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We study consistently the effects of magnetic field on hot and dense matter. In particular, we
look for differences that arise due to assumptions that reproduce the conditions produced in particle
collisions or astrophysical scenarios, such as in the core of fully evolved neutron stars (beyond the
protoneutron star stage). We assume the magnetic field to be either constant or follow a profile
extracted from general relativity calculations of magnetars and make use of two realistic models that
can consistently describe chiral symmetry restoration and deconfinement to quark matter, the Chiral
Mean Field (CMF) and the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) models. We find
that net isospin, net strangeness, and weak chemical equilibrium with leptons can considerably
change the effects of temperature and magnetic fields on particle content and deconfinement in dense
matter. We finish by discussing the possibility of experimentally detecting quark deconfinement in
dense and/or hot matter and the possible role played by magnetic fields.

I. INTRODUCTION

In the past decades, much research has been dedicated
to dense and hot matter in the context of both particle
colliders and astrophysics. The effects of strong mag-
netic fields have also been explored, but usually either at
zero/small baryon chemical potential (or density) or (ef-
fectively) zero temperature. This is because the heavy-
ion collisions that create strong magnetic fields (neces-
sary to significantly affect strongly interacting matter)
require so much energy, that in this case the quarks in
the Lorentz-contracted nuclei, which are moving practi-
cally at the speed of light, undergo only very weak for-
ward scattering. The energy deposited behind them cre-
ates a “fireball”, which is initially gluon dominated and
evolves into a quark-gluon plasma which has nearly zero
net baryon density (same amount of particles and anti-
particles) (see Refs. [1, 2] for reviews). These experiments
take place at RHIC and LHC and can produce magnetic
fields of the order of m2

π/e, which translates to ∼ 3×1018

G ∗ or higher [3–5].
In neutron stars, the ratio of temperature to Fermi

energy is incredibly small (∼ 0.001%) justifying the ap-
proximation T ∼ 0. Soft gamma repeaters (SGRs) and
anomalous X-ray pulsars (AXPs), both named according
to their unusual electromagnetic emission characteristics,
present the strongest magnetic fields inferred at the stel-
lar surface, reaching 1015 G [6]. Complementary, data
from the source 4U 0142+61 for slow phase modulations
in hard X-ray pulsations suggests magnetic fields of the
order of 1016 G [7] inside this pulsar. Because the maxi-
mal magnetic field in the interior of neutron stars cannot

∗ Using Gaussian natural units, where the
√
4π appears in the

energy-momentum tensor, 1 MeV2 = 1.44 × 1013 G. Using
Lorentz-Heaviside units, where the

√
4π does not appear in the

energy-momentum tensor, 1 MeV2 = 5.11× 1013 G.

be measured directly, it is estimated using the virial the-
orem as a theoretical upper limit, providing strengths of
the order of 1018 G [8].

At finite, but not extremely large temperature (0 <
T < 100 MeV), strong magnetic fields in dense mat-
ter have not been explored in detail. The main reason
being that until recently, there was no physical system
that had been detected with properties corresponding
to those conditions. This changed in 2017, when the
first gravitational waves from a neutron star merger were
measured by LIGO/Virgo [9]. After that, dense and hot
environments in which the magnetic field can be strong
became much more tangible. Several works on mergers
of typical neutron stars (without strong magnetic fields)
can produce magnetic fields of the order of 1016 G [10–
18], with higher values expected from mergers of neutron
stars with strong magnetic fields, which have not yet been
simulated.

Ignoring temperature and magnetic fields at first (for
simplicity), the core of neutron stars can reach densi-
ties of several times nuclear saturation density. In this
regime, simple back of the envelope calculations show
that hadrons (protons, neutrons, hyperons) are already
overlapping, and a description that takes the inner com-
position of hadrons into account has to be employed.
When temperature is included, taking deconfinement to
quark matter into account becomes much more impor-
tant, as the chemical potential at which deconfinement
takes place is expected to be lower (see Fig. 1 of Ref. [19]
for a typical shape of the Quantum chromodynamics,
QCD, phase diagram). Perfect examples of such con-
ditions are neutron-star mergers, that not only are ex-
tremely dense (surpassing the chemical potentials of the
inspiriling stars that merged [20]), but also hot. For this
reason, it is crucial that temperature is included micro-
scopically in EoS models, allowing the degrees of freedom
to change as a function of temperature. Note that, even
within the hadronic phase, it has been shown that for re-
alistic EoS’s thermal effects cannot be reproduced with
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simple approaches, e.g. use of a constant thermal or adi-
abatic index law [21, 22].

With all of these different systems (and respective con-
ditions) in mind, we study in detail in this work dense and
hot matter under strong magnetic fields. We make use of
two relativistic models (ensuring a causal behavior †) that
include deconfinement to quark matter. The first one is
the Chiral Mean Field (CMF) model [23] and the second
one is the Polyakov-loop extended Nambu–Jona-Lasinio
(PNJL) model [24, 25], both of which will be described
in the next section, after discussing different conditions
related to conservation laws and different kinds of equi-
libria. Both of these models are also chiral, in which
case the masses of baryons and quarks are not “bare”
masses modified by the medium, but instead are fully
(or almost fully) generated from interactions with the
medium. These “effective” masses decrease from vacuum
values (for baryons) or constituent values (for quarks) to
smaller values as a function of density and/or tempera-
ture.

Up to this point, few works utilize an EoS for dense
matter simultaneously accounting for magnetic field and
temperature effects. Two approaches dominate the lit-
erature in the field. The first is to approximate the sys-
tem as a relativistic Fermi gas of baryons and leptons
using Walecka-type models or simply using a relativistic
free Fermi gas without strong force interactions [26–29].
The other is using the NJL/PNJL or MIT bag model to
study quark systems and their properties in neutron-star
or heavy-ion collision conditions [30–38], and to exam-
ine the QCD phase diagram [39–44]. Additionally, the
Thomas-Fermi model has been used to study atoms as a
Fermi gas [45, 46] (this has implications for neutron star
crusts), a Walecka-type model has been used to study
the neutron star crust-core transition [47], the multiple
reflection expansion framework has been used to inves-
tigate the surface tension of quark matter droplets with
neutron-star conditions [48], and macroscopic properties
of magnetars have been studied using a current density
influenced by both temperature and magnetic field [49].
Let us mention that transport coefficients of hot and
dense hadronic matter [50] and quark matter [51] in the
presence of magnetic field have also been studied.

II. FORMALISM

A. Different Conditions

To describe different systems, from laboratory experi-
ments to astrophysical objects, we start by defining some
relevant conditions:

† Relativistic models are causal as long as the vector interactions
are not too strong, which is the case in this work.

• isospin symmetry: due to the extremely short du-
ration of heavy-ion experiments (∼ 10 fm/c ∼ 1023

s), there is not enough time to create net isospin
through weak reactions, and the isospin or charge
fraction remains that of the initial nuclei (con-
servation of isospin). For the case of extremely
high-energy collisions, when the nuclei pass straight
through one other, matter produced in the fireball
has no net isospin (this is also the simplest case
to describe and the “canonical” one for heavy-ion
collisions)

YI =
I

B
∼ 0 or YQ =

Q

B
∼ 0.5, (1)

where I is the total isospin, Q the hadron/quark
electric charge, and B the number of hadrons and
quarks (note that quarks have baryon number 1/3).
In this work, this is achieved through the assump-
tion of equilibrium with respect to isospin or charge

µI = 0 or µQ = 0, (2)

where µ is the chemical potential ‡. The conser-
vation of isospin and electric charge fractions are
equivalent, as long as the strangeness is zero [52]
(see next item);

• zero net strangeness: due to the extremely short
duration of heavy-ion experiments, there is also
not enough time to create net strangeness through
weak reactions, and the net strangeness fraction
remains that of the initial nuclei (conservation of
strangeness)

YS =
S

B
= 0, (3)

where S is the total net strangeness. This is
achieved by introducing an independent chemical
potential µS ;

• charge neutrality (with leptons): astrophysical ob-
jects are understood to be electrically charge neu-
tral, as the electromagnetic force is much stronger
than gravity. This is numerically enforced in mod-
els by ensuring that leptons, typically electrons and
muons, balance the charge of hadrons, typically
protons, neutrons, hyperons, and quarks (conser-
vation of electric charge)

