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Einstein’s general theory of relativity makes exciting predictions about cosmology and various astrophysical
objects, with black holes, arguably, as the simplest and most important among them. Recent observations
of gravitational waves by the LIGO-Virgo collaboration [1, 2], and capturing of the images of shadows cast
by black holes with the Event Horizon Telescope [3, 4] are strongly suggestive of their existence. Among
the very many properties of these compact objects that have been studied in the past, the response of a
black hole to a tidal environment is an especially exciting one since it can form the basis of a smoking gun
test of the black hole nature of compact objects. In this article, we study this property provide an analytic
method for computing the tidal response of a black hole to an external tidal field in a relativistic scenario.
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Abstract

We present an analytic method for calculating the tidal response function of a non-rotating and a
slowly rotating black hole from the Teukolsky equation in the small frequency and the near horizon
limit. We point out that in the relativistic context, there can be two possible definitions of the tidal
Love numbers and the dissipative part that arise from the tidal response function. Our results suggest
that both of these definitions predict zero tidal Love numbers for a non-rotating black hole. On the
other hand, for a slowly rotating black hole in a generic tidal environment, these two definitions of the
tidal Love numbers do not coincide. While one procedure suggests zero tidal Love numbers, the other
procedure gives purely imaginary tidal Love numbers. As expected, the dissipative terms differ as well.
We emphasize that in our analysis we keep all the terms linear in the frequency, unlike previous works
in the literature. Following this, we propose a procedure to calculate the tidal response function and
hence the Love numbers for an arbitrarily rotating black hole.
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The response of any self-gravitating object under the influence of an external tidal field can be divided
into two parts — conservative and dissipative. The conservative part encodes the information about
the tidal deformation of the body, while the dissipative part describes the absorption of the emitted
gravitational waves by the deformed object [5]. One can associate dimensionless numbers with the body’s
tidal deformation [6-9], known as the tidal Love numbers. Several studies, including Newtonian as well
as relativistic, have found the tidal Love numbers for a Schwarzschild black hole to be zero [5, 8-17].
Generalization of this result to include slowly rotating black holes has also been attempted before, in the
context of Newtonian gravity [18, 19], and a zero tidal Love numbers have been obtained there as well. The
corresponding situation for an arbitrarily rotating black hole remained ambiguous. Attempts have also
been made to study non-linearities [20] and stability [21] of the tidal response of a Schwarzschild black hole.
The analysis of the tidal Love numbers are generically performed using the Newtonian approximation for
the perturbed g;; component of the metric and then expanding the perturbation asymptotically. However,
this method lacks the covariant nature of general relativity, such that a different choice for the asymptotic
coordinates can alter the numerical value of the tidal Love numbers. Thus a relativistic generalization was
much sought after.

To further stir the already muddled situation, [13, 14] reported non-zero but imaginary tidal Love
numbers for a rotating black hole in a non-axisymmetric tidal environment, in complete contrast with
all the previous works in the literature. At the same time, [13, 14] also presented a covariant method
of determining the tidal Love numbers, namely through the Weyl scalar, and the tidal Love numbers in
the zero frequency limit were obtained by first solving the radial Teukolsky equation and then taking
its asymptotic limit. Though the result was counter-intuitive, [13, 14] set the stage for determining the
relativistically invariant tidal Love numbers. Based on this suggestion [5] computed the tidal response
function from the radial Teukolsky equation under the small frequency approximation from the asymptotic
expansion of the Weyl scalar and demonstrated that the imaginary Love numbers calculated in [13, 14] are
actually associated with the dissipative part of the response function, and not with the conservative part.
Thus, it turned out that the tidal Love numbers of both non-rotating and rotating black holes identically
vanish. In this work, we revisit the analysis and discuss possible subtleties associated with the definition
of the tidal Love numbers, which earlier works have missed. In particular, we will focus on extracting the
tidal Love numbers from the response function of black holes under an external tidal field and shall also
closely study the approximations involved in solving the radial Teukolsky equation.

At this outset, it is also worthwhile to point out the implications of the analysis involving tidal Love
numbers. If the black holes in general relativity indeed have zero tidal Love numbers, then not only we can
test the black hole paradigm, but will also be able to distinguish black holes in general relativity from those
in alternative theories of gravity. This is because, compact objects other than black holes, e.g., wormholes,
Boson stars, and gravastars, all have non-zero tidal Love numbers [22-25], even black holes with quantum
corrections have non-zero Love numbers [26]. Thus from the inspiral part of the gravitational wave signal
arising from the coalescence of two compact objects, if one can read off the contribution from the tidal
Love numbers, then it will be possible to comment on the nature of these compact objects. Moreover, the
same test can also be used to distinguish general relativity from other theories of gravity, as black holes
in some alternative theories of gravity may have non-zero Love numbers [27], in contrast to Schwarzschild
or Kerr black holes. For example, higher-dimensional black holes have non-zero tidal Love numbers [28].
Thus, with the advent of the new generation of gravitational-wave detectors, the question regarding the
non-zero value of the tidal Love numbers for compact objects can possibly be answered and will be of
much significance. As emphasized already, an understanding of the tidal Love numbers are not only useful
for a more complete comprehension of black hole physics at the classical level but also for probing a wider
variety of compact objects and the fundamental physics associated with them. For instance, non-zero tidal



Love numbers may shed light on the quantum nature of gravity, besides providing a better understanding
of the existence of exotic compact objects and various properties of their constituents.

The present work is organized as follows: We start in Section 2 by reviewing the definition of the tidal
response function in the Newtonian context and its generalization to the relativistic domain. Subsequently,
we provide possible definitions of the tidal Love numbers arising from the response function and elaborate
on the motivations behind them. In Section 3, we discuss the approximations involved and hence present
the master equation, obtained from the radial Teukolsky equation, which will be used to calculate the
response function. The computation of the response function of the Schwarzschild black hole in an external
tidal field has been presented in Section 4 and the corresponding expression for the slowly rotating Kerr
black hole is depicted in Section 5. Finally, in Section 6 we discuss possible methods of determining the
tidal response function for an arbitrary rotating black hole in light of the results obtained in this work and
also suggest possible future directions of exploration. We have delegated several detailed computations in
the appendices.

Notations and conventions: In this work, we have set the relevant fundamental constants to unity,
i.e., G = 1 = ¢, unless otherwise stated. We will use mostly the positive signature convention, such
that the flat spacetime Minkowski metric in the Cartesian coordinates takes the following form 7., =
diag.(—1,+1,41,41). Moreover, the Greek letters u, v, a, . .. denote the four spacetime coordinates, while
the lowercase Roman letters 14, j, k,... denote the three-dimensional space coordinates. The boldfaced
Roman letters, e.g. A, will denote three-dimensional (spatial) vectors.

2 Tidal response function in a relativistic setting

In this section, we will first briefly review the response of a compact object to the tidal field of a companion
in the Newtonian context. We will subsequently describe how the response function can be derived in
a relativistic setting through the Newman-Penrose formalism [29]. The generalization of the response
function to the relativistic setting is necessary since the response function in the Newtonian regime is
prone to issues related to the choice of gauge. Afterwards, we will demonstrate how an expression for the
Love numbers can be arrived at from the relativistic formulation of the tidal response function.

