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Astrophysical observations of neutron stars probe the structure of dense nuclear matter and have the
potential to reveal phase transitions at high densities. Most recent analyses are based on parametrized
models of the equation of state with a finite number of parameters and occasionally include extra
parameters intended to capture phase transition phenomenology. However, such models restrict the
types of behavior allowed and may not match the true equation of state. We introduce a complementary
approach that extracts phase transitions directly from the equation of state without relying on, and
thus being restricted by, an underlying parametrization. We then constrain the presence of phase
transitions in neutron stars with astrophysical data. Current pulsar mass, tidal deformability, and
mass-radius measurements disfavor only the strongest of possible phase transitions (latent energy per
particle ≳ 100MeV). Weaker phase transitions are consistent with observations. We further investigate
the prospects for measuring phase transitions with future gravitational-wave observations and find that
catalogs of O(100) events will (at best) yield Bayes factors of ∼ 10 : 1 in favor of phase transitions even
when the true equation of state contains very strong phase transitions. Our results reinforce the idea
that neutron star observations will primarily constrain trends in macroscopic properties rather than
detailed microscopic behavior. Fine-tuned equation of state models will likely remain unconstrained
in the near future.

I. INTRODUCTION15

Recent astronomical data, such as gravitational waves16

(GWs) from coalescing neutron star (NS) binaries [1, 2]17

observed by LIGO [3] and Virgo [4], X-ray pulse profiles18

from hotspots on rotating NSs observed by NICER [5–8],19

and mass measurements for heavy radio pulsars [9–11],20

have advanced our understanding of matter at supranu-21

clear densities [12–20]. Nonetheless, there is still con-22

siderable uncertainty in the equation of state (EoS) of23

cold, dense matter, which relates the pressure p to the24

energy density ε, or rest-mass density ρ. The data favor25

a sound speed cs =
√

dp/dε that exceeds the conjectured26

conformal bound of
√
1/3 expected for weakly interact-27

ing ultra-relativistic particles [13, 20–22]. The potential28

violation of this bound at high densities may point to a29

state of matter with strongly coupled interactions.30

Such strong couplings call into question the accuracy31

of perturbative expansions of interactions between neu-32

trons, protons, and pions at high densities, and raise33
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the possibility that other degrees of freedom may be a34

more natural description. Theoretical studies have inves-35

tigated whether the smooth crossover from hadron res-36

onance gas to quark-gluon plasma observed with lattice37

quantum chromodynamics (QCD) at low baryon chemi-38

cal potential and high temperature implies the existence39

of a critical endpoint in the QCD phase diagram [23]40

and how EoS calculations at low density and tempera-41

ture connect to perturbative QCD (pQCD) calculations42

at high densities (∼ 40 times nuclear saturation ρsat) [24–43

26]. Other work predicts a variety of phase transitions44

stemming from a range of microphysical descriptions for45

dense matter [22, 23, 27–34].46

Many theorized phase transitions in NS matter are47

characterized by a softening of the EoS, i.e., a decrease48

in cs. This occurs because the NS is supported by degen-49

eracy pressure, and additional degrees of freedom (e.g.,50

hyperons or quarks) initially do not contribute signifi-51

cantly to the pressure due to their low number density52

n. This manifests as an interval of nearly constant pres-53

sure (small cs) over a density range in which the new54

degrees of freedom first appear. A decrease in pressure55

support relative to an EoS without a phase transition56

leads to more compact NSs. Such compactification can57

lead to bends or kinks in the relation between macro-58

scopic observables, such as the gravitational mass M ,59

radius R, tidal deformability Λ, and moment of inertia I.60
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The strongest phase transitions can even give rise to dis-61

