unspecified choice of branch from the square root of ρ. It is interesting

to compare this result with the general form for a Gaussian pure state.

In the position basis, a general Gaussian wave packet can be represented as

ψ(x;A,B,C) = exp
(
Ax2 +Bx+ C

)
(36)
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with A,B,C ∈ C. We identify the real degrees of freedom as

A = −(a+ iα) (37)

B = b+ iβ (38)

C = c+ iγ (39)

and require a > 0 so that the state is normalizable. A tedious, but straightforward process

of evaluating expectation value integrals and solving systems of equations identifies these

parameters in terms of the state’s statistical moments as

a =
1

4∆(x2)
(40)

b =
⟨x̂⟩

2∆(x2)
(41)

α = − ∆(xp)

2∆(x2)ℏ
(42)

β =
⟨p̂⟩
ℏ

− ∆(xp)⟨x̂⟩
∆(x2)ℏ

(43)

c = − b2

4a
+ log

[(
2a

π

) 1
4

]
(44)

with the overall phase γ undetermined. With this choice of parametrization, the general

Gaussian wave packet written in (36) is expressed in terms of its statistics as

ψ(x) =

(
1

2π∆(x2)

)1/4

exp

[
−(x− ⟨x̂⟩)2

4∆(x2)

(
1− i

2∆(xp)

ℏ

)
+ i

⟨p̂⟩x
ℏ

+ iγ

]
. (45)

Up to an overall (x-independent) phase, this result is identical to equation (35). Agreement

between these two results indicates that our reconstruction procedure with the choice of

generalized Hermite polynomials contains Gaussian states. When higher-order fluctuations

are provided, the general reconstruction equations (22) and (26) allow state approximations

beyond the Gaussian form to be derived.

III. APPLICATIONS

Our quasiclassical model can be used to address several questions related to quantum test

masses travelling in a gravitational background field. We motivate our approach through

the Ehrenfest equation. This equation relates the acceleration of the barycenter of a particle
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in a non-local quantum state to the potential energy V as

m
d2

dt2
⟨x̂⟩ = −

〈
dV

dx
(x̂)

〉
. (46)

For a Newtonian gravitational potential V (x) = mΦ(x), with Φ(x) independent of mass the

Ehrenfest equation reduces to an equation without explicit mass-dependence:

d2

dt2
⟨x̂⟩ = −

〈
dΦ

dx
(x̂)

〉
. (47)

In the classical theory, we identify the metric component h00 from the geodesic equation (1)

with the Newtonian gravitational potential as

h00 = −2Φ. (48)

This leads to the equation of motion for a classical test mass

d2x

dt2
= −dΦ

dx
. (49)

Similar to its classical counterpart, the absence of explicit mass-dependence in the quan-

tum equation hints at an extension of the classical weak equivalence principle into quantum

theory. Lämmerzahl proposes such a quantum equivalence principle in [18]. However, the

absence of explicit mass-dependence conceals a subtlety. Unlike the classical equation, the

quantum result forms a closed system of differential equations only when Φ(x) is at most

quadratic in x. In general, equation (47) must be supplemented with equations for higher

moments (or suitable closure conditions and truncations that parameterize the values of

higher moments).

We provide these additional equations from the effective Hamiltonian function associated

with the Newtonian potential. Limiting the expansion (8) to second order in moments

provides the lowest-order quantum corrections

Heff,2

(
x, p,∆(x2),∆(xp),∆(p2)

)
=

p2

2m
+mΦ(x) +

∆(p)2

2m
+

1

2
m
d2Φ

dx2
∆(x2). (50)

The coupling between quantum and classical degrees of freedom in the final term depends

on the gravitational field curvature given by d2Φ/dx2 which, being the second derivative of

the metric, can be considered part of the Riemann tensor.

We present a case analysis to emphasize the role of this coupling. In Section IIIA, we

examine the scenario with Φ = 0, representing a free particle. In Section III B, we select

17



Φ = gx to represent a particle in a linear gravitational potential. These cases illustrate

classical center-of-mass dynamics with decoupled quantum dynamics. Subsequently, we ex-

plore quadratic and higher-order cases, discussing their implications for equivalence principle

violation in the Eötvös framework (Section III C) and the return time framework (Section

IIID). Finally, in Section III E, we apply these methods to determine the interferometer

phase shift in a Mach-Zehnder atom interferometer.

