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Using the complete classification of the bases in the rotating black hole background we separate
superradiance from the Hawking effect. We first find that there is spontaneous particle creation for
fermions by the potential outside the black hole horizon for the frequencies inside the superradiant
regime, i.e. ω < kΩH . However, these particles do not enhance the total flux from the black hole.
For the superradiance particle to became real, its negative energy counterpart has to be canceled by
the positive energy Hawking radiation mode at the horizon. Since due to the Pauli’s principle this
cancellation must be one-to-one, the superradiance effect cannot add anything to the total black hole
flux. For an extremal black hole, the Hawking temperature is zero, horizon is not populated with
thermal modes, and fermions can be emitted through the superradiance mechanism. On the other
hand, a macroscopic flux of fermions infalling to the black hole is the opposite process of Hawking
radiation. A positive energy-infalling particle must cancel out a negative energy thermal mode at
the horizon, which leaves a net positive energy mode that crosses the horizon. Since there is finite
thermal particle density at the horizon, this implies that there is a maximal fermion infalling rate
which is also controlled by the Hawking temperature.

I. INTRODUCTION

The phenomenon of superrdiance, i.e. a process in
which disordered energy is converted into coherent energy
[1]. Most notably, in the presence of a potential barrier,
superradiance is a classical phenomenon in which an am-
plitude of an outgoing wave after the reflection from the
barrier is greater than the amplitude of the ingoing wave
[2]. This effectively leads to a reflection coefficient greater
than one (i.e. negative absorption coefficient). Superra-
diance can also happen in the background of a rotating
black hole [3, 4], where an incident wave can take away
part of the rotational energy of the black hole and get
amplified after reflection. This has been described in a
wide range of situations in the literature (see e.g. [5–
22]). Nevertheless, it should be noted that the crucial
difference between the Hawking effect and superradiance
is that the Hawking effect happens in the presence of the
horizon, while the superradiance does not need a horizon.
Superradiant emission is simply the effect of particle cre-
ation in scattering from the potential barrier outside of
the horizon. Some more recent papers raise a question
whether horizon is really necessary even for the Hawking
effect (e.g. [23–25]), suitable boundary conditions and
the existence of some other dissipative mechanism can
take the role of the horizon [26, 27]. However, we adopt
here the standard picture where the Hawking radiation
is created when one member of a virtual pair created in
vicinity of the horizon falls into the black hole while the
other member escapes to infinity.

In the context of black hole radiation, it has been no-

ticed that the superradiance is not possible for fermions
[4, 28–35]. It was found that a part of an incoming Dirac
field gets reflected from the black hole horizon, but in
contrast with the bosonic fields, the amplitude is never
enhanced. The Pauli exclusion principle is often vaguely
mentioned as a reason, however without any explicit de-
scription of the process. In quantum field theory, if a
fermion flux is reflected by an electric field barrier, the
amplitude of the reflected wave can be enhanced. Since
the fermion flux can be enhanced in QED, but not in
the background of a black hole, the black hole geometry
must play a very important role. The aim of this paper
is to clarify this issue using the complete classification of
the bases in the rotating black hole background given in
[28].

In this paper, we make a subtle distinction between
the superradiance in the sense of spontaneous particle
production by the gravitational potential in the super-
radiant regime of frequencies, and superradiance in the
sense of amplification of the amplitude of the reflected
wave. While the former is present for fermions in the
background of rotating black holes, the latter is absent.
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II. EQUATION OF MOTION FOR FERMIONS.