connected sequences of stable NSs separated by a range62

of central densities for which no stable NSs exist. This63

manifests as, e.g., two or more disconnected branches in64

the M -R relation and twin stars with the same mass but65

different radii [27, 35–41]. Moreover, the relative loss of66

pressure support from the phase transition often reduces67

the maximum mass (MTOV) for cold, non-rotating NSs.68

Current observational evidence for a sudden soften-69

ing in the EoS is inconclusive. Both the PREX neu-70

tron skin measurement [42] and the existence of 2M⊙71

pulsars [11] suggest a relatively stiff EoS (near ρsat and72

above ∼ 3ρsat, respectively). In contrast, the relatively73

small tidal deformability of GW170817 points to a mod-74

erately soft EoS around ∼ 2ρsat [12, 20]. While this stiff–75

soft–stiff sequence resembles the morphology of a phase76

transition, the actual statistical evidence for or against77

this scenario remains inconclusive [14, 20, 43]. Further-78

more, while observations favor a violation of the con-79

formal bound around ∼ 3ρsat, they do not strictly rule80

out EoSs with cs ≤
√

1/3 at higher densities [20]. Addi-81

tionally, the CREX collaboration’s neutron skin measure-82

ment favors lower pressures near ρsat than PREX [44]. At83

present, consistency between ab initio theoretical models,84

laboratory experiments, and astrophysical data within85

statistical uncertainties does not require a phase transi-86

tion [45, 46].87

Several features of NSs’ macroscopic properties have88

been proposed as a way to identify a phase transition in89

NS matter with forthcoming GW observations. During a90

compact binary’s inspiral (before the objects touch), the91

relevant observable is the (adiabatic or static) tidal de-92

formability [47–49], which is strongly correlated with the93

radius. Both are expected to be smaller for NSs with94

exotic cores than their nucleonic counterparts. Chen95

et al. [50] leveraged this fact to search for phase tran-96

sitions via a change in the slope of the inferred M–97

R relation, parametrized as a piecewise linear function.98

Chatziioannou and Han [51] pursued a related method,99

modeling the detected binary merger population hierar-100

chically and searching for a subpopulation with smaller101

radii. Parametrizing the M–Λ relation itself, Landry102

and Chakravarti [52] sought to identify twin stars in103

the binary NS population based on gaps in the joint104

distribution of masses and binary tidal deformabilities.105

Proposals for identifying phase transitions based on the106

presence of disconnected stable branches in the M–R or107

M–Λ relation, independently of a parametrization, have108

also been investigated [14, 20, 53]. However, approaches109

that directly model macroscopic observables cannot eas-110

ily enforce physical precepts like causality and thermo-111

dynamic stability, nor do they offer an obvious pathway112

to microscopic EoS properties. At best, one can con-113

strain proxies for microphysical phase transitions, such114

as the difference between radii at different masses, e.g.,115

∆R ≡ R1.4−R2.0 [14, 16, 20, 54]. Moreover, macroscopic116

signatures test a sufficient, but not necessary, condition117

for exotic phases. A phase transition may not be strong118

enough to leave a measurable imprint on NS observables.119

This ambiguity is known as the masquerade problem [30].120

An alternative approach is to directly model the121

EoS and connect it to macroscopic NS observables by122

solving the Tolman-Oppenheimer-Volkoff (TOV) equa-123

tions [55, 56]. A plethora of phenomenological EoS124

parametrizations adapted to phase transitions have been125

proposed [38, 43, 57]. For example, Pang et al. [58] mod-126

eled the EoS as a piecewise polytrope, including a seg-127

ment with vanishing adiabatic index (cs = 0) to represent128

the phase transition. They performed model selection on129

a catalog of simulated GW observations to test whether130

they favored the presence of a phase transition. Tan et131

al. [57] performed a similar analysis with a more com-132

plex parametric EoS model, which nonetheless retained133

the characteristic morphology of regions of large cs brack-134

eting a range of densities with small cs. We discuss these135

and other approaches at length in Sec. V.136

However, it is also possible to model the EoS directly137

without introducing a parametrization. Flexible non-138

parametric models, such as the Gaussian process (GP)139

representation introduced in Refs. [13, 53, 59], avoid the140

ad hoc correlations across density scales that are in-141

evitable in parametric representations with a finite num-142

ber of parameters [60]. While some interdensity corre-143

lations are desirable (e.g., those dictated by causality,144

thermodynamic stability, or predictions from nuclear the-145

ory), phenomenological parametric models implicitly im-146

pose much stronger prior assumptions by virtue of their147

chosen functional form. Nonparametric models need not148

impose such correlations. They can also provide a faith-149

ful representation of theoretical uncertainty at low den-150

sities without sacrificing model flexibility at high densi-151

ties [45, 46, 61]. However, the lack of phenomenological152

parameters can make it difficult to map features in the153

EoS to underlying microphysics. In order to address this,154

a generic mapping from the EoS to a set of physically in-155

terpretable microscopic parameters is needed.156

We develop such a mapping: a phenomenological ap-157

proach to identifying physically meaningful properties of158

phase transitions via softening in the EoS. We show that159

a nonparametric model’s lack of obvious physically in-160

terpretable parameters does not fundamentally limit its161

utility for inferences about phase transitions in NSs. We162

propose and test model-independent features that char-163

acterize a broad range of phase transition phenomenol-164

ogy. Our procedure goes beyond existing nonparametric165

tests based on the number of distinct stable NS sequences166

in the M–R (or M–Λ) relation [13, 20, 53] and enables167

us to directly extract information about the onset and168

strength of both large and weak phase transitions that re-169

spectively do and do not create multiple stable branches.170

As such, it provides an alternative to parametric phase171

transition inferences, whose inflexible parametrizations172

may introduce systematic biases if they do not closely173

match the true EoS [60, 62–64].174

We introduce our methodology in Sec. II. Section IIA175

reviews the basic phenomenology of phase transitions176
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FIG. 1. (left) one-dimensional 90% symmetric marginal posterior credible regions for the radius as a function of mass conditioned
on current data. We show results with only pulsar masses (denoted PSR) and pulsar masses, GW observations, and NICER X-ray
pulse profiling (denoted PGX). We additionally show maximum-likelihood EoSs from subsets of the prior conditioned on the size
of the latent energy per particle ∆(E/N) of phase transitions that overlap with the central densities of NSs between 1.1–2.3M⊙
(small : ∆(E/N) ≤ 10MeV and large: ∆(E/N) ≥ 100MeV). (right) Correlations between the radius at two reference masses:
M = 1.4 and 2.0M⊙. While the one-dimensional marginal distributions are similar, EoSs with small ∆(E/N) show stronger
correlations between R1.4 and R2.0 than EoSs with large ∆(E/N). This is because the radius can change rapidly when ∆(E/N) is
large, as is evident in the maximum-likelihood EoS.

