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We present a methodology based on the implementation of a fully-connected neural network
algorithm to estimate the temporal evolution of the high-frequency gravitational wave emission for a
Core Collapse Supernova (CCSN). For this study, we selected a fully-connected deep neural network
(DNN) regression model because it can learn both linear and non-linear relationships between the
input and output data, it is more appropriate for handling large-dimensional input data, and it
offers high performance at a low computational cost. To train the ML algorithm, we construct
a training data set using synthetic waveforms, and several CCSN waveforms are used to test the
algorithm. We performed a first-order estimation of the high-frequency gravitational wave emission
on real interferometric LIGO data from the second half of the third observing run (O3b) with a
two detector network (L1 and H1). The relative error associated with the estimate of the slope of
the resonant frequency versus time for the GW from CCSN signals is within 13% for the tested
candidates included in this study up to different Galactic distances (1.0kpc, 2.3kpc, 3.1kpc, 4.3kpc,
5.4kpc, 7.3kpc, and 10kpc). This method is, to date, the best estimate of the temporal evolution of
the high-frequency emission in real interferometric data. Our methodology of estimation can be used
in future studies focused on physical properties of the progenitor. The distances where comparable
performances could be achieved for Einstein Telescope and Cosmic Explorer roughly rescale with
the noise floor improvements.

I. INTRODUCTION

We are witnessing the era of ground-based gravita-
tional wave (GW) detectors. Since 2015, the rate of
confirmed events, the sensitivity and accuracy of the
GW interferometers, and the detector network, have
been improved to levels that might open the door to
new and complex Galactic sources of GW such as Core
Collapse Supernovae (CCSNe) (for a review, see [1, 2]).
A detection of GW’s from CCSNe could be one of the
main scientific achievements for the Advanced LIGO [3],
VIRGO [4], and KAGRA [5] detectors (LVK).

CCSNe designate the final life stage for a massive
star (M⊙ > 8), a highly energetic process of stellar ex-
plosion recorded and observed since ancient times. (For
a review, see [6–11].) The explosion process begins once
the star’s iron core mass exceeds its Chandrasekhar limit
and collapses on itself. After core collapse, a compact,
dense (above nuclear matter density 1− 2× 1014g/cm3)
star is created, a Proto-Neutron Star (PNS), whose
physical properties are inherited from the progenitor
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star. Several processes involving different regions of the
PNS are associated with the generation of high-frequency
(above 100 Hz) GW: convective instabilities, convective
overshoot, and accretion onto the PNS (e.g., see [12–14]).

A central problem in transient GW astronomy is
to reconstruct the physical parameters associated with
the source of the gravitational radiation when the signal
is detected in laser interferometric data. This problem
involves two parts: The identification of the relevant
deterministic parameters, and the best procedure
to estimate them. The GW from CCSN numerical
simulations manifest as strongly stochastic signals
[12–51]; nevertheless, some features can be classified as
deterministic. A feature that emerges from all CCSN
numerical simulations is commonly referred to as the
“g-mode” [13, 14, 16, 20, 24, 25, 27–29, 31, 33–35, 40, 44–
46, 49, 50, 52–54].

This feature is recognizable in a time-frequency
spectrogram as a continuous, strictly increasing, and
to a first order approximation linear feature, in the
sense that, the cWB reconstructed events in current
interferometric are mostly reliable for frequencies below
1000 Hz. Starting at around 100 Hz and increasing up to
∼ 1− 2 KHz with time after bounce. Here, instead, we
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refer to this feature simply as the high-frequency feature,
or HFF. It has been shown that the modal classification
of the HFF is more complex than previously thought
and can include both f and g modes [27] or possibly
multiple g modes (e.g., surface and interior) [11]. The
rate of increase of the HFF is a deterministic feature
present in several studies focused on physical properties
of the progenitor [7, 27, 28, 50, 53, 55, 56], parameter
estimation [16, 31, 52, 57, 58], and data analysis strate-
gies [59–63]. The first attempt to estimate the slope of
the HFF with real interferometric noise was performed
in [63], applying a chi-squared method to a low-order
polynomial evolution of the resonant frequency. The
authors applied the procedures on CCSN events iden-
tified by cWB, the flagship algorithm for the detection
of GW bursts. Other studies [39, 53, 64], proposed an
approach involving normal mode decomposition, along
with a polynomial interpolation and simulated Gaussian
noise, to infer the time evolution of a combination of the
mass and radius of the compact remnant.

In this work we use an optimized neural network
approach for the estimation of the slope of the HFF
from CCSN events detected by cWB. The results of
the estimation associated with the evolution of the
HFF resonant frequency with time are produced in
real interferometric LIGO noise, equatorial orientation,
and different Galactic distances across 1.0 kpc, 2.3 kpc,
3.1 kpc, 4.3 kpc, 5.4 kpc, 7.3 kpc and 1.0 kpc (see
tables V and VI). This aims to quantify the capabil-
ity to use the slope of the HFF in different studies
where numerical determination of the slope constitutes
the component of a framework for parameter esti-
mation that can be used once the GW from a CCSN
are detected by the LIGO, Virgo, and KAGRA detectors.