A. Free particle

An extensive investigation of the free particle case, Φ = 0, using the geometric point of

view implied by our methods appears in [17]. Using the brackets for second order moments,

(9), and the second-order effective Hamilton function (50) with Φ = 0 produces the Hamilton

equations of motion for the quantum free particle

d⟨x̂⟩
dt

=
⟨p̂⟩
m

(51)

d⟨p̂⟩
dt

= 0 (52)

d∆(x2)

dt
=

2∆(xp)

m
(53)

d∆(xp)

dt
=

∆(p2)

m
(54)

d∆(p2)

dt
= 0. (55)

These equations have solutions in terms of initial data as

⟨x̂⟩(t) = x0 +
p0
m
(t− t0) (56)

⟨p̂⟩(t) = p0 (57)

∆(x2)(t) = ∆(x2)0 +
2∆(xp)0

m
(t− t0) +

∆(p2)0
m2

(t− t0)
2 (58)

∆(xp)(t) = ∆(xp)0 +
∆(p2)0
m

(t− t0) (59)

∆(p2)(t) = ∆(p2)0 (60)

The first two of these equations indicate that for a localized free particle state, the center

of mass trajectory is the classical one. The remaining equations of motion allow us to infer

quantum mechanical effects.

18



To lighten notation we will assume that the initial conditions are specified such that

t0 = 0 when the wave packet is minimally squeezed, that is, ∆(xp)0 = 0. Additionally, we

define shorthand for the initial width and spreading frequency via

σ2 = ∆(x2)0 (61)

ω2
σ =

∆(p2)0
m2∆(x2)0

. (62)

With these choices and substituting the solutions (56) into the Gaussian template equa-

tion (35), we reconstruct the wave function

ψ(x, t) =

(
1

2πσ2 (1 + ω2
σt

2)

) 1
4

exp

[
−(x− x0 − p0t/m)2

4σ2 (1 + ω2
σt

2)
(1− iωσt) + i

p0x

ℏ
+ iγ

]
(63)

with the unspecified phase γ.

Although it has been argued that obtaining the specific wave function solving the

Schrödinger equation is rarely necessary, the moment formalism provides an approach to

doing so in which the partial differential equation is replaced by a system of ordinary dif-

ferential equations which may be easier to solve. We see how this works out in this case.

Substituting the result (63) into the time-dependent free particle Schrödinger equation re-

veals a differential equation for γ(t):

dγ

dt
= − p20

2mℏ
− 1

2

ωσ

1 + ω2
σt

2
. (64)

This separable equation shows that in order for our reconstruction to solve the Schrödinger

equation, we must choose the x−independent phase to satisfy

exp(iγ) = exp

(
−i p

2
0

2mℏ
t− i

2
arctan(ωσt)

)
. (65)

With this, we have demonstrated that the reconstruction (63) occupies the same ray of the

Hilbert space as the wave function solving the Schrödinger equation.

B. Evolution in a linear potential

In a linear potential V (x) = mgx, the equations of motion for the second-order statistics

are identical to those for the free particle, but the solutions for the packet’s centroid now

satisfy

⟨x̂⟩(t) = x0 +
p0
m
t− 1

2
gt2 (66)

⟨p̂⟩(t) = p0 −mgt. (67)
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The construction of a falling Gaussian wave packet is immediate from the reconstruction

template, equation (35)

ψ(x, t) =

(
1

2πσ2 (1 + ω2
σt

2)

) 1
4

×

exp

[
−
(
x− x0 − p0

m
t+ 1

2
gt2

)2
4σ2 (1 + ω2

σt
2)

(1− iωσt) + i
(p0 −mgt)x

ℏ
+
i

ℏ
gt2

2

(
p0 −

mgt

3

)]
.

(68)

As a point of comparison, the construction of a falling Gaussian wave packet was solved

by Nauenberg in [31]. Nauenberg found that a solution ψ to the Schrödinger equation in a

frame accelerated with acceleration a with respect to an inertial frame may be constructed

from any solution ϕ(x, t) from the unaccelerated frame as

ψ(x, t) = ϕ

(
x+

at2

2
, t

)
exp

[
−imat

ℏ

(
x+

at2

6

)]
. (69)

Choosing ϕ to solve the free Schrödinger equation and using Nauenberg’s results to determine

the corresponding wave packet in a frame accelerated by a = g gives a result which agrees

with the moment result up to overall x−independent phase.

C. Eötvös parameter

Gravitational fields arising from matter sources exhibit inhomogeneity. In the Newtonian

framework, inhomogeneity corresponds to non-linear potentials. The simplest non-linear

potential is the quadratic potential. In a quadratic potential, the second derivative d2Φ/dx2

is constant ensuring that the center-of-mass dynamics decouple from the quantum moment

dynamics, similarly to the previously considered cases. Due to this similarity we do not

immediately construct the equations of motion or present a wave packet solution as before.

