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GW190521 is a short-duration, low-frequency gravitational-wave signal in the LIGO-Virgo cata-
logue. The signal is consistent with the ringdown and possibly some of the inspiral-merger of an
intermediate-mass binary black-hole coalescence. We find that previous models of the quasinormal
mode spectrum in the ringdown of GW190521 give remnant mass and spin estimates which are not
fully consistent with those of many inspiral-merger-ringdown waveforms. In our own analysis, we
find that ringdown models which include both the angular l = 2, m = 1 and l = m = 2 fundamental
quasinormal modes are in full agreement with most inspiral-merger-ringdown waveforms, and in par-
ticular with the numerical relativity surrogate NRSur7dq4. We also find some support for including
the l = 3, m = 2 fundamental quasinormal mode in our fits, building on Capano et al.’s findings
regarding a higher-frequency subdominant mode. We propose an interpretation of our GW190521
ringdown model that links precession to the excitation of l ̸= m quasinormal modes, but we do not
rule out eccentricity or other interpretations.

I. INTRODUCTION

In the theory of general relativity, a perturbed Kerr
black-hole returns to equilibrium by radiating gravita-
tional waves in a process known as the ringdown [1–8].
The ringdown emission begins with an initial burst that
is quickly dominated by an infinite spectrum of discrete
quasinormal modes (QNMs), which then themselves de-
cay and give way to a power-law tail. The ringdown is
expected to describe the gravitational wave emission of
any remnant black hole produced by the merger of two
black holes. Gravitational waves from these remnants
can be observed by detectors like LIGO, Virgo, and KA-
GRA [9–11]. The QNM spectrum has been found to dom-
inate the remnant’s gravitational-wave signal at times af-
ter the peak of the signal’s strain. The individual QNMs
are essentially damped sinusoids; although their ampli-
tudes and phases are related nontrivially to the initial
conditions of the perturbation, the frequency and damp-
ing rate of every QNM depends solely on the mass and
spin of the remnant black hole. Observation of the QNM
spectrum emitted by a merger remnant allows for the
inference of progenitor properties and validation of the
Kerr metric [12–14], and has recently been the subject of
intense data analysis efforts [15–21] following the dawn
of gravitational-wave astronomy [22–24].

GW190521 030229, henceforth GW190521, is one of
the more exceptional gravitational-wave signals observed
so far [25–27]. Due to the signal’s unusual short-duration
and low-frequency morphology, many interpretations of
the source of GW190521 have been proposed [28–33]. Un-
der the default hypothesis that the source of GW190521
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is a quasi-circular binary black-hole (BBH) coalescence,
the remnant is an intermediate-mass black-hole and the
ringdown comprises the majority of the observed signal.
Previous ringdown analyses of GW190521 were per-

formed by the LIGO-Virgo collaboration (LVC) [17, 26,
27] and Capano et al. [34, 35]. Both used different data
analysis techniques and implemented ringdown models in
line with the existing literature on non-precessing quasi-
circular BBH coalescences. As we discuss in Sec. II and
App. B, we find that both analyses produce remnant
mass and spin posteriors which are not fully consistent
with the posteriors of many inspiral-merger-ringdown
(IMR) waveforms including the numerical relativity (NR)
surrogate NRSur7dq4 [36], the preferred waveform in the
GW190521 detection and properties papers [26, 27].
Most of the current IMR waveforms are only valid

for quasi-circular binaries, and different waveforms pa-
rameterize the merger-ringdown signal differently [36–
40]: some rely on QNM fitting formulas and inspiral-
attachment conditions and assume rigid built-in relation-
ships between the individual QNMs, while others entirely
do away with an explicit damped sinusoid parameteriza-
tion. By comparison, our ringdown analysis is designed
to be agnostic about the amplitude and phase relation-
ships of the QNMs, and is thus a less-constrained im-
plementation of perturbation theory; see [41] for more
details. Our fits serve as an independent check of the
IMR waveforms and may be able to model physics that
the IMR waveforms do not account for. The disagree-
ment we find between posteriors of the IMR waveforms
and the previous GW190521 ringdown studies raises the
possibility that either some or all of these analyses have
not modeled essential physics phenomena in the signal, or
alternatively that these analyses may have technical sys-
tematic biases. These issues motivate our current work.
In this paper, we analyze the ringdown of GW190521

by fitting both Kerr and non-Kerr spectra of damped
sinusoids to the signal in the time domain, using the
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ringdown package [41, 42]. In the Kerr case, we only
fit QNMs from first-order perturbation theory. In the
non-Kerr case, some QNMs are allowed to independently
deviate their frequency and damping rate away from Kerr
values. Our primary aim is to either find a Kerr model
of the QNM spectrum that gives remnant mass and spin
posteriors consistent with those of IMR waveforms, in
particular NRSur7dq4, or to otherwise show that an
IMR-inconsistent Kerr model is preferred. In Sec. II we
reproduce and comment on key results of the previous
GW190521 ringdown analyses, and then in Sec. III we
perform our own fits with different sets of QNMs.

Ultimately, we find that a model which includes the
angular l = 2, m = 1 fundamental QNM together with
the l = m = 2 fundamental QNM can produce remnant
mass and spin posteriors consistent with NRSur7dq4 over
a range of fitting times. Moreover, we also find that
this model can accommodate a third QNM which is sub-
dominant to the other two, and that we identify as the
l = 3, m = 2 fundamental mode. We find that statistical
goodness-of-fit metrics do not definitively prefer any one
ringdown model at times after the strain peaks. Since
there are no strong data-driven model preferences, in-
terpretation of the ringdown of GW190521 must rely on
other aspects of the QNM fits such as the stability of
their inferred parameters when fit over a range of start
times or their consistency with the physics assumptions
of our default quasi-circular BBH hypothesis. When test-
ing general relativity by fitting non-Kerr spectra, we find
a ∼ ±20% constraint at the 90% credible level around
zero deviation from the Kerr frequency of the l = 3 QNM
in our model, and a less stringent constraint on the fre-
quency of one l = 2 QNM. In Sec. IV we propose that
the excitation of l ̸= m QNMs could be related to pre-
cession; since NRSur7dq4 prefers large progenitor spins
in the orbital plane for GW190521, this proposal pro-
vides a cohesive physics explanation for our QNM fits.
However, we do not rule out other interpretations, like
eccentricity [28, 29]. We also address the implications
of our analysis for parameter estimation of BBH coales-
cences. We conclude in Sec. V. In Apps. A–C we discuss
technical aspects of both this analysis and the previous
ringdown analyses of GW190521. The data release for
this paper can be found here [43].

Based on considerations of agreement with IMR analy-
ses, self-consistency of fits over time, theoretical motiva-
tions related to precession, and stability of fits when test-
ing general relativity, we find the {220, 210, 320} QNM
model to provide the most convincing interpretation of
the ringdown of GW190521; see the following section for
our conventions when referring to a given QNM model in
writing.

A. Conventions

We will refer to each individual QNM with a sequence
of three integers corresponding to the indices lmn. We

define a ringdown model as the set of all QNMs included
in a given fit, and we will refer to each model by using
a comma-separated list of each included QNM enclosed
within braces, e.g. {220, 210, 320}. The lm indices de-
note angular content, while the n index is related to ra-
dial content. QNMs that share the same lm also share
similar frequencies, while QNMs with the same n share
similar damping rates. The positive and negative val-
ues associated with a given |m| encode the two polar-
ization degrees of freedom for a given mode [41, 44]. 1

Parity-time symmetry of the Kerr metric in general rel-
ativity implies that the complex QNM frequencies obey
ω̃lmn = −ω̃∗

l−mn. This means that the temporal evolu-
tion of a given +m mode is indistinguishable from the
corresponding −m mode when viewed from one point in
the sky, and thus we will implicitly only refer to |m|. We
assume the QNM parameterization described in [41].