In the rest of the text we focus our attention on
the estimation of the evolution of the HFF resonant
frequency with time. In order to estimate the HFF
slope, we develop a deep neural network (DNN) model
for regression, consisting in a set of machine learning
algorithms that encompass diverse computational and
statistical methods acting simultaneously to extract in-
formation, and to infer properties from a large variety of
datasets using hierarchical structures to recognize promi-
nent features from input data. To identify the detected
events, we use Coherent WaveBurst (cWB) [65–68], a
powerful computational pipeline designed to detect and
reconstruct GW bursts with minimal assumptions about
the morphology of the signal. We perform cWB event
production on two different kinds of GW signals: The
first is used to train our algorithm, providing estimated
slopes associated with spectrograms in absence of noise,
that reveal a linear growth of the HFF. These signals
will be designated as synthetic waveforms. Once the
algorithm is trained from the synthetic waveforms [52],
a set of gravitational waveforms from CCSN simulations
[12, 13, 15, 16, 24, 27, 31] are included as testing data.

Figure 1 illustrates the different steps proposed in this
manuscript. We quantify the accuracy of the deep
learning regression model, to estimate the slope of the
HFF, using the standard deviation. Graphically (see
Figures 10 and 11) a band around the mean value of
the estimated slope, denoted ˆ̄s, in the spectrograms of
the CCSN GW signals illustrates the possible outcomes
of the estimation process, controlled by the standard
deviation, induced by the NN model. We compute this
quantity for different DNN architectures (see Table II).

The manuscript is organized as follows. Section II
describes the stages for the construction of the training
and testing data sets, the cWB event production analyses
performed to obtain the signal detections and likelihood
maps for the CCSN signals selected, the corresponding
processing for the cWB outcomes, and the topology of
the neural network model and the hyper-parameters that
determine the performance of the neural network. In
section III we present the results of the implementation
and the accuracy of the model. Finally, in section IV
we present the conclusions and future directions for this
work.

II. METHODOLOGY

In this section we describe the methodology carried out
to estimate the slope of the HFF fundamental resonant
frequency evolution associated with CCSN GW events
detected with cWB. The methodology uses (A) GW
from CCSN signals, (B) the cWB algorithm to obtain
likelihood time-frequency maps for detected events, (C)
processing of the likelihood time-frequency maps to con-
struct an image, and (D) the DNN model used to esti-
mate the HFF slope value. Figure 2 illustrates the vari-
ability of the HFF slope in the synthetic, and in the GW
from CCSN signals implemented in this study.

A. GW from CCSN signals

1. Synthetic signals

We created stochastic signals with increasing frequency
over time, observable in their spectrograms, thus emulat-
ing CCSN GW signals containing the HFF feature. The
synthetic signals are to be used in cWB event produc-
tion analyses to obtain a training data set of likelihood
time-frequency maps with estimated values of the HFF
slope. These signals were created based on the damped
harmonic oscillator with an external stochastic driving
force; i.e., a second order, non-homogeneous differential
equation, as proposed in recent work (see Equation (1)
in [52]). The solution to such differential equations is
performed numerically, and the choice of several param-
eters such as the duration, and initial and final frequen-
cies (which encode the HFF) can be modified easily to
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FIG. 1. Graphical description of the follow-up deep learning method proposed to estimate physical parameters of GW from
CCSN events detected with cWB – specifically, the slope of the HFF oscillatory feature. The cWB pipeline detects a GW event
and provides reconstructed signal information, such as the likelihood time-frequency map L. This time-frequency information
is processed to construct a gray-scale image X(t, f), which in turn is used as input for a deep learning regression model that
estimates the value of the HFF slope, ŝ.

FIG. 2. Range of HFF slopes associated with (i) CCSN GW signals included in this study [see Section IIA 2] and (ii) 10
different synthetic signals [see Section IIA 1].

obtain different solution signals. Even though these syn-
thetic signals do not carry any physical information, they
are highly beneficial because it is straightforward to vary
their associated parameters and because the computa-
tional cost to generate them is very low. Therefore, we
can obtain signals that resemble GW from CCSN, with
the HFF feature, and for each signal we directly have
the value of the HFF slope, s, which is simply computed
as the difference between the higher and lower frequency
divided by its duration. We generated 100 different syn-
thetic CCSN GW signals with HFF slopes ranging from
500 to 5000 Hz/s and duration ranging between 0.1 s to
1.6 s. these values cover the range of durations found in
the CCSN GW signals implemented in this study, which
will be described in the next subsection. Figure 3 shows
a sample of three synthetic CCSN GW signals included
in this study, with HFF slope values of 626, 2319, and

4765 Hz/s.

2. Numerical simulation signals

We also used CCSN GW signals from 2D and 3D numer-
ical simulations, all of which contain the HFF feature.
This set of CCSN GW signals is used in our cWB event
production analyses as a test data set, with its estimated
values of the HFF slope in the absence of noise, denoted
s, computed in the following way: (i) Using the spectro-
gram of a CCSN GW signal, we select, for each time,
the more intense pixels in its time-frequency evolution.
(ii) Using the pixels described in (i), we apply a simple
linear regression in the frequency range where the HFF
is present. The linear regression provides the value of
the slope in the absence of noise, s, along with the corre-
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FIG. 3. Examples of three synthetic CCSN GW signals with HFF slopes of 626, 2319, and 4765 Hz/s. The amplitude and SNR
of the synthetic waveforms range between 1× 10−21 and 1× 10−23 and between 6 < SNR < 30, respectively. Left panels show
the strain signals, while the right panels shows their spectrograms. The solid white lines in the spectrograms trace the rising
frequency over time.

sponding intercept in time. In this way, as a result of the
cWB event production, every likelihood time-frequency
map encodes the slope of the HFF. Specifically, we se-
lected the following set of GW from CCSN signals com-
puted from different progenitors and degree of rotation:

• Model s20 from Andresen et al. 2017 [69]. The
GW signal is extracted from a 3D approximately
general relativistic radiation (neutrino) hydrody-
namics simulation with a 20 M⊙ non-rotating pro-
genitor.