However, if desired, these can be easily derived. The distinctive features arising in the

quadratic case are more relevant in the context of atom interferometry, the topic of Section

III E. Discussion of this case is postponed until that section.

Quantum effects begin to influence classical dynamics only when the second derivative

d2Φ/dx2 becomes dependent on x. However, accurately characterizing the source mass distri-

bution with sufficient resolution to resolve the field structure to this order it is challenging.

(A recent experiment by Overstreet et al. in [32] presents an intriguing counterexample,
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where deliberate efforts were made to precisely characterize the source mass distribution.)

A simpler test, albeit with less far reaching implications, emerges from the consequence that

the weak-field geodesic equation predicts a universal acceleration for all objects regardless

of the specific geometry. This observation leads to a class of experiments known as Eötvös

experiments. These experiments are designed to constrain the normalized differential accel-

eration between two objects, expressed as:

η(1, 2) =
a1 − a2
ā

. (70)

In this definition ā = a1+a2
2

represents the average acceleration, and the quantity η is referred

to as the Eötvös parameter.

In general relativity, the weak-field geodesic equation (equation (1)) predicts η(1, 2) = 0

identically for any two objects even when their masses differ, m1 ̸= m2. In a sense, general

relativity is constructed as a geometric theory of gravity with the explicit aim reach of ar-

riving at this conclusion. Modern extensions to the standard model and general relativity

typically anticipate some deviation from this classical prediction. Consequently, the param-

eter η serves as a valuable model-independent framework for quantifying violations of the

weak equivalence principle. We are particularly interested in whether quantum effects lead

to η ̸= 0 and, if so, at what level these effects become significant.

Let us rephrase the dynamics in terms of canonical variables (10) via the Hamilton

function

H (x, p, s, ps) =
p2

2m
+

p2s
2m

+mΦeff(x, s) (71)

with the quantum-gravitational potential

Φeff(x, s) = Φ(x) +
1

2

d2Φ

dx2
s2 +

1

8

(
ℏ
m

)2
1

s2
. (72)

Our canonical effective methods provide direct predictions for quantum corrections to the

acceleration of a quantum state in a non-uniform gravitational field. The equations of motion

for x and s in terms of the gravitational field strength g(x) ≡ Φ′ are

ẍ = −g − 1

2
∂2xg s

2 (73)

s̈ = −∂xg s+
(
ℏ
m

)2
1

4s3
. (74)

We read off the anomalous center of mass acceleration∣∣∣∣ d2dt2 ⟨x̂⟩ − (−g(⟨x̂⟩))
∣∣∣∣ = 1

2
∂2xg∆(x2). (75)
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The center of mass acceleration deviates from the local gravitational field acceleration when

both the width of the state and the gravitational field strength curvature are non-vanishing.

Although this is the outcome expected from classical tidal forces acting on extended objects

in an inhomogeneous field, our canonical formulation is more general because it provides also

the dynamics of s =
√

∆(x2). In particular, the final value of the anomalous acceleration

depends on the value of s which is plainly mass-dependent because m appears explicitly in s̈.

The origin of the mass-dependence lies ultimately in the quantum requirement to preserve

the uncertainty product, which is defined for moments of x together with p, rather than ẋ.

We estimate the Eötvös parameter for a delocalized quantum particle as compared to a

more localized particle as

η ≈ g−1

∣∣∣∣ d2dt2 ⟨x̂⟩ − (−g(x))
∣∣∣∣ = 1

2
g−1∂2xg∆(x2) (76)

Parameter values suitable for terrestrial experiments are g ≈ 10m/s2 and ∂2xg ≈ 10−12/ms2

however the wave packet width ∆(x2) is not independently well constrained by experiment.

Equation (76) indicates a range of values for η from η ≈ 0.5× 10−33 when the wave packet

width is atomic scale (s ≈ 10−10 m) to η ≈ 0.5 × 10−13 when the wave packet width ap-

proaches the arm-length of typical interferometers (s ≈ 1 m). This latter value is within the

sensitivity range of proposed atom-interferometers [33–36] and it is possible that proposed

future experiments including km-scale underground tests, and space based atom interferom-

eters could reach these dimensions.

Inverting the above reasoning with the experimental constraints of state-of-the-art atom

interferometers which have resolutions of nearly 10−11g [37] requires the wave packet width

to remain bounded

s =
√

∆(x2) ≲ 10m. (77)

D. Gravitational scattering return time

In [38, 39] Davies considered the possibility that the quantum dynamics of a particle may

allow its time of flight to differ systematically from the classical prediction by travelling

beyond the classical turning point into the forbidden region of the gravitational potential.