Ylep = YQ. (4)

• chemical equilibrium with leptons: in fully evolved
neutron stars, beyond the protoneutron star stage,

‡ The relation between Eqs. (1) and (2) is not straight forward in
the presence of strong magnetic fields. See discussion in the end
of Section III A.
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weak chemical equilibrium is reached with the lep-
tons. The neutrinos escape, µν = 0, and the chem-
ical potential of hadrons/quarks and leptons relate
through

µe = µµ = −µQ, (5)

where

µQ = µp − µn or µQ = µu − µd, (6)

(see Appendix A of Ref. [52] for a full list of chem-
ical potential relations);

• chemical equilibrium with respect to strangeness:
in fully evolved neutron stars, weak chemical equi-
librium is also achieved with respect to strangeness

µS = 0. (7)

To describe magnetic fields, we assume two possibili-
ties:

• constant magnetic field: due to the very small size
and time scale of heavy-ion collisions, anisotropies
in the magnetic field are not relevant for our ex-
ploratory discussion and, therefore, can be disre-
garded

• magnetic field profile: inside stars of ∼ 12 km
radius, spacial magnetic field anisotropies are ex-
tremely relevant. Therefore, we assume a magnetic
field profile as a function of baryon chemical poten-
tial µB and dipole magnetic moment µ extracted
from realistic general relativity calculations that
also fulfill Maxwell equations (including conserva-
tion of electric charge and magnetic flux) [53]

B∗(µB) =
(a+ bµB + cµ2

B)

B2
c

µ, (8)

with coefficients a = −7.69× 10−1 G2

Am2 , b = 1.20×
10−3 G2

Am2MeV
, and c = −3.46× 10−7 G2

Am2MeV2 .

Eq. (8) requires µB in MeV and µ in Am2 in order
to produce B∗ in units of the critical field for the
electron Bc = 4.414 × 1013 G. This profile corre-
sponds to the magnetic field along the polar direc-
tion of a massive star, with different strength de-
pending on the value chosen for µ. For this work,
we choose four different magnetic field profiles, each
generated from different values of µ:

* µ = 3× 1032 A m2;

* µ = 6× 1032 A m2;

* µ = 12× 1032 A m2;

* µ = 24× 1032 A m2,

which will henceforth be identified as “profile 3,”
“profile 6,” “profile 12,” and “profile 24,” respec-
tively.

B. CMF Model

In this subsection, we describe the SU(3) Chiral Mean
Field (CMF) model. Spontaneous chiral symmetry
breaking is related to the formation of scalar conden-
sates (typically, isoscalar σ, isovector δ, and isoscalar
with hidden strangeness ζ), which can be used as or-
der parameters for symmetry breaking. In hadronic chi-
ral models, these condensates are associated with scalar
mesons that mediate the attraction between baryons (nu-
cleons and hyperons). The description of equivalent vec-
tor mesons (isoscalar ω, isovector ρ, and isoscalar with
hidden strangeness ϕ) mediate the repulsion between
hadrons. Only the mean values of the mesons are used in
the CMF model, as the meson field fluctuations are ex-
pected to be small at high densities. We further make use
of a non-linear realization of the sigma model, which al-
lows a very good agreement with low-energy nuclear data,
such as the vacuum masses of the hadrons and the pion
and kaon decay constants [23]. Additional explicit sym-
metry breaking gives masses to the pseudo-scalar mesons.
To describe neutron stars, a free gas of leptons is also in-
cluded and standard astrophysical properties are repro-
duced [54–57].

Inspired by unified approaches for the liquid-gas phase
transition [59], a unified approach for quark deconfine-
ment was implemented in the CMF model. Unified
means that all degrees of freedom are always included
a priori in the description of both phases, allowing for
different kinds of phase transition between the phases §.
This is done by including up, down, and strange quarks
to the CMF model in a way similar to the baryons, as
shown in the Lagrangian density of the model

L = LKin + LInt + LSelf + LSB − U, (9)

where LKin is the kinetic energy density of hadrons and
quarks, LInt describes the interactions between baryons
and quarks mediated by the mesons, LSelf describes the
self-interactions of the scalar and vector mesons, LSB the
chiral symmetry breaking term, and U the effective po-

§ Note that an alternative version of the CMF model includes in
addition the chiral partners of the baryons and gives the baryons
a finite size [60, 61]
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TABLE I. Table of anomalous magnetic moment couplings ki for all the particles included in the CMF model (obtained from
Ref. [58]).

p n Λ Σ+ Σ0 Σ− Ξ0 Ξ− e µ u d s

1.79 −1.91 −0.61 1.67 1.61 −0.38 −1.25 0.06 0.00116 0.001166 0 0 0

tential for the scalar field Φ, as shown below

LKin =
∑
i

ψ̄i

[
iγµ(∂µ + iqiA

EM
µ )

]
ψi,

LInt = −
∑
i

ψ̄i

[
γ0
(
giωω + giϕϕ+ giρτ3ρ

)
− 1

2
κiσ

µνFµν +M∗
i

]
ψi,

LSelf =
1

2

(
m2

ωω
2 +m2

ρρ
2 +m2

ϕϕ
2
)

+ g4

(
ω4 +

ϕ4

4
+ 3ω2ϕ2 +

4ω3ϕ√
2

+
2ωϕ3√

2

)
− k0

(
σ2 + ζ2 + δ2

)
− k1

(
σ2 + ζ2 + δ2

)2
− k2

(
σ4

2
+
δ4

2
+ 3σ2δ2 + ζ4

)
− k3

(
σ2 − δ2

)
ζ

− k4 ln

(
σ2 − δ2

)
ζ

σ2
0ζ0

,

LSB = −m2
πfπσ −

(√
2m2

kfk − 1√
2
m2

πfπ

)
ζ,

U =
(
aoT

4 + a1µ
4
B + a2T

2µ2
B

)
Φ2

+ a3T
4
o ln

(
1− 6Φ2 + 8Φ3 − 3Φ4

)
. (10)

The index i runs over the baryon octet and the three light
quarks. q is the electric charge, g the coupling constant,
andM∗ the effective mass of particle i. AEM

µ accounts for
the interaction with the external magnetic field. Choos-
ing the magnetic field to point locally in the z-direction
and the vector potential to be Aµ

EM = (0,−By, 0, 0),
implies 1

2κiσ
µνFµν = κBS3, where S3 =

(
σ3 0
0 σ3

)
using

the notation of the Pauli matrices and the anomalous
magnetic moment (AMM) κi is ki, the AMM coupling
strength (see Table I for values, noting that the AMM
for quarks is not taken into account in this work), mul-
tiplied by the magneton. The magneton for baryons is
the nuclear magneton and for leptons it is calculated as
e/2Mi,vacuum.
The scalar coupling constants of the hadronic part of

the model were fitted to reproduce vacuum masses of
baryons, the pion and kaon decay constants, and rea-
sonable values for the hyperon potentials (UΛ = −28.00
MeV, UΣ = 5 MeV, UΞ = −18 MeV) at saturation. The
vector coupling constants of the hadronic part of the
model reproduce the following nuclear properties: sat-
uration density ρ0 = 0.15 fm−3, binding energy per nu-
cleon B/A = −16 MeV, compressibility K = 300 MeV,

and symmetry energy Esym = 30 MeV with slope L = 88
MeV. The predicted critical point for the nuclear liquid-
gas phase transition of isospin symmetric matter lies at
Tc = 16.4 MeV, µB,c = 910 MeV. The values of the cou-
pling constants can be found in Ref. [62]. Only mean-
field mesons, which provide the interaction for hadrons
and quarks, are included in this work and their masses
are fixed to their vacuum values.
Concerning the potential U , its pure temperature con-

tribution is fitted to reproduce the results of the Polyakov
loop in the PNJL approach [63, 64] at zero baryon chem-
ical potential, while the chemical potential and mixed
terms are motivated by symmetry and simplicity. The
former one also contains the correct scale in the asymp-
totic zero-temperature case. The coupling constants of
the quark sector are fitted to lattice data and to expec-
tations from the phase diagram. The lattice data include
(i) the location of the first-order phase transition and
the pressure functional P (T ) at µB = 0 for pure gauge
(the latter resulting from the PNJL model fitted to lat-
tice) [64, 65] and (ii) the crossover pseudo-critical tem-
perature and susceptibility dΦ/dT at vanishing chemical
potential, together with the location of the (T, µB) criti-
cal end-point for zero net-strangeness isospin-symmetric
matter [66]. The phase diagram expectations include
a continuous first-order phase-transition line that starts
at T = 167 MeV temperature for zero-strangeness
isospin-symmetric matter and terminates on the zero-
temperature axis at four times the saturation density of
chemically-equilibrated and charge-neutral matter.