QNM decay rates increase with increasing n; n = 0
modes are the longest-lived so-called “fundamental”
modes, whereas n > 0 modes are the shorter-lived “over-
tones”. While QNMs can have a prograde or retrograde
sense, for data-driven reasons we consider only prograde
QNMs here. Since the prograde 220 mode appears to be
found around 70 Hz in GW190521, the retrograde l = 2
modes would be at such low frequencies that they would
likely be out of band given the shape of the LIGO-Virgo
noise power spectral density; as for the retrograde l = 3
modes, at low SNRs they are degenerate in frequency and
damping rate with the prograde l = 2 modes.

We will frequently make use of the ringdown evolution
timescale tM = GM/c3, which is defined in units of the
final remnant mass M when natural units are taken such
that G = c = 1. For reference, we will use the median
detector-frame remnant mass M = 258 M⊙ inferred by
NRSur7dq4 to set the value of tM to be 1.27 ms, and we
will interchangeably refer to this value as tMNRSur

.

Empirically, it has been found that the peak gravita-
tional wave strain of a BBH coalescence corresponds to
the earliest time at which QNM models may accurately
describe the signal [45–48]. The previous GW190521
analyses and our own work all use slightly different esti-
mates of the peak strain time. The previous estimates lie
within a standard deviation of our own median estimate,
with one standard deviation being ∼ 2.5 tM ; see Table I,
as well as Fig. 10. We will refer to the time at which a
ringdown fit starts by either stating the GPS time t0, or
quoting its relative difference with respect to the median
peak time as ∆t0. In figures, we will refer to the peak
times of previous analyses as tLV C [27] and tCapano [34].

1 In the ringdown literature, the sign of m is often used to dis-
tinguish retrograde and prograde QNMs—we do not adopt that
convention, and instead restrictm to its native role as an angular-
harmonic index. Note that prograde QNMs are defined such that
sgn(m) = sgn(ℜ ω̃). See discussion in [41].
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TABLE I. Comparison of peak strain GPS time estimates
(seconds) at the LIGO Hanford (H1) detector for GW190521
analyses. Our own time estimate and sky locations come
from a Monte-Carlo sample corresponding to the median of
the peak time distribution of h2(t) ≡

∑
ℓm |hℓm(t)|2, obtained

with NRSur7dq4. The distribution of possible sky locations
is broad, but all are consistent with approximately constant
arrival times in the Hanford and Livingston detectors.

Analysis
H1 Peak Time
-1242442967.0 s

Sky Location
(ra, dec)

LVC [27] 0.4306 (0.10, -1.14)
Capano et al. [34] 0.4259 (3.50, 0.73)
Siegel et al. 0.4278 ± 0.0029 (5.75, -0.42)
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FIG. 1. We attempt to reproduce the Kerr {220} LVC rem-
nant mass (abscissa) and spin (ordinate) posterior from Fig. 9
of [27], fitting 12.7 ms after the peak strain time reported
by the LVC, and we plot 90% credible contours. The LVC
posterior is in dashed grey, and our own posterior is in red.
The NRSur7dq4 fit (solid black) is from the LVC data release.
Here we have implemented our own noise model but are other-
wise performing similar data conditioning to that of the LVC,
i.e., low- and high-pass filtering at the same frequencies, using
the same duration of data segment and the same sample rate;
we also use a comparable QNM amplitude prior.

II. PREVIOUS ANALYSES

We begin by reproducing and commenting on previous
analyses of the QNM spectrum of GW190521. These
previous analyses were performed by the LVC [27] and
Capano et al. [34, 35].
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FIG. 2. We use remnant mass and spin samples from NR-
Sur7dq4 along with the qnm package [49] to infer the fre-
quencies and damping rates of relevant QNMs (filled con-
tours), and we compare these to the posteriors of our QNM
fits (unfilled contours). We show 90% credible contours, with
frequency and damping-rate as abscissa and ordinate respec-
tively. In comparison with Fig. 1, here it is more evident that
there is tension between the {220} and NRSur7dq4 fits. (Top)
Our {220} fit at the LVC’s reported time 10 tM after the peak
has a frequency between the 220 and 210 frequencies of NR-
Sur7dq4. (Bottom) We do not find a fit start time where our
{220} fit fully agrees with the 220 of NRSur7dq4. At later
times we actually find that our single-mode fit becomes con-
sistent with the 210 of NRSur7dq4. At times past 20 tM , our
fit reverts to the prior. The LVC finds similar trends in their
single-mode fits over time, as shown in the left plot of Fig. 9
in [27], although they interpret this behavior differently.
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FIG. 3. We attempt to reproduce the LVC {220, 221, 222} remnant mass and spin posterior at their reported peak strain
time. Fits with fewer overtones are shown for reference. (Left) We use a Gaussian prior on each individual QNM amplitude.
This prior is similar to the triangular amplitude prior used by the LVC—crucially, neither prior has support at zero. We plot
90% credible contours (red shades) and recover the original LVC result, up to small technical differences. (Right) We re-do the
analysis, but now use a flat amplitude prior. Unlike the Gaussian prior, the flat prior supports zero amplitude. This allows for
the overtone models to reduce to the {220} model, which increases the tension with NRSur7dq4. The nesting of these models’
posteriors indicates that the overtones in these models are not strictly required for better fits to the data.

A. LVC: Analysis Overview

The first ringdown analysis of GW190521 was per-
formed by the LVC, using the pyRing code [15, 17, 50,
51] to fit several distinct models consisting of damped
sinusoids in the time domain. At their defined peak
strain time, the LVC fit a Kerr {220, 221, 222} model.
At ∆t0 = 12.7 ms ≡ 10 tM after the peak, the LVC fit
a Kerr {220} model and a model with higher-order
angular modes up to l = 4 and m = (l, l − 1). The
higher-order model uses amplitudes tuned as functions
of the binary parameters to numerical relativity (NR)
simulations of non-precessing systems [52]. Lastly, at
6.4, 12.7, and 19.1 ms (5, 10, and 15 tM ) after the peak,
the LVC fit a model consisting of a generic single damped
sinusoid. In the next two sections we comment on the
Kerr {220}, {220, 221, 222}, and generic damped sinu-
soid models; in App. B we briefly discuss the higher-order
model and touch on more technical aspects of agree-
ment between ringdown and IMR posteriors. A separate
pyRing analysis of GW190521 with minor technical dif-
ferences appears in [17].

B. LVC: {220} Fit

In Fig. 1 we attempt to reproduce the Kerr {220} fit
of the LVC [27], and we recover a similar result. At first
glance, the remnant mass and spin posteriors of the NR-
Sur7dq4 and {220} fits seem to agree reasonably well.
However, as shown in Fig. 2, it is more evident that the
{220} and NRSur7dq4 fits are in tension when we plot
our measurements in the QNM frequency and damping
rate domain. To compare our results to NRSur7dq4 in
this space, we use samples of remnant mass and spin
from NRSur7dq4 to estimate the frequencies and damp-
ing rates of relevant QNMs. When we fit our own {220}
model at the time used by the LVC, the frequency of the
single mode we measure lies between the 220 and 210 fre-
quencies inferred from NRSur7dq4. Furthermore, when
we perform {220} fits over a range of fit start times, a
discrepancy is always present and at later times the single
mode we fit actually becomes more consistent with the
210 of NRSur7dq4. The posteriors of our {220} model
do not fully encompass the 220 frequency and damping
rate inferred from NRSur7dq4 until 20− 30 tM after the
peak, when our fits revert to the prior.