2.1 Newtonian response function

Consider a spherically symmetric, non-rotating (or slowly rotating) compact object of mass M immersed
in an external gravitational field, which acts as the source of tidal perturbation. The total gravitational
potential outside the object will be the combination of the gravitational potential due to the object itself,
given by Upoay, and the potential of the tidal background, denoted by Utigal. Among these, the gravitational
potential Upoqy can be expressed in terms of the mass multipole moments of the gravitating object and is
given by a series expansion in inverse powers of the radial coordinate r as [14, 30],
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In the above expression, L as a superscript denotes the multi-index set ajas - - - a;, such that I* = [@12
describes a tensor of rank I, and I‘X) denotes the symmetric trace free (STF) part of it [30]. For illustration,
we present below the symmetric and trace-free part of a second-rank tensor A%,
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and similar definitions exist for the STF part of any higher-rank tensors as well. Along similar lines, the
tensor n” = z¥/rl, where ot = g@ 2@ = goigo2 ... p% and r = iz, with n¥) being the STF part
of nf. Note that n’ is simply a direct product of I unit vectors, each of which is defined as n = z/r,
where x is the spatial vector with respect to the Galilean transformation in the Cartesian coordinates.
The symmetric and trace-free tensor n{f) can also be expressed in terms of the spherical harmonics as
follows [30]:
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where @lfnm is a constant STF tensor, relating the components of the normal STF tensor with the spherical
harmonics.

The gravitational potential of the compact object also depends on the STF tensor I‘%), which is
related to its mass multipole moments. In particular, the [ = 0 term in Eq. (1) falls off as 7—!, and hence
corresponds to the monopole mass moment, which depends on the mass of the compact object. While the
higher values of [ in the expansion of Uy.qy in negative powers of the radial coordinate are related to the
higher mass multipole moments of the compact object.! These mass multipole moments, namely %), are
defined in terms of an integral over the volume of the compact object as,

i = /p(hw)x(mdgw , (4)

where the STF tensor ‘%) has already been introduced earlier, and p(t,) is the mass density of the
compact object, which also includes any perturbations to the mass density, created by the tidal field.
Due to the time variation of the mass density, these mass multipole moments, described by the STF
tensors I(X) | are also functions of the time coordinate. For our purpose, it will be convenient to transform
these STF tensors to the spherical harmonic basis, e.g., I¢% should be transformed to I;,,, which are the
spherical harmonic modes of the multipole moments. Such a transformation reads [14, 30]:

I8 = Z Al (5)

m=—I
while the inverse transformation, expressing I, in terms of the STF multipole moment tensor I(X, yields,

4rl! (L)
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Note that the normalization factors in both of these relations are arbitrary and different conventions exist
for them. For example, the choice of the normalization factors adopted here corresponds to [14], while in
[30] the factor of {47l!/(20 4 1)!!} appearing in the right-hand side of Eq. (6) is interchanged with the unit
factor of Eq. (5).

In an analogous manner, one can also express the gravitational potential due to the tidal field as a
series in the positive powers of the radial coordinate » whose coefficients denote the tidal moments, such
that
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IThe | = 1 term will be zero, when we place the origin at the centre of mass of the object.



where one defines the time-dependent tidal moments as

1
5<L> (t) = —m@([& Utidal ¢ w0 . (8)

It should be emphasized that Eq. (7) should be considered as a Taylor expansion in the ratio (r/L), where
r is the distance of the field point from the center-of-mass of the deformed object and L is a characteristic
length scale over which the tidal field varies in space. In particular, £y ~ £~ and we will assume that
the tidal field varies slowly over space, so that over the region of interest, the condition (r/L) < 1, is
always satisfied [14].

Besides, in the above expression d;,Uyiga corresponds to the I-th derivative of Uyiqa evaluated at the
centre of mass of the body, located at © = 0, and 91yUtiqa1 corresponds to the associated STF tensor.
Alike the multipole moments, the spherical harmonic components of the tidal field and the quantities
Ery(t) are also related through Eq. (5), while the inverse relation is obtained with I replaced by £ in
Eq. (6). We will have occasion to use these relations subsequently. Again, the overall normalization factor
in Eq. (7), as well as in Eq. (8), can differ depending on the convention employed. For example, the choice
considered here is consistent with [5, 14]. On the other hand, in [30] the term involving (I — 2)! is absent
in the normalization of both Eq. (7), and Eq. (8). However when the tidal moments &y from Eq. (8)
are substituted back in the tidal potential in Eq. (7), it is evident that the (I — 2)! term appearing in the
present situation gets cancelled and the resulting equation will coincide with the corresponding expression
in [30].

Having elaborated on the spherical harmonic decomposition of the Newtonian potential associated with
the compact object and also with the tidal field, we find for the total Newtonian potential the following
decomposition:
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where we have separated out the monopole term. Since the higher order mass multipole moments, Ij,,,
are generated due to the external tidal field &£, in the linear regime these should be proportional to each
other. This suggests the following linear response of the gravitating compact object to a slowly varying
tidal field [5]:
L = — U2 o o, o Etm - 10

Im — (2l — 1)” |: Im¢<Ilm TOVImClm ] ) ( )
where —{ (I —2)!/(20 — 1)!!} is the overall normalization factor? and R is a characteristic length scale, often
taken to be the radius of the compact object that is being tidally deformed. The quantity k;,,, appearing
as the proportionality factor between the mass multipole moments and the tidal field, is referred to as the
tidal Love numbers, and its determination will be one of our primary focuses in this paper. On the other
hand, the connection between the multipole moment and the time-derivative of the tidal field is defined by
the term 71yv;,,, where 7y is a characteristic time scale over which the tidal field changes significantly over
time and vy, is the proportionality factor that we relate to the tidal dissipation. Substituting Eq. (10)
in Eq. (9), and moving to the Fourier space, we obtain the following expression for the total gravitational

2Readers may find other choices for this normalization factor in the literature. It depends on the definitions of the
potentials, mass multipole moments, and their transformation to the corresponding STF counterparts.



potential,
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where w is the mode frequency and we have introduced the function
Fipn (@) = 2kum + iwTotim + O(w?) (12)

defined as the tidal response function, in the Fourier space [5]. Therefore, the real part of the response
function, k., are the tidal Love numbers, and the imaginary part, mov;,,, which is also proportional to the
frequency w, is associated with the tidal dissipation. This formalism can also be generalized to a slowly
rotating object [14, 15], where the structure of the gravitational potential remains the same, with the time
derivative of the tidal field being with respect to the time coordinate in the co-rotating frame of reference.
Therefore, the tidal response function becomes

Fin (W) = 2Ky, + iw' Tovpm + O(W?) (13)

where w’ is the mode frequency in the body’s co-rotating frame [30]. Here too the real part corresponds
to the tidal Love numbers and the imaginary part, proportional to the co-rotating frequency, is related to
tidal dissipation.

However, this approach to determining the tidal response function depends heavily on the asymptotic
expansion of the gravitational potential in the presence of an external tidal field. In the metric formulation,
one relates the Newtonian potential to the time-time component of the metric, such that g;; = —(1 —2U).
Thus the asymptotic expansion of the metric perturbation of the time-time component of the metric is
related to the higher multipole moment expansion of the Newtonian potential, as in Eq. (9). Therefore,
using the technique outlined above, one can calculate the tidal response function, from the time-time
component of the metric perturbation. In general, these computations are Newtonian in nature and are
dependent on the gauge choices, e.g., in the non-rotating case the tidal response is determined in the Zerilli
gauge. As a consequence, this approach to calculating the tidal response function depends explicitly on
the choice of coordinates and/or gauges and hence makes the interpretation of the results involving tidal
Love number ambiguous [31]. Following this, we wish to present a covariant approach to determining the
response function and hence the Love numbers below.