We start with the metric for a rotating black hole in
the standard form

ds2 = −(1− 2Mr

Σ
)dt2 − 4Mra sin2 θ

Σ
dtdϕ+

Σ

∆
dr2

+ Σdθ2 +
(
r2 + a2 +

2Mra2 sin2 θ

Σ
sin2 θ

)
dϕ2, (1)

∆ = r2 − 2Mr + a2, (2)

Σ = r2 + a2 cos2 θ, (3)

where a is the black hole rotation parameter. The New-
ton’s constant, G, Planck’s constant, ℏ, the speed of light,
c, and Boltzmann constant, kB , are set to 1. The mass-
less Dirac equation without an external potential is

(γµ∇µ)Ψ = 0, (4)

where γµ are the general relativistic Dirac matrices,
which satisfy

{γµ, γν} = 2gµν . (5)

The metric connection is

∇µ = ∂µ +
1

8
ωµαβ [γ

α, γβ ], (6)

where ωµαβ is the spin connection. The Dirac field, Ψ,
is a 4-spinor, but it can be written in the chiral 2-spinor
representation

Ψ =

[
PA

Q̄B′

]
(7)

where PA and Q̄B′ are the chiral eigenvectors. They
represent the particle helicity (defining the left or right
handed fermions) in the massless case. Matrices γµ are

γµ =
√
2

[
0C2 σµAB′

σµ
AB′ 0C2 ,

]
(8)

PA and Q̄B′ denote 2-component spinors, σµ
AB′ are the

Hermitian (2 × 2)-Infeld-van der Waerden symbols, and
A ∈ 1, 2 and B′ ∈ 1′, 2′. The 2-spinor form of the Dirac
equation is

σµ
AB′∇µP

A = 0 (9)

σµ
AB′∇µQ

A = 0. (10)

Here, the Pauli matrices are

σµ
(k)(l′) =

[
lµ mµ

m̄µ nµ,

]
(11)

and the null vectors are chosen to be

lµ =
1

∆
(r2 + a2,∆, 0, a) (12)

nµ =
1

2ρ2
(r2 + a2,−∆, 0, a) (13)

mµ =
1

ρ̄
√
2
(ia sin θ, 0, 1, i csc θ) (14)

m̄µ = mµ∗. (15)

Here, ρ̄ = r + ia cos θ. This 2-spinor Dirac equation can
be separated into the radial and angular part by applying
the following substitution

P 0 =
e−iωt+ikϕ

√
2(r − ia cos θ)

R− 1
2
(r)S− 1

2
(θ) (16)

P 1 = e−iωt+ikϕR+ 1
2
(r)S+ 1

2
(θ) (17)

Q̄0′ = e−iωt+ikϕR+ 1
2
(r)S− 1

2
(θ) (18)

Q̄1′ =
e−iωt+ikϕ

√
2(r + ia cos θ)

R− 1
2
(r)S+ 1

2
(θ), (19)

where k is the azimuthal number, k ∈ Z + 1
2 . Though

it looks like PA and Q̄A′ are related, they just happen
to satisfy similar relations, and must be considered inde-
pendently. The Dirac equation now reduces to two pairs
of equations

∆
1
2 (∂r +

iK

∆
)R− 1

2
= λ∆

1
2R+ 1

2
(20)

∆
1
2 (∂r −

iK

∆
)∆

1
2R+ 1

2
= λR− 1

2
(21)

(∂θ +Q+
1

2
cot θ)S+ 1

2
= −λS− 1

2
(22)

(∂θ −Q+
1

2
cot θ)S− 1

2
= λS+ 1

2
(23)

Here,

K = −(r2 + a2)ω + ak (24)

Q = −aω sin θ + k csc θ (25)

After redefining the radial coordinate as

dr∗ =
r2 + a2

∆
dr, (26)

the asymptotic solution can be found near the horizon
and at infinity. When r → ∞, we have

R− 1
2
∼ eiωr∗ (27)

∆
1
2R+ 1

2
∼ e−iωr∗ . (28)

Apparently, R− 1
2

represents an outgoing mode and

∆R+ 1
2
an in-coming mode (Fig. 1). When r → r+, we

have

R− 1
2
∼ ei(ω−kΩH)r∗ (29)