and, motivated by these considerations, Sec. II B pro-177

poses novel features that can be used to identify the pres-178

ence of a phase transition and extract physically relevant179

properties without the need for a direct parametrization.180

Our new features are based on the mass dependence of181

the moment of inertia (I) and the density dependence182

of the speed of sound, although similar features can also183

be derived from other macroscopic observables. We apply184

our methodology to current astrophysical data in Sec. III.185

Current astrophysical data (Fig. 1) disfavor the strongest186

of possible phase transitions, but only when those tran-187

sitions occur within NSs between ∼ 1–2M⊙. Even the188

presence of multiple stable branches cannot be unambigu-189

ously ruled out, although they are disfavored compared190

to EoS with a single branch and smaller phase transi-191

tions. Section IV examines the prospects for detecting192

and characterizing phase transitions with large catalogs193

of simulated GW detections. We obtain Bayes factors of194

∼ 10 : 1 in favor of phase transitions with O(102) events,195

a larger catalog than is likely [65] within the lifetime of196

advanced LIGO [3] and Virgo [4]. We discuss our conclu-197

sions in the context of previous studies in the literature198

as well as possible future research in Sec. V.199

II. PHENOMENOLOGICAL IDENTIFICATION200

OF PHASE TRANSITIONS201

We begin by reviewing the basic phenomenology of202

phase transitions from microscopic and macroscopic per-203

spectives in Sec. II A and then introduce our novel model-204

independent features in Sec. II B. We discuss our ability205

to identify phase transitions in the context of the mas-206

querade problem in Sec. II C.207

A. Phase Transition Morphology208

The basic phenomenology associated with the phase209

transitions we consider is a softening of the EoS over some210

density range. The following microscopic picture is often211

invoked. Consider two species of degenerate, noninteract-212

ing fermions with light (ml) and heavy (mh > ml) rest213

masses, respectively. At zero temperature, the system214

will fill all states up to the Fermi energy (EF ) choosing215

between light and heavy fermions to balance their chem-216

ical potentials. The partial pressure contributed by each217

fermion will be determined by their respective number218

densities. The relation between EF and the fermion rest219

masses then determines the system’s composition.220

If EF < mh, only light fermions exist. As the den-221

sity increases, the pressure must increase as additional222
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FIG. 2. Examples of CSS EoSs based on DBHF [66] with a causal extension (cs = c) beyond the end of the phase transition.
We show examples with (top) weak and (bottom) strong phase transitions, defined by whether there are multiple stable branches.
For each EoS, we show (top left) the pressure and (bottom left) the sound-speed as a function of baryon density, (top center) the
moment of inertia and (bottom center) the novel feature introduced in Sec. II B (Eq. (2)) as a function of gravitational mass, and
(top right) the M–Λ and the (bottom right ) M–R relations. Stable (unstable) branches are shown with dark solid (light dashed)
lines. Each curve is labeled with connections between macroscopic phenomenology and microphysical features. (black annotations)
The maximum mass of cold, non-rotating stars (MTOV) and, where relevant, the beginning and end of stable branches. (red
annotations) The beginning and end of features as identified by the procedure in Sec. II B. (red shading) The extent of the
identified features.
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FIG. 3. Analogous to Fig. 2 but for more complicated phase transition phenomenology associated with mixed phases (Gibbs
construction) from Han et al. [67], obtained by implementing specific hadronic and quark models.. Again, the features introduced
in Sec. II B correctly identify the beginning and end of the phase transition even though there is no discontinuity in cs at the onset
and the phase transition corresponds to a wide range of masses. The broad extent of the phase transition is not readily apparent
from the macroscopic properties alone, which show a sharp feature only at the end of the phase transition.

light fermions are added to high-momentum states. How-223

ever, if EF ≥ mh, heavy fermions in low-momentum224

states can become energetically favorable. These heavy225

fermions contribute to the rest-mass (and energy) den-226

sity but have a much lower partial pressure due to their227

relatively low number density. The total pressure, then,228

remains nearly constant at the pressure set by the light229

fermions at EF . This will continue until enough heavy230

fermions appear that a significant fraction of additional231

particles are light fermions (to balance the chemical po-232

tential of heavy fermions) or the partial pressure of the233

heavy fermions becomes comparable to that of the light234

fermions. At that point, the pressure will once again235

increase with density.236

The actual microphysics in a NS is complicated by in-237

teractions between particles, but the expected softening238

based on this heuristic picture is often present in more239

complicated models. Fig. 2 shows the typical behav-240

ior of a first-order phase transition with examples con-241

structed from a hadronic model (DBHF [66]) at low den-242

sities and a constant sound-speed (CSS) extension [38]243

to higher densities. These EoSs have a sharp bound-244

ary separating the two different phases (Maxwell con-245

struction); ε is discontinuous across the boundary and cs246

vanishes within the transition. The EoS in Fig. 3 em-247

ploys a mixed phase (Gibbs) construction that exhibits248

more complicated sound-speed behavior [67], taking into249

account global charge neutrality (valid for small surface250

tension between the two phases [68]) when hadronic and251

quark matter coexist. The sound-speed decreases across252

the phase transition, but does not necessarily drop all253

the way to zero. The EoS also shows an approximately254

density-independent sound speed towards high densities255

(due to the specific vMIT model for the pure quark256

phase), which can be well represented by the generic CSS257

parametrization. In both figures, cs initially increases at258

low densities, then suddenly decreases across the density259

range corresponding to the phase transition before recov-260

ering and plateauing at a value set by the CSS extension261

(Maxwell case) or by the microscopic model describing262

the high-density pure phase (Gibbs case).263

While the microscopic details of the phases and their264

interface may vary, the phase transitions can be charac-265

terized phenomenologically by a few parameters, such as266

the onset density (or pressure) at which the phase tran-267

sition begins, the density at which it ends, and the latent268

energy of the transition. We consider the difference in269

energy per particle across the phase transition270

∆(E/N) ≡
( ε

n

)
end

−
( ε

n

)
onset

(1)

We compute the energy per particle from the energy den-271

sity ε and rest-mass density ρ assuming a typical nucle-272

onic mass of mn = 938.5MeV via E/N = mn(ε/ρ).273

We wish to associate these microscopic properties of274

the phase transition with the behavior of macroscopic275

observables (such as the masses and radii of NSs) that276

can be probed astronomically. Strong phase transitions277
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can produce sharp features, such as bends or kinks, in278