The transition from hadrons to quarks as the density
and temperature increase is done by means of Φ, named
in analogy with the Polyakov loop [25], introduced in the
effective mass of baryons and quarks. When Φ is near 1,
the effective mass of baryons

M∗
B = gBσσ + gBδτ3δ + gBζζ +M0B + gBΦΦ

2, (11)

becomes too large for them to be populated, while the
effective masses of quarks

M∗
q = gqσσ + gqδτ3δ + gqζζ +M0q + gqΦ(1− Φ), (12)

become low enough for them to become relevant [55],
with small bare massesM0. This setup gives rise to first-
order phase transitions (at zero and small temperatures),
as well as crossovers (at large temperatures), as predicted
by lattice QCD calculations [67] in that regime. To re-
produce crossovers, as the temperature goes up, quarks
slowly start to appear at lower µB ’s. This includes quarks
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dissolved in the hadronic phase (and vice-versa). Regard-
less, quarks never appear close to the nuclear liquid-gas
phase transition (see Tab. 2 of Ref. [56]).

The CMF model has already been used to study the
effects of strong magnetic fields at zero temperature in
neutron stars [53, 68–71], but it is used here to study
finite temperature dense matter (with effects of strong
magnetic fields) for the first time and dense matter un-
der different conditions (with effects of strong magnetic
fields) for the first time. Equations describing the effects
of magnetic field in a Free Fermi gas at finite temperature
can be found in Ref. [26, 72]. There (and here) AMM cou-
plings, which give rise to imbalances of particles with dif-
ferent spin projections due to the magnetic field, are also
included, for both charge neutral and charged hadrons.
Magnetic effects are not included in the mesons and Φ in
the CMF model, as they are sub leading. The interac-
tions we use in this work (in addition to the meson self
interactions) appear in modifications of the masses and
fermion energy spectra of free fermions, as discussed re-
cently in Refs. [70, 71]. As a result of quantization of the
orbits of charged particles in the presence of the mag-
netic field, Landau levels are populated until the density
of a given level for particle i, ni,ν′ goes to zero. At finite
temperature, this is numerically done populating Landau
levels until the density of the level ν′ represents only a
small fraction of the density of all levels combined

ni,ν′ ≤ 10−5
ν′∑

ν=0 or 1

ni,ν . (13)

C. PNJL Model

In this subsection, we describe the SU(3) Polyakov-
loop extended Nambu–Jona-Lasinio (referred to as
PNJL) model. Like the CMF model, it is based on spon-
taneous and explicit chiral symmetry breaking but, to
describe the generation of mass of the quarks. In this
case, the condensates are explicitly tied to each of the
three quarks. Additionally, the quarks couple to a (spa-
tially constant) temporal background gauge field, repre-
sented in terms of the Polyakov loop [24, 25, 65]. The
Lagrangian density is given by

L = q̄ [iγµD
µ − m̂f ] q + Lsym + Ldet + U

(
Φ, Φ̄;T

)
,

(14)

where the quark sector is described by the SU(3) Nambu–
Jona-Lasinio model, which includes scalar-pseudoscalar
and the t’Hooft six fermion interactions [73, 74], with
Lsym and Ldet given by [75]

Lsym = G

8∑
a=0

[
(q̄λaq)

2 + (q̄iγ5λaq)
2
]
,

Ldet = −K {det [q̄(1 + γ5)q] + det [q̄(1− γ5)q]} ,
where q = (u, d, s)T represents a quark field with three
flavors, m̂f = diagf (m

0
u,m

0
d,m

0
s) is the corresponding

(current) mass matrix, λ0 =
√

2/3I, where I is the unit
matrix in the three flavor space, and 0 < λa ≤ 8 denote
the Gell-Mann matrices. The coupling between the mag-
netic field B and quarks, and between the effective gluon
field and quarks is implemented via the covariant deriva-
tive Dµ = ∂µ − iqfA

µ
EM − iAµ, where qf represents the

quark electric charge, AEM
µ accounts for the interaction

with the magnetic field, and Aµ(x) = gstrongAµ
a(x)

λa

2
where gstrong is the strong coupling and Aµ

a is the SUc(3)
gauge field. Considering once more a magnetic field lo-
cally pointing in the z direction, the vector potential is
Aµ

EM = (0,−By, 0, 0).
The trace of the Polyakov line defined by Φ =

1
Nc

⟨⟨P exp i
∫ β

0
dτ A4 (x⃗, τ) ⟩⟩β is the Polyakov loop,

which is the exact order parameter of the Z3 symmet-
ric/broken phase transition in pure gauge. Nc is the num-
ber of colors, A4 = iA0 is the temporal component of the

Euclidean gauge field (A⃗, A4), P denotes path ordering,
and the usual notation β = 1/T has been introduced. In
the presence of quarks, it becomes an approximate or-
der parameter for quark deconfinement. To describe the
pure gauge sector, the effective potential, U is chosen to
reproduce the results obtained in lattice calculations [64]

U
T 4

= −a (T )
2

Φ̄Φ

+ b(T )ln
[
1− 6Φ̄Φ + 4(Φ̄3 +Φ3)− 3(Φ̄Φ)2

]
,

(15)

where a (T ) = a0 + a1
(
T0

T

)
+ a2

(
T0

T

)2
and b(T ) =

b3
(
T0

T

)3
. The standard choice of the parameters for the

effective potential U is a0 = 3.51, a1 = −2.47, a2 = 15.2,
and b3 = −1.75. The parameter T0 is the critical tem-
perature for the deconfinement phase transition within a
pure gauge approach. It is fixed to a constant T0 = 270
MeV, according to lattice findings.

The model being an effective one (up to the scale
ΛQCD) and not renormalizable, we use as a regularization
scheme, a sharp cut-off, Λ, in 3-momentum space, only
for the divergent ultra-violet integrals. The parameters
of the model, Λ, the coupling constants G andK, and the
current quark mass for the strange quark m0

s are deter-
mined by fitting the decay constants and masses fπ, mπ,
mK , and mη′ to their experimental values in vacuum,
while m0

u = m0
d is fixed at 5.5 MeV. We consider then

Λ = 602.3MeV, m0
u = m0

d = 5.5MeV, m0
s = 140.7MeV,

GΛ2 = 1.385, and KΛ5 = 12.36, as in Ref. [76].

In the mean field approximation the effective quarks
masses are given by the gap equations

Mu = mu −G⟨ququ⟩ −K⟨qdqd⟩⟨qsqs⟩,
Md = md −G⟨qdqd⟩ −K⟨ququ⟩⟨qsqs⟩,
Ms = ms −G⟨qsqs⟩ −K⟨ququ⟩⟨qdqd⟩,

(16)

where the condensates are given by the following momen-
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tum integral

⟨qfqf ⟩ = −4Mf

∫
d4p

(2π)
4

1

p24 + p2 +M2
f

. (17)

The extension to take into account the medium effects
of finite temperature and/or chemical potential can be
done by replacing the p4 integration by a summation over
Matsubara frequencies

p4 → πT (2n+ 1)− iµ,∫
dp4 → 2πT

+∞∑
n=−∞

. (18)

The effect of a finite magnetic field can then be seen as
the substitution of the integration over transverse mo-
mentum, with respect to the local direction of the mag-
netic field, by a summation over Landau levels (related
to the index m) averaged over the spin related index, s,∫

d2p⊥

(2π)
2 → 2π |q|B

(2π)
2

1

2

∑
s=−1,+1

+∞∑
m=0

,

p2⊥ → (2m+ 1− s) |q|B. (19)

III. RESULTS

In this section we focus our analysis on two kinds of
matter combining the discussion from Section II A

• neutron-star matter: charge neutral, in weak
chemical equilibrium with leptons and with respect
to strangeness. We investigate the effects of con-
stant magnetic field and a more realistic magnetic-
field profile;

• heavy-ion collision matter: isospin symmetric,
with zero net strangeness. We investigate the ef-
fects of constant magnetic field.