2.2 Tidal response function using the Newman-Penrose formalism

In the previous section, the Newtonian definition of the tidal Love numbers through multipole expansion
and spherical harmonic decomposition of the potentials was presented. However, as emphasized above, the
Newtonian definitions have inherent gauge/coordinate ambiguities that can affect the numerical estimate
of the tidal Love numbers values and are undesirable. In this work, we are interested in a relativistically
invariant definition of the tidal Love numbers and, at the same time, seek its imprint in gravitational
waves arising from the object and propagating outward to future null infinity. These requirements single
out the Weyl scalar 14 as the starting point of deriving the relativistic tidal response. However, as a first
step towards establishing 14 as the main character behind the determination of the relativistic tidal Love
numbers, we must demonstrate the connection between the Newman-Penrose scalar ¢4 and the Newtonian
potential, so that the corresponding result in the Newtonian limit can be derived. For this purpose, we
can compute the Weyl scalar ¢4 for the Newtonian metric, whose components in the Cartesian coordinate



system read [14]

2U 2U
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where U is the total Newtonian potential of the body and of the tidal field, together. Given the above
metric, we can calculate the relevant components of the Weyl tensor using the Kinnersley tetrad [32],
which in the Cartesian coordinate system read

= () nt = () s me = Om) s = (0, (15)
where n = x/r is the normal three-vector defined earlier and m is best expressed in the spherical polar
coordinate system: m = (1/v/2r)(9p — icsc9,). We can now determine the Weyl scalar v, by first
computing the components of the Weyl tensor from the metric components presented in Eq. (14) and then
performing the contraction of the Weyl tensor with the null tetrads, whose components have already been
presented above. Hence, the Newtonian limit of ¢4 becomes (for a similar expression for vy, see [14])

1 . .
lim ¢*y = ——m'm!V,;V,;U , (16)
c—o00 2

where V; is a covariant derivative compatible with the three-dimensional Euclidean metric in the Cartesian
coordinates. Transforming to the spherical polar coordinates, and using the form for the null tetrad vector
m* defined above, along with the form of the Newtonian potential U from Eq. (11), we arrive at

2+1
1+ Fim <R)
,

where Fj,, is indeed the tidal response function derived earlier. Note that in arriving at Eq. (17), connecting
the Weyl scalar 1, and the Newtonian response function Fj,,, we have used the result: m*m’ ViV, =
(1/2r%)8,0¢, where 0, = —(Jp — icsc 9y — scotf), with s being an integer and J, the spin-s lowering
operator for spin-weighted spherical harmonics [14, 33]. Moreover, we have also used the following result:
0100Yim = /I(l + 1)(I = 1)(I +2) —2Y}um, relating the spherical harmonics with spin-weighted spherical
harmonics, to arrive at Eq. (17). Moreover, the overall time-dependent factor oy, (t) gets related to the
tidal field components &, (t) through the following relation,

—QYEm ) (17)
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Thus the Weyl scalar ¢4 in the Newtonian limit indeed yields the appropriate tidal response function Fj,,
derived earlier through the Newtonian potential and hence provides the way forward for defining a gauge
invariant tidal response function. It is worth mentioning that the definition of the tidal response function
in terms of the Weyl scalar is indeed relativistically invariant, but is dependent on the spacetime foliation.
This is because the Weyl scalar depends on the choice of the tetrad vectors, any change in the tetrad
vectors is going to modify ¢,. While, for a fixed choice of the tetrad vectors, 14 does not depend on the
choice of the coordinates. However, the response function depends on the asymptotic fall-off behavior of
the 14, which for generic coordinate transformations are going to be retained, and in this sense, the tidal
response function is gauge invariant. In the subsequent section, we will highlight the key steps in deriving



the tidal response function from the Weyl scalar, which in turn will pave the way for defining the tidal
Love numbers of black holes under an external tidal field. As we will demonstrate later, there are several
issues in the present definition of the tidal Love numbers, when applied to black holes, and this can lead
to ambiguities in its definition.

2.3 Defining the Love numbers from the tidal response function

Having ascertained the role of 14 in defining the tidal response function even in the Newtonian limit,
let us briefly outline how the response function can be derived in the relativistic setting and then we
will elaborate on extracting the tidal Love numbers from the response function. The starting point is
the Teukolsky equation for w4, which can either be solved numerically or analytically with appropriate
approximations. The corresponding solution for w4, in general, will involve two arbitrary constants of
integration. One of them can be fixed by the purely ingoing boundary condition at the black hole horizon
(for the corresponding situation in the context of non-black hole solutions, see [34-38]). Subsequently,
after imposing the above boundary condition, one expands the solution for 14 in a region that is far away
from both the black hole and the source of the tidal field, often referred to as the intermediate region.
Such that the Weyl scalar becomes,
2041

where @y, (t) is a time dependent quantity (independent of r) and Fj,,, defines the tidal response function.
As evident from the above result, in this expansion of ¥4 in the intermediate region, the coefficient of the
negative power of the radial coordinate is what corresponds to the tidal response function. Note that in
the relativistic setting, the contribution of the tidal effects, as well as the response function of the deformed
object can be unambiguously identified by the solution of the Teukolsky equation, by promoting [ € R
[13, 14]. The above procedure outlines the method of obtaining the tidal response function of a compact
object under an external tidal field in a relativistic setting. The determination of the tidal Love numbers,
from the response function, can be achieved in two distinct ways. One of which is consistent with our
intuitive understanding that the tidal Love numbers depict the conservative part of the response function,
while the other, as we will see, arises from a different perspective and is seemingly plagued with difficulties
in interpretation.

The relation between the Love numbers and the tidal response function arises from the connection
between the multipole moment and the external tidal field, as expressed in Eq. (10), with the tidal Love
numbers being the coefficient of the tidal field &, (see [30] for a comprehensive discussion and [5, 13, 14, 17]
for recent developments). On the other hand, the coefficient of the time derivative of the tidal field in
Eq. (10) is referred to as tidal dissipation, where the time derivative is with respect to the proper time of
the observer, co-rotating with the black hole. Since the multipole moments and the tidal fields are real
(these are observables in classical physics), it follows that the tidal Love numbers k;,, and the dissipation
term Ty, must also be real. Thus the real part of the response function, at least in the small frequency
approximation, must correspond to the tidal Love numbers. On the other hand, the imaginary part of
the response function, possibly proportional to the frequency in the co-rotating frame of reference, should
describe the dissipative effects. This is also consistent with our intuition that the tidal Love numbers
correspond to the conservative part of the response function and hence must be real, while the tidal
dissipation, as the name suggests, is related to the dissipative part and thus must be imaginary. Along
these lines, we may argue that the tidal Love numbers are simply the real part of the response function,

Us}jflterrnediate — E &lm (t),,,l—Q

Ilm

—2Yim (19)




modulo a factor of (1/2), while the imaginary part of the response function describes the tidal dissipation.
With this definition we obtain, in the small-frequency limit, the following result for the Love numbers,

1
Fim = 5ReFin | (20)
while the dissipative part is given by,
w’Tol/l%) =ImFy, . (21)

To reiterate, the fact that Love numbers are the real part of the tidal response function is consistent with
the expectation that Love numbers are conservative in nature. While by definition the imaginary part
must be dissipative. As we will see, for the Schwarzschild black hole, the dissipative part is independent of
the frequency and depends only on the mass of the black hole. On the other hand, for the slowly rotating
Kerr black hole, the dissipative part will become frequency dependent, with a finite zero-frequency limit.
We advocate this proposal for the determination of the tidal Love numbers and the dissipative part, from
the response function, most strongly, since it neatly connects the expectations from the earlier results
in the literature to the intuitive picture and can be straightforwardly generalized to determine the Love
numbers of an arbitrary rotating Kerr black hole.

Apart from the definitions of the tidal Love numbers and the dissipative part given in Eq. (20) and
Eq. (21), one can also define the tidal Love numbers from the tidal response function in the following
manner,

1)

Im

x term independent of w’ in Fj,, , (22)
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and the dissipative part by,

(2) —
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w'Tov term dependent of «’ in Fy,, . (23)
This method is motivated by Eq. (10), and uses the fact that in the frequency domain, the dissipative part
has an overall factor of iw’, where w’ is the frequency in the co-rotating frame of reference. In the case of
a non-rotating black hole, the dissipative part becomes proportional to iw.

