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Ultralight bosons are predicted in many extensions to the Standard Model and are popular dark
matter candidates. The black hole superradiance mechanism allows for these particles to be probed
using only their gravitational interaction. In this scenario, an ultralight boson cloud may form
spontaneously around a spinning black hole and extract a non-negligible fraction of the black hole’s
mass. These oscillating clouds produce quasi-monochromatic, long-duration gravitational waves
that may be detectable by ground-based or space-based gravitational wave detectors. We discuss
the capability of a new long-duration signal tracking method, based on a hidden Markov model,
to detect gravitational wave signals generated by ultralight vector boson clouds, including cases
where the signal frequency evolution timescale is much shorter than that of a typical continuous
wave signal. We quantify the detection horizon distances for vector boson clouds with current- and
next-generation ground-based detectors. We demonstrate that vector clouds hosted by black holes
with mass ≳ 60M⊙ and spin ≳ 0.6 are within the reach of current-generation detectors up to a
luminosity distance of ∼ 1 Gpc. This search method enables one to target vector boson clouds
around remnant black holes from compact binary mergers detected by gravitational-wave detectors.
We discuss the impact of the sky localization of the merger events and demonstrate that a typical
remnant black hole reasonably well-localized by the current generation detector network is accessible
in a follow-up search.

I. INTRODUCTION

The first direct detection of gravitational waves (GWs)
made by the Advanced Laser Interferometer Gravitational-
Wave Observatory (aLIGO) in 2015 ushered in a new and
exciting era of astrophysics [1, 2]. The addition of two
detectors, Advanced Virgo [3] and KAGRA [4], coupled
with continuous upgrades in sensitivity, has led to a total
of 90 direct observations of compact binary coalescence
(CBC) events to date, with this number expected to grow
exponentially in the coming years [5–7]. In the wake of
these discoveries, one of the most exciting prospects is
to use GWs to address questions in fundamental physics.
From a particle physics perspective, GW detectors are in-
valuable and unique tools in the search for physics beyond
the Standard Model. Specifically, the black hole super-
radiance mechanism [8–12] and the resulting detectable
gravitational radiation are ideal probes of weakly coupled
ultralight bosons [13, 14] in regions of the parameter space
inaccessible to current terrestrial experiments.

Ultralight bosons have been invoked in a variety of
settings in order to address open problems in particle
physics and cosmology. These include scalar (spin-0),
vector (spin-1) particles, as well as massive tensor (spin-2)
fields. The QCD axion, as well as axion-like particles, are
well-motivated ultralight scalar particles that solve the
strong CP-problem and may constitute a significant frac-
tion of dark matter [15–18]. Similarly, ultralight vector
bosons emerge in low-energy limits of quantum gravity

models and could contribute to the dark matter den-
sity [19–25], and general relativity may be modified by
massive spin-2 fields [26, 27]. Typical strategies used in
lab experiments to search for these elusive particles rely on
weak but non-zero couplings to the Standard Model. The
superradiance mechanism around spinning black holes,
on the other hand, results in observable smoking gun sig-
natures of the presence of ultralight bosons that depend
only on gravitational interactions.

Ultralight bosons can form bound states around spin-
ning black holes, growing into macroscopic clouds that
produce distinct observational signatures as a result
of a time-varying quadrupole moment (and higher mo-
ments) [13, 14, 28–40] (see Ref. [12] for a review). As
the cloud extracts energy and angular momentum from
the black hole through the superradiance mechanism,
its amplitude grows exponentially [8, 10, 11, 13, 41–44].
Considering only gravitational interactions of the ultra-
light bosons, this unstable behavior saturates due to the
spin down of the black hole, resulting in a superradiant
cloud that dissipates through GW emission [40, 45]. The
subsequent GW emission is quasi-monochromatic and
occurs at roughly twice the oscillation frequency of the
boson cloud. In particular, the frequency of gravitational
radiation from clouds around stellar mass black holes
falls squarely within the sensitive band of ground-based
GW detectors if the boson mass lies within a range of
∼ 10−14–10−11 eV [14, 32]. These GW signals can be
searched for in data collected by current and future detec-
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tor networks, and confident constraints may be placed on
the existence of ultralight bosons in the absence of a sig-
nal. Black hole spin measurements have previously been
used to place constraints on the existence of ultralight
scalar [14, 32, 35, 46] and vector bosons [33, 35], but with
significant associated uncertainties.

Various ultralight boson search strategies and target
signals have been considered, broadly classified into con-
tinuous wave (CW) searches (blind or directed), stochastic
GW background searches, and follow-up searches for quasi-
continuous GWs from previously observed binary black
hole merger events. All-sky searches for scalar bosons
using CW search techniques are described in Refs. [47–
49], studies targeting galactic sources are carried out in
Refs. [50, 51], and a directed search of the x-ray binary
system Cygnus X-1 is presented in Ref. [52]. Searches
for a stochastic GW background from a population of
black holes with scalar [53] and vector [54] boson clouds
have been used to place constraints on the respective
mass ranges. However, these constraints are subject to
assumptions about the underlying black hole population
and the past astrophysical history of specific black holes.
Follow-up searches targeting remnant black holes formed
in binary mergers remedy this shortcoming, as the entire
history of the newly formed black hole, as well as its
properties, are well understood.

Follow-up searches of merger remnants are therefore
ideal for two reasons: they have discovery potential, and
in the absence of a signal they allow for constraints to be
placed, subject only to the uncertainty in the remnant
black hole properties as measured from the merger GW
signal. Simple estimates using matched filter signal-to-
noise ratios (SNRs) suggest that these types of searches
are in principle possible for both scalar and vector boson
clouds using ground-based detectors [34]. In Ref. [55],
it was demonstrated, using a CW search method (a hid-
den Markov model), that follow-up searches for scalar
boson clouds around remnant black holes may plausibly
be conducted only in the next-generation era of detec-
tors. Vector boson clouds, on the other hand, grow on
much faster timescales and radiate at higher power com-
pared to their scalar counterparts, resulting in signifi-
cantly stronger GW emissions [33, 39, 45, 56]; however,
they exhibit relatively fast frequency evolution, rendering
the detection of these signals with traditional CW search
methods challenging [55].

In this paper, we propose a new method to search
for long-duration, quasi-continuous GWs produced by
ultralight vector boson clouds. We start by giving an
overview of black hole superradiance as it relates to GW
science. Making use of the latest waveform model, we
detail the boson signal morphology and the parameter
space of a typical search and present estimated horizon
distances for current and next-generation detectors. We
discuss the numerous challenges unique to vector boson
searches and propose detailed guidelines for a directed
search that is capable of handling these challenges. In
addition, we discuss potential target sources with an

emphasis on remnant black holes from compact binary
merger events observed by the ground-based GW detector
network.
The structure of the paper is as follows. In Sec. II,

we review the concept of black hole superradiance, the
evolution of the boson cloud, and different GW emission
mechanisms. We detail the signal waveform and param-
eter space and the typical duration of a vector boson
signal. In Sec. III, we describe the search method and
present guidelines for selecting a configuration and run-
ning a directed search for vector boson signals. We obtain
horizon distances through a series of simulations using
the numerical waveforms in Sec. IV. In Sec. V, we discuss
promising target black holes and the required sky grid
spacing. We conclude in Sec. VI. Note, we employ c = 1
units throughout.

II. VECTOR BOSON CLOUDS

The prospect of probing new physics beyond the
Standard Model using the superradiance mechanism
has motivated significant progress in understanding the
relevant processes [12]. In the case of vector boson
clouds, a combination of analytic [33, 57–60] and nu-
merical [35, 39, 40, 45, 56, 61] methods have been applied
to predict observational signatures of the presence of this
mechanism and the resulting clouds. In the following, we
provide a brief overview of the black hole superradiance
process in Sec. IIA, discuss the quasi-monochromatic
gravitational radiation properties in Sec. II B, describe
the parameterization of the GWs in Sec. II C, and discuss
the parameter space of the black hole-boson system and
the corresponding GW signal characteristics in Sec. IID.
We mainly focus on the case of vector boson clouds in
this study.

A. Superradiant clouds

In this work, we are primarily interested in follow-
ing up binary black hole merger events detected with a
ground-based GW detector network. The properties of
the merger remnant determine the subsequent growth and
evolution of the superradiant cloud. After the merger, the
cloud begins extracting energy and angular momentum
from the remnant, growing exponentially with e-folding
timescale τinst. This growth phase saturates after roughly
∼ O(90)τinst (for stellar-mass black holes) by spinning
down the black hole and emitting gravitational radiation.
Provided an ultralight boson of the right mass exists, we
expect a detectable GW signal to emerge from the sky-
position of the binary merger after roughly ∼ O(90)τinst.
The boson cloud dissipates through GW radiation on a
timescale τGW ≫ τinst, resulting in a frequency drift (spin
up) of the nearly monochromatic signal. In this section,
we briefly summarize the timescales and frequencies rel-
evant to the growth and saturation of the superradiant
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cloud and return to a characterization of the emitted GW
signal in Secs. II B and IIC.