∆
1
2R+ 1

2
∼ e−i(ω−kΩH)r∗ , (30)

where ΩH = a
2Mr+

. For the modes with ω > kΩH , R− 1
2

is an out-going mode and ∆
1
2R+ 1

2
is an in-coming mode

near the horizon. For the modes with ω < kΩH , R− 1
2

is an in-coming mode and ∆
1
2R+ 1

2
is an out-going mode

near the horizon (Fig. 1).
Following the procedure outlined in [36], R− 1

2
and

∆
1
2R+ 1

2
are combined into a single wave function

Z+ = ∆
1
2R+ 1

2
+R− 1

2
. (31)
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The function Z+ represents a 1 + 1-dimensional particle
wave which interacts with the gravitational potential and
then gets scattered away.
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2
+∆

1

2

R 1

2
+∆

1

2

FIG. 1. If ω > kΩH , then R− 1
2

is an out-going mode and

∆
1
2R+ 1

2
is an in-coming mode at the horizon. If ω < kΩH , the

roles are reversed, so R− 1
2
is an in-coming mode and ∆

1
2R+ 1

2

is an out-going mode at the horizon (not shown in the fig-
ure). The function Z+ field includes four possible asymptotic
states at r → ∞ and r → r+. A combination of these asymp-
totic states can represent a field coming from infinity which is
scattered by the potential. Part of it crosses the horizon and
part of it is reflected back to infinity. It can also represent a
wave which escapes from the horizon and is scattered by the
potential. Part of it is transmitted through the barrier and
goes to infinity, and part of it is reflected and goes back to
the horizon.

III. SPONTANEOUS PARTICLE CREATION
OUTSIDE THE HORIZON.

The spontaneous particle creation related to superra-
diance happens in the region outside of the (past and
future) horizon labeled by H+ and H− in Fig.2. So all
the events relevant for superradiance happen in the right
square in Fig. 2. In contrast, Hawking radiation is in-
duced by the presence of the black hole horizon.

To study the process of spontaneous particle creation
we have to identify the basis in which we decompose the
fields, and the vacuum state of the field. To describe a
vacuum state of a field, we need at least two bases. For
our purpose, we define four possible bases [40]. The first
is the in-coming mode, which represents a wave going
from the past null infinity, I−, to the black hole,

Zin
J ∼ 1√

ω
exp(−iωr∗). (32)

The second one is the out-going mode, which represents
a wave propagating from the black hole to the future null
infinity, I+,

Zout
J ∼ 1√

ω
exp(iωr∗) (33)

The third one is the down mode, which represents a wave
going into the future horizon, H+,

Zdown
J ∼ 1√

|ω − kΩH |
exp(−i(ω − kΩH)r∗). (34)

I
_

I
+

H
+

H
_

out

inup

down

dn

FIG. 2. The black hole Penrose-Carter diagram. The space
outside the horizon is in the right square. The upper trian-
gle represents the space inside the future horizon. The black
hole radiation due to Hawking effect involves these two re-
gions. On the other hand, only the right square is involved in
particle creation by the superradiance mechanism. The thin
dashed line represents the potential barrier that induces the
superradiance. Four types of bases (down, up, in and out)
are involved in the process. Five bases (including dn) are in-
volved in the full black hole radiation [40]. Similar argument
for scalar field can be found in [41].

The forth one is the up mode, which represents a wave
going away from the past horizon, H−,

Zup
J ∼ 1√

|ω − kΩH |
exp(i(ω − kΩH)r∗). (35)

Since a field decomposition requires four distinct bases,
we can decompose Z+ in two different ways

Ẑ+ =
∑
J

âinJ Zin
J + âupJ Z̃up

J + h.c. (36)

=
∑
J

b̂outJ Zout
J + b̂down

J Z̃down
J + h.c. (37)

where J = {ω, l, k, s} with s being the helicity of the
fermion, while h.c. stands for the hermitian conjugate
terms. We also have