the M–R relation. Figs. 1 and 2 show examples. How-279

ever, EoSs with less abrupt phase transitions, such as the280

example in Fig. 3, may not have a perceptible impact on281

NS properties. Moreover, even if a bend or kink is readily282

apparent in, e.g., the M–R relation, it is not immediately283

clear how to best extract the relevant microphysical pa-284

rameters of the phase transition.285

B. Phase Transition Feature Extraction286

We now introduce a set of statistics to identify phase-287

transition-like behavior in nonparametric EoS realiza-288

tions. These statistics are motivated by common fea-289

tures observed in EoSs with phase transitions, such as290

the ones in Figs. 2 and 3, and nonparametric EoS re-291

alizations with multiple stable branches. Our statistics292

comprise both macroscopic and microscopic features of293

the EoS and are not tied to an underlying parametriza-294

tion. A key macroscopic feature associated with phase295

transitions is the presence of bends or kinks in the M -R,296

M -Λ, and M -I relations.1 We consider the M–I relation,297

but our procedure also works with other NS observables.298

We identify phase transitions by looking for character-299

istic behavior in the derivative of the moment of inertia300

along a NS sequence. Specifically, we examine the loga-301

rithmic derivative302

DI
M ≡ d log I/d log pc

d logM/d log pc
, (2)

where pc is the central pressure. To aid in categoriza-303

tion, we map the logarithmic derivative to a finite in-304

terval by considering its arctangent.2 For example, if305

| arctan(DI
M )| > π/2, then dM/dpc < 0 and the NS is306

unstable. If | arctan(DI
M )| < π/2, then dM/dpc > 0 and307

the NS is stable. Importantly, the logarithmic derivative308

is typically constant for EoSs not undergoing a phase309

transition, but it varies rapidly across the density inter-310

val associated with rapid changes in compactness. Sud-311

den changes in compactness can be caused by a phase312

transition or the final collapse to a black hole (BH) near313

MTOV. Appendix A provides a simple example of this314

behavior with an incompressible Newtonian star.315

A phase transition is identified by a sharp decrease in316

arctan(DI
M ). The change can be discontinuous, but need317

not be. Similarly, arctan(DI
M ) may decrease enough that318

the star loses stability, but it does not have to. One can319

often identify a feature in arctan(DI
M ) regardless of the320

exact behavior of cs or whether there are multiple stable321

1 A feature in one of these relations is accompanied by a similar feature
in the others.

2 Technically, we consider arctan2(d log I/d log pc, d logM/d log pc)
which preserves information about the relative signs of the numerator
and denominator within Eq. (2).

branches. Thus, it can identify both weak or strong phase322

transitions, including those with mixed phases.323

More concretely, Fig. 4 demonstrates our algorithm for324

one EoS drawn from our nonparametric prior process.325

We implement the following scheme for identifying phase326

transitions in arbitrary EoS realizations:327

(1) Identify candidate ends of phase transitions328

as local minima in arctan(DI
M ). We first search for lo-329

cal minima in arctan(DI
M ) bracketed by stable NSs. This330

excludes the sudden decrease in arctan(DI
M ) associated331

with the collapse to a BH above MTOV. Each such fea-332

ture is associated with a phase transition, and the density333

at which this DI
M feature occurs is taken to be the end334

of the phase transition (εe). In the absence of a suit-335

able local minimum, we deem the EoS to have no phase336

transition.337

(2) Identify a candidate onset density for an338

end point. We then associate each local minimum in339

arctan(DI
M ) with the largest local maximum in cs that340

precedes it (i.e., occurs at lower densities). Specifically,341

we select a running maximum in cs, defined as the local342

maximum that is larger than all preceding local maxima.343

The density at which this cs feature occurs becomes the344

candidate for the onset density εt. If there is no preceding345

local maximum in cs, then we deem the EoS to have no346

phase transition.347

(3) Repeat step (2) until an acceptable onset348

density is found. We require the minimum c2s between349

the candidate onset and end densities to be at least 10%350

smaller than c2s at the onset. If this threshold on the351

fractional change (Rc2s
) is not met, the candidate onset352

density is rejected, and the preceding running local max-353

imum is considered in its place. This procedure is re-354

peated until Rc2s
is large enough (candidate is accepted)355

or there are no more local maxima in c2s (candidate phase356

transition is rejected). See Appendix B for more discus-357

sion of thresholds within the feature selection process.358

(4) Repeat steps (2-3) for remaining local min-359

ima in arctan(DI
M ). We identify exactly one onset den-360

sity for each end density.361

If there is more than one local minimum in362

arctan(DI
M ), several of them may be associated with the363

same onset density. In that case, we define the mul-364

tiplicity of the phase transition as the number of local365

minima in arctan(DI
M ) associated with the same run-366

ning local maximum in cs. We use the multiplicity of367

the phase transition as a proxy for the complexity of the368

phase transition morphology. For example, the complex-369

ity of the sound speed’s behavior within the phase transi-370

tion could indicate the (dis)appearance of (new) species371

of particles within the system or be related to inflection372

points in the particle fractions. See, e.g., examples of the373

equilibrium sound speed profiles in Constantinou et al.374

[69, 70] exploring various conditions. Complementarily,375

the number of selected running local maxima in c2s de-376

fines the number of DI
M features within the EoS. These377

basic counting exercises provide a classification scheme378

for simple (multiplicity 1) and complex (multiplicity > 1)379
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Novel Phase Transition Identification Algorithm
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Identify all local minima in arctan(DI
M ).

In this example there are three with
M ≳ 1M⊙. Each local minimum is

associated with the end of a candidate
phase transition.

For each local minimum, find the
preceding running local maximum in cs.
This is the start of the candidate phase

transition. Compute the fraction by
which c2s decreases from the running
local maximum to the smallest c2s

observed within the candidate phase
transition (Rc2s

).

If Rc2s
is sufficiently large, accept the

candidate onset density. Proceed to the
next local minimum in arctan(DI

M ).

Otherwise, reject the candidate’s running
local maximum cs and proceed to the
next largest running local maximum.

Compute the new Rc2s
and compare to

the threshold. Repeat until Rc2s
is large

enough or there are no remaining
running local maxima in cs. If Rc2s

never
passes the threshold, reject this local

minimum in arctan(DI
M ) entirely.

Repeat for remaining local minima. This
EoS has three local minima that pair

with the same running local maximum to
produce Rc2s

≥ 2 (larger than the
threshold used in our main results).