Note that, for non-rotating black holes, we simply have to replace w’ by w in the above definition. We
would like to emphasize that the above definition of the tidal Love numbers are motivated by the analysis
of [30], which is performed in a non-relativistic and weak field regime. Therefore, it is worthwhile to ask,
if one would expect the above formalism to hold true in the context of an arbitrary rotating black hole,
in particular, for an extremal black hole. In this respect, the above approach is questionable and is also
counter-intuitive, as the tidal Love numbers can become imaginary, and hence can also induce dissipative
effects. Though there are claims in the literature that the imaginary part of the tidal Love numbers can
be due to a phase lag between the tidal field and the deformation in the compact object [13, 14], it is not
clear why this lag should persist even in the time-independent situation, as any such lag should dissipate
out with time.

From our point of view, the first approach, where the tidal Love numbers are related to the real part of
the response function seems the appropriate one. This is also due to the fact that the Love numbers itself
can be frequency dependent, but if we define the Love numbers as the leading order term in an expansion
in powers of Mw, it cannot possibly encapsulate the same. In this respect as well, we can consider the
Love numbers to be simply the conservative part, which can be determined from the real part of the tidal
response function. Nonetheless, in what follows we will present the expressions of the tidal Love numbers
and the dissipative part explicitly, in both of these approaches.



3 Teukolsky equation in the small frequency limit

As demonstrated in the earlier sections, the tidal response function can be defined in a relativistic manner
through the asymptotic expansion of the perturbed Weyl scalar 4. These perturbations of the Weyl scalar
satisfy the Teukolsky equation, which arises from the gravitational perturbation of a perturbed Kerr black
hole [39-42]. Thus, from the solution of the Teukolsky equation one can extract the tidal response function
through an asymptotic expansion, which has been attempted recently in [5, 13, 14]. From the tidal response
function, derived through the solution of the Teukolsky equation, the tidal Love numbers of both rotating
and non-rotating black holes have been derived. Though [13, 14] predict non-zero but imaginary tidal Love
numbers, [5] argues that the non-zero part of the response function is arising from dissipative effects, while
the Love numbers, which depict the conservative part, are actually zero. To show the same, it is important
to solve the Teukolsky equation in the small frequency approximation (Mw < 1) as in [5], rather than
simply considering the static limit [13, 14]. However, in the analysis of [5], several linear order terms in
Muw, appearing in the Teukolsky equation, were neglected. Therefore, the result for the tidal response
function, as quoted in [5], in terms of the mode frequency w is at best incomplete.

In this work, we will consider all those terms into account, which had been neglected in the approxi-
mated low-frequency Teukolsky equation of [5], and then present the solution of the Teukolsky equation
considering all the linear order terms in Mw. Subsequently, we will present the black hole’s response
function and the tidal Love numbers. The main differences between our work and reference [5] are as
follows:

e In the analysis of [5], the Teukolsky equation in the small frequency limit has been solved, but some
linear order terms in Mw have been neglected, which in principle should be present. In this work,
we have included all those terms in the Teukolsky equation and hence determine the corresponding
solution accurately up to linear order in Mw. The resulting expression for the tidal response function
is different from the one derived in [5].

e The calculation of the response function, as presented in [5], is based on the small Mw approximation.
However, the decomposition of the response function into the tidal Love numbers and tidal dissipation
for a rotating compact object is based on the Mw’ expansion, where w’ = w — mf)}, is the frequency
observed in the frame, co-rotating with the black hole. As evident, for arbitrary rotation, small values
of Mw do not imply that Mw’ will be small as well unless the black hole is non-rotating or slowly
rotating. Thus the analysis of [5] is only applicable to nonrotating and slowly rotating black holes.
In this work, we have elaborated on this result and have also proposed a possible generalization of
the decomposition of the tidal response function for arbitrarily large rotations.

Having outlined the shortcomings of [5], we provide below the master equation satisfied by the radial
part of the gravitational perturbation. For this purpose, we employ Teukolsky’s formulation of black hole
perturbation [39-42], based on the Newman-Penrose formalism [29]. In general, Teukolsky’s formalism
provides the master equation for various perturbations, each characterized by a single spin value (see
[40]). For example, the equation for s = 0 depicts the evolution of a test scalar field, s = (1/2) describes
a test neutrino field, s = 41 presents a test electromagnetic field, and finally, s = 42 corresponds to
gravitational perturbations. For our purpose, we are interested in the gravitational perturbation described
by the perturbed Weyl scalar 14, therefore we will consider the Teukolsky equation with s = —2. Even
though the Teukolsky equation is often quoted in the Boyer-Lindquist coordinate system (¢, 7,6, ¢), for
our purpose it will be convenient if we express the Teukolsky equation in the ingoing Kerr coordinates
(v,7,0,¢). These ingoing Kerr coordinates are related to the Boyer-Lindquist coordinates through the
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following transformations [42]:

r2+a2

dr,  dd=dé+ Ldr, (24)

dv =dt + A

such that the Kerr metric in the ingoing Kerr coordinates becomes [5, 42]

f 2Mr , 4Marsin®0 - -
ds? = — (1 -5 ! > dv? + 2dvdr — %dvd@ — 2asin? Odrdo

[(r? +a%)? — a®A sin? 6] sin? edgp

»de?
+ + 5 ,

(25)
where ¥ = 72 +a? cos? §, and A = r?2 —2Mr+a?. Given the Kerr metric in the ingoing Kerr coordinates, we
will express both the Weyl scalar as well as the associated Teukolsky equation in this system of coordinates.

First of all, we express the perturbed Weyl scalar 14 in the ingoing Kerr coordinates, decomposed in
the radial and the angular parts as [42],

Pty = /dw eTwv Zefimd; 2 Sim(O)R(r) , (26)
im

where p = —(r — ia cos ), the angular part _oS}, is the spin-weighted spheroidal harmonic and the Weyl
scalar has been constructed using the Kinnersley tetrad [32]. Finally, the radial perturbation R(r) satisfies
the following equation in the ingoing Kerr coordinates [5]

d?R 2P, —1 2iP_+1 dR
( s ot —2iw>

dr2 =1L r—1r_ dr
{4iP 4Py A_+iB_ A +iBy } el e
e R o0 A (T [y B (Y0 [ Ry a0 ) G

where 14+ = M + v M? — a? are the event and the Cauchy horizons, respectively. Further, the other
constants appearing in the above differential equation read [5, 41],
—2ry M
Py = w7 By =2riw,
Ty —T—
AL =Ep, —2-2(ry —r_)Piw — (r4 +2M)row? |
4m
Eim =1(1+1) - 2aw——= +0 7. 28
i = 1014 1) = 207725+ Ol (28)
Finally, using the following transformation from the radial coordinate r to the rescaled dimensionless
coordinate z, defined as, z = (r —ry)/(r4+ —r_), the radial Teukolsky equation becomes (for a derivation,
see Appendix A)

AR {2iP+—1_2iP1+1}dR [42'132 4Py U(I+1) =2

dz? z z+1 dz (z+1)2 22 2(1+ 2)
2maw 4 2iwry
1 — R=0 29
z(1+z){ +l(l+1)} z(z+1)] » (29)
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where P, = P_+w(ry —r_) and P, = P_ — (1/2)w(ry —r_). In the above, we have ignored terms O(w?),
but have kept all the terms O(Mw), unlike [5], where several terms O(Mw) had been ignored. We will now
solve the above master equation, and from the asymptotic behavior of the solutions, will determine the
tidal response function for non-rotating and slowly rotating black holes in the small frequency limit. We
start by computing the tidal response function of the Schwarzschild black hole in the subsequent section.