Superradiance around a spinning black hole of mass M
and dimensionless spin χ may be triggered by a collection
of ultralight bosons.1 Let this cloud be characterized by
an azimuthal mode number m and mode frequency ω.
Then a bosonic perturbation extracts rotational energy
from the black hole through the superradiance process if
the condition

0 < ω < mΩH (1)

is satisfied. Here, ΩH = χ/(2r+) is the black hole horizon

frequency, with r+ = rg(1+
√
1− χ2) and rg = GM . Due

to the vector boson’s mass mV , it can form states that
are gravitationally bound to the black hole and are thus
continuously amplified; this is known as superradiant in-
stability. In order to quantify the relevant timescales and
frequencies associated with this process, it is instructive
to define the dimensionless “gravitational fine-structure”
constant

α ≡ rg
λ

= GM
mV

ℏ
, (2)

which compares the size of the black hole ∼ rg to the
reduced Compton wavelength of the ultralight boson λ =
ℏ/mV . Therefore, α naturally divides the parameter
space into a non-relativistic regime, α ≪ 1, where the
superradiant cloud is much larger than the black hole,
and a relativistic regime, α ∼ 1, where the black hole and
the cloud are roughly the same size.
In the non-relativistic regime, the gravitational influ-

ence of the black hole follows a simple inverse-radius po-
tential. Hence, the superradiant cloud growing around the
black hole is in a hydrogen-like gravitationally bound state.
Cloud states are characterized by m ≥ 1, radial node num-
ber n̂ ≥ 0, and polarization S ∈ {−1, 0, 1}. In this limit,
the frequency of each state is given by [33, 57, 60, 61]

ω =
mV

ℏ

(
1− 1

2

α2

n2
+GmS

)
, (3)

where n = m+ n̂+ S + 1. The coefficients GmS ∼ O(α4)
encode the higher-order corrections in the relativistic
α ∼ 1 regime. From Eq. (3) we see that the superradiant
cloud oscillates with frequency ω ≈ mV /ℏ (i.e., roughly
set by the vector boson mass) around the central black
hole. The exponential growth of the superradiant cloud
is most efficient when the Compton wavelength of the
bosonic particle is comparable to the size of the black
hole, α ∼ O(1). The growth rates Γinst (and associated
timescales τinst ≡ Γ−1

inst) for the vector field in the small-
α-limit are [33]

Γinst = α4m+2S+52r+(mΩH − ω)CmS . (4)

1 We focus here entirely on the case of ultralight vector bosons. See,
e.g., Ref. [62] for a comparison of the properties of superradiant
scalar and vector boson clouds.

The coefficients CmS > 0 depend on the black hole spin
χ [60], and in the relativistic regime also on α [56]. In
the non-relativistic limit, the growth rates are highly sup-
pressed by large powers of α; states with small azimuthal
index |m| ≥ 1, zero radial nodes (n̂ = 0), and S = −1
grow the fastest. In this work, we primarily focus on
m = 1 unstable modes. For ω > mΩH , the growth rates
turn negative, i.e., Γinst < 0, indicating the exponential
decay of this cloud state. Therefore, the superradiance
process is most efficient, i.e., Γinst is largest, for α ≲ m/2.
Both the frequency ω and growth rates Γinst are

computed for superradiant vector clouds in the non-
relativistic [33, 60] (see also Ref. [44]) and relativis-
tic [35, 39, 56, 61] regimes using analytic and numeri-
cal methods, respectively. In this work, we utilize the
waveform model SuperRad [62], which interpolates be-
tween the analytic and numerical results in their different
regimes of validity, providing the most accurate estimates
for ω and Γinst which remain valid across the entire rele-
vant parameter space. To provide some intuition, in the
non-relativistic limit α ≪ 1, the instability timescale of
the fastest growing mode (m, n̂, S) = (1, 0,−1) around a
black hole of dimensionless spin χ is roughly given by

τinst ≈ 2 mins

(
M

10M⊙

)(
0.1

α

)7
1

χ
. (5)

We return to the frequency ω for typical parameters in
the next section.

For a given superradiant energy level, as long as Eq. (1)
is satisfied, the occupation number of the vector cloud
continues to grow as energy and angular momentum are
extracted from the black hole. However, the system even-
tually reaches the point at which the black hole has lost
sufficient energy and angular momentum, i.e., ΩH has
decreased such that Eq. (1) becomes asymptotically satu-
rated: mΩH → ω. At this stage, the system has reached a
quasi-equilibrium state between the black hole and boson
cloud [45]. In the absence of any additional processes
(e.g., accretion), the saturated mass of the boson cloud
Mc is simply the difference between the initial and final
black hole masses, Mi and Mf , respectively. When only
the m = 1 energy level is populated, the cloud mass is
approximately [32]

Mc = Mi −Mf ≈ 0.01
( α

0.1

)(
χi − χf

0.1

)
Mi, (6)

where χi and χf are the initial and final dimensionless
spins of the black hole, respectively. We assumed here
that initially the system satisfies αi ≪ 1. In this same
non-relativistic limit, the spun-down black hole has a final
spin of approximately

χf =
4αfm

4α2
f +m2

< χi, (7)

where αf = GMfµ. Equations (6) and (7) are obtained
assuming a linear and adiabatic evolution of the black
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hole-boson cloud system, as well as the saturation of the
superradiance condition ω = mΩH . A more accurate
prediction for Mf and χf can be obtained by numerically
solving a set of four ordinary differential equations describ-
ing the linear evolution of the black hole and boson cloud
masses and angular momenta, and the corresponding grav-
itationally emitted energy and angular momentum [63].
While the waveform model SuperRad is able to provide
more accurate estimates, in the remainder of this work
we assume the system saturates at ω = mΩH .2 The fi-
nal black hole and cloud parameters obtained assuming
ω = mΩH , and using the aforementioned linear adiabatic
time-domain evolution, differ only at the percent level
(see Ref. [62]), and hence do not affect any of the conclu-
sions drawn in this work. It has been shown using fully
nonlinear numerical relativity techniques that, due to su-
perradiance alone, the cloud can extract up to 10% of the
black hole’s total mass [40]. Once the growth saturates,
GW emission stemming from the dissipation of the oscil-
lating cloud becomes the dominant evolution mechanism.
This occurs over timescales much longer than those of the
cloud growth.

B. GW emission

In the context of isolated boson clouds, there are sev-
eral mechanisms that may produce gravitational radia-
tion: emission from boson annihilation in a single cloud
state, the transition of bosons in the cloud between en-
ergy levels, and the collapse of the boson cloud under
its own self-interactions, i.e., a “bosenova.” Cloud transi-
tions, or a beating between modes oscillating at different
frequencies, may only produce significant gravitational
radiation if comparable occupation numbers can be found
in more than one energy level. In the case of vector clouds,
these transitions can occur even for young black holes,
resulting in quasi-periodic GW signals (whereas transi-
tions in scalar clouds occur primarily around old black
holes [14, 30]). Unfortunately, because these transitions
occur on timescales shorter than that of the typical GW
emission of a single vector cloud level, the observational
window for transition signals is small [56]. If the massive
vector boson obtains its mass through a Higgs mechanism,
depending on the relevant coupling constants, the cloud
can reach a large enough occupation number to backreact
on the Higgs-like field and lead to the formation of string
vortices. This drives a stringy bosenova [64, 65] where the
cloud is strongly disrupted, resulting in recurring burst-
like GW emission.3 However, these explosive phenomena
are not yet well-modelled. In this work we focus solely on
quasi-monochromatic GW emissions from the dissipation

2 Spot checks have been carried out using the more accurate evolu-
tion estimates, and no difference is found in the search results.

3 In the case of axions, these explosive phenomena due to self-
interactions are unlikely to happen [66–69].

of a single cloud state assuming only the gravitational
coupling. This picture may change, however, if the vector
boson couples sufficiently strongly to the Standard Model,
or to an extended dark sector [70–73].

As discussed in the previous section, once the superradi-
ant growth of the cloud terminates with the saturation of
the condition in Eq. (1), the cloud of mass Mc oscillates
around the black hole with angular frequency ω. The
frequency of the emitted quasi-monochromatic GWs is
then set by ω, defined in Eq. (3), in the source frame as
twice the mode frequency:

fGW = ω/π. (8)

For typical cloud parameters in the non-relativistic limit,
and considering only the most unstable m = 1 mode, the
GW signal frequency is roughly [Eqs. (2)–(3)]

fGW ≈ 645 Hz

(
10 M⊙

M

)( α

0.1

)
. (9)

Stellar-mass black holes can therefore support boson
clouds with emission frequencies that lie within the most
sensitive band of ground-based GW detectors. (We return
to the frequency evolution later in this section.)
The GW amplitude is obtained on a Kerr black hole

background using the Teukolsky formalism [74] (or lim-
its thereof). The non-relativistic estimate obtained in
Ref. [33] is refined and extended to the relativistic regime
in Ref. [56] and is consistent with a fully nonlinear treat-
ment of the problem [39, 45]. Combining these results, in
the non-relativistic regime and for the m = 1 cloud state,
the characteristic amplitude is roughly

h0 ≈ 3×10−26

(
M

10 M⊙

)( α

0.1

)5
(
0.1 Gpc

d

)(
χi − χf

0.1

)
.