FIG. 4. The feature extraction algorithm: (left) the sound-speed as a function of baryon density and (right) arctan(DI
M ) (Eq. 2)

as a function of the gravitational mass. The algorithm progresses from top to bottom, first with the identification of local minima in
arctan(DI

M ) and then pairing each with a corresponding running local maximum in cs. The number of features reported corresponds
to the number of unique running local maxima in cs selected; in this case 1. The multiplicity of each feature corresponds to the
number of local minima in arctan(DI

M ) that are paired with the same running local max in cs; in this case 3. For demonstration
purposes, we show how the algorithm would progress if we had Rc2s

> 1.7. If the threshold on the drop in the sound-speed Rc2s

was ≤ 1.7, the algorithm would accept the first pairing (second row) and instead report two features: one at lower densities with
multiplicity two and one at higher densities with multiplicity one. This would be the case for the main results presented in Secs. III
and IV, which use a threshold Rc2s

> 1.1.

cs structure within the phase transition along with the380

number of transitions.381

After this procedure, each phase transition is charac-382

terized by an onset density (or pressure or stellar mass)383

and an end density (largest density of all local minima in384

arctan(DI
M ) associated with the onset). Based on these385

points, we define various properties of the phase transi-386

tion. We focus on ∆(E/N) in Secs. III and IV.387

Of course, the points identified by the above proce-388

dure are only proxies for the true onset and end of the389

phase transition. While the correspondence is excellent390

for Maxwell constructions (Fig. 2), it may not be per-391

fect for more complicated models. See, e.g., Fig. 15.392

Moreover, because the feature identification hinges on393
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FIG. 5. Correlations between the divergence between macro-
scopic properties caused by a phase transition ∆ln I −⟨∆ln I⟩
and the latent energy per particle of the associated phase tran-
sition ∆(E/N) for all transitions that begin at masses greater
than 0.7M⊙. Color indicates the proximity of the phase transi-
tion’s end to MTOV. Large divergences in macroscopic proper-
ties can only be caused by phase transitions with large ∆(E/N),
but not all phase transitions with large ∆(E/N) cause large di-
vergences in macroscopic properties.

the presence of local minima in arctan(DI
M ), we some-394

times cannot identify phase transitions that occur near395

MTOV, i.e., that terminate in collapse to a BH. As such,396

it may be difficult to determine whether NSs collapse to397

BHs because of a sudden decrease in cs at high densities398

or whether cs remains large and the NS’s self-gravity wins399

without assistance. Empirically, we find a correlation be-400

tween the sharpness of the bend in arctan(DI
M ) near the401

collapse to a BH and the existence of a phase transition402

at those densities, but we leave further investigations of403

this to future work.404

Additionally, the specific onset, end, and latent energy405

values we extract for the phase transition are sensitive to406

the threshold on Rc2s
. A lower threshold would favor the407

identification of a greater number of weaker phase tran-408

sitions at the risk of selecting small upward fluctuations409

in cs (unconstrained by current data) as the onset even410

if more plausible features in cs exist at lower densities.411

A higher threshold would retain only the strongest phase412

transitions. In what follows, we choose to ignore phase-413

transition-like features with Rc2s
< 1.1 as an attempt to414

balance these extremes, but the exact choice is ad hoc.415

See Appendix B for more discussion.416

C. Connections between Macroscopic and417

Microphysical Behavior: the Masquerade Problem418

We expect ∆(E/N) to be related to phase transition’s419

impact on macroscopic properties. However, this map-420

ping is complicated because the same ∆(E/N) can lead421

to very different changes in NS properties depending422

on the onset density and pressure. In order to explore423

this relation, we consider how much the phase transition424

causes the macroscopic properties to diverge from what425

they would have been without it. This provides a natural426

interpretation to the masquerade problem, as it will be427

difficult to distinguish between two nearby M–I curves428

that never diverge from each other without extremely429

precise observations.430

While it is not trivial to construct such a divergence431

without an underlying parametrization (one cannot just432

“turn off” the phase transition), Fig. 5 shows an exam-433

ple: the difference between the change in the (logarithm434

of the) moment of inertia across the phase transition435

and what it would have been if the transition was not436

present. We measure the actual ∆ ln I directly from the437

identified onset and end of a transition, and approxi-438

mate what it would have been without a phase transition439

via the following observation. In the absence of phase-440

transition-like behavior, DI
M is roughly constant:

〈
DI

M

〉
.441

Appendix A shows that
〈
DI

M

〉
= 5/3 for incompress-442

ible Newtonian stars, and we empirically find values near443 〈
DI

M

〉
∼ 1.7 for general EoSs in full General Relativity.444

Therefore, we approximate the change in the moment of445

inertia that would have occurred without the phase tran-446

sition as ⟨∆ ln I⟩ =
〈
DI

M

〉
∆ lnM , where ∆ lnM is again447

defined by the onset and end of the transition.448

Fig. 5 shows ∆ ln I−⟨∆ ln I⟩ as a function of the phase449

transition’s latent energy per particle. We see that large450

|∆ ln I − ⟨∆ ln I⟩ | are only possible with large ∆(E/N),451

but large ∆(E/N) do not always lead to large diver-452

gences. Again, this demonstrates the masquerade prob-453

lem: large microphysical changes may not always man-454

ifest as observable features within macroscopic NS ob-455

servables. Additionally, large ∆(E/N) tend to produce456

end masses (NS mass with central density at the end of457

the phase transition) close to MTOV. This is because458

large phase transitions imply very compact stellar cores459

(due to relatively low pressures at high densities), which460

are likely to collapse to BHs if even a small amount of461

additional matter is added. Similarly, transitions with462

very large ∆(E/N) may lead to direct collapse to a BH.463

Because our identification algorithm (Sec. II B) struggles464

to detect features that cause the stellar sequence to col-465

lapse to a BH, this may cause a selection in the maximum466

∆(E/N) for which we can identify DI
M features in Fig. 5.467

Empirically, we only identify ∆(E/N) ≲ 300MeV.468

III. CONSTRAINTS WITH CURRENT469

ASTROPHYSICAL OBSERVATIONS470

Equipped with the procedure defined in Sec. II B, we471

now turn to current astrophysical observations. Fol-472

lowing Legred et al. [20], we consider GW observations473

(GW170817 [1, 71] and GW190425 [2]) assuming that474

all objects below (above) MTOV are NSs (BHs), NICER475
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observations of pulsar hotspots (J0030+0451 [5] and476