• Model s15.nr from Andresen et al. 2019 [12].
The GW signals are extracted from three different
models based on 3D approximately general rela-
tivistic radiation (neutrino) hydrodynamics simula-
tions with a single progenitor with a zero-age main-
sequence mass (ZAMS) of 15 M⊙, solar metallicity,
and with different rotation rates 0 rad/s, 0.2 rad/s,
and 0.5 rad/s

• Model Fiducial from Cerdá-Durán et al. 2013 [52].
This is a GW signal generated from a 2D general
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FIG. 4. Strain signals (left panels) and time-frequency evolution spectrograms (right panels) for CCSN GW models: Model
s20 from Andresen et al. 2017, Model s15.nr from Andresen et al. 2019, Model Fiducial from Cerdá-Durán et al. 2013, Model
s15.0 from Kuroda et al. 2017, Model C15-3D from Mezzacappa et al. 2020, Model M10-DD2 from Morozova et al. 2018, and
Model mesa20 from O’Connor and Couch 2018. The solid white lines in the spectrograms trace the HFF.
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FIG. 5. Strain signals (left panels) and time-frequency evolution spectrograms (right panels) for CCSN GW models: Model
s20 from Andresen et al. 2017, Model s15.nr from Andresen et al. 2019, Model Fiducial from Cerdá-Durán et al. 2013, Model
s15.0 from Kuroda et al. 2017, Model C15-3D from Mezzacappa et al. 2020, Model M10-DD2 from Morozova et al. 2018, and
Model mesa20 from O’Connor and Couch 2018. The solid white lines in the spectrograms trace the HFF.

relativistic hydrodynamics simulation associated
with a low-metallicity, rapidly-rotating progenitor,
with a zero-age main-sequence mass of 35M⊙ whose
initial central angular velocity is 2 rad/s.

• Model s15.0 from Kuroda et al. 2017 [24]. For this
signal, the GW emission is obtained from a 3D gen-
eral relativistic radiation (neutrino) hydrodynam-
ics with a 14 M⊙, solar metallicity, non-rotating
progenitor.

• Model C15-3D from Mezzacappa et al. 2020 [13].
For this signal the GW emission is computed for
a 3D approximately general relativistic radiation

(neutrino) hydrodynamics simulation with a non-
rotating 15 M⊙ progenitor of solar metallicity.

• Model M10-DD2 from Morozova et al. 2018 [27].
This signal was generated from a 2D approximately
general relativistic radiation (neutrino) hydrody-
namics CCSN simulation with a 10 M⊙ progeni-
tor with solar metallicity and moderate rotation:
0.2 rad/s.

• Model mesa20 from O’Connor and Couch 2018
[31]. In this model, the GW emission is modelled
from a 3D approximately general relativistic radi-
ation (neutrino) hydrodynamics CCSN simulation
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with a 20 M⊙, solar metallicity, non-rotating pro-
genitor.

Note that all of these CCSN GW signals are from 3D nu-
merical simulations except for the signals models Fidu-
cial and M10-DD2, which correspond to 2D simulations.
In addition, these signals were used in recent studies in-
volving targeted searches [62], false detection rates [70],
and sensitivity analyses of GW’s from CCSNe [61], us-
ing strain data of the LIGO, VIRGO, and KAGRA de-
tectors. Figures 4 and 5 shows the strain signals and
the spectrograms of signal models s20, s15.nr, Fiducial,
s15.0, C15-3D, M10-DD2, and mesa20. Note how the
spectrograms manifest the HFF feature.

B. cWB event production

Coherent WaveBurst (cWB) is a standard method for de-
tecting and reconstructing GW embedded in strain data
recorded with the LIGO, VIRGO, and KAGRA detec-
tors. The method uses minimal assumptions about the
signal morphology [65–68], which has been a successful
methodology in the search of “unmodelled” GW’s, in-
cluding those from CCSNe, although GW’s from CC-
SNe are by now far from “unmodelled.” The cWB al-
gorithm (1) searches for coincident signal power across
detectors by projecting the multi-detector data onto the
wavelet (i.e., time-frequency) domain using the Wilson-
Daubechiers-Meyer transform [71], (2) identifies a collec-
tion of coherent time-frequency components with ampli-
tudes above noise levels, and (3) clusters them to obtain a