Z̃α
J = Zα

J , if ω − kΩH > 0 (38)

= Zα
J
∗, if ω − kΩH < 0, (39)

where α can be up or down. The two types of vacua

corresponding to âαJ and b̂αJ are

âαJ |in; 0⟩ = 0 (40)

b̂αJ |out; 0⟩ = 0. (41)

The in mode is expressed in terms of the bases in the
past, while the out mode is expressed in terms of the
bases in the future. Consider now a field which starts
from the vacuum in the far past, and after evolving is
seen in terms of the out bases

Zin
J → RJZ

out
J + TJZ

down
J (42)

Zup
J → tJZ

out
J + rJZ

down
J . (43)
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The creation and annihilation operators are related
according to the relationship between the modes. For
ω − kΩH > 0, we have

b̂outJ = RJ â
in
J + tJ â

up
J . (44)

In this case, there is no particle creation since there is no
mixing of the creation and annihilation operators. For
ω − kΩH < 0, we have

b̂outJ = RJ â
in
J + tJ â

up
J

†. (45)

In this case there is particle creation because of the mix-
ing of the creation and annihilation operators. Thus,
ω − kΩH < 0 is the necessary condition for the superra-
diance. From here we can calculate the particle creation
number due to the superradiance effect as

nJ = ⟨in, 0| boutJ
†boutJ |in, 0⟩ = |tJ |2, if ω − kΩH < 0.

(46)
To compare the superradiance particle creation with the
Hawking effect and demonstrate their difference, we cal-
culate the total particle creation number (Hawking effect
plus superradiance) characterized by the transmission co-
efficient |tJ |2 [37, 38]

nT
J =

|tJ |2

exp
(
ω−kΩH

T

)
+ 1

, (47)

where, T is the black hole temperature.
From Eqs. (46) and (47) we can see the fundamental

difference between the superradiance and Hawking effect.
For example, for an extremal black hole we have T → 0.
If ω > kΩH , which is outside of the superradiant regime,
nT
J = 0 since both the Hawking effect and superradiance

are absent. However, if ω < kΩH , we get nJ = nT
J . In

that case the superradiance is present and it is the only
contribution to the total radiation from a black hole [39].
This clearly indicates that there is a black hole sponta-
neous radiation for fermions produced by the potential
barrier in addition to Hawking radiation.

Important things happen for the superradiance modes
ω < kΩH when T ̸= 0 in Eq. (47). The total black hole
radiation, i.e. Eq. (47), contains less modes than what
calculations without the horizon would give, i.e. Eq. (46),
since exp

(
ω−kΩH

T

)
+ 1 > 1. This implies that the exis-

tence of black hole suppresses the superradiance effect.
This suppression is induced by the black hole’s tempera-
ture, which also relies on particle creation from vacuum
and reduces the number of the available negative energy
modes. This of course happens because of the Pauli’s
exclusion principle which forbids two fermions to occupy
the same state. More precisely, when a pair is created
by the potential outside of the horizon (superradiance
effect), for a positive energy particle to become real and
leave the black hole, the negative energy particle must
fall into the horizon. Hawking effect creates positive and
negative energy modes at the horizon. So the negative
energy mode from the superradiance cancels out the pos-
itive energy mode from the Hawking effect, as in Fig. 3.

As the net effect, a positive energy particle leaves the
black hole and negative energy particle gets absorbed by
the black hole. The Hawking radiation modes and su-
perradiance modes are traded one-to-one, so there is no
net gain. Since we have more superradiance modes in the
absence than in presence of the horizon, this means that
the thermal black hole horizon suppresses superradiant
vacuum fluctuations. One might think that a negative
superradiance mode could fall through the horizon di-
rectly, but it cannot since the Hawking effect is thermal,
which means democratic, i.e. all the available modes at
the horizon for that temperature are already occupied.
So the negative superradiance mode has to rely on the
positive Hawking radiation mode to be absorbed. It is
not unexpected that the thermal Hawking flux suppresses
out the superradiance modes since the high temperature
moves particle distribution from low energy to high en-
ergy by reducing the low energy particle modes. And the
superradiance modes are indeed the low energy modes.