J0740+66203 [7]), and radio-based mass measurements477

of pulsars (J0348+0432 [9] and J0740+6620 [10, 11]).478

We use a model-agnostic nonparametric EoS prior,479

which by construction includes little information from480

either nuclear theory or experiment at any density be-481

yond the requirements of thermodynamic stability and482

causality. See e.g., Essick et al. [53]. This prior allows us483

to isolate the impact of astrophysical observations on the484

high-density EoS (≳ ρsat) without introducing modeling485

artifacts, as are common in phenomenological paramet-486

ric models [60]. Compared to other nonparametric ef-487

forts [7, 25, 73], our nonparametric prior was constructed488

with the goal of maximizing model freedom. It therefore489

already contains many EoS realizations that exhibit char-490

acteristics of phase transition phenomenology, including491

EoSs with multiple stable branches. While additional492

theoretical and/or experimental low-density information493

could be considered, see e.g., Refs. [45, 46, 61], we leave494

those to future work and focus on astrophysical obser-495

vations. Similarly, we do not incorporate pQCD calcu-496

lations at high densities [24, 25] as initial explorations497

indicated that these constraints are model-dependent.4498

Current observations span masses roughly between 1.2-499

2.1 M⊙.5 What is more, the answer to questions such500

as, “how many phase transitions does the EoS have?”501

depends on the mass or density range considered, and we502

do not wish to confound our inference with the presence503

of DI
M features that occur at masses below the smallest504

observed NS. As such, we divide the prior into multiple505

sets defined by whether or not the EoS has a DI
M feature506

that overlaps with a specific mass range. That is, whether507

the range of densities spanning the feature overlaps with508

the range of central densities for stellar models within a509

specified mass interval. We consider three mass ranges:510

• M ∈ [0.8, 1.1)M⊙: features that occur below the511

current observed set of NSs.512

• M ∈ [1.1, 1.6)M⊙: features that could influence513

observed NSs, particularly in the peak of the dis-514

tribution of known galactic pulsars [74, 75].515

• M ∈ [1.6, 2.3)M⊙: features that may influence ob-516

served NSs, but at high enough masses that individ-517

ual GW systems are unlikely to confidently bound518

the tidal deformability away from zero.519

3 We use results from Miller et al. [7] rather than Riley et al. [8] be-
cause the former accounts for the measured cross-calibration between
NICER and XMM. See also [72].

4 Specifically, when evaluating the pQCD likelihood at 10ρsat we find
that pQCD results influence NS near MTOV in agreement with [25].
However, those constraints are weaker when we use the central den-
sity of stars with M = MTOV, in agreement with [26]. The robust-
ness of the procedure to connect pQCD calculations to lower densities
is therefore still an open question.

5 The smallest observed mass we consider is likely the secondary in
GW190425 [2], although there is considerable uncertainty in the
event’s mass ratio. The largest observed mass is J0740+6620 [11].

Individual EoSs may belong to multiple sets if they have520

multiple or large DI
M features or just happen to straddle521

a boundary.522

Table I presents ratios of maximized and marginal like-523

lihoods conditioned on different datasets. The ratio of524

maximized likelihoods for all astrophysical data (pulsars525

(P), GWs (G), and X-ray observations (X)) for different526

subsets of our prior (A and B) is527

maxLA
B(PGX) =

max
ε∈A

p(PGX|ε)
max
ε∈B

p(PGX|ε) , (3)

where the maximization is over different EoSs ε. The528

Bayes factor is the ratio of marginal likelihoods529

BA
B(GX|P) = p(GX|P;A)

p(GX|P;B)
, (4)

where, for example,530

p(GX|P;A) =

∫
Dε p(GX|ε)p(ε|P, A) , (5)

and531

p(ε|P, A) = p(P|ε)p(ε|A)∫
Dε p(P|ε)p(ε|A)

. (6)