A. CMF Model

We begin by discussing the equation of state (EoS),
pressure P vs. energy density ϵ for neutron-star matter at
T = 0 and all choices of constant magnetic field strength
in Fig. 1. The EoS is shown both with (solid) and with-
out (dashed) the effects of AMM. The most prominent
feature of this figure is the presence of the first order
phase transition between the hadronic and quark phases,
as indicated by the horizontal lines (discontinuities in
energy density) in the center of the figure. In the lower
energy density region, we have a hadronic phase, while
at higher energy densities we have a quark phase. For
stronger magnetic fields, the phase transition takes place
at slightly larger energy densities and the energy density
gap between the end of the hadronic phase and the start

FIG. 1. CMF model: EoS for neutron-star matter at T = 0
for all constant magnetic-field strengths examined both with
(solid) and without (dashed) AMM effects.

FIG. 2. CMF model: EoS for neutron-star matter at T =
0 (full lines), 45 (dashed lines) and 100 (dotted lines) MeV
and for the strongest and weakest (effectively zero) nonzero
magnetic fields with AMM effects examined in Fig. 1.

of the quark phase increases significantly, i.e. the phase
transition gets more pronounced (stronger). The former
was already observed for the T = 0 case for the CMF
model in Ref. [77], for a Walecka-type model combined
with the MIT bag model in [78], a Walecka-type model
combined with the dependent quark mass model [79], a
Walecka-type model combined with the Field Correlator
Method model [80], a density-dependent model combined
with the bag model [81], and in the Friedberg-Lee model
in Ref. [82].

Additionally, we see in Fig. 1 that increasing the mag-
netic field strength results in an overall stiffer EoS (larger
P for a given ϵ), which would result in more massive neu-
tron stars. This result is model and density dependent,
as shown in Fig. 2 of Ref. [83] and Fig. 8 of Ref. [84].
However, we also point to the presence of De Haas-Van



7

FIG. 3. CMF model: Pressure (solid) and perpendicular
pressure (dashed) as functions of energy density for neutron
star matter at T = 0 for all nonzero constant magnetic-field
strengths examined with AMM effects. The perpendicular
pressure is discontinuous across the phase transition.

Alphen (DHVA) oscillations [85], whose behavior is re-
lated to the discrete nature of the Landau levels. They
are more prominent for quark matter, due to their lower
masses (when compared to baryons), and lead to EoS’s
that are softer (under stronger magnetic fields) than their
weaker magnetic field counterparts for some energy den-
sities. An additional (more conspicuous) softening of the
EoS related to the appearance of strange quarks is visible
in the quark phase; it appears as a cusp in the blue curve
for B = 1.44×1019 G. The inclusion of the AMM results
in a stiffer EOS (as discussed in Ref. [86]) with a stronger
phase transition for the same magnetic field strength.
The effect of including the AMM is comparable in mag-
nitude to the magnetic field effects without the AMM:
just before the phase transition (ε = 3.38 fm−4) there is
a 11% pressure increase from B = 0 to B = 1.44×1019 G
and an additional 11% pressure increase when account-
ing for AMM in the latter case. We also see that the
cases of B = 0 and B = 1.44× 1018 G are indistinguish-
able from each other in the EoS. As it is known that,
for a given value of magnetic field strength, the effects
of magnetic fields diminish with increasing temperature
[26], we do not need to consider the B = 0 case at higher
temperatures.

Fig. 2 also shows EoS’s, except now for the three tem-
peratures investigated and only for B = 1.44 × 1018 G
(black) and B = 1.44 × 1019 G (blue), both with AMM
effects. This figure highlights the fact that the magnetic
field strengths and temperatures we consider have similar
effects in the EoS. At higher temperatures, the DHVA
oscillations are no longer present, resulting in the EoS
being stiffer for stronger magnetic fields at all energy
densities. The phase transition at T > 0 is still very
prominent. As temperature increases, the phase transi-
tion takes place at larger energy densities and becomes

TABLE II. CMF model: Summary table showing the
baryon chemical potential at the (quark deconfinement) phase
transition and energy density at the beginning and end of
the phase transition for neutron-star matter for all three
temperatures and the strongest and weakest nonzero con-
stant magnetic-field strengths analyzed with AMM effects.
The subscripts h and q indicate whether the value is for the
hadronic or quark side of the phase transition. The last col-
umn shows the energy density jump across the phase transi-
tion.

T B µB ϵh ϵq ∆ϵ

(MeV) (G) (MeV) (fm−4) (fm−4) (fm−4)

0 1.44× 1018 1344 3.38 11.47 8.09

0 1.44× 1019 1368 3.68 12.81 9.14

45 1.44× 1018 1306 3.67 11.65 7.98

45 1.44× 1019 1323 3.93 12.75 8.82

100 1.44× 1018 1126 4.96 11.66 6.70

100 1.44× 1019 1135 5.26 12.33 7.07

FIG. 4. CMF model: Magnetization as a function of energy
density for neutron-star matter at T = 0 for all nonzero con-
stant magnetic fields examined, both with (solid) and without
(dashed) the effects of the AMM.

less pronounced. The weakening of the phase transition
results in a smaller slope of the EoS on the hadronic
side leading to a smaller jump in energy density that
is most prominent at T = 100 MeV. To summarize the
phase transition thresholds and strengths, we compare
all cases discussed so far in Table II, also indicating the
baryon chemical potential µB at which the phase transi-
tion takes place. It clearly increases with magnetic-field
strength and decreases with temperature.

Fig. 3 shows the pressure in the local direction of the
magnetic field P , which is also referred to as parallel
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FIG. 5. CMF model: Magnetization as a function of en-
ergy density for neutron-star matter at T = 0 (full lines), 45
(dashed lines) and 100 (dotted lines) MeV and the strongest
and weakest nonzero constant magnetic field strengths exam-
ined with AMM effects

.

pressure (solid) and the pressure in the direction perpen-
dicular to the field P⊥ (dashed) as functions of energy
density for T = 0 and all magnetic-field strengths an-
alyzed including AMM effects. In the latter case, the
pressure receives a contribution from the magnetization

P⊥ = P −MB, (20)

where the magnetization reflects how much the system is
affected by the magnetic field M = dP/dB (see Ref. [26]
for a formal derivation of Eq. (20) at zero and finite
temperature including AMM effects). The perpendicular
pressure differs from the pressure shown in the EoS in a
few ways. First, stronger magnetic fields result in lower
perpendicular pressures at the same energy density, the
opposite of what is seen in the pressure. Second, the
perpendicular pressure is negative for low energy densi-
ties ≲ 1.5 fm−4. This is not physical, indicating that
these ultra strong magnetic fields cannot exist at such
low energy density. Realistic magnetic-field profiles for
astrophysics will be discussed in the following and this is
not an issue for heavy-ion collisions due to temperature
contributions to the pressure. Finally, the perpendicular
pressure is discontinuous over the phase transition. This
discontinuity indicates that the magnetization will also
be discontinuous over the phase transition. Not shown
in this figure is that the size of the discontinuity in the
perpendicular pressure decreases for higher temperatures
and increases for stronger magnetic fields (the parallel
pressure remains continuous in any case). However, this
effect will be visible in the figures showing the magneti-
zation.

Fig. 4 shows magnetization as a function of energy
density at T = 0 for several magnetic field strengths,
both with (solid) and without (dashed) the effects of the

FIG. 6. CMF model: Particle populations as functions
of chemical potential for neutron-star matter at T = 0 and
B = 0.