4 Tidal response of a Schwarzschild black hole

In this section, we present the tidal response of a Schwarzschild black hole under the influence of an external
tidal field. For this purpose, we start with the radial perturbation equation derived in the previous section,
keeping all terms O(Mw) and then substitute the rotation parameter a = 0. This yields, the following
differential equation for the radial part of the perturbation,

d2R {2iP+ —1, 2iP; - 1} dR { 2%P, 4P, I(l+1)—2  2iP,

dz2 z z+1 [ dz (z41)2 22 2(1+ 2) z(z—i—l)}R:O' (30)

In order to arrive at the above equation we also used the fact that in the limit of zero rotation, one
has ry = 2M and r— = 0 and, consequently, P~ = 0, P, = —2Mw = —P; and P, = (P1/2). The
above equation, for zero rotation, can be solved exactly and the solutions can be written in terms of
hypergeometric functions as follows:

) . 20 -1 2043
R(Z) _ (1 +Z)2737’P+ |:2721P+C2 2F1 <—l — 3ZP+2l7—|—1’ 14+1— 32P+2l i 1,—1 — 22P+, —Z)
20-5 204+ 7

where C7 and Cy are the two arbitrary constants of integration. All arguments of both hypergeometric
functions as well as all other terms in the above solution, including the power of (14 z), are expressed up to
linear order in Mw. Using a useful property of the hypergeometric function, namely oFj(a,b;c;z — 0) =1
[43], it follows that in the near horizon regime the radial perturbation R(z) becomes

R(2) =~ 272+ Cy + 220 . (32)

The radial function associated with Cy simplifies as z 72+ = e4iM@Inz which corresponds to an outgoing
mode at the horizon and hence must be absent in the black hole spacetime. This physical expectation
implies that Co must vanish. Therefore, by imposing the ingoing boundary condition at the horizon, the

radial part of gravitational perturbation becomes

) 20 — 2
R(Z) = (1 + 2)2_3”3‘*'2’201 oI (2 - - iP+ [=5 L+ 7 )

— 341 —iP,——;3+4+2iP;— 33
2l+’+ l+2l+17+7'+a2 ()

It is evident that this solution differs from the one given in reference [5] by terms O(Mw), as expected.
Given the profile for the radial perturbation in the near zone, one can determine the radial part of the
perturbed Weyl scalar 4, which is simply given by, 14 oc (1 + 2)"*R(z). Thus, using Eq. (33), we obtain
the following radial dependence for 1y:

Py o 22 (1 4 2)72*@3 o1 (2—-1—Q1,3+1—Q2;3+42iPy;—2) (34)
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where we have defined the following quantities,

Q1= _%ngéji Q2 = —2iMw§§7ﬂ, Qs =—6iMw . (35)
Note that each of these quantities is proportional to Mw, which is assumed to be small, in our calculations.
It is also worth emphasizing that each of these terms, namely, @1, @2, and @3, are absent in the corre-
sponding expression of the Weyl scalar 14 in [5] and, thus, it is expected that the tidal response function
derived here will be different. In particular, it will be interesting if the modified tidal response function
predicts non-zero tidal Love numbers for the Schwarzschild black hole.
The determination of the tidal response of the Schwarzschild black hole to an external tidal field can be
obtained by considering the large r limit of the perturbed Weyl scalar ¥4. Using the asymptotic expansion
of the hypergeometric function, Eq. (34) yields,

T (3+2iP)T (1420 + Q1 — Qs)
C(A+1+2iPy + Q)T (341 —-Q2)

« 1+Z—21—1+Q2—Q1F(1+l+2ip++Q1)F(3+1—Q2)F(—1—21—Q1+Q2)
FA+20+Q1 - Q)T (2-1-Q1)I (=1 +2iP, 4+ Q2)

Since @1, @2, and Q)3 are small under the approximations for which the above computation holds, we can
directly compare the above expression for 14 with that in Eq. (19). This yields the following response
function for a Schwarzschild black hole under the influence of an external tidal field,

PA+1+2P +Q)IB+1-Q2) T (-1 -21- Q1+ Q2)
FA+204+Q1—Q2)L'(2-1-Q1)T (-1 +2iPL +Q2)

Note that, on ignoring the quantities @)1 and @2, the tidal response function, as given above, reduces to
the one derived in [5], as expected. Thus indeed the response function gets modified on the inclusion of all
the terms of O(Mw). This can be observed more explicitly by expanding out these Gamma functions to
leading order in Mw, and keeping in mind that for gravitational perturbations I € I = Z*\{1}, yielding
(for detailed calculation, see Appendix B)

Ya(r — 00) x 2724 Q1-Qs

(36)

Fsen = (37)

o _ AP DIEHDII-1)T(A+])
Sh ™ Ty T(1+20)T (20 +2)

{gm 2@ Qo] . (33)

For a Schwarzschild black hole, it follows that Py = —2Mw and from Eq. (35) the difference Q2 — Q1
becomes, —2iMw{12/(21+1)}. Therefore, the tidal response function for the Schwarzschild black hole can

be re-expressed as,
@+ =2)? 3
Foay = 2iM 1 .
sen = 2UM W S ST 1) HETES (39)

As evident, the term outside the round bracket is the response function derived in [5], provided terms
O(M?w?) have been neglected, while the term inside the round bracket corresponds to the correction
arising due to keeping additional terms of O(Mw) in our analysis. Intriguingly, despite the inclusion of all
the correction terms of O(Mw), the response function of the Schwarzschild black hole is purely imaginary
and the imaginary part is proportional to Mw. Therefore, according to Eq. (20) and Eq. (22), it follows
that the Schwarzschild black hole has zero tidal Love numbers, in particular,

KD —0=k2 . (40)
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In words, the tidal Love numbers, derived using both of the approaches, identically vanishes. Along similar
lines, the dissipative part, obtained using both of these approaches, as outlined in Eq. (21) and Eq. (23),

also coincide 9
| _ (]!
m To 2020+ 1)! 2041 m

however, is different from [5]. To make the difference explicit, we have quoted numerical values of the
response function from Eq. (39), for different choices of the angular number [ in Table 1 and have compared
them with the corresponding values derived from the response function of [5]. As evident, the coefficient
of Mw is different in the two cases and hence the tidal dissipation, whose correct expression is given by
Eq. (41), is larger compared to the corresponding expression in [5]. This is also clear from Table 1.

l Response function of [5] Response function of this work
2 (04 0.0666667 ) Mw (0+0.106667 i) Mw

3 (0 + 0.00238095 %) Mw (0 +0.00340136 1) Mw

4 (0+0.000113379 i) Mw (0 +0.0001511724) Mw

Table 1: Numerical values of the tidal response function computed in this work for Schwarzschild black
hole of mass M has been presented, and contrasted with those obtained in Ref. [5]. As evident the tidal
Love numbers vanish in both the cases, while our result, which incorporates all the terms O(Mw) predicts
a larger tidal dissipation in comparison with the corresponding term in [5].

To further bolster our claim, we have plotted the variation of the imaginary part of the response function
Fscn, describing the part corresponding to tidal dissipation, against the frequency v = (w/27), expressed
in standard unit, in Fig. 1 for the [ = m = 2, i.e., the dominant gravitational wave mode. As expected, the
plots of the tidal dissipation are linear in frequency, while the slopes of the curves are different when the
result of the present work is compared with [5]. Moreover, for a given frequency, it follows that the actual
value of the tidal dissipation, as derived in the present work, is large compared to [5]. This is expected, as
the actual response function derived here, is the response function in [5] multiplied by a quantity larger
than unity (see, e.g., Eq. (39)). Thus inclusion of all the terms of O(Mw), appearing in the Teukolsky
equation, leads to a more complete expression for the tidal response function and differs from [5]. In the
next section, we will explicitly demonstrate that the same is true for a slowly rotating Kerr black hole as
well.