We report these statistics for both the number of stable532

branches and the number of DI
M features, conditioned533

on several minimum ∆(E/N) thresholds. We present534

both statistics because each has its relative strengths and535

weaknesses. While Occam factors may be important for536

Bayes factors, they do not affect the ratio of maximized537

likelihoods. At the same time, the maximized likelihoods538

may correspond to an extremely rare EoS, whereas the539

Bayes factors provide an average over typical EoS behav-540

ior. We therefore should trust statements about which541

both statistics broadly agree.542

Overall, we expect stronger constraints on features543

that overlap with the observed mass range. In Figs. 6, 7,544

and Table I, we indeed find the strongest constraints on545

phase transitions that occur in NSs less massive than546

1.6M⊙, although constraints for M ∈ [0.8, 1.1)M⊙ and547

M ∈ [1.1, 1.6)M⊙ are comparable. Indeed, in Fig. 6548

the posterior for the latent energy is more constrained549

with respect to the prior for masses below 1.6M⊙. Fur-550

thermore, Table I shows that the Bayes factor using all551

astrophysical data disfavors the presence of large DI
M fea-552

tures (∆(E/N) ≥ 100MeV) at low and medium masses553

(0.8–1.1 and 1.1–1.6M⊙) approximately three times as554

strongly as at high masses (1.6–2.3M⊙).555

As shown in Legred et al. [20], all NS observations are556

consistent with a single radius near ∼ 12.5 km. We there-557

fore expect the data to disfavor the existence of strong558

phase transitions and place an upper limit on ∆(E/N).559

Fig. 6 bears this out. It shows posterior distributions560

on the properties of the DI
M feature with the largest561

∆(E/N) that overlaps with the specified mass range (i.e.,562
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FIG. 6. Marginalized (unshaded) priors and (shaded) posteriors for parameters that characterize phase transitions based on
current astrophysical data from pulsar masses, GWs, and X-ray mass-radius measurements. For each EoS we report the properties
of the transition with the largest ∆(E/N) that overlaps with each mass interval. We report (left to right), the latent energy
(∆(E/N)), the onset energy density (εt), the onset pressure (pt), the energy density at the end of the transition (εe), and the
onset mass scale (Mt) for three mass-overlap regions: 0.8–1.1M⊙, 1.1–1.6M⊙, and 1.6–2.3M⊙.

features with larger ∆(E/N) may exist in the EoS, but563

they do not overlap with the mass range). Astrophysical564

data place an upper limit on the largest phase transition565

within an EoS, but are less informative about weaker566

phase transitions.567

Figure 6 shows the onset energy density and pressure568

as well as the energy density at the end of the phase569

transition. Beyond limiting the possible size of DI
M fea-570

tures, astrophysical data also disfavor phase transitions571

with large onset densities and pressures. This likely cor-572

responds to the observation that the sound-speed must573

increase rapidly around 3ρsat in order to support ∼ 2M⊙574
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TABLE I. Ratios of maximized and marginalized likelihoods for different types of features based on current astrophysical obser-
vations: (P) pulsar masses, (G) GW observations from LIGO/Virgo, and (X) X-ray timing from NICER. See Eqs. (3) and (4)
for an explicit definition of this notation. We consider multiple mass ranges (features must span stellar masses that overlap with
the specified range) and latent energies (where appropriate, there must be at least one feature with latent energy larger than the
threshold). We show the statistics for both the number of stable branches and DI

M features. Error estimates for Bayes factors (B)
approximate 1-σ uncertainty from the finite Monte Carlo sample size. See Tables in Appendix D for additional combinations of
subsets of astrophysical data.

M
[M⊙]

Stable Branches min∆(E/N)
[MeV]

DI
M Features

maxLn>1
n=1(PGX) Bn>1

n=1(PGX) Bn>1
n=1(GX|P) maxLn>0

n=0(PGX) Bn>0
n=0(PGX) Bn>0

n=0(GX|P)