likelihood time-frequency map L = {(ti, fi), li}NL
i=1, where

li is the likelihood point value at time ti and frequency fi,
and NL is the number of time-frequency points. Figure
6 shows the likelihood time-frequency map L for a de-
tected event from a synthetic GW signal. We use in this
study the likelihood time-frequency map L to estimate
the HFF slope value because it contains the significant
time-frequency information that is used to reconstruct
the detected GW signal. cWB event production analyses
were performed using LIGO data from the second half of
the third observing run (O3b) with a two-detector net-
work (L1 and H1). The aim was to obtain distributions
of likelihood time-frequency maps of detected GW from
CCSNe, to train and to test the deep learning algorithm
that estimates the value of the HFF slope. The cWB
event production was developed at standard configura-
tion [68]. Known GW from CCSN signals were injected
every 50 s, at seven different Galactic distances 1.0 kpc,
2.3 kpc, 3.1 kpc, 4.3 kpc, 5.4 kpc, 7.3 kpc, and 10 kpc,
with equatorial orientation, into the detector strain data
on the second half of the third observing run O3b. Along
this paper we use the cWB detections, and we performed
the HFF slope estimation without going into the details
of how the significance is assigned. The amount of detec-
tions vary depending on the injected signals, we obtained
12.221 detections for the synthetic waveforms, and 5134

detections for the GW from CCSN signals. Some relevant
parameters involved in the configuration file, that con-
trols the operation of cWB for the event production are:
The optimal probability for black pixel selection, (bpp),
that was set at bpp = 0.05, and the subnetwork threshold,
(subnet), subnet = 0.5. Along with this parameters the
production thresholds, netRHO and netCC, was fixed
at netrho = 4.0 and netCC = 0.4. The lowest and
highest frequencies were adjusted at fLow = 100 and
fHigh = 750 respectively. Then, the search for GW is
carried out, and for each detected event, the likelihood
time-frequency map L is computed, along with some re-
constructed signal attributes. All cWB event produc-
tion analyses were performed in two separate stretches
of strain data. The first, comprising 1 day of coinci-
dent data, was used to obtain the training data, while
the second stretch of data, comprising 8 days of coin-
cident data, was used to obtain the testing data. In
addition, our cWB analyses were performed separately
with the synthetic and with the CCSN GW signals con-
taining the characteristic HFF feature, as was described
below. The set of synthetic signals constructed as part
of this study (see subsection IIA 1) was used in the first
stretch of strain data, to obtain the training data set,
Dtrain = {Lj , sj}Ntrain

j=1 , where Lj and sj are the likeli-
hood time-frequency map and the HFF slope value of the
j-th detected event, respectively, and Ntrain is the num-
ber of training instances. Furthermore, the set of GW
from CCSN signals (see subsection IIA 2) was used in the
second stretch of strain data, to obtain the test data set
of likelihood time-frequency maps, Dtest = {Lj , sj}Ntest

j=1 ,
where Ntest is the number of test instances. It is im-
portant to remark at this point that training and test
data sets are mutually exclusive, which is a necessary
condition to assess the robustness of the machine learn-
ing algorithm used to perform the estimation of the HFF
slope with unknown GW from CCSN signals.

C. Image construction

The likelihood time-frequency map, L = {(ti, fi), li}NL
i=1,

varies across detected events in the number of points,
the frequency range, and the time range. Therefore, it
is necessary to produce a data representation with stan-
dard dimensions so that it can be used as input to the
machine learning model that estimate the slope of the
HFF. Hence, the goal is to define a function f(·) that
maps L into a two-dimensional data matrix X(t, f); that
is, f : L → X(t, f), where the width (t-dimension) and
height (f -dimension) are the same for any detected GW.

Given L = {(ti, fi), li}NL
i=1, the image construction is car-

ried out through the following procedure. First, we select
the time-frequency point that has the maximum likeli-
hood value, {tm, fm}. Then, we select a region around tm
in the interval [tm−δt, tm+δt] (width in the t-dimension
of 2·δt), and around fm in the interval [50 Hz, 750 Hz],
where the cWB reconstructed signal is more accurate.
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FIG. 6. Likelihood time-frequency map, L, of a detected event from a synthetic signal and its corresponding two-dimensional
data matrix X(t, f) of dimension k × k with k = 28.

The length of δt is fixed at 0.3 s such that the time inter-
val is large enough to contain the primary evolution of the
early high-frequency HFF present in the GW from the
CCSN models considered in this study [see section IIA 2].
This region is then transformed into a high-resolution,
gray-scale image where the intensity is given by the like-
lihood value of the corresponding time-frequency points,
while pixels with no corresponding time-frequency points
are set to zero. Finally, this gray-scale image is downsized
to dimension Nr×Nc to obtain the final two-dimensional
data matrix or image X(t, f), where Nr and Nc represent
the number of rows and columns, respectively. Equiva-
lently, the data matrix or image X(t, f) can be flattened
to construct the N -dimensional column vector x ∈ RN ,
where N = Nr ·Nc. Figure 6 shows the two-dimensional
data matrix X(t, f), with dimension Nr = Nc = 28, for
a likelihood time-frequency map, L, of a detected event
given a synthetic signal.