5 Tidal response of a slowly rotating Kerr black hole

In the previous section, we have explicitly demonstrated that the tidal response function of a Schwarzschild
black hole differs from the one derived in [5], due to the inclusion of several terms, all of which are O(Mw).
It is intriguing that even after all these modifications to the tidal response function, the tidal Love numbers
associated with the Schwarzschild black hole identically vanish. However, the tidal dissipation is different
from [5] by terms of O(Mw). In this section, we wish to extend our analysis to slowly rotating black holes,
i.e., we will work up to the linear order in (a/M) and shall neglect all the higher-order terms O(a?/M?).
This is because the tidal response function is expanded in terms of frequencies w’ = w — m£);, in the co-
rotating frame of reference, while the small frequency expansion of the Teukolsky equation involves ignoring
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Figure 1: The imaginary part of the tidal response function Fgg, has been plotted against the frequency v
(in Hz) for a Schwarzschild black hole of mass 10 Mg, and the corresponding result derived in the present
work has been compared with the corresponding result in [5]. See text for more discussions.

terms O(M?2w?). These two expansions, in general, are very different — small Mw does not necessarily
mean small Mw’ — except when rotation is small. Thus, the decomposition of the tidal response function
into the conservative Love numbers and the dissipative part, as defined in [5], is only applicable for small
rotation parameter. We will discuss various possibilities of extending the corresponding decomposition of
the tidal Love numbers for generic rotation in the subsequent sections.

In the limit of slow rotation (a/M < 1), the master equation for the radial perturbation, namely
Eq. (29) becomes

PR {22'13+ ~1 2P +1+ SiMw} dR [41'(13+ +Mw) 4Py U(1+1) -2

dz? z z4+1 dz (z+1)2 22 z(1+2)
2maw 4 4iMw

1 — =0. (42

+z(1—|—z){ +z(z+1)} z(z—i—l)]R 0. (42)

Here, we have used the result that in the limit of slow rotation r_ = O(a?), r, = 2M + O(a?), such that,
Py ={(am —2Mwry)/ri} + O(a?) and P_ = (am/ry) + O(a?). It turns out that the above differential
equation can also be solved exactly in terms of the hypergeometric functions, with the following solution,

R(Z) _ Cl Z—2iP+(1 4 Z)2+6iMw

2l—5 20+ 7
Fi | =l —2iP 2iMw——m—,1 — 24P 20Mw———;—1 — 2iPy; —
X 9 1(l 1Py + 24 w21+1, +1—29Py + 21 w2l+1, 1Py z)
. 25 24T ,
+CQZZ(1+Z)2+6M 2F1 (2_l+2ZMw21—|—1’3+Z+2ZMW2Z—|—1’3+2ZP+’_Z> 5 (43)

where C; and Cs are again the arbitrary constants of integration and all the terms in the above solution,
including the arguments of the hypergeometric functions, are written up to linear orders of Mw and (a/M).
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All the second and higher-order terms of Mw and (a/M) have been neglected, along with the terms
involving the multiplication of Mw and (a/M) are also neglected. For small 2, i.e., in the near horizon
limit, the hypergeometric functions become unity, and the term associated with the arbitrary constant
C, behaves as ¢ representing an outgoing wave. Since we are interested in black hole geometries, it
follows that outgoing modes should be absent and hence we must set C; = 0. Therefore by imposing the
in-going boundary condition at the horizon, the solution for the radial perturbation equation simplifies to,
. 20 — 2

R(2) = Cy 22(1 + 2)26iMw , (2 -1+ 2iMw2§7+i)73 + 1+ 2iMw2§7ﬂ; 3+ 2iPy; —z) . (44)
Given the radial function R(z), the radial part of the perturbed Weyl scalar 14 can be obtained by noting
that in the near horizon regime, 14 is approximately proportional to (1 + z)~*R(z). Therefore the radial
part of 14 becomes,

Yy 22(14+2)"27 Lo (2—1—Q1,34+1— Q23+ 2iPy;—2) , (45)

where, the quantities @1, Q2 and Q3 have been defined in Eq. (35) and are all O(Mw). Note that these
are precisely the terms absent in [5] and are going to affect the tidal response function.

The computation of the tidal response function of a slowly rotating black hole under an external tidal
field can be obtained by taking the large 7 limit of the perturbed Weyl scalar 14. The expansion of the
hypergeometric function for its large argument involves a growing term and a decaying term. The growing
term corresponds to the external tidal field and the decaying term relates to the response of the body
under it. Thus, in the far-zone region, the Weyl scalar 14 reads,

—24Qi—Qs L (3+2iP )T (1+21+ Q1 — Q2)
D(1+1+2iPy +Q1)T(3+1-Q2)
o 1+z‘21‘1+‘9’-"Q1F(1+l+2iP+ +0Q)TB+1-Q2)T (-1 -2 —Q1 4+ Q2)
FA+20+Q1 - Q)T (2-1-Q1) I (=1 +2iP 4+ Q2)
Since all of the terms involving @1, @2, and Q)3 are small, we can immediately compare the above expression
for ¢4 with Eq. (19), such that the tidal response function for a slowly rotating Kerr black hole becomes

. CT(14142iPy + Q)T (B +1— Q)T (~1— 20— Qi + Qs)
Kerr(slow) = 1321 £ Q1 — Q)T (2— 1 — Q)T (=1 + 2iP; + Q2)

Py X 2

(46)

(47)
By expanding the response function to the linear order in Mw, and for [ € L = Z*\{1} (for a derivation,
see Appendix B)

ITA+D)TB+)T (-1 (1+1)
2 L(142)T (20 +2)

FKerr(slow) = 27’P+ + %(QQ - Ql) ) (48)
where second and higher order terms of Mw and (a/M) have been neglected. Intriguingly, the formal
structure of the above response function is identical to that of the Schwarzschild black hole, however, the
quantity P, is different in the Schwarzschild and the Kerr spacetimes. Hence the tidal response functions
will also be different. In particular, writing down the P, explicitly, we obtain the following structure of
the tidal response function,

@D -2r ) [Lam 3
FKerr(slow) - - (21)' (2l n 1)' |:7z2]w — 2iMw {1 + M}] . (49)
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Note that for a = 0, it reduces to Eq. (39), describing the response function of the Schwarzschild black
hole, as it should. Also in the limit of zero frequency, for [ = 2, the response function becomes, Fxerr =
—(ima/60M), which coincides with [13, 14]. This shows that the above expression for the tidal response
function reproduces known results in the literature. Interestingly, in the zero frequency limit, none of these
correction terms @1, Q2 and Q3 contributes and hence the zero frequency results will not change by the
corrections derived in this work.

If we consider the tidal Love numbers to be the real part of the response function, which is motivated
by the fact that the tidal Love numbers are the conservative part and hence must be real, then the tidal
Love numbers of the slowly rotating Kerr black hole vanish identically. However, if we follow the definition
of the tidal Love numbers as in Eq. (13), then we must express the response function in terms of the
co-rotating frequency w’' = w — m&Qy,, where Q = a/(2Mr,) is the angular velocity of the horizon [42].
This yields,

Ficerr(stow) = 20! (20 +1)! 2 +1 2 +1 (50)
Note that the first term inside the square bracket, as well as the second term inside the curly bracket,
are both absent in [5]. Therefore, according to both Eq. (20) and Eq. (22), the tidal Love numbers of the
slowly rotating Kerr black hole, as derived from the response function of [5] would vanish. However, when
all the terms of O(Mw) are included in the analysis, as in the present work, it follows that, Eq. (20) yields
vanishing Love numbers, while Eq. (22) predicts non-zero, but imaginary tidal Love numbers, such that

0. @ _1RHDII =2 )? [ 6imMQ,
=U; Kerr(slow) Ilm — 2 (21) (2l 4 1) 2 +1 )

24D -2)@? 6imMQh+2iMw,{1+ 3 H

1)
chrr(slow) im

(51)

which is proportional to the angular velocity of the horizon. Thus if we define the tidal response function in
the co-rotating frame of reference, and the tidal Love numbers are the part independent of the co-rotating
frequency w’, then the tidal Love numbers of a slowly rotating Kerr black hole are non-zero and imaginary.
Though the imaginary value is difficult to explain, following [13, 14], one may argue the existence of
the imaginary value to be due to a tidal lag effect. On the other hand, this will predict an imaginary
quadrupole moment for the slowly rotating Kerr black hole, which is counter-intuitive. The dissipative
part, on the other hand, as obtained by both the methods outlined in Section 2.3, becomes,

/(1) _e+nta-2)ra ) 6mMQy, , 3

TOW Vi re(stow) Im. = @@+ 1)! { N1 +2Mw {1—|— ST 1}] , (52)
o) _eEnta-2ra’ ) 3

T0W Vi slow) tm = R {2Mw {1 + o 1” : (53)

As evident, alike the tidal Love numbers, the dissipative part also differs in the two approaches. The
difference is solely due to keeping all the terms linear in Mw, unlike [5].