Since we use a flat remnant mass and spin prior which
does not correspond to a flat QNM frequency and damp-
ing rate prior, it is worth considering the extent to which
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the trend over time in Fig. 2 is prior-driven. To this end,
we note that the generic single damped sinusoid fits of
the LVC have flat priors in frequency and damping rate,
and also exhibit a similar trend (left plot of Fig. 9 in [27]).
One possible explanation for these trends is that the late-
time GW190521 signal might be better-described by a
model with more than one fundamental QNM.

A single-mode {220} fit is only expected to accurately
describe the late-time ringdown signal in the special case
of a non-precessing quasi-circular BBH coalescence with
roughly equal-mass progenitors. For these systems, the
posteriors of late-time {220} ringdown fits should fully
overlap with the 220 mode given by IMR waveforms.
This type of agreement can be seen in Fig. 5 of [53] for
GW150914, a gravitational wave signal whose source is
likely a non-precessing quasi-circular BBH. By contrast,
the source of GW190521 could be precessing, and it has
not been shown that the ringdowns of precessing systems
are always dominated solely by the 220 at late times.

C. LVC: {220, 221, 222} Fit

In Fig. 3 we attempt to reproduce the LVC
{220, 221, 222} remnant mass and spin posterior at the
time of peak strain. Although we can recover a similar
posterior, we find that this is contingent on the choice
of QNM amplitude priors. The LVC analysis reports us-
ing a flat prior on the amplitudes of the individual left
and right circular polarizations of the signal. This can be
seen in Eq. (7) of [17], which shows the template for the
QNM model of the analysis. Since this template sepa-
rately adds up the amplitudes of each ±m angular index
and both of these polarizations are combined in our ob-
servational models (see Sec. IA), the resulting prior on
the full amplitude of each damped sinusoid in the fits
of the LVC is triangular instead of uniform; see Fig. 12
of [44] for further details. The triangular prior prevents
any mode included in the fit from having zero amplitude,
forcing every mode to significantly contribute to the fit.
If we instead use priors which do allow the mode ampli-
tudes to go to zero as in the right panel of Fig. 3, the
resulting posteriors for fits with overtones then contain
the {220} posterior and are in greater tension with NR-
Sur7dq4. This suggests that, while forcing overtones to
contribute to fits of this signal can lead to improved qual-
itative IMR agreement, the overtones in these models are
not required to get better fits to this data.

Defining “good agreement” between IMR and ring-
down posteriors raises rather subtle issues. We ex-
plore these issues further in App. B and contend that
even partial overlaps like the one exhibited between the
LVC {220, 221, 222} and NRSur7dq4 posteriors may not
constitute good agreement.
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FIG. 4. (Top) We attempt to reproduce the Capano et
al. remnant mass and spin posterior shown in Fig. 3 of [34]
(dashed grey), using the same {220, 330} model (gold) start-
ing 6.0 ms after their reported peak strain time. This start
time is where Capano et al. find that the Bayes factor for the
{220, 330} model over the {220} or {220, 221} is maximized.
We plot 90% credible contours and find we can largely repro-
duce the posteriors of Capano et al., up to small differences
owing to choices like their imposition of equatorial symmetry
and QNM amplitude priors. We show IMR distributions from
NRSur7dq4 (black) and IMRPhenomTPHM (teal, from data
release of [32]) for comparison. (Bottom) We also reproduce
the amplitude ratio of the 330 and 220 modes.

D. Capano et al.: {220, 330} Fit

Capano et al. claim evidence of a higher-frequency sub-
dominant QNM in GW190521. They report that this
mode has a frequency of roughly 100 Hz and an ampli-
tude around one order of magnitude smaller than that of
the 220. Capano et al. propose that this subdominant
QNM is the 330, and observe the largest Bayes factor
in favor of a {220, 330} model compared to a {220} or
{220, 221} model when fitting 6.0 ms after what they
identify to be the time of peak strain (see Table I). Their
analysis implements gating and in-painting [54] and per-
forms fits in the frequency domain. Amplitude and phase
tests of the Capano et al. posteriors [55] show consistency
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FIG. 5. (Top) At the fit start time that Capano et al. claim
produces the highest Bayes factor for the {220, 330} model
over {220} or {220, 221} models, two features stand out when
plotting QNM frequency and damping-rate: the frequency of
our 220 fit lies between the 210 and 220 frequencies of NR-
Sur7dq4, and the frequency of our 330 fit is more consistent
with that of the NRSur7dq4 320. The same 220 behavior is
present in Fig. 2. (Bottom) The {220, 330} model and NR-
Sur7dq4 are in tension until at least 20 tM after the peak, at
which time the SNR has decreased substantially and uncer-
tainties are large. All plots show 90% credible contours.

with predictions from NR.

In Fig. 4 we reproduce the {220, 330} fit of Capano
et al. 6.0 ms after their reported peak time, and we find
good agreement between our respective analyses when
using this model. Notably, we confirm that the remnant
mass and spin posterior of the {220, 330} model when fit

at this time does not fully agree with NRSur7dq4.
The 330 mode could plausibly be excited to the extent

reported by Capano et al. if the progenitors of GW190521
have an unequal mass ratio. The mass ratio posteriors
given by most IMR waveforms tend to prefer an equal
mass-ratio for GW190521, but there are also varying lev-
els of support for unequal mass-ratio solutions depend-
ing on the waveform in question and the priors used
[32, 33, 56].
Capano et al. do find that the {220, 330} remnant

mass and spin posterior overlaps with a region of pa-
rameter space where one IMR waveform, IMRPhenomT-
PHM [38], supports a ∼ 4:1 mass ratio. However, the
mass ratio and remnant mass posteriors obtained by IM-
RPhenomTPHM for GW190521 behave differently from
the posteriors of most other IMR waveforms. NRSur7dq4
and IMRPhenomXPHM [37] both find the same detector-
frame remnant mass of roughly 250 M⊙, largely indepen-
dent of their mass ratio estimates. By contrast, IMRPhe-
nomTPHM produces correlated estimates of the mass ra-
tio and remnant mass such that at equal mass ratios the
posterior prefers the remnant mass to be ∼ 250 M⊙,
but at higher mass ratios the remnant mass increases to
300− 350 M⊙, as shown in Fig. 2 of [35]. These correla-
tions may be evidence of waveform systematics.
In Fig. 5, we plot the QNM frequency and damping

rate posteriors of our {220, 330} fits. At the fit start time
for which Capano et al. find the highest Bayes factor in
favor of the {220, 330} model, two aspects of the poste-
riors stand out: the frequency of the 220 fit lies between
the 210 and 220 distributions inferred from NRSur7dq4,
and the 330 fit has a frequency that is more consistent
with that of the 320 mode of NRSur7dq4. Note that the
220 frequency and damping rate in this model behave
in a similar way to the single-mode fits in Fig. 2; the
remnant mass and spin posteriors of the {220, 330} and
{220} fits are nearly the same, which might be expected
given the low amplitude of the 330.