AMM. Once again, the presence of the phase transition
is clear from the jump in energy density. As expected,
after examining the perpendicular pressure, the magneti-
zation is discontinuous over the (first-order) phase tran-
sition. The presence of DHVA oscillations is much more
clear in the magnetization than in the pressure or per-
pendicular pressure. As the magnetic field increases, the
peaks and troughs of the magnetization oscillations tend
to increase, as well as the width of the oscillations. In
the hadronic phase, the inclusion of the AMM of baryons
leads to larger magnetization, which is indicative of a
larger pressure anisotropy. Double peaks indicate the
different behavior of different spin projections. In the
quark phase, the magnetization at B = 1.44 × 1018 G
is identical regardless of the AMM, while the stronger
magnetic fields generally have a stronger magnetization
without the AMM included. This difference comes from
electrons, which are shown to have a nonzero population
at higher magnetic fields (shown in Fig. 6 and Fig. 7).

Fig. 5 shows magnetization at several temperatures
and B = 1.44 × 1018 G and B = 1.44 × 1019 G both
with AMM effects. In the energy density range shown,
as temperature increases, the magnetization decreases in
overall magnitude and in the effect of DHVA oscillations,
which is again expected, as the effect of the magnetic field
becomes less pronounced at larger temperatures. These
cannot be fully seen in the quark phase because of the
range shown for the energy density. In addition, the
magnetization discontinuity gap decreases with increased
temperatures and increases with increased magnetic field
strength.

Fig. 6 shows particle populations as functions of baryon
chemical potential (to avoid the gap in other variables
across the phase transition) at T = 0 and B = 0. In this
case, the phase transition occurs at µB = 1344 MeV.
Leptons (electrons and muons) only appear in significant
amounts in the hadronic phase, where neutrons are the
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FIG. 7. CMF model: Particle populations as functions of
baryon chemical potential for neutron-star matter at T = 0
and B = 1.44 × 1019 G with (solid) and without (dashed)
AMM effects. See previous figure for labels.

most populous particle species. They are more than four
times as populous as protons, the second most populous
particle species. Nevertheless, both electrons and muons
assist in achieving charge neutrality. Muons first appear
at µB = 970 MeV and, by the phase transition, they ac-
count for approximately 40% of the total proton charge,
with electrons making up the difference. The only hy-
peron with nonzero population is Λ0, which first appears
for chemical potential µB = 1229 MeV, all others are
suppressed by the phase transition. In the quark phase,
down quarks are the most populous, being nearly twice
as populous as up quarks until the more massive strange
quarks begin to appear at µB = 1408 MeV. Notably,
the total strangeness of the system changes at the phase
transition.

Fig. 7 also shows particle populations as functions of
baryon chemical potential, except now for the strongest
magnetic field strength examined, B = 1.44 × 1019 G,
with (without) the inclusion of AMM effects, shown in
the full (dashed) lines. The phase transition occurs at
µB = 1368 MeV (µB = 1352 MeV). Neutrons remain the
most populous particles in the hadronic phase, though
only by a factor of about 1.5− 2.1 over the protons, de-
pending on the chemical potential. Electrons and muons
remain the only means to achieve charge neutrality, but
now they each account for close to 50% of the total proton
charge. Again, Λ0 is the only hyperon to have a nonzero
population.

In the quark phase, there are visible DHVA oscillations
in all three quark populations, with strange quarks seeing
the largest impact from increases in Landau level. The
down quark population is not strictly monotonic, occa-
sionally decreasing slightly, indicating that some down
quarks are changing flavor into strange quarks. The elec-
trons in the quark phase are providing charge neutrality
when there are too many up quarks for the combination

FIG. 8. Magnetic field profiles as functions of baryon chemical
potential from Ref. [87].

of down and strange quarks to make up for as additional
particles are blocked by Pauli exclusion. There are two
drops in the quark phase electron population. The first
coincides with a DHVA oscillation in the down quarks
and the second with an oscillation in the strange quarks.
Strange quarks first appear at µB = 1397 MeV, so there
is again a drop to zero strangeness at the phase transition
(as in the B = 0 case).
Still discussing Fig. 7, without the AMM, some parti-

cles do not appear until reaching a larger baryon chemical
potential. In the hadronic phase, the muon and Λ0 ex-
hibit this behavior, while in the quark phase, it is seen
in the strange quark. For the muon and Λ0, this is due
to the AMM term reducing the magnetic effective mass
m̄i. The reduced mass allows the particles to exist in
the system at baryon chemical potential lower than they
otherwise could. At such a strong magnetic field, the elec-
tron mass is dominated by the AMM term except at very
high Landau levels, leading to a suppression of electrons
when the AMM is included, visible in the quark phase.
The differences in the quark phase exist only because of
the electron AMM and imposed charge neutrality.
At finite temperature, the discussion of particle popu-

lations becomes more complicated, as all particles appear
at all densities. For this reason, we do not show these
figures. The most prominent effects are the more similar
amounts of neutron and protons, of electrons and muons,
and of Λ0 and Σ− when the magnetic-field strength is
large.
To model realistic neutron star interiors, we make use

of the realistic magnetic field profile for neutron stars
discussed in Section II A. Fig. 8 shows the different
magnetic-field profiles as a function of baryon chemi-
cal potential, going to a low value reached at the lowest
stellar core densities, until a large value beyond what is
reached in the center of neutron stars.
In order not to repeat all our EoS results here with the

magnetic-field profiles, we show instead the EoS deriva-
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FIG. 9. CMF model: Speed of sound squared as a function
of energy density for neutron-star matter at T = 0 for several
examined magnetic field profiles with AMM effects.

FIG. 10. CMF model: Speed of sound squared as a func-
tion of energy density for neutron-star matter at T = 0 (full
lines), 45 (dashed lines) and 100 (dotted lines) MeV and
magnetic field profiles 3 and 24 with AMM effects.

tives, namely the speed of sound squared c2s = dP/dϵ.
This quantity has been shown to be directly relevant for
astrophysical discussions of, for instance, stellar masses,
radii, and tidal deformability [88–93], and the outcome
of binary neutron-star mergers [94–96]. Besides, it has
been suggested that this quantity may give some infor-
mation about a possible deconfinement phase transition
[89]. Within an agnostic description of the EOS and im-
posing constraints from perturbative QCD it was shown
that it is expected that the speed of sound presents a
pronounced peak around three times saturation density
[92, 95, 97, 98], followed by a steep drop. As expected, all
of our curves show a drop to zero across the phase tran-
sition (see Fig. 9). This happens because, at the phase
transition, the pressure is constant while the energy den-
sity jumps. Without magnetic field, spikes show the ap-

FIG. 11. CMF model: EoS for heavy-ion collision matter
for T = 0 (full lines), 45 (dashed lines) and 100 (dotted lines)
MeV and the strongest and weakest constant magnetic fields
strengths examined with AMM. The gray corresponds to the
black lines and the brown to the blue lines in the case of
neutron star matter, for comparison.

pearance of hyperons (in the hadronic phase) and strange
quarks (in the quark phase). With magnetic fields, we
also see the presence of DHVA oscillations. Even the
magnetic field profile 3, which in the EoS, shows no in-
dication of magnetic effects (not shown for the profiles),
shows clear DHVA oscillations in the speed of sound. As
the magnetic field increases, the speed of sound squared
generally increases and the DHVA oscillations grow in
both amplitude and period, however, the strongest mag-
netic field, profile 24, has a lower speed of sound in the
quark phase.

Fig. 10 is the same as Fig. 9, except now shown for
several temperatures and only magnetic field profiles 3
and 24 with AMM effects. The DHVA oscillations are
suppressed by the temperature effects and, as a result,
a stronger magnetic field results in a larger speed of
sound. Also, the speed of sound begins to decrease in
the hadronic phase prior to the phase transition, this is
more evident for T = 100 MeV than for T = 45 MeV
and it is a result of quarks starting to appear inside the
hadronic phase as the phase transition becomes weaker,
which means that we are approaching the critical point
for deconfinement. In the quark phase for all tempera-
tures, we note that the speed of sound squared stays be-
low the conformal limit (cs/c)

2 ≤ 1/3, which is expected
from perturbative QCD calculations [99].