Perhaps surprisingly, Davies found no evidence for tunneling delay. Instead, the particle

return time adheres to the classical prediction in gravitational fields which are at most
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quadratic in position and provided that the particle is measured far from the classical turn-

ing point. This result does not challenge the status of the weak equivalence principle for

quantum phenomena. However, stationary state analysis of quantum objects tunneling into

the classically forbidden region of a potential gives only limited insight into the dynamical

problems encountered, particularly in the context of interferometer experiments.

The equations of motion (73) and (74) indicate that for low order gravitational potentials

where ∂2xg vanishes, the classical degrees of freedom decouple from the quantum degrees of

freedom. It follows directly then that the measured return time for a wave packet in linear

or quadratic potentials is identical to that of a classical point particle in agreement with

the stationary state calculations of [38, 39]. For higher order potentials ∂2xg does not vanish

and instead couples the spreading motion of the wave packet to the motion of its center

of mass. This outcome was anticipated by [18] and [10], but neither provided quantitative

calculations, which would be quite challenging if based on wave functions.

Estimating an out-and-back time of flight prediction requires integrating the equations

of motion. To do so, we specialize to the case of a Newtonian potential where the effective

Hamilton function is

H(r, p, s, ps) =
p2

2m
+

p2s
2m

+
U

2ms2
− GMm

r
− GMm

r3
s2. (78)

It can be seen here that the classical Newtonian potential energy has a power law correction

of the form

V (r) = −GMm

r

[
1 + αN

(r0
r

)N−1
]

(79)

with N = 3, α3 = 1, and r0 = s. Power law modifications of this form have previously

been studied. In the context of extensions to the standard model, the case N = 3 can be

considered as arising from the simultaneous exchange of two massless pseudoscalar particles

[40]. A powerlaw correction with N = 3 also arises from the model of Randall and Sundrum

[41] where non-compact warped extra dimensions with warping scale r0 are considered. If

there are indeed Yukawa-style couplings present, then the finite-width effects that we discuss

here could confound their detection.

Choosing an arbitrary length scale equal for example to the earth radius, rc = re and
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corresponding time, energy, and momentum scales as

tc =

√
r3e
GM

(80)

Ec = pc
rc
tc

=
GMm

re
(81)

gives the non-dimensional Hamilton function and equations of motion

H(r, p, s, ps) =
p2

2
+
p2s
2

+
u

2s2
− 1

r
− s2

r3
(82)

r̈ = − 1

r2

(
1 +

3s2

r2

)
s̈ =

u

s2
+

2s

r3

(83)

Unlike the classical case where all free parameters may be scaled out, here a free parameter

remains which depends on the particle mass

u =
ℏ2/4
r2cp

2
c

=
ℏ2/4

GMm2re
. (84)

This parameter reflects the minimal uncertainty product compared to the scale of the prob-

lem. The same effect could be had in identifying characteristic length (rc) and momentum

(pc) scales and rescaling 1
2
ℏ → 1

2
ℏ/(rcpc) = 1

2
ℏ̃ such that the canonical commutation relation

is dimensionless. Such a phrasing, however useful, tends to obscure the mass-dependence of

the relation because it implies an m-dependent, non-fundamental ℏ̃.

The uncertainty-product enforcing term becomes important when the wave packet is very

narrow compared to
√
u in which case the wave packet is forced to expand but for terrestrial

experiments, u is entirely negligible. For a neutron moving in the earth’s gravitational field

near the mean earth radius the numerical value is u ≈ 10−36 while for a 10 gram mass

in the same conditions u ≈ 10−86. Without this term the resulting trajectory is the one

predicted from classical tidal effects only and is not mass-dependent. This aligns with the

thinking that existing atom interferometers are essentially classical in their operation. The

main perturbation to the center of mass trajectory of a wave packet will come from tidal

effects and not quantum effects owing to the uncertainty principle.

Figure 4 presents typical return time curves from numerical integration of the equations

of motion for particles whose classical component of the energy is

ϵ =
p2

2
− 1

r
. (85)
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FIG. 4: Particle return time. The dashed line plots the out-and-back return time for a classical

point particle in Newtonian 1/r gravity. The behavior for small energy is quadratic as predicted

from the linear potential result t =
√
ϵ. At higher energy the return time grows until it diverges at

the classical escape energy ϵ = 1. The solid lines represent the return time for a particle obeying

the perturbed equations of motion (83) for u ∈ (10−5, 1). These are generically lower than the

unperturbed result and approach the classical result as u → 0.

The total energy of the particle is still given by equation (82). In an experiment, the choice

of initial conditions depends on the preparation of the state. The ability to discriminate the

total energy of the particle from its classical initial conditions may complicate the return

time–energy dependence. Here it is evident that a wave packet prepared at a given height

and velocity returns quicker than an identically prepared point particle. The effect is most

pronounced in the non-linear regime, a result in agreement with our earlier discussion.