E. Summary of Previous Results

We find that we can largely reproduce the results of
both the LVC Kerr {220} and {220, 221, 222} models
and the Capano et al. {220, 330} model for GW190521.
We also find that all of these analyses produce mass and
spin posteriors which are not fully consistent with NR-
Sur7dq4, over a large range of fit start times. In the
case of {220} fits, we find that at later times the QNM
frequency and damping rate become consistent with the
210 frequency and damping rate inferred from the NR-
Sur7dq4 IMR fit. For {220, 221, 222} fits, the choice of
QNM amplitude prior has a significant effect on the rem-
nant mass and spin estimate; a fit that allows the over-
tone amplitudes to go to zero will produce posteriors in
greater tension with NRSur7dq4. Finally, the frequency
we measure for the 330 in our {220, 330} fits is more
consistent with the 320 of NRSur7dq4.
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FIG. 6. (Left) The {220, 210} model produces remnant mass and spin posteriors whose 90% credible contours fully agree
with those of NRSur7dq4 over a broad range of times. (Right) The same fits are shown in QNM frequency and damping-rate
space. At early times, our fits of the 220 and 210 are in very close agreement with the distributions of the 220 and 210 given
by NRSur7dq4. This early agreement may be related to the unusual lack of a prominent inspiral signal in GW190521, or the
large peak strain timing uncertainty. At times near the peak strain, there are degenerate fit solutions: one solution agrees with
NRSur7dq4, while the other solution places the 220 at higher frequencies and smaller damping rates. The higher frequency 220
fit corresponds to the location where the {220, 330} model places the 330 mode, once again consistent with the 320 frequency
of NRSur7dq4. By 20 tM , the posteriors begin reverting to the prior.

In Figs. 1, 3, 4, and the top panel of Fig. 5, we have
used similar data conditioning as was implemented by
the LVC and Capano et al., to demonstrate that we can
faithfully reproduce their results. Our own fits shown in
other figures throughout this paper use our own data con-
ditioning choices unless otherwise indicated; see App. A
for further details.

III. RESULTS: SIEGEL ET AL.

In this section we explore ringdown models beyond
those proposed by the LVC and Capano et al., in an
effort to find a ringdown solution fully consistent with
NRSur7dq4. Using the differences between the previ-
ous analyses’ fits and the posteriors of NRSur7dq4 as
motivation, we are first led to including the 210 mode
in our fits. We find that {220, 210} ringdown fits for
GW190521 give remnant mass and spin estimates in full
agreement with those of most IMR waveforms, including
NRSur7dq4, and these fits produce posteriors which are
self-consistent over a range of fit start times. We then
find that there is also some motivation for including a
subdominant 320 mode in addition to the 210 mode.

Our peak strain time estimate is slightly different from
those of the LVC and Capano et al., see Table I. We
implement flat priors on each QNM amplitude, a flat
prior on the remnant mass from 0.5 to 2 times the median
NRSur7dq4 estimate, and a flat prior from 0 to 1 on the
remnant spin. For further technical details, see App. A.

A. Siegel et al.: {220, 210} Fit

As argued above and shown in Figs. 2 and 5, previous
analyses’ fits of the 220 QNM are not fully consistent
with NRSur7dq4. We find that these inconsistencies are
resolved by including the 210 QNM in our models.

In Fig. 6, we show that remnant mass and spin poste-
riors from {220, 210} fits fully encompass those of NR-
Sur7dq4 over a broad range of times. The posteriors of
the {220, 210} fits at later times expand with increased
uncertainty around the measurements from early-time
fits, as opposed to shifting in parameter space over time,
indicating that they are a robust description of the signal
as it decays.

However, our fits starting around the peak strain do
contain degenerate solutions which disagree with the NR-
Surd7q4 parameters. These degeneracies can be seen
more clearly in the QNM frequency and damping-rate
plot of Fig. 6, where the 220 posterior has a long ex-
cursion extending diagonally to the lower right, corre-
sponding to higher frequencies and lower damping rates:
this excursion places one of the fit modes at a frequency
consistent with that of the 320 mode of NRSur7dq4 and
places the other fit mode in between the 220 and 210
frequencies of NRSur7dq4.

In Fig. 7 we focus on the remnant mass and spin distri-
butions of the degenerate solutions around the peak time.
Given that Capano et al. interpret the higher-frequency
content in the signal as corresponding to the unequal
mass-ratio part of the IMRPhenomTPHM posterior, we
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FIG. 7. Capano et al. claim that the IMRPhenomTPHM rem-
nant mass and spin posterior is consistent with the {220, 330}
model [35], although the {220, 330} posteriors are inconsis-
tent with most other IMR waveforms. Here we show that the
{220, 210}model when fit at the peak of the strain agrees with
both NRSur7dq4 (black) and IMRPhenomTPHM (teal). We
plot 90% credible contours for two versions of the {220, 210}
fit: the solid purple contour makes no QNM frequency cuts,
whereas the shaded region contains only the degenerate low-
frequency solution shown in Fig. 6. The low-frequency so-
lution simultaneously agrees with both IMRPhenomTPHM
and NRSur7dq4 (see App. B). This level of agreement is not
achieved by the {220} or {220, 330} models.

show that waveform’s posterior for reference. By impos-
ing a frequency cut at 75 Hz to select only the lower-
frequency {220, 210} solution, we demonstrate that this
solution has simultaneous agreement with both IMRPhe-
nomTPHM and NRSur7dq4. This level of simultaneous
agreement is not achieved by {220} or {220, 330} fits.
We will implement this 75 Hz frequency cut for the re-
mainder of this section. However, the higher frequency
solution is still of interest as it indicates that there may
be signal content at frequencies around 95 Hz, a prospect
that we will explore further in the next section.

The {220, 210} remnant mass and spin posteriors
closely overlap with those of NRSur7dq4 at early fit
start times. The uncertainty of our peak time estimate
is ∼ ±2.5 tM . The remnant mass and spin posteriors
almost fully agree even when fitting at ∆t0 = −5 tM ,
meaning that the {220, 210} model gives consistent esti-
mates of remnant mass and spin ∼ 2σ before the median
estimate of the peak strain time. Going further back than
∆t0 = −10 tM , the ringdown posterior drifts away from
the NRSur7dq4 distribution. The early-time agreement
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FIG. 8. Here we show 90% credible contours of {220, 210}
amplitudes over fit start time (green shades). Degenerate
high-frequency solutions have been removed. The 210 am-
plitude (ordinate) is generally larger than the 220 amplitude
(abscissa). This may explain the trends in Fig. 2: we find
that late-time single-mode fits tend towards the NRSur7dq4
210 parameters, which might be expected if the 210 has a
larger amplitude than the 220 and is the last QNM to be ob-
scured by noise.

of our fits may be related to the lack of a prominent in-
spiral in GW190521, or the large peak time uncertainty
for this signal.
Capano et al. find results similar to our early-time

{220, 210} fits, although they attribute the observed
behavior to noise. In Fig. S.6 of [34], for a non-Kerr
{220, 221} fit that starts 7.0 ms before the reported peak
time of this analysis, the overtone in the fit gets pulled by
the free deviation parameters of the model towards the
frequencies and damping rates of the 220 and 210 QNMs
inferred by NRSur7dq4. Here the prior on the perturbed
mode prevents its frequency from going below 55 Hz and
thus cuts off a small portion of the 210 distribution.
In Fig. 8 we show the evolution of the {220, 210} QNM

amplitudes over time, restricting the posteriors to the
low-frequency solution. The inferred amplitude of the
210 is comparable to, if not slightly larger than, that of
the 220. This large 210 amplitude might explain the late-
time trends shown in Fig. 2, as it would imply that the
210 could conceivably be the only QNM detectable above
the noise at late times, given that both the 220 and 210
modes have similar damping rates.
Our flat amplitude prior allows each QNM’s amplitude

to go to zero; we find that imposing very strict frequency
cuts such that the 220 and 210 can only have frequencies
within the narrow ranges found by NRSur7dq4 results in
amplitude distributions that are better constrained to be
non-zero, for many fit start times. This suggests that the
ringdown solution implied by NRSur7dq4 has significant
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contributions from both of these fundamental modes. See
App. C for further technical discussion on the detectabil-
ity of the 220 and 210.