Now, we change our discussion to matter produced
in heavy-ion collisions, as described in the beginning of
this Section. Fig. 11 shows EoS for all temperatures and
the strongest and weakest magnetic field strengths with
AMM. The gray and brown curves are a repetition of the
neutron star EoS in Fig. 2. Gray/brown corresponds to
the same temperature and magnetic field as black/blue
for heavy-ion collisions matter. Heavy-ion matter always
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FIG. 12. CMF model: Magnetization as a function of en-
ergy density for symmetric matter at T = 0 for all nonzero
magnetic fields examined with AMM.

reaches a higher energy density prior to the phase tran-
sition and is overall stiffer than neutron-star matter, ex-
cept just prior to the phase transition at T = 100 MeV
(discussed below). The stiffer EoS for heavy-ion matter
is due to Pauli exclusion, as there are no hyperons in zero
net strangeness isospin-symmetric matter (a larger effect
than the one related to the asymmetry between protons
and neutrons). For heavy-ion matter, larger magnetic
field strength only corresponds to a phase transition at
larger energy densities (as in the neutron-star case) for
the T = 100 MeV case. For the lower temperatures, the
behavior is the opposite. The softer curve (with a smaller
slope) of the hadronic phase toward the phase transi-
tion at T = 100 MeV (already discussed for neutron-star
matter) is also present for isospin symmetric matter, but
now it is also more discernible, indicating a weaker phase
transition.

Furthermore, for T = 0 and T = 45 MeV, heavy-ion
matter presents a slightly larger jump in energy density
(stronger phase transition), whereas at T = 100 MeV, the
phase transition is weaker when compared to neutron-
star matter. This means that the critical point (when
there is no longer a discontinuity in the energy density,
and thus, the phase transition ceases to be first order) of
the deconfinement phase transition will occur at a lower
temperature for heavy-ion matter than for neutron-star
matter. This has been previously discussed within the
CMF model at B = 0 in Ref. [100]. The exact values of
the differences in energy density between the beginning
and end of the phase transition are given in Table III.

Fig. 12 shows magnetization as a function of energy
density at T = 0 for heavy-ion matter. There are many
similarities with Fig. 4 but, unlike for neutron-star mat-
ter, the magnetization goes negative for some energy den-
sities in the quark phase for B = 1.44×1018 G, indicating
a slight diamagnetic behavior.

To finalize, we discuss once more the particle popula-

FIG. 13. CMF model: Particle populations as functions of
chemical potential for heavy-ion collisions matter at T = 0
and the weakest (solid) and strongest (dashed) nonzero con-
stant magnetic fields examined with AMM many curves over-
lap.

TABLE III. CMF model: Summary table showing the
change in energy density across the phase transition for
neutron-star matter and heavy-ion collisions matter and
which type of matter has the stronger deconfinement phase
transition for several temperatures and the strongest and
weakest constant magnetic field strengths with AMM.

T B ∆ϵNS ∆ϵHIC Str.

(MeV) (G) (fm−4) (fm−4) PT

0 1.44× 1018 8.09 9.42 HIC

0 1.44× 1019 9.14 10.11 HIC

45 1.44× 1018 8.18 9.09 HIC

45 1.44× 1019 9.14 9.78 HIC

100 1.44× 1018 6.94 6.44 NS

100 1.44× 1019 7.35 6.58 NS

tions, but now for the case of heavy-ion matter. Fig. 13
shows particle populations as functions of baryon chem-
ical potential for T = 0 and B = 1.44 × 1018 G (solid)
and B = 1.44 × 1019 G (dashed). The phase transitions
occur at µB = 1385 MeV for the weaker magnetic field
and µB = 1393 MeV for the stronger magnetic field. As
expected due to the constraint of zero net strangeness,
in the hadronic phase, neutrons and protons are the only
particles present and appear to have equal populations.
In the quark phase, up and down quarks are the only
particles present and also appear to have equal popula-
tions. For larger magnetic field strength, there are more
particles (for a given chemical potential).

For the stronger magnetic field, there is also a very
small splitting between proton and neutron and between
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FIG. 14. PNJL model: EoS for neutron-star matter at
T = 0 for all constant magnetic-field strengths.

the up and down populations, which becomes larger for
larger temperatures (not shown here). This is due to fact
that isospin symmetry was defined in this work by setting
the isospin chemical potential µI to zero, in order to make
the chemical potential of particles that differ by isospin
equal, µp = µn and µu = µd. At zero magnetic field, this
results in equal populations of protons and neutrons and
up and down quarks. However, for a strong magnetic
field, this is not the case because of the way the mag-
netic field influences the effective mass of charged and
uncharged particles (due to both the AMM and another
charge dependent term [26]), and consequently their mo-
menta and density. A different way to address this issue
would be to impose directly equal densities np = nn and
nu = nd, which would necessarily imply µp ̸= µn and
µu ̸= µd.

B. PNJL Model

For comparison with the CMF model, we present sim-
ilar figures now for the PNJL model. We start with the
T = 0 neutron-star matter EoS for all constant magnetic-
field strengths studied in the previous Subsection. The
AMM is not included in the PNJL model, as it is not
clear if it is relevant for quarks [101, 102] (it was not
included for quarks in the CMF model). Once more,
the most prominent feature of Fig. 14 is the presence of
the first-order phase transition, indicated by horizontal
lines between the constituent quark phase (on the left),
where chiral symmetry is broken, and quark phase (on
the right), where chiral symmetry is already partially re-
stored. These can be interpreted as hadronic and quark
phases. Additionally, we now also show the meta-stable
and unstable phases as dashed lines. The metastable
regions, which can present negative pressure, define the
binodal, where a Maxwell construction is applied. The
unstable regions present a negative slope in pressure and

FIG. 15. PNJL model: EoS for neutron-star matter for
T = 0 (full lines), 45 (dashed lines) and 100 (dotted lines)
MeV and for the strongest and weakest nonzero magnetic
fields examined in Fig. 14.

TABLE IV. PNJL model: Summary table showing the
baryon chemical potential at the (quark deconfinement) phase
transition and energy density at the beginning and end of the
phase transition for neutron-star matter for all three tem-
peratures and the strongest and weakest nonzero constant
magnetic-field strengths analyzed with AMM. The subscripts
h and q indicate whether the value is for the hadronic or quark
side of the phase transition. The last column shows the en-
ergy density jump across the phase transition.

T B µB ϵh ϵq ∆ϵ

(MeV) (G) (MeV) (fm−4) (fm−4) (fm−4)

0 1.44× 1018 1102 ≈ 0 2.14 2.14

0 1.44× 1019 1075 ≈ 0 1.76 1.76

45 1.44× 1018 1092 0.09 2.14 2.05

45 1.44× 1019 1068 0.14 1.82 1.68

100 1.44× 1018 1042 0.57 2.38 1.81

100 1.44× 1019 1026 0.59 2.24 1.65

define the spinodal. Although metastable regions are not
necessarily relevant for mechanically-equilibrated neu-
tron stars, they are very important for heavy-ion colli-
sions, due to the very short time scales involved.
At T = 0, independently of the magnetic field strength,

the phase transition starts at ϵ ∼ 0. The end depends
on the magnetic field, but it is not clear if it pushes the
phase transition to larger or lower energy densities and if
the size of the gap increases or decreases. This is related
to the fact that the DHVA oscillations are very strong for
quark matter, as already discussed for the CMF model.
Fig. 15 compares only the lowest and highest magnetic
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FIG. 16. PNJL model: Particle populations in the quark
phase as functions of baryon chemical potential for neutron-
star matter at T = 0 for B = 0 (solid) and the highest con-
stant magnetic field strength examined (dashed).

fields studied. In this case, for all temperatures studied,
stronger magnetic fields push the quark side of the phase
transition to lower energy densities and the size of the
gap decreases. From Table IV, at T = 0 and finite tem-
perature, we also see a consistent decrease of the critical
baryon chemical potential as the magnetic field increases
(from B = 0 to the strongest value analyzed), resulting
in the expected inverse magnetic catalysis at finite µB

[41–43, 103, 104] (where the magnetic field enhances chi-
ral symmetry). This is the opposite behavior of the CMF
model.