To summarize, the above result clearly shows that for non-axisymmetric tidal perturbation, i.e., for
modes with m # 0, the zeroth order term in the Mw’ expansion of the response function of a slowly
rotating black hole is nonzero. This is in sharp contrast with the corresponding result derived in [5], where
the response function was found to be proportional to Mw’ and there was no zeroth order term. This
feature can also be seen from Table 2, where we have provided numerical values of the response function
for the I = 2 = m mode with different choices of the dimensionless rotation parameter (a/M). As evident
from Table 2, the response function derived here, which includes all the terms O(Mw), predicts a non-zero
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(a/M) Response function of [5] Response function from Eq. (50)

0 (0 + 0.0666667 1) Mw' (0 + 0.106667 i) M’
0.01 (0 + 0.0666667 1) Mw' (0 + 0.00024) + (0 + 0.106667 i) M’
0.001 (0 + 0.0666667 i) Mw' (0 + 0.0000214) + (0 + 0.106667 i) Mw’

Table 2: Numerical estimations of the tidal response function associated with the gravitational wave
mode (I = m = 2) have been presented for slowly rotating Kerr black hole. As evident the response
function derived in [5] differs from the expression derived here and most importantly has a non-zero part
independent of the co-rotating frequency w’.

value for the zeroth order term in the tidal response, which scales linearly with (a/M). This is consistent
with our findings, in particular, the result presented in Eq. (50). Moreover, the coefficient of Mw’ differs
from the expression of the tidal response function in [5], which is clear from Table 2 and can be thought of
as a generalization of the corresponding situation in the Schwarzschild spacetime, as seen in the previous
section. If we interpret the zeroth order term in the tidal response function as the Love numbers, then for
slowly rotating Kerr black hole these are non-zero and imaginary.

6 Discussion: The Love numbers of a rotating black hole

We have provided a detailed analysis involving the tidal response function of black holes under an external
tidal field. Unlike the Newtonian analysis, we follow a covariant approach and define the tidal response
function from the asymptotic expansion of the Weyl scalar 4. Given the tidal response function, as
elaborated earlier, there are two distinct ways of defining the tidal Love numbers from the tidal response
function in the small frequency approximation (Mw < 1). Among them, the first definition relates the
tidal Love numbers with the real part of the response function, which can be straightforwardly applied to
the case of an arbitrarily rotating black hole. The only non-trivial part is the determination of the response
function since the Teukolsky equation becomes complicated when all terms of O(Mw) are included in the
analysis (see Appendix C for the solution of the Teukolsky equation in the context of an arbitrarily rotating
black hole). Then the Love numbers simply follow by computing the real part of the response function.
However, the alternative way of defining the Love numbers, as advocated in Section 2.3, may not even
work for an arbitrarily rotating black hole. This is because the relation between the multipole moment
and the tidal field cannot be truncated at the first-order time derivative in the co-rotating frame, in other
words in the Fourier space, the response function must depend on terms involving arbitrary powers of
Mw'. Then expressing w’ in terms of w and keeping terms up to linear order in w should provide the Love
numbers depending on arbitrary powers of the rotation parameter a. This clearly demonstrates that there
are significant issues in obtaining the response function and then determining the Love numbers for an
arbitrary rotating black hole if we follow the alternative approach, as discussed in Eq. (22). Moreover,
the series in Eq. (10) may not even converge. Thus the procedure of keeping all the powers of w’ and
hence all the powers of the dimensionless rotation parameter (a/M) in the tidal response function is not
a feasible possibility. In particular, considering Eq. (13) as an expansion in w’ is the crux of the trouble,
as our analysis, based on the Teukolsky equation, works with the Mw < 1 approximation, and not for
Muw' < 1, and these two approximations do not coincide until and unless we content ourselves with the
slow rotation case. Therefore, for an arbitrary rotating black hole, small Mw does not imply Mw’ to be
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small and hence we need to provide a way to circumvent this problem. Since we are working under the
approximation Mw < 1, the most natural thing would be to expand the tidal response function in powers
of the dimensionless quantity Mw, which yields,

F = Fy+iF; Mw+ O(M?w?) . (54)

We can now replace w by w’ + m&Qy, and hence the above response function can be expressed as a leading
order term and then a term linear in w’, such that,

F = (Fy +imMQy, Fy) +iFy Mo’ + O(M?W?) . (55)

Having determined the term independent of w’ and the term linearly dependent on w’, we can propose the
zeroth order term to be related to the Love numbers, as in Eq. (22), while the coefficient of the term M’
is related to tidal dissipation, given by Eq. (23). As evident, with this definition, the tidal Love numbers
are manifestly imaginary, as long as the tidally deformed object is rotating, and hence does not represent
a conservative quantity. When expressed explicitly, the tidal Love numbers read,

1
Fim = 5 (Fo +imMQy Fy) (56)
and the dissipative part becomes
o) = M . (57)

Note that unlike Eq. (13), the above expression for the response function is a series in the frequencies
observed by an asymptotic observer, rather than the frequencies measured in the co-rotating frame of
reference. Tt is clear that finding the part of the response function which is independent of w’ is a
challenging task, and in general can lead to imaginary tidal Love numbers, completely counter-intuitive to
its conservative nature. Thus defining the tidal Love numbers from the real part of the response function
seems to be the way forward, since it is not ambiguous in the presence of an arbitrarily rotating black
hole, neither it is imaginary at any level.

Despite the above difficulties and subtleties in defining the Love numbers of an arbitrarily rotating
black hole, we believe that some significant results have been obtained in this work. First of all, we have
provided a relativistic definition of the tidal response function from the Weyl scalar ¥4 and subsequently
have explicitly described the ambiguities and inconsistencies in defining the Love numbers from the tidal
response function, for the first time. In particular, we have put forward two possible ways of addressing
them. Secondly, we have explicitly pointed out how the small frequency approximation should be taken,
and what corresponds to the structure of the radial Teukolsky equation. It turns out that earlier results
in this direction had missed quite a few terms linear in Mw and thus our results, derived here is complete,
in the sense that it encapsulates effects from all terms of O(Mw). Following the modified radial Teukolsky
equation at our disposal, we have calculated the response functions of non-rotating as well as slowly rotating
black holes in the near horizon and small frequency limit, while keeping track of all the terms linear in
Muw. As emphasized earlier, this is unlike the earlier works such as Ref. [5]. Our results suggest vanishing
tidal Love numbers for a Schwarzschild black hole; however, it also predicts that the dissipative effects for
the Schwarzschild black hole will be stronger than what has been obtained earlier [5]. In contrast, the Love
numbers for a slowly rotating black hole in a tidal environment depends on the details of the procedure
used to define it, as was described in this paper: While one procedure yields vanishing Love numbers,
the other suggests nonzero, but purely imaginary, Love numbers. Our results regarding the tidal Love
numbers as well as the dissipative terms provide corrections over and above the recent results derived in
[5], due to the inclusion of all the linear order terms of O(Mw), some of which were missing in [5].
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This work can also be extended by including higher order terms in Mw, to be precise, second order or
more, in the Teukolsky equation, thereby calculating the response function. It would also be interesting
to see how the above formalism can be used in determining the tidal response function of exotic compact
objects and possibly of quantum black holes so that we have an understanding of the tidal Love numbers for
these objects. We also hope to arrive at the expression for the tidal Love numbers and the tidal dissipation
for an arbitrary rotating black hole, from our proposed procedure presented here, elsewhere. Finally, it
will be helpful to entangle the response function of black holes, or, compact objects in general, to the
inspiral part of the gravitational wave signal through the Weyl scalar. This will allow us to directly relate
the tidal Love numbers and the tidal dissipation to the gravitational wave waveform, which in turn can
possibly make the smoking gun test regarding the nature of the coalescing compact objects more feasible.
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A Master equation from the radial Teukolsky equation