Our findings regarding the 210 may be consistent
with [57], which claims that GW190521 exhibits signif-
icant precessional power in the 21 spherical harmonic
mode even more so than the 33 spherical harmonic mode.

B. Siegel et al.: {220, 210, 320} Fit

Degeneracies in the fits of the last section suggest that
there may be additional higher-frequency content in the
data. Assuming that the high-frequency content is signal,
we are guided by NRSur7dq4 to incorporate this content
into our models as the 320 QNM.

In the top panel of Fig. 9 we show {220, 210, 320} fits in
QNM frequency and damping rate space over a range of
times. At early times, the inferred QNM frequencies and
damping rates agree almost completely with NRSur7dq4.
Moving forward in time, the posteriors broaden while
fully encompassing the NRSur7dq4 distributions. How-
ever, in addition to these IMR-consistent fits, two other
degenerate fits also appear at later times.

One of the degenerate solutions for the {220, 210, 320}
model shifts all of the QNM frequencies downwards: the
320 is moved towards the 220 frequency of NRSur7dq4;
the 220 is fit closer to the NRSur7qd4 210 frequency; and
the amplitude of the 210 in our fits is zeroed out. This
behavior is likely exacerbated by the fact that our uni-
form remnant mass and spin prior is so wide; in frequency
and damping rate space, the prior that this imposes on
the 320 QNM is peaked at frequencies below 75 Hz.

The second degenerate solution for the {220, 210, 320}
model is similar to that seen in Fig. 6, where the 220 is
fit to higher frequency content around 95 Hz. If the sig-
nal of GW190521 had a much higher SNR, or our priors
were more physically motivated in a way that enforced
amplitude hierarchies for the modes in our fits, all of the
degenerate solutions we have discussed might be avoided.

We impose frequency cuts to remove the degenerate so-
lutions and select only those fits that are consistent with
NRSur7dq4, and we then plot the inferred amplitudes of
the 320 and 210 modes over time in the bottom panel of
Fig. 9. We find that the l = 3 mode is subdominant to the
l = 2 modes in our model, in agreement with Capano et
al. We also find that the amplitudes of both l = 2 modes
in this model are essentially the same as what is shown
in Fig. 8. Since the {220, 210, 320} fits that agree with
NRSur7dq4 do not have amplitudes consistent with zero
for any of the three QNMs, we include all three modes in
our non-Kerr analysis in Sec. IIID.

C. Quantifying Goodness of Fit

Our primary aim in this paper is to find Kerr ring-
down solutions that agree with NRSur7dq4. However,
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FIG. 9. (Top) QNM frequency and damping-rate of
{220, 210, 320} fits over a range of fit start times. The poste-
riors of this model always contain a solution that fully agrees
with NRSur7dq4. However, at later times two other degener-
ate solutions can be seen that are in disagreement with NR-
Sur7dq4: one solution moves the 320 fit to the frequencies
of the NRSur7dq4 l = 2 QNMs, and another solution moves
the 220 fit to the NRSur7dq4 l = 3 frequencies as in Fig. 6.
(Bottom) Amplitudes of the 210 (ordinate) and 320 (abscissa)
QNMs from {220, 210, 320} fits. Frequency cuts are applied
to eliminate label-switching from degenerate solutions, and
to only consider solutions consistent with NRSur7dq4. The
320 amplitude is much smaller than those of the l = 2 modes:
note, this figure’s axes are not scaled equally. The 210 and
220 amplitudes of this model are similar to what is shown in
Fig. 8, and the correlations of the 320 and 220 are similar to
what is shown here. 90% credible contours shown.

there is no guarantee that the data itself is best-described
by an IMR-consistent ringdown model, especially if the
IMR waveforms are not accurate. Here we assess whether
there are data-driven ringdown model preferences, inde-
pendent of physics interpretations. Of the models dis-
cussed so far, we only consider those whose inferred QNM
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FIG. 10. (Top) Our peak strain time estimate (grey) in the
LIGO Hanford detector, compared to reference times used
by the LVC [27] (red) and Capano et al. [34] (gold). Also see
Table I. Timing uncertainties are shaded in the other two pan-
els. (Middle) Network matched filter SNRs as a function of fit
start time, 90% credible intervals. We implement frequency
cuts to avoid degenerate solutions (see Secs. III A and III B).
The SNR of all models starts to decay similarly after −5 tM .
The SNR of the full IMR NRSur7dq4 fit is 14.6 ± 0.4 [58].
(Bottom) We use the leave-one-out cross-validation (LOO) to
quantify data-driven goodness of fit for model comparison.
Higher LOO values indicate better fits. We rescale the LOO
such that its lowest absolute value over all times is zero. The
trend of absolute LOO values over fit start time is only weakly
informative, due to statistical uncertainty from the evolution
of noise in each data segment. Still, the trends of LOO and
SNR are strikingly similar. Using the compare method in the
arviz package [59] to estimate the significance of LOO differ-
ences, we find ∼ 1σ preferences for {220, 210, 320} at −5 tM
and for {220, 330} at 0 tM , and ∼ 1− 2σ preferences for all
models over {220} at the same early times. After the peak,
there are no strong preferences.

amplitudes are most consistent with being non-zero, and
we thus exclude {220, 221, 222}.

To start, a simple way to compare models is by com-
puting their recovered matched filter SNRs. We show in
the middle plot of Fig. 10 that the SNRs of the mod-
els we have considered are all very similar. The SNR
of the ringdown signal in GW190521, while amongst the

highest observed so far, is still relatively low. Thus it is
not surprising that many QNM combinations can capture
most of the signal’s power, especially since our models of
damped sinusoids are fairly unconstrained and flexible.
Interestingly, the SNR appears to begin consistently de-
caying around−5 tM . At this time, we find that our mod-
els with the 210 QNM produce remnant mass and spin
posteriors that overlap closely with those of NRSur7dq4.

For statistical model comparison, we implement the
leave-one-out cross-validation (LOO) [60, 61]. Although
Bayes factors [62, 63] are more commonly used for model
selection in gravitational-wave data analysis, we have
chosen to instead implement the LOO because it is in
principle less sensitive to prior regions without posterior
support than the Bayes factor is. In brief, the LOO esti-
mates the expected log pointwise predictive density from
some observed data points y1, ..., yn modeled as indepen-
dent given model parameters θ:

elpdLOO =

n∑
i=1

log p(yi|y−i), (1)

where

p(yi|y−i) =

∫
p(yi|θ) p(θ|y−i) dθ (2)

and y−i denotes the dataset in question with the ith el-
ement removed. This quantity gives a measure of how
well a fit would predict any single data point in a signal
given the other data points. We compute the LOO from
the whitened residuals of our QNM fits: higher LOO
values correspond to whitened residuals which are more
consistent with being white Gaussian-distributed noise.
For further discussion and extensions of this method, see
[61, 64] and [65] respectively.