E. Propagation phase in interferometry

In 1924, Louis de Broglie introduced a groundbreaking concept through his work [42],

suggesting that massive particles possess wave-like characteristics. These wave properties

can be understood within the framework of wave functions, where they stem from the polar

decomposition described by equation (14). A consequence of this description is interference

of wave components. A simple example is the interference of two wave function components
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of equal magnitude where the resulting probability of measuring a particle depends on the

relative phase of the two components via

| exp(iθ1) + exp(iθ2)|2 = 2 + 2 cos(θ1 − θ2). (86)

Equation (86) and its dependence on the phase difference δθ = θ1 − θ2 is an example of an

interference effect typically ascribed to wave phenomena.

The field of matter wave interference has matured significantly over time and atom inter-

ferometer experiments now play a crucial role in a variety of fundamental research endeavors.

In this section, we describe how we can gain insights into interference by examining quantum

moments. This goal begins with relating quantum moments to the phase difference between

spacetime points, denoted θ(xf , tf ) − θ(xi, ti). This quantity is known as the propagation

phase of a single wave function component. It is defined rigorously only in the wave func-

tion formalism. Nonetheless, we previously described how to determine a position-dependent

phase from moments and separately explained the time dependence of these moments. In

this section, we bring these concepts together to describe the evolution of the phase along a

spacetime trajectory.

As a point of comparison, we first review the approach for calculating the propagation

phase presented in [29] based on Feynman path-integral techniques. Other approaches, based

on evolving plane waves ([18]) and Gaussian wave packets ([43]) have also been described.

These however produce predictions for the phase shift which agree with the semiclassical

approach at the level of experiment; see [44].

1. Path integral method

In an approach based on the path integral, we consider a state prepared in the wave

function state ψ(xi, ti). The quantum evolution of this state is given by the propagator

formula

ψ(xf , tf ) =

∫
dxiK(xf , tf , xi, ti)ψ(xi, ti). (87)

The path integral method uses Feynman’s expression for the quantum propagator, in which

the propagator is represented as a sum over paths Γ connecting the spacetime points (xf , tf )

and (xi, ti) according to

K(xf , tf , xi, ti) = N
∑
Γ

e
i
ℏSΓ . (88)
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In this equation, SΓ represents the action along the path Γ.

Storey and Cohen-Tannoudji [29] prove that when the system Lagrangian is quadratic,

the quantum propagator (88) can be simplified as

K(xf , tf , xi, ti) = F (tf , ti) exp

(
i

ℏ
Scl(xf , tf , xi, ti)

)
. (89)

In this equation Scl(xf , tf , xi, ti) represents the action along the classical path connecting

(xf , tf ) and (xi, ti). When we substitute this expression into equation (87), we obtain:

ψ(xf , tf ) = F (tf , ti)

∫
dxi exp

(
i

ℏ
Scl(xf , tf , xi, ti)

)
ψ(xi, ti). (90)

In the quadratic case, the classical action is a quadratic function of xf and xi. Therefore, for

certain initial states including plane wave and Gaussian states, this integral can be solved

in closed form. For a plane wave initial state

ψ(xi, ti) =
1√
2πℏ

exp

[
i(p0xi − E0ti)

ℏ

]
. (91)

In this case, the phase of the integrand is stationary when

∂Scl

∂xi
+ p0 = 0. (92)

Since Scl is quadratic, equation (92) is a linear equation for the stationary phase point

xi,stationary ≡ x0. The expansion of the classical action around this point is given by

Scl(xf , tf , x0 + ζ, ti) = Scl(xf , tf , x0, ti)− p0ζ + C(tf , ti)ζ
2. (93)

In this expression, we used equation (92) to replace the first derivative of the action with

the negative plane wave momentum. We also introduced the second derivative ∂2Scl/∂x
2
i ≡

C(tf , ti), which is assumed to be independent of xf and xi. Following these adjustments,

the integral (90) becomes straightforward to evaluate, yielding the result:

ψ(xf , tf ) = F (tf , ti)

√
iπℏ

C(tf , ti)
ψ(x0, ti) exp

(
i

ℏ
Scl(xf , tf , x0, ti)

)
. (94)

From this expression we read off the propagation phase accumulated between spacetime

points as

θ(tf , x(tf ))− θ(ti, x(ti)) =
1

ℏ

∫ tf

ti

Lclassical(x, ẋ)dt. (95)