(10)
Here, we define d as the luminosity distance, h0 =
(10ĖGW)1/2/(2πfGWd) as the characteristic GW strain,

and ĖGW as the total GW energy flux. We can approx-
imate the power radiated by the fastest-growing cloud
state as

ĖGW ≈ 6× 1046 erg/s
( α

0.1

)12
(
χi − χf

0.1

)2

(11)

in the non-relativistic regime. Note that the radiated
power from vector clouds, which are the focus of this
paper, is orders of magnitude larger than that from scalar
clouds. This also implies, however, that the signals from
vector boson clouds last for timescales orders of magnitude
shorter than those from scalar clouds. (We return to this
point and its implications for the search methods below.)
As the cloud dissipates energy to GWs, the signal

amplitude, starting at its peak when the cloud is at its
maximum size [given by Eq. (10)], will decrease over time.
This occurs over a timescale on the order of the signal
duration. During the emission process, the cloud’s mass
Mc decreases following the relationship

Mc(t) =
M sat

c

1 + (t− tsat)/τGW
, τGW ≡ M sat

c

Ėsat
GW

, (12)
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where tsat is the saturation time of the superradiant
growth, and M sat

c and Ėsat
GW are the quantities at tsat,

and we define the characteristic GW emission timescale
τGW. We consider this to be the typical duration of
the signal, since at a time τGW after the saturation, the
signal amplitude has halved. Recalling the approxima-
tions made in Eq. (6) and Eq. (11), we can rewrite this
timescale in the dominant vector energy level and in the
non-relativistic limit as

τGW ≈ 33 days

(
M

10M⊙

)(
0.1

α

)11 (
0.1

χi − χf

)
. (13)

The GW emission timescale is typically orders of mag-
nitude longer than the cloud growth timescale [compare
Eq. (5) to Eq. (13)], which allows us to treat the two as
distinct stages in the system’s evolution.
Lastly, the evolution of the total mass of the cloud

[Mc(t) in Eq. (12)] implies an increase in the GW fre-
quency fGW on the timescale τGW. The smaller Mc is,
the weaker the gravitational redshift of the emitted GW
becomes, and hence the higher the frequency. The result-
ing frequency drift can, to leading order, be approximated
by the change of the Newtonian potential sourced by the
presence of the superradiant cloud [33, 55, 56, 68].4 The

first time derivative of the frequency, ∂
(1)
t fGW ≡ ḟGW,

can be obtained from the rate of change of Mc at the
saturation point and is given by [73]

ḟGW =
5α3G

8πr2g
ĖGW

≈ 10−8 Hz/s

(
10 M⊙

M

)2 ( α

0.1

)15
(
χi − χf

0.1

)2

(14)

in the α ≪ 1 limit. The complete frequency evolution with

all time derivatives ∂
(n)
t fGW can be determined directly

from Eq. (12).
In this section, we focused on providing intuition for

and rough scalings of all relevant observables. In practice,
however, we utilize SuperRad [62] to accurately determine
the GW amplitude, frequency evolution, and involved
timescales across the entire parameter space for a set of
initial source parameters.

C. GW signal parameterization

In the previous section, we qualitatively introduced
all relevant GW properties. In the following section,
we discuss the precise parameterization of the quasi-
monochromatic gravitational radiation used in the re-
mainder of this work. We focus on the source frame

4 Note a missing factor of 2 in the frequency drift expressions of
Refs. [33, 55] is pointed out in Ref. [68] and included in the
relevant vector cloud expressions in Ref. [73].

quantities, and we assume that a single cloud level is
dominating the GW signal and that the superradiance
condition is saturated.
The GW strain signal in a detector I is written as a

sum over two polarizations:

hI(t) = F I
+(t)h+(t) + F I

×(t)h×(t), (15)

where F I
+ and F I

× are the antenna response (or beam
pattern) functions of detector I to GW signals with plus
(+) and cross (×) polarizations, respectively. (For explicit
expressions, see e.g., Appendix B in Ref. [75].) These are
periodic functions that depend on the relative location of
the detector and source, typically parameterized by right
ascension (RA) and declination (Dec), and the polariza-
tion angle. The strain amplitudes h+,×(t) are set by the
GW phase and amplitude and the inclination angle (ι)
between the rotational axis of the black hole and the line
of sight.
We expand the GW polarization waveforms h+,× in

terms of a series of spin-weighted spherical harmonics

sYℓ̃m̃(ι, φ) = sSℓ̃m̃(ι)e−im̃φ of spin-weight s = −2, where
φ is the azimuthal coordinate in the source frame. With
the luminosity distance d, the polarization waveform is
generally (see, e.g., Ref. [73])

h+ =
1

d

∑
ℓ̃≥m̃

|hℓ̃m̃|(−2Sℓ̃m̃ + (−1)ℓ̃−2Sℓ̃−m̃)

× cos(Φ(t) + m̃φ+ ϕℓ̃m̃),

(16)

h× =
1

d

∑
ℓ̃≥m̃

|hℓ̃m̃|(−2Sℓ̃m̃ − (−1)ℓ̃−2Sℓ̃−m̃)

× sin(Φ(t) + m̃φ+ ϕℓ̃m̃).

(17)

Here, Φ(t) is the GW phase, hℓ̃m̃ is the GW mode ampli-

tude, and ϕℓ̃m̃ is the phase difference between the (ℓ̃, m̃)-
modes. (By construction, we choose ϕ22 = 0, while all
other ϕℓm may be non-vanishing.) In the non-relativistic
limit (α ≪ 1), the GW signal from an m cloud state is

dominated by the ℓ̃ = m̃ = 2m contribution; for m = 1
vector cloud solutions around the black hole, the GW
emission is given entirely by the (ℓ̃, m̃) = (2, 2) compo-
nent. In the relativistic regime (α ∼ 1), this mode is

subdominant to the (ℓ̃, m̃) = (3, 2) contribution. Similar
behavior can be observed for higher-m cloud states [56].
The frequency evolution of the quasi-monochromatic

GW signal is encoded in the GW frequency

fGW(t) = f0 +
δf

1 + (t− tsat)/τGW
, (18)

where f0 is the asymptotic GW frequency at late times
(t ≫ τGW), and δf5 characterizes the shift of fGW away
from f0 due to the self-gravity of the superradiant cloud,

5 For an explicit form of δf = ∆ω/π, see Eq. (22) in Ref. [62].
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with |fGW(t) − f0| ∝ Mc. In all cases considered here,

f0 ≫ |δf |. The frequency derivative ḟGW, given in
Eq. (14), follows directly from Eq. (18). The GW phase
Φ(t) is simply the integral of fGW starting from the satura-
tion time tsat up to time t, added to an initial phase-offset
Φ0:

Φ(t) = Φ0 + 2π

∫ t

tsat

dt′fGW(t′). (19)

The frequency and phase evolution in the source frame are
modified at cosmological distances by appropriate redshift
factors. We discuss the details of this in Sec. IVA.
Finally, here and in the following, we use hpeak

0 and

fpeak
GW to denote the signal strain amplitude and frequency,

respectively, at the time of cloud saturation, i.e., hpeak
0 =

h0(tsat) and fpeak
GW = fGW(tsat).

D. System parameter space and GW emission
characteristics

In the following, we expand on the presentation in
Secs. IIA and IIB and analyze the relevant parameter
space in more detail, focusing entirely on the most un-
stable m = 1 vector boson cloud state. The expected
GW signal parameters depend on the intrinsic parame-
ters of the system—the initial mass and spin of the black
hole and the boson mass. For a given black hole, there
exists a broad range of boson masses that satisfy the
superradiance condition. Since in a real search the vector
boson mass is unknown, a single black hole with known
intrinsic parameters allows us to probe a range of boson
masses and requires us to consider a corresponding range
of GW frequencies, frequency evolution rates, emission
timescales, and signal amplitudes.

Figure 1 shows the characteristic GW strain at satura-

tion hpeak
0 as a function of emission frequency fpeak

GW for
a vector cloud (in the most unstable m = 1 cloud state)
around five different black holes with masses from 5 M⊙
to 100 M⊙ (with initial spin χi = 0.7 and luminosity
distance d = 100 Mpc). For convenience, we parameterize
how “well-matched” the boson mass is to the black hole
via the gravitational fine-structure constant α [Eq. (2)].
We define αopt to be the fine-structure constant which
maximizes the strain amplitude in the source frame for a
fixed initial black hole mass and spin, i.e.,

αopt = argmaxαh
peak
0 . (20)

For each given black hole in Fig. 1, α = αopt only when

hpeak
0 is at its maximum. (This will not in general corre-

spond exactly to the α value that gives the largest horizon
distance; see Sec. IVB.) As an example, the signal strain
for Mi = 100 M⊙, αopt = 0.176, and cos ι = 1.0 is esti-

mated to be hpeak
0 = 4.41× 10−24. For each black hole

mass, there is a range of possible α values that allow
for superradiance, and accordingly, a range of possible
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FIG. 1. Strain amplitude at the cloud’s saturation hpeak
0 as

a function of fpeak
GW for five different black holes with Mi =

5, 10, 20, 50, and 100 M⊙ for χi = 0.7 and d = 100 Mpc.
The color corresponds to α. For all five black holes, the
optimally matched scenario (i.e., maximum hpeak

0 ) occurs at
αopt = 0.176.

signal parameters. As shown in Secs. IIA and IIB and
demonstrated in the figure, more massive black holes emit
louder GW signals at lower frequencies.