In the bottom plot of Fig. 10 we show LOO values for
different ringdown models as a function of fit start time.
It is reasonable to expect both from the lack of distinc-
tion in SNRs and from the degeneracies in our QNM
posteriors that there will be no strong statistical prefer-
ence for any one model, and this is essentially what we
find when comparing LOO values. We use the compare
method in the arviz package [59] to estimate the signif-
icance of LOO differences.2 This method indicates ∼1σ
preferences both for {220, 210, 320} at −5 tM and for
{220, 330} at 0 tM respectively, and ∼1−2σ preferences
for all models over {220} at the same early times. After
the peak, we find no strong preferences for any model.

2 For technical reasons, unless imposed during Monte Carlo sam-
pling (see App. A) we do not use frequency cuts to remove de-
generate solutions when computing the statistical significance of
LOO differences. The absolute values of the LOO are not signif-
icantly affected by any frequency cuts we make after sampling.



11

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
f320

0.4

0.2

0.0

0.2

0.4

32
0

{220, 210, 320}
t0 = 0 tM

90% CI

(A)

0.15 0.10 0.05 0.00 0.05 0.10 0.15
f220

0.4

0.2

0.0

0.2

0.4

22
0

(B)

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

0.2

0.4

22
0

22
0

(C)

FIG. 11. Non-Kerr fits of the {220, 210, 320} model at the peak strain time. Deviations are simultaneously allowed for the
frequencies and damping times of the 220 and 320 QNMs. (A) We constrain δf320 (abscissa) to within ±20% at the 90%
highest-density credible level when fitting at 0 tM . The lower end of this constraint is influenced by our prior. The constraint
improves at −5 tM , coming closer to ±10% (not shown). (B) Our measurement of δf220 (abscissa) is uninformative at 0 tM .
However, δf220 is weakly peaked around 0 at −5 tM (not shown). As for δτ220 (ordinate), at first glance it seems to skew
towards non-zero values, but this is the result of correlations with χ. (C) Here we show that the skew of δτ220 (ordinate) is
correlated with χ (abscissa). The correlations conspire to keep τ220 constant, as can be seen in the inset figure.
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D. Non-Kerr Fits: Test of General Relativity

We have found the {220, 210, 320} Kerr model to give
good agreement with NRSur7dq4. We can test the sta-
bility of fits with this model by introducing perturba-
tions δf and δτ to the frequencies and damping times
of all but one QNM, such that f = fGR(M,χ) exp(δf)
and τ = τGR(M,χ) exp(δτ). Non-zero values of δf or δτ
may signal a non-Kerr effect or model systematics. We
choose to perturb the lowest-amplitude modes in our fits,
the 220 and 320.

The prior placed on the perturbations needs to be cho-
sen carefully to avoid mode switching and ensuing degen-
eracies [66]. To this end, we implement uniform priors
on the perturbations which are not necessarily symmet-
ric about zero, in order to allow for the largest possible
perturbations without label-switching.

The degeneracies that already exist within our Kerr
fits further complicate the QNM label-switching issues,
especially since some degenerate solutions zero out some
QNM amplitudes. Any measured deviations from the
Kerr QNM frequencies and damping times are only
meaningful for modes with non-vanishing amplitudes.
Thus, in addition to imposing a frequency cut at 75 Hz,
we also put a Gaussian amplitude prior on the 320 QNM
to enforce a hierarchy of amplitudes in our non-Kerr fits,
with the 320 tending to be subdominant, in order to keep
every QNM near the portion of parameter space where
every amplitude is most consistent with being non-zero;
see App. A and our data release [43].

In Fig. 11 we show the posteriors of Kerr-deviation
parameters for fits at the peak of the strain. We re-
cover a constraint of ±20% on δf320 around zero at the
90% highest-density credible level, which is similar to the
constraint that Capano et al. report in their own sub-
dominant mode analysis. We find that this constraint
is further tightened when fitting at −5 tM (not shown).
Our constraint on δf220 is less informative, although once
again it is more peaked around 0 when fitting at −5 tM
(not shown). At first glance it looks like δτ220 is skewed
towards large values. However, this is the result of corre-
lations between χ and δτ220 that conspire to keep τ220
constant. This seems to be a generic feature of this
beyond-Kerr parameterization; the same effect appears
in Fig. S.5 of [34] and Fig. 4 of [15], and also occurs
when perturbing {220, 210} models for GW190521. The
astrophysical population of parameters like χ may need
to be jointly modeled alongside the non-Kerr deviations
to avoid erroneously finding deviations from general rela-
tivity when analyzing catalogues of ringdown signals [67].

E. Further GW190521 Ringdown Explorations

We have fit several other Kerr ringdown models to
GW190521 beyond those shown above, and we briefly
discuss these additional models here. We do not find
evidence that would lead us to prefer any of these fits.

For both {220, 210, 200} and {220, 200} fits, we find
that the solutions that agree with NRSur7dq4 have 200
amplitudes consistent with zero. The noise level at the
frequencies where NRSur7dq4 places the 200 is several
times larger than it is at the 220 frequencies, and thus
even a 200 excitation as large as those of the other l = 2
QNMs might be undetectable: in going from 55 to 40 Hz,
the PSD rises by a factor of ∼5 in all interferometers, and
there are larger peaks at 50 Hz in Hanford and Virgo.
We also investigated overtone fits via {220, 210, 221}

and {220, 210, 211} models, and did not find a preference
for non-zero overtone amplitudes. This is consistent with
our findings regarding {220, 221, 222} fits in Sec. II C.
Lastly, we considered several fits with l > 2 modes. We

tried {220, 210, 310} and {220, 210, 330} fits, and found
that they either moved the 210 and 220 frequencies away
from the NRSur7dq4 values or otherwise did not support
non-zero amplitudes for the l = 3 modes. We also tried
{220, 320} fits and found that their frequencies could ei-
ther be similar to our {220, 330} fits or our {220, 210}
fits, but regardless were not fully consistent with NR-
Sur7dq4. Finally, we performed {220, 210, 320, 440} fits
and found no preference for non-zero 440 amplitudes.
Throughout this paper, we confined ourselves mostly

to three-mode fits due to the computational expense of
models with more modes. New features have since been
added to the ringdown package to address this expense.
We do not entirely rule out all possible fits with more
than three modes, but given the SNR of the signal it
seems unlikely that more modes could be fit convincingly.