In this section, we shall show the calculations involved to arrive at Eq. (29), which serves as the master
equation for this work, from the Teukolsky equation presented in Eq. (27). Under the transformation
z=(r—ry)/(ry —r_), Teukolsky equation in Eq. (27) can be written as

— 2iw(ry — r)} i—R
z

4P_ 4Py _A_+iB_ A +iB,
(z+1)2 22 (1+2) z

d’R N 2iP, —1 2iP_+1
dz2 z z+1

T
br=Tir -2 o)
which can also be expressed as,

(z+1)2 z? z2(1+ 2)

d’R 2iP, —1 2iP_+1 dR 4iP_ 4P l(l+1)-2
— —9 A Gk —
dz? +{ z z+1 w(ry —r-) dz +
2maw 4 _ Ziwry 2w
2(1+ 2) I(1+1) 2(z+1) z+1
We will now simplify the coefficients of (dR/dz), and R.

(e =)+ Ol(waP)} R= Tl =70 (59

A.1 Coefficient of (dR/dz)

Using the near horizon and the small frequency approximation (Mw < 1), we can neglect 2iw(ry —
r_)z/(z +1) in the coefficient of 4, which implies,
2P, —1 2P +1 _. 2P, —1 2P +1
- — 2iw(ry —r_) ~ -
z z+1 z z+1

; (60)
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where, P_ +w(ry —r_) = Py.

A.2 Coefficient of R

Using the near horizon and the small frequency approximation (Mw < 1), we can neglect 2iw(ry —
r_)z/(z +1)% and O[(aw)?)] terms in the coefficient of R, yielding,

4iP_ iw ) 4i P,
(ry =)+ Ollaw))] ~ s

(z4+1)2 z+1

(61)

where, P_ — w(ry —r_) = P,. Now we can obtain Eq. (29) from Eq. (59), by substituting 7’ = 0 as well
as the simplified coefficients of (dR/dz) and R in the relevant equation.

B Calculation of the tidal response function

In this appendix, we depict the computation of the tidal response function by expanding out the Gamma
functions appearing in Eq. (37) for the Schwarzschild black hole, and Eq. (47) for the slowly rotating Kerr
black hole. In general, the response function takes the following form,

r_ FrQA+1+4+2iP +Q)TB+1—-Q2)T (-1 -2l — Q1+ Q2) (62)
T(1+20+Q1— Q)T (21— Q)T (—1+2iPy +Qs)
where P, and 12 are all small quantities in our approximations for both the Schwarzschild and the
slowly rotating Kerr black holes. Since our analysis is only valid up to the first order in Mw (and a/M for
slowly rotating Kerr black hole), therefore we will neglect all second and higher-order terms in the Gamma
functions appearing in the tidal response function, presented above.
For this purpose, let us consider a function F'(z), we can expand it around z = z using the following
Taylor expansion

F(z)=F(z) + (2 — zo)d—F

—|  +0l-=). (63)

Z=Z0

Similar expansion can be obtained for a Gamma function, say I'(f(z)), which yields

D7) = Do) + (= = 20) Tl | 4 0z~ 20
= D7)+~ TN D] 0l (6

where (z) is the digamma function, defined as [43],

1 dI'(»)
- T(2) dz

(65)
Expanding out each and every Gamma functions in the definition of the response function, and neglecting
the higher order terms, we obtain,

CTA+)T @B+ (~1-20)
T T(A+20T(2-0)T (=)

1+ A+ A4, (66)
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where,

Ay = (2iPy + QY1+ 1) + (—Q2)v (3 + 1) + (—Q1 + Q2)v (2 + 21)
—(Q1 = Q2)Y(1 +20) + Qrp(=1 +1) — (2P + Q2)(1 +1) , (67)

and
AQ = (_Ql + QQ)’/T COt(Ql’]T) — (2ZP+ + QQ - Ql)’ﬂ' COt(l’lT) . (68)

In arriving at the above result, we have used the identity: (1 — z) = ¢ (2) + wcot(nz) [43]. For l € L =
ZT\{1}, we obtain,
T(1+)TB+)T(—1-20)

a2 )T (=) (69)
and

C TOA+)T@B+D)T(-1-2) ,

T T2 DT () A=0, (70)
along with
g LOHDTGHDT (120, PO4DTE+DEI =11 +]) {2@P++;(Q2—Q1)] o)

ST +2)T (2D (=) 9T (1+20)T (20 + 2)

Collecting all these results, for [ € L. = ZT\{1}, we obtain the following result for the tidal response
function,

ITA+)rE+)Ir-1ra+i
2 ra+2)r2+2)

which reduces to Eq. (38) and Eq. (48) for the Schwarzschild and the slowly rotating Kerr black hole,

respectively.

F =

[2@'P+ + %(Qz - Ql):| : (72)

C General solution of the Teukolsky equation in the small fre-
quency limit

We have explicitly provided the solution of the Teukolsky equation in the small frequency limit, for non-

rotating as well as for slowly rotating black holes. In this appendix we provide the general solution of the

Teukolsky equation in the small frequency limit for arbitrarily rotating black holes. The corresponding

equation in the small frequency limit has already been presented in Eq. (29), whose solution for an
arbitrarily rotating black hole reads,

1
R(z) =221+ )0y F <2(3 + 2iPy 4+ iDy), 1153 4 2iPy; —z)
) 1
+ 27214 e F (2(—1 —2iPy +iDy),I; —2 —2iPy;—1 — 2iP,; —z> , (73)
where C7 and C5 are constants arising from the second-order Teukolsky equation. Since our analysis is

valid only up to linear orders of Mw, here also we expanded the quantities Dy, I;, and H; in the linear
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orders of Mw (neglecting second and higher order term), yielding the following expression for the quantity
Dl )

(14 1)(—i+ 4il(l + 5iMw) + 14Mw) + 2i(—8 + 1(1 + 1) (1 + 61))maw

D =
! W1+ 1)(1+2)
2M?*w —ma  16(=1+)riw B 6m2a’w (74)
ry — M 1+ 21 2ry —ima —2M °
Along identical lines the expression for I reads,
11+ D(—6i(3+2))Mw) — (84+1(1 +1)(5 + 6))maw
L =3+1+
1+ +20)
L 3m2.a2w 8i(2+ Driw (79)
2iry — 21M + ma 1421
and finally, for the remaining quantity H;, we obtain,
12(ry — M)?
Hy =2 (ry = M)"w (76)

© 2r, —2iM +ma

These expressions will be used in the future for determining the response function of an arbitrarily rotating
black hole, from which an expression for the tidal Love numbers can also be arrived at.
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