The classical Lagrangian Lclassical(x, ẋ) is treated as a function of time once we specify the

classical trajectory x(t).
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2. Moment method

In the moment approach we obtained the reconstruction formula for the phase derivative

dθ/dx. Considering now the phase as a function of space and time, θ = θ(x, t), it is appro-

priate to consider the reconstruction formula (26) as providing the partial derivative with

respect to position appearing in the differential

dθ =
∂θ

∂x
dx+

∂θ

∂t
dt. (96)

Both of the partial derivatives may depend on the coordinates x and t. For example, the

second order Hermite reconstruction depends explicitly on the position coordinate from

equation (33)
∂θ

∂x
=

⟨p̂⟩
ℏ

+ (x− ⟨x̂⟩) ∆(xp)

ℏ∆(x2)
. (97)

With this equations of motion for the moments supplied, this becomes also a function of

time, ∂θ/∂x = ∂θ/∂x(x, t). If the phase where genuinely a multivariate function, then to

determine the phase difference between two spacetime points from differential data would

require a line integral of the differential (96)

θ(xf , tf )− θ(xi, ti) =

∫
γ

(
∂θ

∂x
dx+

∂θ

∂t
dt

)
(98)

where γ is a path connecting the spacetime points (xf , tf ) and (xi, ti). We can define the

path arbitrarily by a parametrization γ : [τi, τf ] → R2, γ(τ) = (xγ(τ), tγ(τ)) where we require

the coordinate functions satisfy xγ(τi/f ) = xi/f and tγ(τi/f ) = ti/f . That is, we compute the

parametrized line integral

θ(xf , tf )− θ(xi, ti) =

∫ τf

τi

(
∂θ

∂x
(xγ(τ), tγ(τ))

dxγ
dτ

+
∂θ

∂t
(xγ(τ), tγ(τ))

dtγ
dτ

)
dτ (99)

There are some difficulties in this approach. For one, the moment data does not directly

constrain the partial derivative ∂θ/∂t. However, if we require that the result obtained be

independent of the integration path, then the mixed partial condition

∂

∂t

∂θ

∂x
=

∂

∂x

∂θ

∂t
(100)

will allow us to reconstruct ∂θ/∂t from integration of ∂θ/∂x up to an overall time dependent

function. For example, when we use the first order result for ∂θ/∂x and substitute the time

dependence of moments appropriate for a particle in a linear gravitational field we have

∂θ

∂x
(x, t) =

⟨p̂⟩0 −mg(t− t0)

ℏ
(101)
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which, being the plane wave approximation, is a trivial function of position. Partial differ-

entiating with respect to time gives

∂

∂t

∂θ

∂x
= −mg

ℏ
. (102)

Using the mixed partial condition (100) and integrating with respect to position gives the

time partial in this case as
∂θ

∂t
= −mgx

ℏ
+ f(t) (103)

where the arbitrary function of time f(t) is added without affecting the mixed partial equal-

ity. This residual freedom of time-dependence cannot be eliminated using moment data

alone and represents the non-physical arbitrary phase which may be included in any wave

function under the scaling (3). Nonetheless, in this case we are free to choose this arbitrary

function of time as

f(t) = −⟨p̂⟩(t)2

2mℏ
(104)

where ⟨p̂⟩(t) is the classical time-dependence of the momentum. Putting everything together,

we have

θ(xf , tf )− θ(xi, ti) =

∫
γ

(
∂θ

∂x
dx+

∂θ

∂t
dt

)
(105)

=

∫
γ

[
⟨p̂⟩(t)
ℏ

dx−
(
⟨p̂⟩(t)2

2mℏ
+
mgx

ℏ

)
dt

]
(106)

This line integral was constructed to be independent of choice of integration path. It is

convenient to choose the integration path parametrized by time, γ = (⟨x̂⟩(t), t). Then the

line integral is

θ(xf , tf )− θ(xi, ti) =
1

ℏ

∫
γ

[
⟨p̂⟩d⟨x̂⟩

dt
−H

]
dt (107)

where H is the conserved energy

H =
⟨p̂⟩2

2m
+mg⟨x̂⟩. (108)

The integrand in (107) is numerically equal to the classical Lagrangian evaluated along the

classical trajectory

⟨p̂⟩d⟨x̂⟩
dt

−H (⟨x̂⟩, ⟨p̂⟩) = Lclassical(t) (109)

This demonstrates equality between the moment approach and the result derived from the

Feynman path integral, expressed in equation (95).
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The plane wave approximation determines the propagation phase using only classically-

defined quantities which respect the weak equivalence principle in the absence of quantum

back-reaction. Quantum back-reaction occurs only if higher-order structure of the gravita-

tional field can be resolved. Therefore, in low-order gravity-resolving atom interferometer

phase measurements, we anticipate no observed violation of the weak equivalence princi-

ple. This expectation is supported by experiments, including: (i) a series of simultaneous

dual-species atom-interferometer Eötvös tests, presented in [37, 45, 46], which constrained

η(85Rb,87Rb) < 10−12; (ii) the dual-species test conducted by [47], which placed constraints

on the more significant mass gap, η(39K,87Rb) < 10−7; and (iii) the work of [48], which

constrained the differential acceleration for atoms in a coherent superposition of metastable

energy states at the 10−9 level.