Let us consider the impact of the black hole’s spin on
the emitted GW signal from superradiant vector boson
clouds. Figure 2 shows the optimally matched boson

mass mopt
V as well as hpeak

0 and fpeak
GW as a function of

initial black hole mass Mi for different values of initial
black hole spin χi. Generally, as χi increases, αopt (and

the corresponding mopt
V ) increases as well, resulting in an

upwards trend of hpeak
0 and fpeak

GW [consult also Eqs. (2),
(9), and (10)], which span a wide range depending on the
value of Mi. Similar to what was shown in Fig. 1, heavier
black holes together with lighter vector bosons harbor
clouds that emit louder GW signals at lower frequencies.
As dictated by Eq. (6), heavier black holes with higher
initial spins are able to support heavier boson clouds,
resulting in gravitational radiation with higher signal
amplitudes.

We now turn to the two timescales characterizing the
evolution of the superradiant cloud. In Secs. IIA and
IIB, we introduced the cloud growth timescale, τinst, as
well as the GW emission timescale, τGW, which determine
how long the vector boson cloud takes to grow, and how
long the subsequent GW emission phase lasts. In Fig. 3,
we show the GW emission timescale τGW for a range of
initial black hole masses and spins assuming α = αopt.
The decay of the GW emission after saturation can occur
on timescales as short as τGW ∼ mins for light and rapidly
spinning black holes. Dropping the assumption of Eq. (20),
in Fig. 4 we compare both timescales for a moderate initial
spin of χi = 0.7. For a given initial black hole mass, as
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FIG. 2. Boson mass mopt
V = αoptℏ/rg in units of eV (top),

hpeak
0 (for d = 100 Mpc) (middle), and fpeak

GW (bottom) as a
function of initial black hole mass Mi. In all three panels,
we use the optimally matched α as defined in Eq. (20). The
colored lines in each panel correspond to different values of
initial black hole spin.

α deviates from αopt (dashed white line), the instability
growth and GW emission timescales increase. Moreover,
for any given set of Mi and α, τinst is orders of magnitude
smaller than τGW for the most unstable m = 1 cloud
state.

We now consider targeting a newly born black hole,
such as a binary black hole merger remnant. It is im-
portant to account for the total growth time tgrowth =
τinst log(Mc/mV )/2 of the vector boson cloud around the
black hole. Once the cloud reaches its saturation (at an
age of tgrowth), it contains a significant fraction of the black
hole’s mass, after which the GW signal is most likely to be
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FIG. 3. GW emission timescale τGW as a function of initial
black hole mass Mi and spin χi for αopt as defined in Eq. (20).

detectable. Thus, for a stellar-mass black hole, GW emis-
sions from the newly formed vector boson cloud reach their
peak around tgrowth = τinst log(0.01 M⊙/10

−13 eV)/2 ≈
85τinst. The amplitude of the GW signal then drops by
half roughly tgrowth + τGW after the birth of the black
hole. Therefore, a GW search would begin roughly tgrowth

after the black hole is born and last for ∼ τGW. As shown
in Fig. 4, the growth timescale for α ≳ 0.05 lasts only
a few days or less, which enables us, in most cases, to
follow up a black hole merger remnant within the same
observing run in which it was detected. If a potential
target is observed towards the end of an observing run
or right before a significant commission break, however,
these timescales may extend beyond the end of the ob-
serving period, where we no longer have data. In that
case, higher azimuthal states of the vector boson cloud
around a given black hole could be considered in the next
observing period, but we leave this to future work.

The GW emission timescale is closely related to the GW
signal evolution as demonstrated in Secs. II B and IIC.
In Fig. 5, we show the first time derivative of the GW
signal frequency ḟGW as a function of Mi and χi for αopt

at saturation. While the frequency evolution is not lin-
ear (see Sec. II C), ḟGW provides a guide to the evolution
timescales of the GW frequency. The frequency derivative
spans tens of orders of magnitude across the entire param-
eter space, with lower-mass and higher-spin black holes
yielding the largest ḟGW values (for αopt). This implies
that a vector boson cloud may emit nearly monochromatic
CW signals (for high black hole masses and low spins) or

be highly dynamical with ḟGW ∼ O(1) Hz s−1 (for low
black hole masses and high spins). As we show in the
following sections, the search techniques developed in this
paper can track signals with ḟGW up to ∼ 10−4 Hz s−1,
covering most of the parameter space in Fig. 5 other than
the top left corner. As a final note, when considering
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FIG. 4. Cloud growth (top) and GW emission timescales
(bottom) as a function of initial black hole mass Mi and
α with initial black hole spin χi = 0.7. The dashed white
line marks α = αopt = 0.176 corresponding to the optimally
matched boson mass for each black hole mass, as defined in
Eq. (20).

vector signals with small ḟGW values at tsat (towards the
bottom right corner in Fig. 5), their frequency evolution
rates are comparable to signals from scalar clouds (but
they correspond to very different black holes). In these
cases, signals from vector clouds are still generally higher
in amplitude, occur over shorter timescales, and are more
easily detectable than scalar signals with comparable ḟGW

values.

III. DIRECTED SEARCHES

While there are many observational signatures that
would allow us to infer the existence of vector boson
clouds formed via black hole superradiance [13, 14, 28–
33, 35–38, 76], in this study we choose to focus on di-
rect detection via GW radiation. Although the emission
timescales for vector bosons are often shorter than the
typical timescales associated with CW searches, much of
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FIG. 5. First time derivative of the GW frequency ḟGW (at
saturation) as a function of initial black hole mass Mi and
spin χi, assuming α = αopt as defined in Eq. (20).

the parameter space (as we show in Sec. IID) would still
produce signals that are considered long-duration. As
such, we need to use search techniques that are capable
of tracking signals on timescales shorter than CWs but
longer than transients. In particular, we focus on directed
searches, in which we target black holes with known (or
well-constrained) parameters such as mass, spin, and sky
position, as opposed to a blind all-sky search, in which
we search for signals from unknown black holes with un-
known parameters. One benefit of conducting a directed
search is that we will be able to place constraints on
the existence of vector bosons without needing to rely
on black hole population models, which come with large
uncertainties. If we make a detection, we will learn the
particle’s mass and dynamics through detailed measure-
ments of the signal morphology. If no detection is made,
having prior knowledge about the black hole’s parameters
will allow us to place stringent constraints on the boson
mass.
In this section, we introduce a hidden Markov model

(HMM)-based search method to track vector boson signals.
In Sec. III A, we review the general HMM algorithm and
describe the new implementation of the algorithm in this
study to search for vector boson signals. We investigate
the parameter space and corresponding configurations of
a typical search in Sec. III B and describe the simulations
using SuperRad.

A. Search method

We implement a semicoherent search method dedicated
for vector boson signals, which are expected to be much
shorter (on a timescale of hours to months) than the
typical CW signal. The method combines a frequency-



9

domain matched filter, F-statistic (widely used in CW
searches [77–79]), with an efficient HMM search technique
to track the signal evolution. The HMM tracking tech-
nique has been applied to searches for many types of
quasimonochromatic, continuous, or long-transient GW
signals [55, 80–82]. It is an ideal search strategy for signals
from vector boson clouds because it is extremely compu-
tationally efficient, allowing us to cover a wide parameter
space, including signal frequency, duration, and sky posi-
tion. Other semicoherent search techniques generally rely
on Taylor expansions of the signal phase evolution within
the matched filtering and are thus quite model-dependent
(e.g., Refs. [78, 83]). HMM, on the other hand, is an
ideal choice in searches where uncertainties may exist in
the signal waveforms predicted by theories and numerical
calculations because it allows for some uncertainty in the
signal morphology.
Factoring in the random noise present in the detector

data, HMM is able to find the most probable signal fre-
quency evolution, or “path,” as a function of time [80, 81].
To accomplish this, the frequency-time plane is divided
into a discrete grid of NQ frequency bins and NT time
steps. The length of each time step and the correspond-
ing width of the bins are chosen carefully, based on prior
knowledge of the target signal, to satisfy two criteria: the
signal is considered “monochromatic” (with the signal
power concentrated in one bin) over the course of a single
time step, and it can move at most one bin from one
discrete time step to the next. In other words, the signal
does not evolve too rapidly for HMM to track.