IV. DISCUSSION

Imprints of Precession and Eccentricity on
Quasinormal Mode Spectra

Our results presented in Sec. III indicate that
GW190521 ringdown fits which include the 210 mode are
consistent with the remnant mass and spin distributions
of NRSur7dq4; we also find some support for the inclu-
sion of a subdominant 320 mode in our fits. The ampli-
tudes of the 210 and 220 QNMs in our fits appear to be
comparable in magnitude, as shown in Fig. 8. The 210
is not expected to be excited to this extent in the ring-
downs of non-precessing quasi-circular BBHs. However,
we propose that a large 210 amplitude could be excited
in the ringdowns of precessing BBH coalescences.
In precessing systems, the spin orientations of the pro-

genitors allow for misalignment of the binary’s orbital
angular momentum vector L and the remnant’s spin vec-
tor χ. Since the angular content of the remnant per-
turbations is carried over from the inspiral [68, 69] and is
oriented with respect to L, the projection of these pertur-
bations onto the frame aligned with χ (where the QNMs
are defined) will involve a rotation when there is rem-
nant spin misalignment. Rotations of spherical harmonic
strain are performed using Wigner D-matrices [46, 70–
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72], which mix the amplitudes of harmonics that share
the same l:

h′
lm′ =

∑
m

Dl
m′m(R)hlm, (3)

where Dl
m′m(R) is the D-matrix for a rotation R, and

hlm is the strain. Also, note that for both non-precessing
and precessing quasi-circular binaries, Post-Newtonian
(PN) approximations [73–75] indicate that the dominant
modes in the inspiral when observed in the co-orbital
frame are generally the quadrupolar (2,±2) modes [74].
Taken together, these facts suggest that the precession-
induced misalignment of L and χ could affect the ring-
down by rotating the perturbations themselves with re-
spect to the remnant, in such a way that the dominant
l = |m| = 2 perturbations in the frame aligned with L
are spread to l ̸= |m| perturbations in the frame aligned
with χ and thus excite l ̸= |m| QNMs. In support of
this hypothesis, preliminary studies of BBHs in the SXS
waveform catalogue [76] indicate that there are large cor-
relations between l ̸= |m| QNM amplitudes and the angle
of spin misalignment of the remnant [77], with the 210
and 220 amplitudes even being comparable in the most
highly misaligned systems. Note that this argument is
not related to changes in viewing angle of the remnant.

Multiple analyses find support for the source of
GW190521 being a precessing BBH [26, 27, 33, 78]. In
particular, NRSur7dq4 prefers large in-plane progenitor
spins. By contrast, the ringdown models of the LVC
and Capano et al. are more likely compatible with non-
precessing quasi-circular BBHs, which could explain why
their fits are not fully consistent with NRSur7dq4. As
argued above, our IMR-consistent ringdown models have
a reasonable interpretation in the context of precession;
nevertheless, we do not have sufficient evidence to fully
rule out other interpretations of GW190521 such as those
invoking eccentricity [28, 29], because it is unclear if the
QNMs in our models could be equally excited in alter-
native dynamical scenarios. Most theoretical studies of
QNM amplitudes from the ringdowns of BBH coales-
cences have been limited to non-precessing binaries with
equal or unequal mass ratios [47, 52, 69, 79–83]. Pre-
liminary progress has been made towards understand-
ing the effects of spin misalignment on the ringdown
[46, 68, 77, 84, 85], but general models have yet to be
developed for astrophysical ringdowns.

As we broaden our theoretical understanding of astro-
physical QNM spectra, it may become possible to make
both eccentricity and precession measurements by ana-
lyzing the ringdown alone. For example, large 200 ampli-
tudes should be tied to high eccentricity near the time of
merger in non-spinning systems, since head-on collisions
(the limit of maximal eccentricity) of non-spinning equal-
mass black holes are dominated by the 200 [82]. Even
non-detection of any QNMs associated with eccentricity
or precession could be used to place an upper bound on
their amplitudes, which in turn could set constraints on

different dynamical scenarios. This type of ringdown-
only inference would improve upon traditional methods
in the literature for measuring eccentricity and preces-
sion, as it is often assumed that such measurements are
only possible if several cycles of the pre-merger strain are
observed [56, 86].

V. CONCLUSION

Based on considerations of agreement with inspiral-
merger-ringdown analyses, self-consistency of fits over
time, theoretical motivations related to precession, and
stability of fits when testing general relativity, we find
a {220, 210, 320} quasinormal mode model to provide
the most convincing interpretation of the ringdown of
GW190521.
We find that when we include both the 210 and

220 quasinormal modes in our ringdown models of
GW190521, we achieve agreement between the remnant
mass and spin posteriors of our ringdown fits and the
full inspiral-merger-ringdown fits of NRSur7dq4 over a
broad range of ringdown fit start times. The inferred pa-
rameters of the 220 and 210 modes are stable over time;
the posteriors at later times expand around those of ear-
lier times. We find that such inspiral-merger-ringdown
waveform agreement and self-consistency over time is
not achieved by previous GW190521 ringdown analyses,
which were performed by the LVC and Capano et al.
When we perform analyses with flat priors on the am-

plitudes of each quasinormal mode, we find that the am-
plitude of the 210 mode is comparable to, if not slightly
larger than, that of the 220. While this is not expected
in non-precessing systems, we propose that such a large
210 excitation could be produced in the ringdown of a
precessing system [77]. This adds to a growing body
of research which suggests that substantial information
about binary progenitors may be encoded in quasinormal
mode spectra [47, 68, 69, 85].
At fitting times near the peak strain, a degenerate solu-

tion can be found in our {220, 210} posteriors that seems
to fit content in the data at frequencies of ∼95 Hz. This
is the same frequency range where Capano et al. claim
to find a 330 quasinormal mode. Guided by agreement
with NRSur7dq4, we interpret this mode to be the 320.
We recover amplitude posteriors that are not consistent
with zero for the 320 quasinormal mode when fitting it
alongside the 220 and 210, and including this l = 3 mode
in our fits does not significantly change our remnant mass
and spin estimates. We do not find support for the sig-
nificant presence of any other quasinormal modes in this
signal for fits that are consistent with NRSur7dq4.
For models that include the 210, our fits closely agree

with NRSur7dq4 even when fitting at times before our
median peak strain time estimate. There may be tech-
nical reasons for this, related to the unusual lack of a
prominent inspiral signal in GW190521 or the large peak
strain timing uncertainty. We plan to further explore this
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early fit behavior in future work.
When perturbing the Kerr quasinormal mode frequen-

cies and damping times of our {220, 210, 320} fit at the
peak strain time, we find a ∼ ±20% constraint with 90%
credibility around zero deviation for the 320 frequency.
We do not find as tight of a constraint on the 220 fre-
quency deviation. There is a moderate skew towards pos-
itive damping-time deviations for the 220, but this is the
result of correlations with χ. These correlations seem to
be a generic feature of this beyond-Kerr parameteriza-
tion, and indicate that the astrophysical population of
parameters like χ will need to be modeled jointly with
non-Kerr deviations to avoid biases in tests of general
relativity at the population level [67].

In order for ringdown analyses to provide viable tests
of general relativity in the strong field regime, it is impor-
tant that we fully understand the astrophysical quasinor-
mal mode spectra we should expect to see in the LIGO-
Virgo-KAGRA catalogue. Mismodeling of these spec-
tra may lead to erroneous measurements of deviations
from general relativity. Even if the correct subset of Kerr
quasinormal modes is chosen for a fit, without physically-
motivated prior constraints there can still be many de-
generacies in the posteriors of these models. It may be
advantageous for future ringdown analyses to move away
from current models made up of small subsets of uncon-
strained quasinormal modes, and towards models that
include as many modes as possible and tune physics pri-
ors to determine which modes are likely to be dominant.
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Appendix A: Analysis Technical Choices

We analyze 0.4 second segments of data containing the
ringdown signal from version 2 of the released strain [58],
at a sample rate of 4096 Hz. We use a median Welch es-
timate for our noise model, computed from 256 s of data
around the event. We high-pass filter at 10 Hz, and em-
ploy a digital anti-aliasing filter to zero out frequencies
above the Nyquist frequency while avoiding the extended
high-frequency corruption imposed by the roll-on of com-
monly used filters (e.g., Butterworth). We also artificially
inflate the value of the PSD below 10 Hz to censor those
frequencies in our likelihood calculations.