These analyses highlight the importance of distinguishing between an atom interferome-

ter’s use of quantum properties in making a measurement and the absence of back-reaction

of the quantum properties on the measurement. As discussed in [10] and revisited more

recently in [44], the null results obtained so far indicate that quantum back-reaction on

the center of mass dynamics either does not manifest, or itself conforms to the equivalence

principle. Our analysis suggests that quantum effects do not conform to the equivalence

principle. Therefore, it is reasonable to deduce that current instruments lack the detection

sensitivity to resolve wave packet effects, i.e. the atoms used in these experiments mimic

classical test particles, at least as far as their center of mass motion is concerned.

Our moment expansion, accommodates this conclusion through the moment hierarchy de-

fined in equation (5). However, it also offers a new framework for performing calculations in

the regime where quantum back-reactions become important. The challenge of incorporat-

ing the wave packet structure intrinsic to atomic test masses prepared for a local experiment

has received comparatively little attention, with the work [43] being an exception.

3. Incorporating wave packet effects

The potential for quantum back-reaction onto the classical trajectory is highly interesting

since it would signal a deviation from the geodesic motion predicted by general relativity,

providing a unique regime for testing the compatibility of gravity and quantum mechanics.

The effect of higher-order potentials on non-local wave packet structure is mass-dependent
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FIG. 5: Mach-Zehnder interferometer spacetime geometry in an inhomogeneous gravitational field.

The center of mass trajectories of the separated wave packet components do not intersect at the time

of the third equally spaced pulse. Instead, spatial separation implies that wave packet structure

will determine the interferometric phase difference. The phase of each component is most easily

computed by integrating the differential phase along a piecewise path traveling first along the two

center of mass trajectories, and then vertically at the fixed end time.

with the non-zero Eötvös parameter calculated in Section III C. This quantum effect may be

incorporated into the phase determination with the second-order accurate result, equation

(33):
∂θ

∂x
=

⟨p̂⟩
ℏ

+ (x− ⟨x̂⟩) ∆(xp)

ℏ∆(x2)
. (110)

An example of the application of this formula could be to identify wave packet effects on

the propagation phase.

We consider a simple Mach-Zehnder interferometer and imagine that the device operates

based on light-pulses coherently splitting, redirecting, and recombining an atomic wave

packet at equally spaced times. The spacetime geometry is sketched in Figure 5. In this

sketch it is made evident that, in the presence of a linear gravity gradient, particle trajectories

within a Mach-Zehnder interferometer do not close at the time of an equally spaced pulse

after a single reflection. We can determine the phase of either wave packet component at

the time of the recombining pulse, t = 2T , at any vertical displacement most easily if we

choose an integration path which follows the component’s center of mass trajectory until

t = 2T , and then follows a vertical path at the fixed time t = 2T . This choice of integration
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path is convenient because for the first two segments of the piecewise path the path satisfies

xγ = ⟨x̂⟩ and the second-order contributions to the phase vanish. Then in the last segment

the moments are all time-independent yielding a simple integration.

Lastly, we comment on the structure of the second-order result. The first order phase

difference, adequate for describing plane waves propagating in low-order potentials, was

determined by the classical Lagrangian action

δθ =
1

ℏ

∫
Lclassicaldt. (111)

The moment approach with its canonical structure evaluates the same phase difference,

but in phase space coordinates. At the lowest order this was expressed by the Legendre

transform of the classical Lagrangian as

δθ =
1

ℏ

∫
(pẋ−Hclassical) dt. (112)

The second-order formula for the phase derivative in canonical phase space coordinates (10)

was
∂θ

∂x
=
p

ℏ
+
x− ⟨x̂⟩

s

ps
ℏ
. (113)

Integrating over a physical trajectory and changing variables with the Jacobian

ds

dx
=
x− ⟨x̂⟩

s
(114)

yields

δθ =
1

ℏ

∫
(pdx+ psds) . (115)

The integration is over the phase space trajectory x(t), on which s(t) depends through

s2 = (x − ⟨x̂⟩)2 + constant according to (114). To this, we may incorporate the time-

dependent contribution from the conserved energy, H = ⟨Ĥ⟩, for free without leaving the

same Hilbert space ray and finally obtain the propagation phase

δθ =
1

ℏ

∫
(pẋ+ psṡ−H) dt (116)

where H = ⟨Ĥ⟩ is not equal to the classical Hamilton function but is the effective quantum

energy including moments, for example as given by (71). This final result connects the phase

contribution from second-order wave packet structure to the Lagrangian formulation. We

expect that this result is obtainable also from the propagator method outlined in [29] because
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the integrals involved remain Gaussian. Nonetheless, it appears the quantum propagation

phase is more naturally understood through its dependence on the quantum phase space

structure.