Over the total observing time Tobs, we select a coherent
time interval, Tcoh = Tobs/NT , such that∣∣∣∣∣

∫ t+Tcoh

t

dt′ḟGW(t′)

∣∣∣∣∣ ≤ ∆f (21)

is always satisfied for 0 < t < Tobs − Tcoh, i.e., the sig-
nal does not evolve outside the tracking capabilities of
HMM. Here ∆f = 1/(2Tcoh) is the frequency bin size
in the F-statistic output computed over Tcoh, where the
F -statistic calculation takes a series of short Fourier trans-
forms (SFTs) of length TSFT (< Tcoh) as input. Consid-
ering the maximum spin-up of the signal over the whole
tracking duration, ḟmax

GW , we require ḟmax
GW Tcoh ≤ ∆f fol-

lowing Eq. (21), and thus

Tcoh ≤ (2ḟmax
GW )−1/2. (22)

Since longer Tcoh values yield better search sensitivity [81],

in a typical search we set Tcoh = (2ḟmax
GW )−1/2 to maximize

sensitivity. For vector boson signals, when the cloud is
saturated at tsat, the strain amplitude reaches its peak,
and the frequency evolution rate is also at its maximum,
i.e., ḟmax

GW = ḟGW(tsat). Thus, we compute ḟmax
GW using

SuperRad for each given system (e.g., Fig. 5) and set

Tcoh = (2ḟmax
GW )−1/2, rounded down to the nearest 0.1

min.
We estimate the likelihood of the signal in each fre-

quency bin at each time step via the F-statistic, which

accounts for the Earth’s motion with respect to the source
through Doppler corrections [78, 84]. We coherently in-
tegrate the data over the duration Tcoh; this results in
NT = Tobs/Tcoh coherent F-statistic segments over the
total duration of the search Tobs. The coherent segments
are then combined incoherently using HMM tracking, as
outlined in, e.g., Refs. [80, 81]. The particular choice of
transition probability matrix, i.e., the probability for the
signal frequency in each bin fi at the current time step
to be in bin fj at the next time step, does not largely
impact the sensitivity of the HMM tracking as long as it
captures the general behavior of the signal [80, 85]. Given

that the vector boson signal has a small positive ḟGW(t),
i.e., the signal frequency slowly increases (see Sec. II B),

we apply for simplicity a uniform probability on ḟGW in
the range of [0, ḟmax

GW ] and write the transition probability
Afjfi from one time step to the next as [55, 80, 81]

Afi+1fi = Afifi =
1

2
, (23)

with all other entries being zero. This means that, from
the current time step to the next, a signal in bin fi either
remains in bin fi or evolves to a higher frequency bin fi+1.
A uniform prior Πfi = N−1

Q is applied on all frequency
bins over the total frequency band being searched. We use
the Viterbi algorithm to solve the HMM and identify the
most probable signal path recursively across the frequency-
time plane [86].
In this work, we extend the standard HMM tracking

used in CW searches to a much shorter timescale by intro-
ducing more flexible configurations and a new detection
statistic. Reference [55] states that the F -statistic/HMM-
pipeline is not currently capable of tracking signals with
ḟGW ≳ 10−8 Hz s−1. This statement makes the assump-
tion that TSFT used in the search is fixed to 30 mins
(the standard SFT length used in CW searches). Due to
the faster signal evolution characteristic of vector boson
searches, both Tcoh and TSFT have to be much shorter
[recall Eq. (22)]. We set a lower cutoff Tcoh ≥ 1 min
with a minimum TSFT ≥ 0.25 min. For each detec-
tor, the coherent F -statistic calculation requires as input
a minimum of two SFTs. However, to mitigate issues
with insufficient data, we require at minimum a length
of 4TSFT per F-statistic segment. The cutoff on Tcoh

is chosen because we find that, for Tcoh < 1 min, the
F-statistic values computed in pure Gaussian noise no
longer follow the expected central chi-squared distribu-
tion with four degrees of freedom. (For a more detailed
discussion of the statistical studies behind short-segment
F-statistics, see Ref. [87].) This cutoff corresponds to

ḟGW = 1.39× 10−4 Hz s−1, which is the maximum ḟGW

covered by the search method described in this paper.
For signals that evolve more rapidly, other HMM-based
methods outlined in Refs. [82, 88] to track long-transient
signals could be applied, but this is outside the scope of
this study. On the other hand, for a parameter space that
corresponds to much longer signals on timescales similar
to typical CWs, we set an upper bound of TSFT = 30 min
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to prevent power leakage due to the Doppler effect as the
Earth rotates. We also set an upper bound of Tcoh = 10 d
for computing efficiency6, and to allow for some model
uncertainty [55, 80, 81].
In many of the existing HMM-based CW searches, a

detection statistic called the “Viterbi score” is used to
quantify the significance of the most probable path re-
turned by the tracking (e.g., Refs. [52, 55, 81]). The
Viterbi score S is defined such that the log likelihood of
the optimal Viterbi path equals the mean log likelihood
of all NQ paths ending in NQ bins plus S standard devia-
tions at the final step NT . In other words, the significance
of the signal is evaluated by comparing the optimal path
to all other paths in a given sub-band searched. We do
not use the Viterbi score as our detection statistic in this
study, however, because the Viterbi score is only reliable
for NQ ≫ NT . When NQ ∼ NT , the NQ paths partially
overlap and so are correlated [89]. Because the typical
timescale of a vector boson signal is much shorter than the
standard CW signals, most configurations in this study
require wider frequency bins and fewer tracking steps
compared to a standard CW search, and thus we often
have NQ ≳ NT .

Instead, we define a new detection statistic as the total
log-likelihood L of the optimal path divided by the number
of steps NT written as

L̄ ≡ L/NT . (24)

In theory, we could simply use L as our detection statistic,
as in Refs. [89–93]. However, since we need to cover a
wide parameter space for a given source (see Sec. IID),
using L̄ allows us to remove the dominant dependence of
the detection statistic on NT and generalize the detection
statistic to many configurations covering a wide range of
signal durations (note that L̄ still weakly depends on NT

and Tcoh; see Sec. III B). This is of particular importance
for setting a detection threshold for a search.

B. Simulations and search configurations

We define a 1% false alarm probability threshold in each
sub-band searched in order to quantify the confidence in
a detected signal. Because we consider a wide range of
search configurations in this study, each with a unique
threshold depending on the choices of Tcoh and NT , we
adopt a hybrid method to estimate thresholds based on
both empirical simulations and analytical fitting. The
procedure is as follows. We first empirically test the
following Tcoh values: 1 min, 2 min, 5 min, 10 min, 30 min,
1 hr, 12 hr, 1 d, 5 d, and 10 d, covering the whole range
of typical vector boson searches. For each choice of Tcoh,
we consider five to eight NT values we might use in a real
search. For each combination of Tcoh and NT , we obtain

6 The computing cost scales as ∼ T 2
coh in HMM-based searches [81].

the threshold by running 300 searches in pure Gaussian
noise within a single 1-Hz sub-band. We extract L̄ at the
99th percentile, denoted as L̄th. We consider anything
with L̄ > L̄th to be a GW candidate (i.e., there is a 1%
probability the candidate is a false alarm in each sub-
band). Then, for a given Tcoh, we plot L̄th as a function
of NT and fit an exponential decay curve to the data
points; an example is shown in Fig. 6 for Tcoh = 30 min
for seven sample NT values. Repeating this process for
all Tcoh values chosen above, the fitted curves for different
Tcoh values end up roughly overlapping (the variation of
L̄th for any given NT is within ∼ ±5%), demonstrating
that L̄th depends more on NT than on Tcoh. It is indeed
expected that the threshold is almost independent of
Tcoh because the F-statistic values computed over each
coherent step in pure Gaussian noise should follow the
same central chi-squared distribution with four degrees of
freedom. Due to the maximization in the HMM tracking,
the tail in the L̄ = L/NT distribution still depends on
NT . In practice, we determine a choice of (Tcoh, NT ) for
the search based on the signal parameter space. We then
find L̄th at the chosen NT from the exponential fitting
curve. Although the deviations among the fitting curves
for different Tcoh values are small, we take the curve
obtained with the Tcoh value (among the 10 values tested)
closest to the one chosen for the search configuration. We
use this method in this study in order to get the threshold
and obtain an estimate of the search sensitivity across the
whole parameter space while saving on computing costs
(see Sec. IVA). In a real directed search, we can always
empirically obtain the threshold using the specific search
configurations suitable for a given source to avoid small
statistical deviations introduced by interpolation.
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FIG. 6. L̄th as a function of NT for Tcoh = 30 min (data points
are taken at NT = 25, 50, 100, 200, 300, 400, and 500 steps).
The solid curve is an exponential decay fit: L̄th = ae−bNT + c
with fit parameters a = 2.99, b = 0.0168, and c = 6.66.

Once we have obtained detection thresholds, we run
searches for synthetic vector boson signals simulated based
on the signal morphology described in Secs. II B–IIC
across the parameter space and demonstrate how well



11

the method is able to recover the signal. As an example,
we consider a system with Mi = 200 M⊙, χi = 0.6, and
α = αopt = 0.141. We place this system at d = 500 Mpc,

which corresponds to a peak strain amplitude of hpeak
0 =

5.66 × 10−25. We assume the system has the optimal
orientation, i.e., cos ι = 1.0. We use SuperRad to build
a signal waveform based on these parameters and inject
the signal into Gaussian noise with an amplitude spectral

density (ASD) of S
1/2
h = 4× 10−24 Hz−1/2 (the aLIGO

design sensitivity in the most sensitive frequency band
∼ 102 Hz) using the simulateCW Python module in the
LALPulsar library of LALSuite [94, 95]. We inject the
signal at RA = 4.41955 rad and Dec = 0.62385 rad in
the 1-Hz band starting from 40 Hz (with two aLIGO
detectors).