D. Deep Neural Network model for regression

To estimate the HFF slope of CCSN GW events detected
with cWB, we use a deep learning regression model. The
input to this model is the column vector representation
x ∈ RN of the processed likelihood time-frequency map,
X(t, f), while the output is the estimated HFF slope
value ŝ. The HFF slope values estimated in this work
are continuous, real, and positive (i.e., s ∈ R+), rang-
ing from 500 Hz/s to 5000 Hz/s. Hence, there are sev-
eral regression methods that can be used to address this
task; for instance, linear and polynomial models, decision
trees, and artificial neural networks [58–61, 72–75]. For
this study, we selected a fully-connected deep neural net-
work (DNN) regression model because it can learn both
linear and nonlinear relationships between the input and
output data, it is more appropriate for handling large-
dimensional input data, and it offers high performance
at a low computational cost. DNN are machine learning
models inspired by biological neural network models of

the brain, consisting of many interconnected processing
units known as neurons, which vaguely mimic biological
neurons [59, 73, 76]. The structure of a DNN comprises
an input layer, one or more hidden layers, and an out-
put layer, thus resembling a brain neural network [58–
60]. The input layer consists of nodes that receive the
input data and pass them directly into the first hidden
layer for further processing, whereas hidden and output
layers consist of many neurons [59, 76] interconnected by
weighted synaptic links. In a DNN, the information flows
from the input towards the output while being processed
in the layers, through the following function:

f : Rm 7−→ Rn, (1)

where m and n denote the number of nodes or neurons
of two successive layers. Therefore, the j-th neuron in
a layer (hidden or output) with n neurons is connected
to all of the m outputs of the preceding layer, via the
weighted synaptic connections [76], in such a way that
the neuron produces the output yj as a function of linear
combinations of the input information as follows:

yj = g

(
m∑
i=1

wi,jxi

)
, (2)

where wi,j are the weights connecting all m inputs to the
j-th neuron and g(·) is a bounded, differentiable, real,
and nonlinear function known as an activation function
[73, 75]. The activation function allows the nonlinear-
ity between the input–output relationship. In regression
problems, typical activation functions are linear, sigmoid,
or the rectified linear unit [76]. Note that the number of
nodes of the input layer corresponds to the input vari-
ables (in our case, N inputs), the number of neurons
in the output layer corresponds to the output variables
(in our case, one output), whereas the number of hid-
den layers, the number of neurons in each layer, and
the activation functions are hyper-parameters that can
be freely varied to obtain different DNN models. There-
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TABLE I. Architectural description of the deep neural net-
work (DNN) regression models used to assess the estimation
of the HFF slope from likelihood time-frequency maps.

# of hidden # of # of
layers neurons weights

M1 1 16 12,577
M2 2 32-16 25,665
M3 3 64-32-16 52,865
M4 4 128-64-32-16 111,361
M5 5 256-128-64-32-16 244,737

fore, the synaptic weights are the parameters that are
fitted from a training data set. We considered five DNN
models with different numbers of hidden layers and neu-
rons. Table I presents the technical details of the DNN
models, which are named M1, M2, M3, M4, and M5.
In all models, the activation functions correspond to the
rectified linear unit (ReLu) in the hidden layers and to
the linear function in the output layer. The training of
the models (i.e., the fitting of the synaptic weights) was
based on the back-propagation learning algorithm using
the root-mean-squared propagator (MNSprop) with the
mean-squared error as a loss function, a learning rate of
0.001, a batch size of 512 samples of the training data,
and 300 epochs.

III. RESULTS

In this section we present the results of two analyses de-
voted to assessing the performance of the estimation of
the HFF slope of CCSN GW events using DNN regres-
sion models.

A. Hold-out cross-validation with Dtrain

We first assessed the effectiveness and reliability of
the proposed DNN model for the estimation of the
HFF slope, testing the training data set of likelihood
time-frequency maps, Dtrain, through a hold-out cross-
validation (HOCV) procedure [76, 77], where the entire
data set was randomly split into two parts for training
(70%) and for testing (30%). This procedure was re-
peated 30 times to account for the randomness of the
process and to be able to compute distributions of the
performance metrics. Note that in each repetition the
training and testing data are mutually exclusive. The
training set is used to fit the weights of the DNN model,
while the test set is used to asses the model performance
[59, 60]. To assess the performance, we used the following
metrics: (i) the coefficient of determination (r2), defined
as:

r2 = 1−
∑

i(s− ŝi)
2∑

i(s− s̄i)2
(3)

where (s−ŝi)
2 denote the sum of the squares of the resid-

uals, s̄i =
1

n

∑
i si is the mean of the estimated slopes in

absence of noise (for n-observations), and (
∑

i s−s̄i)
2 cor-

responds to the total sum of squares. This metric mea-
sures for every model the linear correlation between the
estimated slopes in absence of noise, (s), present in the
likelihood maps and the corresponding estimated slopes
(ŝ) ; (ii) the root-mean-square error (RMSE) defined as:

RMSE =

√∑
i(ŝi − si)

2

n
(4)

This metric is computed, like the coefficient of determina-
tion, using the residuals, (s− ŝ). Its computation serves
to discriminate how far from the mean the estimated
slopes are, and finally (iii) the mean-absolute-percentage
error, (MAPE), defined as:

MAPE =
100%

n

n∑
i=1

|s− ŝ|
s

(5)

is a performance metric that measures the accuracy of
our estimations evaluating the residuals, (s− ŝ), divided
by (s) and summed over every estimated value on a
certain number, (n), of observations. These performance
metrics provide support to evaluate the accuracy of each
model from different perspectives and clarify the out-
puts obtained. Table II shows the average values of the
performance metrics achieved with the five DNN models.