IV. CONCLUSION

Although it has been known for some time that several mathematical ingredients of quan-

tum dynamics are generally mass-dependent even in the case of gravitational forces, there

remain questions about the extension of the equivalence principle to quantum mechanics.

With this motivation, we set out a simple analysis for the behavior of a quantum object in a

(possibly inhomogeneous) gravitational field. In place of stationary state analysis, we con-

sidered the physically motivated case of a wave packet following a nearly classical trajectory

whose fluctuations remain bounded by powers of ℏ.

The presented moment expansion systematically bridges between classical and quantum

dynamics but at all steps, the method’s mathematical description of the dynamics takes

a classical form. The (quasi)classical nature of the dynamical system permits intuitive

dynamical interpretations to our findings which we have evaluated for the Eötvös parameter

of a test mass in free fall, for the return time of a quantum test mass in a gravitational

field, and for the propagation phase of a quantum object transiting an interferometer. In all

cases, quantum fluctuations—or the spreading of a wave packet—imply specific corrections

to the classical equations of motion and affect physical conclusions.

Wave packet spreading is always mass-dependent, even for a free particle. Whether this

mass-dependence noticeably affects the center of mass motion is a matter of precision. At

the classical end, when no quantum fluctuations are kept, the center of mass motion of a

freely falling particle is independent of mass. When quantum fluctuations are considered,

the mass-dependence of the center of mass motion depends on the functional form of the

potential used, or the order of its Taylor expansion. Owing to the position of the derivative

in Ehrenfest’s equation, when the gravitational potential is at most quadratic in position,

the resulting equations of motion close on the center of mass and are mass-independent in

keeping with the findings of previous studies. However, for higher order potentials (e.g.

Newtonian) we have demonstrated that inhomogeneities in the gravitational field create

quantum tidal forces. The tidal force has the same form here as in classical calculations,
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with the addition of a mass-dependent term enforcing uncertainty constraints on the second-

order statistics. In the coupling of this spreading behavior to the center of mass we find the

center of mass dynamics become mass-dependent as well.

The observed coupling is coarse in that it reflects only the second-order statistics of

the wave packet and then only in the direction of motion. If further precision is required,

then following the logic of Section II, this framework may be extended to examine the

tidal effects of higher order fluctuations. In pursuing this one could use the canonical

mappings of higher order fluctuations obtained in [24] up to fourth order. Should the

full three-dimensional structure of the wave packet be considered, that reference includes in

addition canonical mappings for more than one degree of freedom. The systematic derivation

of these mappings using methods from Poisson geometry for quantum moments implies

computational advantages compared with a many-body treatment that would be required

for classical tidal effects of mass distributions. If ℏ-terms such as our u are ignored, the

quantum derivation may also be interpreted as a shortcut for a description of the classical

effects.

In the case that tidal forces affect the dynamics, the magnitude of the influence on the

center of mass motion may be determined by an Eötvös parameter η. However, owing to

differences in state preparation across experiments and because the wave packet width in

interferometer experiments is typically not independently well-constrained, it is difficult to

judge a value for η. Values for this effect corresponding to atomic-scale sized wave packets

are orders of magnitude below current experimental bounds. The smallness of the mass-

dependence for these conditions is a consequence of the smallness of the only free parameter

appearing in the dynamics: u = ℏ2/(4GMm2re). If the wave packet width is permitted to

approach the size of a meter then Eötvös parameter values near the sensitivities reached by

existing experiments are plausible to obtain.

In summary, a quantum weak equivalence principle for expectation values is correct only

in the limit that tidal effects are irrelevant i.e., the width of the wave packet is small com-

pared to the curvature length of the field. Our analysis uses only non-relativistic quantum

mechanics. Such analysis highlights features particular to the non-relativistic theory. We

hope our viewpoint is sufficiently clear as to remove any uncertainty which may persist on

the topic of universal free fall in quantum mechanics. This framework may prove useful in

connection with further tests of the weak equivalence principle.
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