We estimate the peak time of the strain using an invari-
ant sum of all lmmodes and samples from NRSur7dq4, as
detailed in Table I. We use a flat prior on remnant mass
and spin, and generally use flat priors on QNM ampli-
tudes unless otherwise specified. We do not assume equa-
torial symmetry of the QNM excitations. When perform-
ing Hamiltonian Markov-Chain Monte Carlo (MCMC)
sampling of our likelihood for models that have an l = 3
mode, we employ a frequency constraint such that the
higher-order mode frequencies cannot go below 75 Hz.
This is to prevent our sampler from getting stuck in re-
gions where the l = 3 mode is fit to signal that is labeled
as l = 2 by NRSur7dq4. We also find that the degener-
ate solutions that our sampler gets stuck on often have
lower likelihoods, which is further motivation for the fre-
quency constraints. See our data release for more details
[43]. Other frequency cuts made throughout this paper
are implemented after MCMC sampling.

Fundamental aspects of our analysis are described in
[41]. A future companion paper [96] will discuss further
theoretical aspects of time-domain ringdown analysis and
motivate the data conditioning choices adopted here.
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FIG. 12. The LVC performed late-time fits using a higher-
order angular mode model which is tuned to non-precessing
quasi-circular NR systems. The 90% credible contour of
this higher-order model’s remnant mass and spin posterior
(dashed) is inconsistent with that of NRSur7dq4 (solid),
which may indicate that GW190521 is not well-described by
non-precessing models.

Appendix B: Further Discussion on Previous
GW190521 Ringdown Analyses and IMR

Consistency

Here we discuss the level of agreement that should be
expected between remnant parameter posteriors of IMR
and ringdown analyses. It is reasonable to asssume that
completely disjoint ringdown and IMR posteriors are in
disagreement and that completely overlapping posteriors
agree, but it is harder to define an acceptable amount
of partial overlap of these posteriors. This problem is
subtle: we contend that even partial overlaps such as
those observed in Figs. 3 and 12 may be insufficient.

For an accurate IMR waveform, we would generally ex-
pect a ringdown model consistent with that IMR wave-
form to make similarly accurate but less precise param-
eter estimates. This means that the ringdown posteriors
should fully encompass the IMR posteriors. Insufficient
overlap of the ringdown and IMR posteriors can imply
tension between the inspiral-merger portion of the wave-
form and the ringdown model in question. To demon-
strate this point, assume that if one were to perform sep-
arate analyses of the inspiral-merger (IM) and ringdown
(R) portions of a signal, they would produce two statis-
tically independent measurements of the remnant mass
and spin. That is, assume the likelihood functions for M
and χ can be multiplied to give a joint likelihood over
the inspiral and ringdown phases of the signal:

p (dIM, dR | M,χ, IMR) =

p (dIM | M,χ, IM) p (dR | M,χ,R) (B1)

This assumption is, in practice, violated by the colored
noise in current gravitational wave detectors: the likeli-
hood for the inspiral is not independent of that for the
ringdown. Nevertheless, the implications of this assump-
tion are instructive, and we expect the correlations intro-
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NRSur7dq4
LVC {220, 221, 222}
Inferred Inspiral-Merger

FIG. 13. Using the assumption of Eq. (B1), we demonstrate
that seemingly small biases between ringdown (red) and IMR
(black) posteriors may indicate mismodeling in at least one
of the analyses. We plot 90% credible contours and show
that if one were to assume that the two-overtone ringdown
model shown here was consistent with the ringdown model
preferred by NRSur7dq4, this would imply that remnant mass
and spin estimates given separately by the inspiral-merger
(blue dashed) of NRSur7dq4 and the two-overtone ringdown
model are in disagreement.

duced by noise to be relatively small.
Given Eq. (B1), partial overlap of remnant mass and

spin posteriors obtained by separately analyzing the ring-
down and IMR signals consequently necessitates partial
overlap of posteriors obtained from the inspiral-merger
and IMR signals. This can result in a significant lack of
overlap between the posteriors from the inspiral-merger
and ringdown, as shown in Fig. 13. Inconsistencies like
this are not expected if general relativity correctly de-
scribes the signals we observe, and thus lack of overlap
of the IMR and ringdown analyses may indicate that at
least one suffers from systematic inaccuracies.
Visually determining when sufficient overlap has been

achieved is further complicated by nuances related to the
spaces in which we plot our posteriors. The Jacobian
used when transforming between remnant mass and spin
space and QNM frequency and damping-rate space can
alter the level of apparent disagreement between poste-
riors, making it harder in one of the spaces than the
other to judge by eye the overlap of Gaussian kernel den-
sity estimates. For this paper, the QNM frequency and
damping-rate emerged as more useful for qualitative as-
sessments, both because they correspond more directly to
observables in the data and also because trends like those
in Fig. 2 may not be obvious without making comparisons
to the individual modes given by IMR waveforms.
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Appendix C: Detectability of Two Fundamental
Modes with Nearly Equal Frequencies

The 220 and 210 modes considered in this paper are
quite close to each other in frequency and nearly identical
in damping time. The separation in angular frequency is
δω ≃ 10Hz × 2π, which is comparable to their damping
rate γ ≃ 60Hz. It is reasonable to ask whether such
modes are even detectable in principle, given the SNR
of GW190521. Consider a simplified model, where there
are two (complex) modes with small angular frequency
separation δω and equal damping rates γ in a signal,

h(t) =
√
2γ

(
A1e

i(ω+iγ)t +A2e
i(ω+δω+iγ)t

)
, (C1)

which is embedded in white noise with unit variance for
0 < t < ∞. The SNR of any signal h in this situation is

ρ2h ≡
∫ ∞

0

dt |h(t)|2 ; (C2)

the normalization above is chosen so that A1 is the SNR
of mode 1 and A2 the SNR of mode 2. Assuming that the
frequencies and damping rates of the modes are known
perfectly, the Fisher matrix for the amplitudes is given
by

Fij ≡
∫ ∞

0

dt
∂h∗(t)

∂Ai

∂h(t)

∂Aj
. (C3)

In a measurement of mode amplitudes, the covariance
matrix will be the inverse of this Fisher matrix:

Σ ≡ F−1 =

[
1 + 4ξ2 −2ξ (i+ 2ξ)

2ξ (i− 2ξ) 1 + 4ξ2

]
, (C4)

where

ξ =
γ

δω
(C5)

is the dimensionless ratio of the damping rate to the “de-
phasing rate,” or angular frequency separation.
There are three interesting regimes. When ξ ≪ 1 then

the modes are long-lived compared to their frequency
separation, and the Fisher matrix approaches the iden-
tity, indicating that the amplitudes are measured with
unit uncertainty (as expected for the measurement of an
SNR) without correlation. When ξ ≫ 1 the modes damp
rapidly compared to the rate at which they dephase, and
the Fisher matrix becomes degenerate; the amplitude
measurements are perfectly correlated, and this large de-
generacy produces large uncertainty in the amplitude.
Finally, when ξ ≃ 1 the modes are measurable, but

with larger uncertainty, and the amplitude measurements
are correlated with each other. For GW190521, the 220
and 210 modes have ξ ≃ 1.1, which implies an uncer-

tainty σA ≃
√
1 + 4ξ2 ≃ 2.4, or a significance of detec-

tion for a mode given by the mode’s SNR divided by 2.4.
The correlation coefficient between the mode amplitudes
is ∼ 0.9. Both of these features are observed in the pos-
teriors we recover on the amplitudes of the 220 and 210
modes, shown in Fig. 8.
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