According to the scores presented in the table, we
conclude that model three (M3) (see Table I) exhibits
the best performance in estimating the slope of the
HFF, among the five different DNN architectures (M1
to M5), because (1) it has the higher linear correlation
(0.76) expressed through the r2 coefficient and (2) the
lowest residuals (594.64) and percentage error (21%)
reported by the RMSE and MAPE, respectively. Figure
7 illustrates the performance metrics for each model.
Model 3 (in green) shows a lower dispersion with respect
to the mean of the estimated slopes for the HFF, and
lower residuals compared with those associated with
the remaining models: M1 (blue), M2 (orange), M4
(red) and M5 (purple). To give a more individual
characterization of the different DNN models, Figure 8
illustrates how distinct architectures estimate a single
slope contained in the training data set. This figure
clarifies the fact that estimation performed by model
M3 produces the best fit compared with the other DNN
architectures.

B. Estimation of the HFF slope of 3D CCSN GW
signals

After the design [Section II], construction [Section IIC],
and successive sanity checks performed on the training
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FIG. 7. Distribution of the performance metrics, r2, RMSE, and MAPE, achieved with the five DNN regression models in the
hold-out cross-validation procedure with the data set Dtrain. The horizontal central lines in the box plots denote the median
of the estimated HFF slopes.

TABLE II. Summary (mean ± standard deviation) of the performance metrics, r2, RMSE, and MAPE, achieved with the DNN
regression models in the hold-out cross-validation procedure with the data set Dtrain.

Metric M1 M2 M3 M4 M5

r2 0.68± 0.02 0.72± 0.05 0.76± 0.01 0.74± 0.05 0.73± 0.07
RMSE [Hz/s] 690.57± 32.86 651.27± 65.08 594.64± 26.31 616.79± 62.03 636.85± 81.94

MAPE 0.27± 0.02 0.25± 0.04 0.21± 0.01 0.23± 0.05 0.24± 0.06

data set, Dtrain [SectionIIIA], we use the M3-DNN ar-
chitecture [see Table I], along with the processed like-
lihood maps for the GW from CCSN signals, as a test
data set, Dtest, in order to perform the estimation of the
HFF slope. Dtest is only composed of processed likeli-
hood maps obtained from CCSN signals [see IIA 2] that
were not considered in the training process; therefore,
the estimation of the HFF slope is carried out on Dtest,
an unknown set of signals for the DNN architecture. Ta-
ble II contains the performance metrics results for every
model described in IID on the training data set Dtrain;
moreover, Table III shows the results of the implementa-
tion for the DNN architecture [see Table I] on the dif-
ferent GW from CCSN signals included in this study
[see Section II]. These results reflect a mean-absolute-
percentage error, (MAPE), in the estimation of the HFF
slope for this sample of 13%, which includes GW from

CCSN signals for different progenitor (ZAMS) masses,
metallicities, and rotation rates. In Figures 10 and 11,
we show (left column) the histograms that describe the
distribution of estimated slopes (in blue) for each CCSN
GW signal included in Dtest. The vertical, black, dashed
lines stand for the values of the HFF slope in the ab-
sence of noise, while the red, dashed lines define the esti-
mated HFF slope means, denoted ˆ̄s. In the right column,
the spectrogram of each CCSN GW signal illustrates the
estimation error. The solid white lines with circles in-
dicate the values of the slopes in the absence of noise,
for each model. Solid red lines with stars indicate the
means of the estimated slopes, ˆ̄s, obtained from the M3-
DNN architecture. The dashed, gray lines denote the
estimation errors according to the STDs reported in Ta-
ble III. An estimation of the GW temporal evolution of
the HFF fundamental resonant frequency for a core col-
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FIG. 8. Distribution of estimated values ŝ achieved with the five DNN models in the hold-out cross-validation procedure with
the data set Dtrain for the specific cases of real values of s = 1111.0 Hz/s , s = 2023.0 Hz/s, and s = 3560.0 Hz/s.

TABLE III. HFF slope estimation results. Each column contains the values associated with the slope, s, estimated slope, ŝ,
plus its corresponding standard deviation, STD, its RMSE, and its MAPE. All of this is for the M3-DNN architecture.

Model s [Hz/s] ŝ [Hz/s]±STD RMSE [Hz/s] MAPE

Fiducial from Cerdá-Durán et al. 2013 1288 1204.78± 120.75 142.37 0.09
s15.0 from Kuroda et al. 2017 3082 3169.36± 67.52 108.68 0.03

M10-DD2 from Morozova et al. 2018 1389 1193.24± 122.76 228.54 0.14
mesa20 from O’Connor and Couch 2018 2381 2525.21± 146.58 204.95 0.06

s15.nr from Andresen et al. 2019 2246 2263.17± 380.58 380.59 0.13
s20 from Andresen et al. 2019 1907 2399.42± 759.80 904.59 0.33

C15-3D from Mezzacappa et al. 2020 3406 3358.91± 619.03 719.98 0.20

lapse supernova was recently presented in [63], using a
chi squared approach in the context of a multimessenger
analysis for the identification and parameter estimation
of the Standing Accretion Shock Instability (SASI) with
neutrino and GW signals. Following our methodology
based on the implementation of a neural network (see
sections II and III B), the estimation of the slope of the
HFF fundamental resonant frequency for a CCSN is im-
proved by 85% for model s15.0 from Kuroda et al. 2017
when compared with the value reported in the study of
the SASI. This fact reveals that the implementation of a
neural network model yields a substantial improvement
when compared with chi-squared-based estimation. As-
suming we are not aware of theoretical reasons why the

HFF should have a strong dependence on the source ori-
entation, we estimated the robustness of our results with
respect to randomizing the orientation of the source. In
Figure 9 we present an example of HFF slope estimation
for model s15.0 from Kuroda et al. 2017, considering
nine different random orientations. A systematic study
was performed for the remaining CSSN GW signals im-
plemented in this paper, and the impact on the slope
value varies between a few percent and 10%. For a real
CCSN detection, we will have a specific orientation. The
source orientation variability discussed in this paragraph
will, however, have to be accounted for in future efforts
to extract physical information about the progenitor.
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FIG. 9. Estimation of the HFF slope for model s15.0 from Kuroda et al. 2017, across nine different random orientations.