Still discussing Fig. 15, at larger temperatures, the
DHVA oscillations are no longer present and the effects
of magnetic fields diminish in the quark phase, resulting
in the EoS being stiffer for stronger magnetic fields at all
energy densities. The phase transition at T > 0 is still
prominent and, as temperature increases, the phase tran-
sition happens at larger energy densities, lower baryon
chemical potentials and gets weaker, as expected, and as
already discussed for the CMF model.

Fig. 16 shows particle populations as functions of
baryon chemical potential at T = 0 for B = 0 and
B = 1.44×1019 G starting beyond where the phase tran-
sition takes place µB ∼ 1100 MeV (µB ∼ 1102 for B = 0
and µB ∼ 1075 for B = 1.44 × 1019 G, see Table IV),
showing only the quark phase. The only leptons included
are the electrons. At B = 0, they appear in very small
amounts. The down quarks are about two times more
populous than the up quarks, until the strange quarks
appear. This happens at µB ∼ 1300. For the strong
magnetic field (shown in dashed lines), the phase transi-
tion takes place a bit earlier. In this case, there are more
than ten times more electrons and overall more up and
strange quarks. The DHVA oscillations can be seen in
all populations.

Once more, to model realistic neutron star interiors,

FIG. 17. PNJL model: Speed of sound squared in the quark
phase as a function of energy density for neutron-star matter
at T = 0 for several examined magnetic field profiles.

FIG. 18. PNJL model: Speed of sound squared in the quark
phase as a function of energy density for neutron-star matter
for T = 0 (full lines), 45 (dashed lines) and 100 (dotted lines)
MeV and magnetic field profiles 3 and 24.

we make use of the magnetic field profile for neutron
stars discussed in Section II A and shown in Fig. 8. In
order not to repeat all our PNJL EoS results here with
the magnetic-field profiles, we show instead the speed of
sound squared, in the quark phase. In Fig. 17 at T=0,
we see the presence of DHVA oscillations for all profiles
(as for the CMF model). Larger profiles (corresponding
to larger magnetic field strengths) present higher bumps
in speed of sound. The overall bump structure is related
to the appearance of strange quarks, see Ref. [88] for
a review on the discussion of structure in the speed of
sound.

Fig. 18 is the same as Fig.17, except now shown for
several temperatures and only magnetic field profiles 3
and 24. The DHVA oscillations are suppressed by the
temperature effects and stronger magnetic fields (for T >
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FIG. 19. PNJL model: EoS for heavy-ion collision matter
for T = 0, 45 and 100 MeV and the strongest and weakest
constant magnetic fields strengths examined.

TABLE V. PNJL model: Summary table showing the
change in energy density across the phase transition for
neutron-star matter and heavy-ion collisions matter and
which type of matter has the stronger deconfinement phase
transition for several temperatures and the strongest and
weakest constant magnetic field strengths.

T B ∆ϵNS ∆ϵHIC Str.

(MeV) (G) (fm−4) (fm−4) PT

0 1.44× 1018 2.14 2.20 HIC

0 1.44× 1019 1.78 2.22 HIC

45 1.44× 1018 2.05 2.22 HIC

45 1.44× 1019 1.68 2.03 HIC

100 1.44× 1018 1.81 2.23 HIC

100 1.44× 1019 1.65 2.02 HIC

0) result in larger speeds of sound. For all temperatures,
we note that the speed of sound squared for large energy
densities stays below the conformal limit (cs/c)

2 ≤ 1/3,
although there are additional bump regions that oscillate
above the limit for T = 0 (not shown here).
Now, we once more change our discussion to matter

produced in heavy-ion collisions. Fig. 19 shows the EoS
for all temperatures and the strongest and weakest mag-
netic field strengths. At T = 0 the transition starts again
at ϵ ∼ 0 and ends slightly at lower ϵ in the presence of
strong magnetic fields. At larger temperatures, the phase
transition starts later, and ends later (in ϵ), but still hap-
pens at lower ϵ for strong magnetic fields (unlike in the
CMF model). The effect of magnetic fields on the jump
in ϵ across the phase transition is not clear, but it de-
creases with chemical potential and temperature.

For a fixed magnetic field, temperature effects are op-

FIG. 20. PNJL model: Particle populations in the quark
phase as functions of chemical potential for heavy-ion colli-
sion matter at T = 0 and the weakest (solid) and strongest
(dashed) nonzero constant magnetic fields examined.

posite between the quark and constituent quark phases.
In the constituent quark phase (when it exists), increased
temperature results in a stiffer EoS, whereas the EoS
is softer at higher temperatures in the quark phase.
Stronger magnetic fields at the same temperature result
in a stiffer EoS, except when there are DHVA oscillations.
See Tab. V for details.
Finally, we discuss the particle populations for the case

of heavy-ion matter in the quark phase. Fig. 20 shows
particle populations as functions of baryon chemical po-
tential for T = 0 with B = 1.44 × 1018 G (solid) and
B = 1.44 × 1019 G (dashed). Due to the constraint of
zero net strangeness, up and down quarks are the only
particles present and also have equal populations. In this
case (unlike for the CMF model), there are no AMM ef-
fects and the isospin symmetry is fixed by fixing nu = nd
directly. For these reasons, the two curves overlap ex-
actly. For the larger magnetic field strength, there are
generally more particles (for a given chemical potential)
and the DHVA oscillations are pronounced.

IV. DISCUSSION AND CONCLUSIONS

With this work we aimed to provide an in depth anal-
ysis of how magnetic fields affect matter at extreme con-
ditions. Such studies have become even more relevant in
light of recent observations of neutron star merger events.
Giving continuity to foundation laid by previous works,
we self-consistently included finite temperature effects
and calculated the properties of matter at large densities
and under the influence of strong magnetic fields. By ap-
propriately choosing conditions related to electric charge,
isospin and strangeness conservation, as well as including
leptons and considering different magnetic field configu-
rations, we are able to calculate microscopic properties
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and the equation of state for astrophysical conditions and
conditions produced in the laboratory.

We focus on deconfinement to quark matter, that is
expected to take place at large density. We then ana-
lyze how both temperature and strong magnetic fields
can affect deconfinement and how conditions found in
neutron stars and heavy-ion collisions change that. With
this, we can estimate how both temperature and strong
magnetic fields can affect deconfinement in neutron star
mergers, which are expected to produce conditions that
approach both neutron stars (in terms of charge/isospin
[105] and magnetic fields [10, 13–18, 106]) and heavy-ion
collisions (with respect to temperature and entropy [107]
and magnetic fields [3–5]), while producing an unprece-
dented amount of net strangeness and densities [105].

To study dense matter, we made use of two different
models, namely the Chiral Mean Field (CMF) and the
Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) -
both of which are relativistic SU(3) chiral models. Fur-
thermore, these models present the advantage of realisti-
cally and self-consistently describing both chiral symme-
try restoration and deconfinement to quark matter. One
main difference is that, while the CMF model includes
baryons and quarks (and leptons), the PNJL model only
includes quarks (and leptons), although it also presents
a phase that mimics the hadronic one. Both models
were fitted to reproduce low-energy nuclear physics, as-
trophysics, and lattice QCD in the regimes where they
apply.

In order to describe the conditions of heavy-ion col-
lisions, we calculate matter properties with constant
strong, but still realistic, magnetic field strengths. In this
case, anisotropy effects are not expected to be relevant in
the small size and short time span in which extreme mat-
ter is created during and after the collision. For neutron
star matter, however, we take a somewhat more sophisti-
cated approach. Although the inner morphology of mag-
netic fields inside neutron stars is currently unknown, one
expects that it should not be constant inside the neutron
star, as a few works with consistent general relativistic
calculations have shown [108–112]. For that reason we
modeled neutron star matter following a profile [53] fit-
ted after general relativistic calculations, from which we
were able to obtain a somewhat accurate description of
the magnetic field as a function of the chemical potential.
We note however that in this work we only use the polar
stellar direction - a more complete study, fully consider-
ing all possible directions, thus providing a 2D map is
currently ongoing.