r+

Hawking       Superradiance

FIG. 3. Hawking effect happens at the horizon, while super-
radiance happens at the barrier outside of the horizon. For
the superradiance particle to become real, its negative energy
counterpart has to cancel out one of the thermal positive en-
ergy mode. The superradiance particle creation rate is higher
than the black hole radiation rate. This means that the su-
perradiance is suppressed by the presence of the horizon and
cannot exceed the thermal particle production by the Hawk-
ing effect.

IV. MAXIMAL INFALLING RATE OF
FERMIONS.

This phenomenon has one more interesting conse-
quence. If we send a flux of infalling (positive energy)
fermions to the black hole, not all of them will be ab-
sorbed by a black hole. The black hole already has its
saturated thermal fluctuations at the horizon, so only the
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infalling particles that can annihilate with the antiparti-
cles at the horizon can contribute to the net flux through
the horizon. If the infalling flux is beyond what the
maximal thermal flux can support, the Pauli exclusion
principle will apply again, which will in turn reduce the
infalling rate, and possibly increase the reflection rate.
This implies that there is a maximal infalling rate for
fermions into a black hole

F J
max(ω) ≡

dNmax

dtdω
=

1

e−
ω−kΩH

T + 1
. (48)

F J
max is the maximal particle number per unit time and

per unit energy, while J stands for the quantum numbers
of fermions. We note that we used the minus sign in the
exponent of Eq. (48), i.e. we use the distribution of the
negative energy modes. Because of the one-to-one trade,
the maximum infalling rate depends on particle distribu-
tions both inside and outside of the horizon. On both
sides, particles must satisfy the Pauli exclusion principle.
We know that the horizon is thermalized, but the whole
outer region (from the horizon to infinity) does not have
to be thermalized. Therefore, we can only apply the con-
straint on particles at the horizon, so we only use the
distribution of the negative energy particles as the sup-
pression factor.

If the flux is larger than this maximum value in
Eq. (48), the excess of particles will not be absorbed by
the black hole. We note that this is a conservative esti-
mate since we neglected the particles which are reflected
back while trying to propagate from the horizon out
through the barrier. This suppression is significant for
high temperature black holes, so it could play an impor-
tant role for small primordial black holes surrounded by
fermions in plasma. For large astrophysical black holes,
low temperature implies more negative energy thermal
particles at the horizon, so there are more negative en-
ergy modes that infalling particles can annihilate with,
so the suppression is smaller. Also, for a fixed temper-

ature, T , low energy particles, ω < kΩH are suppressed
more than high energy particles.

V. CONCLUSION.

To summarize, we separated the effect of superradiance
from the total radiation from the black hole. We showed
that the superradiance for fermions does exist in the sense
of spontaneous particle production for the frequencies in
the superradiant regime by the potential barrier outside
of the horizon. However, these particles do not enhance
the reflection amplitude, nor the total flux from the black
hole since every superradiance particle that became real
was traded one to one with the thermal Hawking flux
particle due to the Pauli’s exclusion principle.

The same mechanism imposes a maximal fermion in-
falling rate controlled by the black hole temperature.
Smaller black holes with higher temperatures have more
thermal modes the horizon, which in turn gives lower
maximal infalling rate. One may wonder if the same con-
clusions can be drawn for a horizonless compact object.
The answer is positive, if appropriate boundary condi-
tions or dissipative mechanisms that take over the role
of the horizon are applied. The negative energy flow at
the horizon must be absorbed by some mechanisms, for
example by particle pair annihilation or specific bound-
ary conditions. In that case the maximum infalling rate
should be the same as in Eq. (48) with T = 0.
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