Given the ḟGW estimated by SuperRad, we choose the
best possible coherent length based on Eq. (22), Tcoh =
207 min, and track the signal over ∼ 26 days. The result
is shown in Fig. 7, with the injection indicated by the
dashed blue curve and the signal path recovered by HMM
indicated by the solid orange curve. The stairstep pattern
of the recovered signal is a result of the search being
divided into discrete frequency bins and time steps. The
detection statistic associated with this recovered path is
L̄ = 57.43, well above the estimated threshold, L̄th = 6.73,
indicating a successful detection. As demonstrated, the
HMM is able to accurately reconstruct the signal down
to a root-mean-square error of 2.12× 10−5 Hz.
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FIG. 7. Viterbi tracking (solid orange curve) for a synthetic
vector boson signal (dashed blue curve) injected into Gaussian

noise with S
1/2
h = 4× 10−24 Hz−1/2 for two aLIGO detectors

(system parameters: Mi = 200 M⊙, χi = 0.6, αopt = 0.141,
and d = 500 Mpc). We use Tcoh = 207 min = 3.45 hr and run
the search for a total duration of ∼ 26 d (NT = 181 steps).
The detection statistic is L̄ = 57.43 > L̄th = 6.73.

As mentioned, we run the search over a total duration
Tobs ≈ 26 days in the above example. Unlike standard
CW signals, which have essentially constant strain am-
plitude over the entire observing time of ∼ years, vector
boson signals decay much quicker. Thus, there is an op-
timal range for Tobs which is long enough to accumulate

a significant SNR, but short enough to not accumulate
pure noise after the signal strength falls below the detec-
tion limit. The optimal range of Tobs varies for different
systems but is expected to be on the order of τGW [see
Eq. (12) and Fig. 3]. Hence, we use Tobs ≈ τGW (with
some rounding involved such that Tobs is evenly divided
into Tcoh intervals).
To demonstrate the effect of searching over longer or

shorter durations, we show another example in Fig. 8.
We consider a system with Mi = 60 M⊙, χi = 0.7, and
α = αopt = 0.176 at d = 500 Mpc (cos ι = 1.0) and

inject a synthetic signal into Gaussian noise (S
1/2
h =

4 × 10−24 Hz−1/2) in the 168–169 Hz sub-band for two
aLIGO detectors. We track the injection with Tcoh =
11.6 min for NT = 23, 46, 92, and 184 steps; the respective
trackings are shown in panels a)–d), corresponding to
Tobs = 0.25τGW, 0.5τGW, τGW, and 2τGW, respectively.
In panel a), we find that L̄ falls below the threshold, so the
signal is not recovered. This is because Tobs is too short
to accumulate enough signal power. In panels b) and c),
we have L̄ > L̄th, so the signal is successfully recovered
in both cases. The recovered signals in each panel (solid
orange curves) align well with the injected signals (dashed
blue curves). As such, Tobs = 0.5τGW and τGW are both
good choices for this system. In panel d), while L̄ is above
the threshold, it is only marginally so. This is because
h0 decreases as the boson cloud dissipates, and as shown
in d), the tracking loses the signal and begins to collect
pure noise in the last third of the total Tobs, resulting
in a less significant detection statistic. Overall, we find
it is safest to use Tobs ≈ τGW, which always falls in the
optimal range for the systems we have tested across the
system parameter space.
Here we have considered the optimal Tobs range for a

marginal signal in order to quantify the search sensitivity.
If the signal is sufficiently loud, using Tobs ≈ τGW is still
safe for detecting the signal, but extending Tobs would
further increase the SNR, allowing a follow-up verification
for the signal candidate.

IV. SEARCH SENSITIVITY AND HORIZON
DISTANCE

Based on the simulations described above, we estimate
horizon distances in optimal scenarios for current and
future generation detectors in Sec. IVA and discuss the
non-optimal cases in Sec. IVB. Because we do not make
any assumptions about the origins of our target sources,
our conclusions are broadly applicable to stellar-mass
black holes with reasonably well-constrained sky positions
and intrinsic parameters.

A. Horizon distance estimate

In this section, we quantify the horizon distance dH ,
defined as the farthest luminosity distance we would be
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FIG. 8. Viterbi tracking (solid orange curve) for a synthetic vector boson signal (dashed blue curve) injected into Gaussian

noise with S
1/2
h = 4 × 10−24 Hz−1/2 for two aLIGO detectors (system parameters: Mi = 60 M⊙, χi = 0.7, αopt = 0.176,

and d = 500 Mpc). We use Tcoh = 11.6 min and run the search for a) 23 steps, b) 46 steps, c) 92 steps, and d) 184 steps,
corresponding to Tobs = 0.25τGW, 0.5τGW, τGW, and 2τGW, respectively (τGW = 0.74 days). In panels b), c), and d), L̄ is above
the corresponding threshold, whereas in panel a), L̄ < L̄th, which is a non-detection.

able to detect a vector boson signal from a given black
hole in the optimal scenario. Here, the optimal scenario
is defined as: i) the boson mass optimally matches its
host black hole in terms of maximizing the intrinsic strain
amplitude when the cloud is saturated, and ii) the black
hole-boson system is optimally oriented (face-on or face-
off), such that the effective strain amplitude on Earth is
maximized.

In Sec. IV B of Ref. [55], the authors estimate horizon
distances for scalar clouds by first obtaining the search
sensitivity on signal strain amplitude corresponding to
95% detection efficiency at 1% false-alarm probability,
denoted by h95%

0 , for a particular search configuration.
Sensitivities under other search configurations (i.e., dif-
ferent choices of Tcoh and Tobs) can be obtained by the
following scaling [81]

h95%
0 (f) ∝ Sh(f)

1/2

N
1/2
ifo (TcohTobs)

1/4
, (25)

assuming that Nifo detectors in the network have the
same ASD at the signal frequency. The horizon distance
is then the luminosity distance of the system at which
the signal strain h0 at dH equals h95%

0 (fdet), where fdet
is the signal frequency in the detector frame.

We do not follow this scaling in this study, however,
because Eq. (25) is not as reliable for short signals. More-
over, the effects of redshift in vector boson searches are
more significant since we can reach much farther into
the Universe, as we discuss below. Thus, we need to
consider a wide range of possible values of h0, fGW, Tcoh,
TSFT, and Tobs for a given system, all depending on the
system’s luminosity distance from Earth. Because of the
challenges these factors pose, we instead estimate the
horizon distance directly on a grid of black hole masses
and spins.

Figure 9 shows the estimated horizon distances as a
function of Mi and χi, assuming a network of two aLIGO
detectors at design sensitivity [96]. Here, the results are
presented for the optimal scenario described above (i.e.,

the boson mass is mopt
V = αoptℏ/rg and the system is face-

on/face-off). We limit Tcoh to 1 min ≤ Tcoh ≤ 10 days.
(See Sec. IIIA for the justification.) We set the total
observing time Tobs = min(τGW, 180 d). (See Fig. 3 for
the typical range of τGW values for a given black hole.) We
select a 180 d cutoff for the total observing time because
we aim to follow up promising CBC merger remnants
in LIGO-Virgo-KAGRA (LVK) observing runs, which
usually last ∼ 1 year with events detected throughout



13

the run. This 180 d cutoff is also motivated by the need
to save on computing costs wherever possible. The gray
area in the top left corner of Fig. 9 denotes the region of
the parameter space where the maximum allowed Tcoh is
shorter than 1 min and the signal is evolving too quickly
for this method to cover.7 Moreover, because aLIGO
detectors have little sensitivity below ∼ 5 Hz, we set
a lower cutoff in frequency at 5 Hz. This results in a
noticeable suppression in the horizon distance at very
large Mi, where the systems are optimal for low-mass
bosons and tend to emit at lower frequencies.
The effect of redshift z on the signal frequency is non-

negligible at large luminosity distances and can be ex-
pressed as fdet = fsrc(1 + z)−1 and ḟdet = ḟsrc(1 + z)−2,

where fsrc (ḟsrc) is the frequency (derivative) in the source

frame, and fdet (ḟdet) is the respective quantity in the
detector frame. This allows us to use longer coherent
lengths, T z

coh = Tcoh(1 + z), and longer SFT lengths,
T z
SFT = TSFT(1 + z), where the superscript z denotes

redshifted signals. Similarly, we have a redshifted GW
emission timescale τzGW = τGW(1+z) and thus are able to
observe over longer durations T z

obs = Tobs(1 + z). Hence,
for a given system at cosmological distances, the search
sensitivity may improve as distance increases because we
are able to extend Tcoh (and search sensitivity improves
as Tcoh increases); the search sensitivity may also degrade,
however, since the distance to the system is increasing
(and the signal amplitude linearly scales with the inverse
of the distance). Whether it is a net gain or loss in sensi-
tivity depends on the configuration of the system, redshift,
and the detector noise ASD at the signal frequency in the
detector frame.
The estimated horizon distances shown in Fig. 9 have

the redshift effects taken into account. The procedure
to account for redshift is as follows. For a given black
hole-boson system (a given set of Mi, χi, and mopt

V ), we
first inject synthetic signals calculated by SuperRad into
Gaussian noise with the following set of extrinsic param-
eters: d = 50 Mpc, cos ι = 1, a randomized polarization

angle, a fixed ASD of S
1/2
h = 4 × 10−24 Hz−1/2, and

a set of arbitrarily chosen sky coordinates (RA,Dec) =
(4.41955, 0.62385) rad. We choose the optimal search con-
figuration for the system that is assumed to lie at this
distance and attempt to recover the signal using HMM.
If the signal is recovered with L̄ > L̄th, we increase d
to 100 Mpc and repeat the same process. We continue
to increase the distance by an interval of 100 Mpc un-
til L̄ drops below the threshold. We quote the largest
distance at which we are still able to recover the signal
as the horizon distance, dH , for each given black hole
in the (Mi, χi) plane. Then we rescale dH based on the