The temperatures and magnetic fields, as well as the
anomalous magnetic moment, AMM (included only in
the CMF model for hadrons and leptons), we study in
this work have comparable effects on matter. Magnetic
fields turn the EoS stiffer in both models, although at
T = 0 the DHVA oscillations (related to the quanti-
zation of energy into Landau levels) generate wiggles.
These wiggles are much better seen in derivatives of the
EoS, such as the speed of sound, where a zigzag pattern

emerges. Note that some of the structure that appears
in the speed of sound is related to new strange degrees of
freedom (hyperons and strange quarks) appearing. For
both models the speed of sound stays within the confor-
mal limit at large densities (for the values analyzed).

In both models the temperature, as expected, pulls the
phase transition to lower chemical potentials and weakens
it (smaller jump in energy density across). This is quite
natural, as both models predict critical points, beyond
which the first-order deconfinement phase transition be-
comes a smooth crossover. This is not modified by the
magnetic field. Discussion about the effect of strong mag-
netic fields on the critical point of the CMF model will
be addressed in future work. For the PNJL, the phase
transition starts at ϵ ∼ 0 at T = 0. The PNJL model
may also be coupled to a hadronic model at low den-
sities to make the description of the low density EOS
more realistic. The successful description of two solar
mass stars can then be a filter that indicates how large
the jump in energy density can be (a jump that is too
large may turn hybrid stars unstable [113]). The mag-
netic field makes the phase transition stronger for the
CMF model and weaker for the PNJL model, at least in
the studied range, presenting, respectively, a larger and
smaller jump in energy density.This indicates that there
is no universal behavior with respect to these quantities,
and the outcome depends on the characteristics of the
model.

For the CMF model, we also show for neutron-star
matter the pressure locally perpendicular to the magnetic
field, modified by the magnetization. It becomes softer
for larger magnetic fields and presents a discontinuity
across the phase transition. This discontinuity was ad-
dressed in Ref. [114] at zero temperature. Nevertheless,
the true nature of the coexistence between the hadronic
and quark phases under gravitational forces (and the pos-
sible appearance of mixtures of phases) depends strongly
on the debated value of the surface tension [48] and a
better understanding on how Landau levels behave at in-
terfaces [115], a problem that depends on the geometry
of the problem, which requires general relativity input.
This goes beyond the scope of our work. The magnetiza-
tion increases in value with magnetic field strength and
becomes more smooth for larger temperatures. Double
peaks point to different behavior for different spin pro-
jections.

Concerning particle populations, the magnetic field
enhances charged particles, (the larger the charge, the
larger the enhancement) turning the system for neutron
star matter more isospin symmetric, and suppressing hy-
perons in the CMF model (the neutral Λ-hyperons that
appear in neutron-star matter). The leptons are en-
hanced for neutron-star matter, especially in the quark
phase, where in the CMF model they can have additional
effects due to the AMM effect. At large temperatures,
the comparison becomes more complicated, as all parti-
cles appear at all densities.

Our calculations demonstrate that the different con-
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ditions in neutron star and heavy-ion collision matter –
namely the isospin symmetry and zero net strangeness
found in heavy-ion collision matter, as opposed to charge
neutrality and weak chemical equilibrium needed for neu-
tron star matter – can alter the effects of magnetic field
and temperature in dense matter.

For larger magnetic fields, the deconfinement phase
transition is pushed to larger energy densities and larger
chemical potentials within the CMF model for neutron-
star matter. This effect persists at all temperatures. For
heavy-ion matter, this is only the case for T = 100 MeV,
and is opposite for lower temperatures (with respect to
energy density). The phase transition, is stronger for the
heavy-ion case for T = 0 and T = 45 MeV, but weaker
for T = 100 MeV.

In the PNJL model, the effect of strong magnetic fields
is also not clear with respect to the energy density, but
for the studied magnetic fields, their effect is to pull the
chiral phase transition in an opposite manner than the
CMF model, to lower chemical potentials, an effect al-
ready identified as inverse catalysis at finite µB . Note
that, although comparing these two models is the best
we can do at the moment (there are no other models
that provide a self-consistent description of deconfine-
ment accounting for magnetic field effects), these mod-
els are quite different. The CMF is strongly affected by
baryons and their AMM corrections; neither of which are
included in the PNJL model.

For the CMF model, heavy-ion matter is overall stiffer,
reaches a higher energy density prior to the phase tran-
sition, and presents a stronger phase transition (larger
jump in energy density) than neutron-star matter (con-
taining hyperons) for the same conditions of magnetic
field and temperature. An exception is the case of
T = 100 MeV, where heavy-ion matter matter becomes
softer just prior to the phase transition and the phase
transition is weaker. This is related to the proximity of
the critical point, shown to appear at much lower tem-
peratures for heavy-ion matter in the CMF model [100]
(without magnetic-field effects). For the PNJL model,
heavy-ion matter is overall softer, reaches a lower energy
density prior to the phase transition and a higher energy
density after, and presents a stronger phase transition
(compared to neutron star matter) in all temperature
and magnetic field cases analyzed.

An interesting related topic that has not been ad-
dressed in this work is the chiral magnetic effect [116],
a generation of electric current induced by chirality im-
balance in the presence of a magnetic field. There is in-
dication that it has already been observed in both RHIC

[117] and LHC [118]. We note that, although we study
the effect of strong magnetic fields in chiral models, we
cannot addressed such effect in our work due to our as-
sumption of space and time homogeneity, consequence of
the mean-field approximation taken in both CMF and
PNJL models.

To summarize, we believe we have made great strides
towards understanding the properties of dense matter at
extreme conditions by considering strong magnetic fields
and finite temperature on the same framework, obtaining
thus a better understanding of matter in relevant scenar-
ios such as neutron star mergers and heavy-ion collisions.
However, there is still much to do and to learn. We aim,
in a future work, to employ the knowledge gained by this
study - to self-consistently model neutron stars with finite
temperature and strong magnetic fields - both in the mi-
cro and macroscopic realms, using anisotropic solutions
of Einstein and Maxwell equations.

In the next few years, we expect a very large amount
of data constraining dense matter, not only at T ∼ 0,
but also at significantly larger temperatures, once grav-
itational wave interferometers measure the post-merger
part of neutron-star mergers. In this case, the waveform
inferred would provide us with a direct way to look for de-
confinement to quark matter [105]. But, in order to know
what to look for in such signals, and how to compare the
results with what is already known from heavy-ion col-
lisions (see Refs. [119–122] for recent reviews), we need
to have a better understanding on how both tempera-
ture and magnetic fields affect deconfinement, including
model dependencies in the location and strength of the
phase transition.
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Rev. Lett. 128, 061101 (2022), arXiv:2111.00013 [gr-qc].

[113] M. G. Alford and S. Han, Eur. Phys. J. A 52, 62 (2016),
arXiv:1508.01261 [nucl-th].

[114] E. J. Ferrer and A. Hackebill, Int. J. Mod. Phys. A 37,
2250048 (2022), arXiv:2010.10574 [nucl-th].

[115] H.-L. Chen, K. Fukushima, X.-G. Huang, and
K. Mameda, Phys. Rev. D 96, 054032 (2017),

arXiv:1707.09130 [hep-ph].
[116] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa,

Nucl. Phys. A 803, 227 (2008), arXiv:0711.0950 [hep-
ph].

[117] L. Adamczyk et al. (STAR), Phys. Rev. Lett. 114,
252302 (2015), arXiv:1504.02175 [nucl-ex].

[118] R. Belmont (ALICE), Nucl. Phys. A 931, 981 (2014),
arXiv:1408.1043 [nucl-ex].

[119] R. Kumar et al. (MUSES), Theoretical and Experimen-
tal Constraints for the Equation of State of Dense and
Hot Matter (2023), arXiv:2303.17021 [nucl-th].

[120] A. Sorensen et al., Dense Nuclear Matter Equa-
tion of State from Heavy-Ion Collisions (2023),
arXiv:2301.13253 [nucl-th].

[121] D. Almaalol et al., QCD Phase Structure and In-
teractions at High Baryon Density: Continuation of
BES Physics Program with CBM at FAIR (2022),
arXiv:2209.05009 [nucl-ex].

[122] A. Lovato et al., Long Range Plan: Dense matter the-
ory for heavy-ion collisions and neutron stars (2022),
arXiv:2211.02224 [nucl-th].