TABLE IV. Variation of the HFF slope across progenitor mass, rotation, and metallicity, and across EOS.

Model s [Hz/s] ŝ [Hz/s] EOS Mass M⊙ Rotation Metallicity

Fiducial, Cerdá-Durán et al. 2013 1288 1204.78 LS220 35 2 rad/s Low
mesa20, O’Connor and Couch 2018 2381 2525.21 SFHo 20 - Solar

s20, Andresen et al. 2017 1907 2399.42 LS220 20 - Solar
s15.0, Kuroda et al. 2017 3082 3169.36 SFHx 15 - Solar

C15-3D, Mezzacappa et al. 2020 3406 3358.91 LS220 15 - Solar
s15.nr, Andresen et al. 2019 2246 2263.17 LS220 15 0.5 rad/s Solar

M10-DD2, Morozova et al. 2018 1389 1193.24 LS220 10 0.2 rad/s Solar

IV. SUMMARY

We incorporate a set of synthetic CCSN GW signals
(see Section II) to train a DNN model (Section IIIA)
to estimate the slope associated with the gravitational
wave temporal evolution of the HFF present in CCSN
GW signals (Section IIA 2). We quantified the accuracy
of distinct DNN architectures using three different
performance metrics to evaluate the accuracy of every
model under different topologies, as presented in Table
II, searching for the more accurate configuration to
achieve estimation of the HFF slope. Our analysis and
implementation of such DNN architectures indicate we
can estimate the slope of the HFF in real interfero-
metric data for different Galactic sources and CCSN
GW idiosyncrasies (Section IIA 2). Tables V and VI
show the HFF slope estimation with its corresponding

Standard Deviation, (STD), for seven different Galactic
sources at 1.0 kpc, 2.3 kpc, 3.1 kpc, 4.3 kpc, 5.4 kpc,
7.3 kpc, and 10 kpc. As we might expect, the number
of triggers reduces with distance. As shown in Tables
V and VI, the HFF slope estimation presents a higher
STD. The results obtained using our methodology
reflect that, this implementation could be applied to
develop parameter estimation in upcoming LVK sci-
entific runs. We leave this aspect for future publications.
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FIG. 10. HFF estimated slope, ŝ, HFF estimated slope mean, ˆ̄s, and their corresponding HFF estimation errors, associated
with different CCSN GW signals included in this study. The histograms on the left show, in blue, the HFF estimated slopes
and, with red, dashed lines, the HFF estimated means. The right column illustrates the estimation error in the spectrograms of
the CCSN GW signals described in Section IIA 2. The gray, dashed lines denote the estimation errors. White, solid lines with
circles denote the slope of the HFF, in the absence of noise. And red lines with stars correspond to the mean of the estimated
HFF slopes obtained through the M3-DNN architecture.
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FIG. 11. HFF estimated slope, ŝ, HFF estimated slope mean, ˆ̄s, and their corresponding HFF estimation errors, associated with
different CCSN GW signals included in this study. The histograms in the left column show, in blue, the HFF estimated slopes
and, with red, dashed lines, the HFF estimated mean. The right column illustrates the estimation error in the spectrograms
of the CCSN GW signals described in Section IIA 2. The gray, dashed lines denote the estimation error. The white, solid
lines with circles denote the slope of the HFF, in absence of noise. And the red lines with stars correspond to the mean of the
estimated HFF slopes obtained through the M3-DNN architecture.

TABLE V. Variation of the HFF estimated slope across different Galactic distances: 1.0 kpc, 2.3 kpc, 3.1 kpc, and 4.3 kpc.

Model s [Hz/s] 1.0 kpc 2.3 kpc 3.1 kpc 4.3 kpc

Fiducial, Cerdá-Durán et al. 2013 1288 1204.78 1345± 221 1575 ± 496 1954 ± 596
mesa20, O’Connor and Couch 2018 2381 2525.21 2689 ± 145 2903 ± 312 3312 ± 396

s20, Andresen et al. 2017 1907 2399.10 2614± 223 3012 ± 496 3324 ± 342
s15.0, Kuroda et al. 2017 3082 3169.36 3243± 109 3472 ± 221 3723 ± 443

C15-3D, Mezzacappa et al. 2020 3406 3358.91 3443 ± 237 3743 ± 396 3978 ± 234
s15.nr, Andresen et al. 2019 2246 2263.17 2509 ± 207 2689 ± 441 2945 ± 504

M10-DD2, Morozova et al. 2018 1389 1193.24 1349 ± 115 1576 ± 396 1608 ± 503
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TABLE VI. Variation of the HFF estimated slope across different Galactic distances: 5,4 kpc, 7.3 kpc, and 10 kpc.