7 As discussed in Sec. III A, alternative HMM-based methods, e.g.,
Refs. [82, 88], can be used for rapidly evolving signals in the gray
region. Also see Sec. IVB for additional discussion regarding
non-optimally matching scenarios.

frequency-dependent ASD curve for aLIGO design sensi-
tivity [96], with Tcoh, Tobs, and the redshift effect all taken
into account, following the scaling given by Eq. (25):

h0(dH) [Tcoh(dH)Tobs(dH)]
1/4

S
1/2
h

=
h0(d

′
H) [Tcoh(d

′
H)Tobs(d

′
H)]

1/4

S
1/2
h (d′H)

, (26)

where S
1/2
h is fixed to the value used in the simulations,

i.e., 4×10−24 Hz−1/2, S
1/2
h (d′H) is the aLIGO design ASD

at the redshifted signal frequency fdet (which in turn
depends on dH), and d′H is the target horizon distance
scaled to the aLIGO design sensitivity. We obtain the
target d′H value by numerically solving Eq. (26) for each
system.
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FIG. 9. Horizon distance (colored contour) as a function of the
initial black hole mass Mi and initial spin χi for two aLIGO
detectors at design sensitivity. The gray region marks the
parameter space where the signal is evolving too quickly to
be tracked using the method in this paper (ḟdet > 1.39× 10−4

Hz s−1). The white contours mark the optimally matched
boson masses [as defined in Eq. (20)] in eV.

As expected, the horizon distance generally increases
with both Mi and χi. High-mass black holes lead to sig-
nals with smaller ḟGW values, allowing us to use longer
Tcoh segments, yielding increased sensitivity. The gain is
diminished by the fact that the lower-mass bosons match-
ing the higher-mass black holes emit at lower frequencies,
where ground-based detectors are less sensitive due to seis-
mic noise. When the horizon distances correspond to high
redshifts, the signals are redshifted to even lower frequen-
cies. Hence, the horizon distance degrades towards the
higher end of the black hole mass spectrum in the figure.
Towards the lower end of the Mi spectrum, the optimally
matching bosons have higher mass and emit at higher
frequencies, where the detector’s sensitivity is limited by
shot noise. In addition, boson clouds around smaller black
holes emit lower-amplitude GWs. Thus in the low Mi
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region, the search sensitivity is also limited. Nevertheless,
unlike the expected signals generated by scalar clouds
around CBC remnants, for which the detection prospects
are dim for current generation detectors,8 for a parameter
space with Mi ≳ 60M⊙ and χi ≳ 0.6 (corresponding to a
boson mass of ∼ 10−13 eV and d ≳ 400 Mpc), searches
for vector boson signals are promising using existing de-
tectors; CBC events detected in previous observing runs
are found at luminosity distances ≲ O(1 Gpc).

In Fig. 10, we compare the horizon distances using two
aLIGO detectors at design sensitivity with the proposed
next-generation detectors: Cosmic Explorer [97–99] and
Einstein Telescope [100–103]. The top panel is the same
as Fig. 9, but with a different color scale for visual com-
parison with the bottom two panels. We use the same
method as described above to rescale the horizon distances
using the design ASD curves for Cosmic Explorer and
Einstein Telescope (also with a lower cutoff frequency at
5 Hz) [96, 104]. According to the figure, future generation
detectors will improve the horizon distances by about an
order of magnitude, allowing us to probe a much wider
parameter space for boson masses ∼ 10−14–10−12 eV.
For comparison, we calculate the matched filter SNR

(SNRmf) for each of three example black holes with op-
timally matched boson masses at the aLIGO horizon
distances (Table I). The SNRmf values are in the range
≈ 15–25, roughly what we would expect for detection in
a semicoherent HMM search. In Ref. [34], it is assumed
that any signal with SNRmf > 8 can be detected, and
correspondingly, they find horizon distances that are a
factor of a few larger than found here. (Reference [34] also
uses a non-relativistic estimate of the GW amplitude.)
In reality, a more flexible method that is less suscepti-
ble to model uncertainties, like the one described in this
paper, sacrifices some sensitivity and requires a higher
SNR for confident detection. That is, for a less sensi-
tive semicoherent search, we require a signal with higher
SNR (SNRmf ≳ 15–25) than that which is required in a
fully coherent search (SNRmf > 8) to ensure the signal is
detectable.

Mi [M⊙] χi dH [Gpc] SNRmf

40 0.5 0.175 25.3

80 0.6 0.564 20.7

100 0.7 1.096 14.9

TABLE I. Matched filter SNRs for three sample systems at
the estimated horizon distances using two aLIGO detectors.

8 Scalar clouds emit weaker signals that occur over much longer
timescales; in this case, galactic black holes that are older but
more nearby would be the more promising targets for current
generation detectors (see, e.g., Refs. [47, 52]). However, it is
important to note that when targeting unknown black holes
and/or known black holes with unknown ages within our galaxy,
constraints derived on the boson mass are contingent on the
assumed system age as well as the black hole population.
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FIG. 10. Horizon distance (colored contour) as a function of
the initial black hole massMi and initial spin χi for two aLIGO
detectors at design sensitivity (top), one Cosmic Explorer
(middle), and one Einstein Telescope with three identical
observatories at the same triangular site (bottom). The gray
region marks the parameter space where the signal is evolving
too quickly to be tracked using the method in this paper
(ḟdet > 1.39 × 10−4 Hz s−1). The white contours mark the
optimally matched [as defined in Eq. (20)] boson masses (in
eV), roughly indicating the parameter space that can be probed
with these ground-based detectors.

B. Non-optimal scenarios

Up until this point, all horizon distances have been
estimated using the optimally-matched boson mass mopt

V .
In the case of scalar bosons, the optimally matching case
automatically yields the maximum horizon distance [55],
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assuming no impact from the detector ASD, since the
signals last for timescales on the order of years or more and
the signal strain is maximized over the whole observing
time. This is not always the case for vector bosons, as we
demonstrate in Fig. 11, which shows the horizon distances
for a range of α values as a function of Mi for a fixed
χi = 0.7. The horizontal dashed line marks αopt = 0.176.
We see that αopt does not align with the maximum horizon
distance for any given Mi; rather, the maximum dH (with
a factor of ∼ 1.2–2 improvement) lies roughly at α ≈ 0.15
with a long tail into the lower α values. This behavior is
unique to vector boson signals, which are much shorter
than scalar signals.
The optimally matching value of α, by construction,

has the maximum strain when the cloud is saturated.
However, since this means the radiated power will be
nearly maximized, the signal will evolve rapidly with a
large ḟGW and a short τGW, which limits the length of
Tcoh and Tobs that can be used in the search and thus
degrades the sensitivity. On the other hand, when we
consider a suboptimal boson mass for a given black hole,
by Eqs. (11) and (13), the cloud radiates at lower power
and emits GWs over a longer timescale. Although the
signal strain is smaller due to lower intrinsic GW power,
because the signal evolves more slowly and lasts longer,
we are able to extend Tcoh, gaining sensitivity, and we can
track over a longer Tobs, accumulating a higher SNR. In
Fig. 11, when α ≲ αopt, the gain in sensitivity outweighs
the loss due to a smaller signal strain. But as α further
decreases, the signal becomes too weak, and the sensitivity
degrades again. Hence, the horizon distances presented
in Sec. IVA are only for the optimally matching boson
for each black hole; they are not necessarily the largest
luminosity distances we can reach for any possible boson
mass. Some suboptimal boson masses will lead to better
detection prospects. It follows that for a given black hole,
it is not only possible, but also beneficial for us to probe
a range of boson masses.
Although not shown in Fig. 11, as χi increases, the

α value corresponding to the maximum dH shifts more
significantly from αopt. This is because for higher-spin
black holes with α = αopt, the signal frequency evolves
quicker and thus requires shorter Tcoh lengths in the
search; the sensitivity gain at non-optimal α values, which
allow for longer Tcoh segments, is then more significant.

The gray shaded regions in Figs. 9 and 10, which mark
the parameter space where the signals evolve too quickly
to track with the method described in this paper, are
not necessarily inaccessible. For suboptimal α values, the
frequency derivative is smaller, allowing us to significantly
extend Tcoh and probe the gray region of the parameter
space for such boson masses.
We also consider the case in which the source is not

optimally oriented with respect to the detectors, i.e.,
cos ι ̸= ±1. The luminosity distance (d) and orienta-
tion (ι) of the source are degenerate, and we can write the
effective strain amplitude seen by the detectors as [78, 105]

heff
0 = h0(d) 2

−1/2{[(1 + cos2 ι)/2]2 + cos2 ι}1/2. (27)
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FIG. 11. Horizon distance (colored contour) as a function of
Mi and α (at χi = 0.7) for two aLIGO detectors at design
sensitivity. The dashed white line marks αopt = 0.176, the
α-value corresponding to the optimally matched boson mass
for each black hole mass.

Since the sensitivity to the effective strain heff
0 remains

fixed within a given detector, we can analytically scale the
horizon luminosity distance for a non-optimally oriented
system using Eq. (27).9

V. SOURCES AND SKY LOCALIZATION

As discussed in Sec. I, although constraints have already
been placed on the boson mass using black hole spin mea-
surements, there are significant associated uncertainties.
Searches targeting individual black holes represent a more
direct approach to testing the superradiance phenomenon
and constraining the boson mass. We describe promising
search targets for vector bosons in Sec. VA. Then, we
discuss the impact of the sky localization of the target
black hole and analyze two different systems as examples
in Sec. VB.

A. CBC remnant black holes

To determine what types of black holes would be ideal
targets for vector boson searches, we first consider black
holes with well-estimated masses, spins, and ages that
could host boson clouds whose signals would fall within

9 The scaling in Eq. (27) is an approximation and only becomes
exact in the non-relativistic limit (α ≪ 1). However, it is a
good approximation for all systems considered in this study. (See
the discussion below Eq. (17) for further details.) In addition,
Eq. (27) assumes a randomized polarization angle and neglects
the weak impact from the sky position in this scaling.
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reach of current-generation detectors. Having prior knowl-
edge of the black hole’s intrinsic parameters (mass and
spin) and extrinsic parameters (luminosity distance and
orientation) allows us to accurately predict the strain am-
plitude emitted by the source for a given α and thereby
place confident constraints on the boson mass. An accu-
rate estimate of the black hole age enables us to predict
the optimal starting time of the search for a range of
boson masses. Prior knowledge of the sky position is
also useful (in most cases; see Sec. VB), motivating us
to target known, well-localized black holes constrained
within ∼ 102–103 deg2.

We can infer the parameters of a CBC remnant black
hole from the inspiral-merger-ringdown signal observed
by the detectors. The intrinsic and extrinsic source pa-
rameters listed in the previous paragraph are provided
by CBC parameter estimation. We can pinpoint the time
required for the cloud to grow and emit (if the correspond-
ing boson particle exists) accurately since we know when
the black hole was born. In addition, for sources seen by
multiple detectors, we often have decent sky localization,
particularly if there is an electromagnetic counterpart
(i.e., at least one of the merging objects is a neutron star).

Reference [55] thoroughly discusses the benefits and
drawbacks of targeting CBC remnants, as well as another
potentially interesting target source: black holes in x-ray
binaries. In this study, we show that, for vector boson
signals, we are able to reach a much farther distance com-
pared to scalar boson signals, and that current-generation
detectors are capable of reaching sources at luminosity dis-
tances in line with some typical CBC remnants (Sec. IV).
Thus, nearby CBC remnants are arguably the more desir-
able choice given the uncertainties associated with x-ray
binary systems, and the fact that they will typically be
much older. Given that we do not have prior knowledge
of the conjectured particle mass, it is in our best interest
to target all black holes with reasonable potential to pro-
duce a detectable signal regardless of where they lie in
the mass-spin plane. Targeting multiple black holes with
different properties allows us to probe a larger boson mass
range. The fourth observing run of the LVK network is
about to start with upgraded detectors, so we expect to
have many remnant black holes suitable for vector boson
studies.

B. Sky localization uncertainty

In this section, we discuss in more detail how the sky
localization of a CBC event would impact a vector boson
search, and we analyze two different systems as examples.
For CBC remnant black holes detected by LIGO and

Virgo, the sky positions are usually constrained to ∼ 101–
103 deg2. When targeting a particular black hole, we
need to run the search multiple times on a grid of sky
positions to tile the patch in the sky where the source is
believed to lie. We call these tiles “sky templates.” To
minimize the computational cost, but also ensure we do

not miss the signal, we must choose the number Nsky and
spacing Ωsky of the sky templates carefully. This depends
on a few factors: the position of the black hole, the size
of the sky area constrained by the parameter estimation
of the CBC signal, the signal strength, and the frequency
resolution of the search.

A general guideline for selecting sky templates is to
calculate the mismatch [81, 106]. However, given the
wide parameter space that needs to be covered in vector
boson searches and the variety of search configurations
required, more careful empirical verification is needed.
Here we outline how to determine Nsky and Ωsky in a
real search by injecting a synthetic signal into Gaussian

noise (S
1/2
h = 4 × 10−24 Hz−1/2) and searching over a

grid of sky positions around the injection position. The
signal strength is selected to be marginally above the
detection threshold to ensure the search does not miss
a weak signal due to a coarse sky grid. We investigate
both a short-duration signal O(hours) and a long-duration
signal O(months). We inject both signals at an arbitrarily
chosen sky position RA = 20 hr and Dec = 10 deg, and
we search over a 13×13 sky grid centered on the injection
position. Table II lists the detailed injection and search
parameters for both signals.

The results are shown in Fig. 12, with L̄/L̄th evaluated
at each sky position plotted as colored contours. The
left and right panels show the short- and long-duration
injections, respectively. The white contour in the right
panel marks where L̄ = L̄th, below which we do not
recover the signal. We call the bright, above-threshold
region the effective point spread function (EPSF) of the
signal [105]. In the left panel, we have L̄ > L̄th over the
whole grid.

In the right panel, the EPSF is slightly off-center, i.e.,
the maximum L̄ is not found at the injection position. The
EPSF spans a large fraction of the sky, ∼ 202 deg2. This
is the expected behavior for a search with Tcoh ≲ 1 day,
which has poor sky resolution [105]. If we set Ωsky ≈
202 deg2, we would only need Nsky ∼ O(1)–O(10) to cover
the relevant sky patch for a search with Tcoh ≲ 1 day,
assuming the source is reasonably well localized within
∼ 102–103 deg2, which is easily attainable for an event
seen by multiple detectors. In the left panel, we do
not see a clear EPSF because the signal occurs over a
much shorter timescale with Tcoh on the order of minutes.
This is expected for very short-duration signals. We use
the estimated sky position of the source to correct for
the Doppler modulation due to the Earth’s motion in
the search. Because the modulation changes little over
coherent integration times of ∼ 10 min, the detection
statistic is generally insensitive to offsets from the true
sky position. While such low sky resolution does come
at the expense of degraded sensitivity, the major benefit
here is that we do not need a sky grid to follow up a
signal with τGW ≲ 1 day. As demonstrated in the above
examples, the follow-up search for vector bosons targeting
a CBC remnant black hole should be computationally
practical, especially given the efficiency of the Viterbi
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Panel Mi [M⊙] χi dH [Mpc] hpeak
0 Freq. band [Hz] Tcoh Tobs

Left 60 0.7 600 4.41× 10−25 165–166 11.8 min 18.1 hr

Right 100 0.5 800 5.19× 10−26 62–63 10.9 hr 167.5 d

TABLE II. Injection and search parameters used in Fig. 12.
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FIG. 12. Colored contour of L̄/L̄th as a function of the offset in RA and Dec for a short-duration signal (left) and a long-duration
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algorithm.

VI. CONCLUSIONS

In this paper, we explore how GW detectors can be used
to uncover evidence of ultralight vector bosons through a
process known as black hole superradiance. We implement
a search technique for vector bosons around known black
holes based on an HMM tracking scheme similar to the
one used in directed searches for scalar bosons, but with
certain modifications necessary to deal with the more
rapidly evolving signals. We utilize a recently developed
waveform model SuperRad to simulate GW signals from
vector boson clouds, which allows us to optimize the
search configuration and more accurately estimate its
sensitivity.

In this study, we do not take into account any potential
impact of the uncertainty in the signal waveform model
on the search configuration. The methods used here are
much more flexible and less susceptible to model errors
compared to, e.g., matched filter techniques. Nevertheless,
an overestimated first time derivative of the emitted GW
frequency ḟGW may lead to a less optimal configuration
(shorter Tcoh) for the search. An underestimated ḟGW

may result in a loss of signal power as, at earlier times,
the signal evolves more quickly than HMM can track.
Although we do not expect this to have any significant
impact on the results here, future analyses may factor
in the uncertainty estimate in the waveform model when

available. Future improvements in the accuracy of the
model may also be used to more finely tune the parameters
of the search to their optimal values.

The computing cost for a given system depends on the
parameter space to be covered and the signal duration, but
is generally efficient. For instance, we can track a short-
duration signal with τGW ∼ days in O(10 min), whereas
a typical long-duration signal with τGW ∼ months would
take O(1 hr) on a single core computer. A detailed scaling
of computing cost as a function of Tcoh and Tobs can be
found in Ref. [81].

We find that current-generation detectors can reach
vector boson clouds at O(1 Gpc) with our search meth-
ods for astrophysical black holes with 60 M⊙ ≲ Mi ≲
600 M⊙ and χi ≳ 0.6, corresponding to the boson mass
∼ 10−13 eV (see Fig. 9). All CBC events detected by the
first three LVK observing runs were within ∼ 5 Gpc, with
many detected at distances ≲ 1 Gpc [5–7]. We expect
more events like this with the upcoming fourth observing
run. We also find that these searches are largely unim-
pacted by uncertainties in the sky position (see Sec. VB),
making them even more practical. Search plans are being
made to follow up on promising CBC events. Future-
generation detectors, in addition to enabling searches for
scalar bosons, will extend the reachable parameter space
for vector bosons to nearly all CBC remnant black holes
that are detected.
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