Model 5.4 kpc 7.3 kpc 10 kpc

Fiducial, Cerdá-Durán et al. 2013 2172 ± 598 2560 ± 698 3012 ± 723
mesa20, O’Connor and Couch 2018 3576 ± 696 3976 ± 621 4217 ± 876

s20, Andresen et al. 2017 3508 ± 554 4295 ± 662 4796 ± 883
s15.0, Kuroda et al. 2017 3998 ± 554 4209 ± 754 4873 ± 952

C15-3D, Mezzacappa et al. 2020 4110 ± 512 4675 ± 370 4975 ± 876
s15.nr, Andresen et al. 2019 3309 ± 555 3775 ± 875 4175 ± 576

M10-DD2, Morozova et al. 2018 1934 ± 634 2375 ± 772 2775 ± 902

edges a CONACYT scholarship. MZ was supported by
NSF Grant No. PHY-1806885. AM was supported by

the NSF Gravitational Physics Theory Program (PHY-
1806692 and PHY-2110177).

[1] K. Kotake, K. Sato, and K. Takahashi, Explosion mechanism, neutrino burst and gravitational wave in core-collapse
supernovae, Reports on Progress in Physics 69, 971 (2006), arXiv:astro-ph/0509456 [astro-ph].

[2] E. Abdikamalov, G. Pagliaroli, and D. Radice, Gravitational Waves from Core-Collapse Supernovae, in Handbook of
Gravitational Wave Astronomy. Edited by C. Bambi (2022) p. 21.

[3] J. Aasi et al. (LIGO Scientific), Advanced LIGO, Classical and Quantum Gravity. 32, 074001 (2015), arXiv:1411.4547
[gr-qc].

[4] F. Acernese, Advanced virgo: a second-generation interferometric gravitational wave detector, Classical and Quantum
Gravity 32, 024001 (2014).

[5] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, Interferometer
design of the KAGRA gravitational wave detector, Physical Review D 88, 10.1103/physrevd.88.043007 (2013).

[6] H.-T. Janka, T. Melson, and A. Summa, Physics of Core-Collapse Supernovae in Three Dimensions: A Sneak Preview,
Annual Review of Nuclear and Particle Science 66, 341 (2016), arXiv:1602.05576 [astro-ph.SR].

[7] B. Müller, The Status of Multi-Dimensional Core-Collapse Supernova Models, Proc. Astron. Soc. Pac. 33, e048 (2016),
arXiv:1608.03274 [astro-ph.SR].

[8] A. Mezzacappa, E. Endeve, O. E. B. Messer, and S. W. Bruenn, Physical, numerical, and computational challenges of
modeling neutrino transport in core-collapse supernovae, Living Reviews in Computational Astrophysics 6, 4 (2020),
arXiv:2010.09013 [astro-ph.HE].

[9] B. Müller, Hydrodynamics of core-collapse supernovae and their progenitors, Living Reviews in Computational
Astrophysics 6, 3 (2020), arXiv:2006.05083 [astro-ph.SR].

[10] A. Burrows and D. Vartanyan, Core-collapse supernova explosion theory, Nature (London) 589, 29 (2021),
arXiv:2009.14157 [astro-ph.SR].

[11] A. Mezzacappa, Toward Realistic Models of Core Collapse Supernovae: A Brief Review, IAU Symposium 362, 215
(2023), arXiv:2205.13438 [astro-ph.SR].

[12] H. Andresen, B. Müller, E. Müller, and H.-T. Janka, Gravitational wave signals from 3d neutrino hydrodynamics
simulations of core-collapse supernovae, Monthly Notices of the Royal Astronomical Society 468, 2032 (2017).

[13] A. Mezzacappa, P. Marronetti, R. E. Landfield, E. J. Lentz, K. N. Yakunin, S. W. Bruenn, W. R. Hix, O. B. Messer,
E. Endeve, J. M. Blondin, and J. A. Harris, Gravitational-wave signal of a core-collapse supernova explosion of a
mml:math xmlns:mml=”http://www.w3.org/1998/math/MathML”
display=”inline”mml:mrowmml:mn15/mml:mnmml:mtext /mml:mtextmml:msubmml:mrowmml:mstyle
mathvariant=”italic”mml:mrowmml:mim/mml:mi/mml:mrow/mml:mstyle/mml:mrowmml:mrowmml:mo
stretchy=”false”⊙/mml:mo/mml:mrow/mml:msub/mml:mrow/mml:math star, Physical Review D 102,
10.1103/physrevd.102.023027 (2020).

[14] A. Mezzacappa, P. Marronetti, R. E. Landfield, E. J. Lentz, R. D. Murphy, W. Raphael Hix, J. A. Harris, S. W. Bruenn,
J. M. Blondin, O. E. Bronson Messer, J. Casanova, and L. L. Kronzer, Core collapse supernova gravitational wave
emission for progenitors of 9.6, 15, and 25 M⊙, Phys. Rev. D. 107, 043008 (2023), arXiv:2208.10643 [astro-ph.SR].

[15] H. Andresen, E. Müller, H. T. Janka, A. Summa, K. Gill, and M. Zanolin, Gravitational waves from 3D core-collapse
supernova models: The impact of moderate progenitor rotation, Mon. Not. Roy. Astron. Soc. 486, 2238 (2019),
arXiv:1810.07638 [astro-ph.HE].
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