0.8–1.1 0.47 0.362± 0.036 2.219± 0.162

10 0.57 1.222± 0.020 0.684± 0.011

50 0.49 0.366± 0.011 0.588± 0.016

100 0.26 0.117± 0.008 0.292± 0.021

1.1–1.6 0.14 0.030± 0.006 0.291± 0.055

10 0.57 1.043± 0.020 0.552± 0.010

50 0.49 0.463± 0.013 0.552± 0.010

100 0.26 0.152± 0.009 0.267± 0.017

1.6–2.3 0.20 0.147± 0.028 0.120± 0.026

10 0.52 1.012± 0.035 0.385± 0.013

50 0.49 0.898± 0.034 0.385± 0.013

100 0.29 0.383± 0.023 0.256± 0.016

pulsars against gravitational collapse while remaining575

compatible with observations at lower densities, primar-576

ily from GW170817 [20]. The peak in the posteriors for577

the onset parameters is likely due to a combination of the578

(peaked) prior and these upper limits. This trend is also579

encountered in the behavior of the p–ε bounds for EoSs580

with multiple stable branches. That is, Fig. 8 in Legred581

et al. [20] suggests it is more likely for phase transitions582

to begin below ρsat than above it when the EoS supports583

multiple stable branches.584

Figure 1 provides an additional perspective on current585

constraints by showing one-dimensional symmetric credi-586

ble regions for the radius as a function of the gravitational587

mass. While current astrophysical data generally disfa-588

vor EoSs with large ∆(E/N), Fig. 1 nevertheless shows589

that there are EoSs with large ∆(E/N) that are con-590

sistent with observations. In particular, the maximum-591

likelihood draw from the full PGX posterior conditioned592

on ∆(E/N) ≥ 100MeV places a sharp feature in the593

M–R curve at high masses, just above J0740+6620’s ob-594

served mass. Such behavior maximizes the likelihood595

from the PSR masses due to the assumption that the596

EoS itself is what limits the largest observed NS mass.597

See discussions in [13, 76]. Furthermore, the maximum-598

likelihood EoS favors smaller radii at low masses (in line599

with GW170817) and larger radii at high masses (in line600

with J0740+6620). Notably, the model-agnostic non-601

parametric prior was not designed to favor this specific602

behavior, which instead emerges from the data without603

direct supervision or fine-tuning.604

We quantify the degree to which data prefer EoSs with605

different numbers and types of features in Table I and606

Fig. 7. Table I shows the ratio of maximized likelihoods607

as well as the ratio of marginal likelihoods for EoSs with608

different numbers of features. We compare EoSs with609

a single stable branch against EoSs with multiple sta-610

ble branches, as well as EoSs with and without at least611

one DI
M feature above a certain ∆(E/N). Generally,612

these statistics are consistent with Fig. 6: the astrophys-613

ical data disfavor large phase transitions (multiple stable614

branches or large ∆(E/N)) more strongly than weaker615

ones. However, the statistical evidence is still weak, and616

further observations are required to definitively rule out617

even the presence of multiple stable branches.618

Figure 7 expands on Table I by examining the prefer-619

ence for different numbers of features, rather than just620

their absence or presence. That is, Table I in effect621

provides a summary of Fig. 7 by marginalizing over all622

EoS with more than one stable branch or at least one623

DI
M feature. Overall, although current astrophysical ob-624

servations cannot rule out the presence of a phase tran-625

sition, they more strongly disfavor the presence of multi-626

ple features. The astrophysical posterior strongly disfa-627

vors EoSs with more than two stable branches and less628

strongly disfavor EoSs with more than one large DI
M fea-629

ture. This suggests that one may not need to consider630

arbitrarily complicated EoS in order to model the ob-631

served population of NSs, or at least that there is a limit632

to how exotic astrophysical NSs are.633

Finally, current astrophysical data carries little infor-634

mation about the multiplicity of any phase transitions,635

should they exist. Conditioning on the presence of a636

phase transition, we find Bayes factors between ∼0.8–637

1.5 in favor of multiplicity > 1 compared to multiplicity 1638

for the feature with the largest ∆(E/N) within each EoS,639

even for the strongest phase transitions. This should be640
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FIG. 7. Ratios of probabilities conditioned on different numbers of features. Compare to Table I; see Eqs. (3) and (4) for an explicit
definitions of our notation. (left) Distributions over the number of stable branches and (right) distributions over the number of
DI

M features for EoSs with ∆(E/N) ≥ 10, 50, and 100 MeV, respectively for different mass-overlap regions: (top) 0.8–1.1M⊙,
(middle) 1.1–1.6M⊙, and (bottom) 1.6–2.3M⊙. We show the ratio of maximum likelihoods (black dots) and the posterior divided
by the prior (circles and x’s). As in Table I, we consider (PGX, red circles) the ratio of the posterior conditioned on PSR masses,
GW coalescences, and X-ray timing and compare it to our nonparametric prior as well as (blue x’s) the posterior conditioned on
only PSR masses. Error bars approximate 1-σ uncertainties from the finite size of our prior sample. In general, a single stable
branch without strong DI

M features is preferred.

expected. We cannot yet confidently determine whether641

a phase transition exists, and it would therefore be sur-642

prising if we could already identify even basic features of643

the phase transition.644

IV. FUTURE PROSPECTS WITH645

GRAVITATIONAL WAVE OBSERVATIONS646

Building upon current data, we now consider future647

prospects from GW observations of inspiraling compact648

binaries. Section IV A explores the prospects for detect-649

ing the presence of phase transitions, and Sec. IV B con-650

siders our ability to characterize them. In brief, we find651

that we will not be able to confidently detect the presence652

of even relatively extreme phase transitions with catalogs653

of 100 events. Rather, we will need at least 200 events654

or more. However, we will be able to rule out the pres-655

ence of multiple stable branches at low mass scales with656

100 GW events. Nevertheless, we will be able to infer657

the correct Λ(M) for all M simultaneously regardless of658

what the true EoS is, and obtain ∼ 6% (50%) relative659

uncertainty in Λ1.2 (Λ2.0) after 100 GW detections.660

To explore a range of potential behavior, we simulate661

catalogs of GW events assuming a few representative CSS662

EoSs based on DBHF [66]. We consider663

• DBHF [66]: a hadronic EoS without phase transi-664

tions.665

• DBHF_3504: a modification to DBHF with a weak666

phase transition at ∼ 1.9M⊙ and a causal CSS ex-667

tension at higher densities.668

• DBHF_2507: a modification to DBHF with a669

strong phase transition at ∼ 1.5M⊙ and a causal670

CSS extension at higher densities. This is the671

Strong Maxwell CSS example in Fig. 2.672

These EoSs are not drawn from our nonparametric prior,673

and in fact their sharp features are relatively extreme674

examples of possible EoS behavior. As such, we expect675

them to be rigorous tests of the inference framework.676

The simulated catalogs assume a network signal-to-677

noise ratio (S/N ) detection threshold of 12, and they678

approximate measurement uncertainty in the masses and679

tidal parameters according to the procedure described680

in Landry et al. [13]. We inject a population of non-681

spinning NSs uniform in component masses between682

1.0 M⊙ and MTOV. Injections are drawn assuming683

p(S/N ) ∼ (S/N )−4, consistent with a uniform rate per684

comoving volume at low redshift. We assume the mass,685

spin, and redshift distributions are known exactly and686

therefore ignore selection effects. For more details, see687

Refs. [13, 20].688

For computational expediency, we consider the ability689

of GW observations alone to constrain phase transition690
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phenomenology. That is, we do not impose lower bounds691

on MTOV from pulsar masses in order to retain a large692

effective sample size within the Monte Carlo integrals.693

We do assume, however, that all objects below MTOV694

are NSs, and, therefore, placing a lower limit on Λ(M)695

from GW observations will de facto place a lower limit696

on MTOV. See Appendix C for more discussion.697

A. Prospects for Detecting Phase Transitions698

We first consider detection of a phase transition with699

a catalog of GW events. Fig. 8 shows the statistics from700

Table I for various simulated catalog sizes for injected701

EoSs both with and without a phase transition. Gener-702

ally speaking, we recover the expected behavior: confi-703

dence in the presence (or absence) of a phase transition704

grows as the catalog increases. Moreover, when a phase705

transition is present, evidence grows the most in the mass706

range where the phase transition occurs.707

1. The Number of Stable Branches708

We begin by considering the number of stable709

branches, with the left panels of Fig. 8 showing Bayes710

factors for multiple stable branches (n > 1) vs. a single711

stable branch (n = 1). As none of the injected EoSs have712

a phase transition at low masses and GW observations713

should be able to confidently bound Λ ≫ 0 at low masses,714

we quickly obtain relatively high confidence that there is715

only a single stable branch within 0.8–1.1M⊙. We find716

Bayes factors as large as ∼ 100 : 1 in favor of a single717

branch after 100 events.718

For moderate masses (1.1–1.6M⊙), we again see the719

expected evidence in favor of a single stable branch720

for both DBHF (no phase transition) and DBHF_3504721

(phase transition at ∼ 1.9M⊙). The Bayes factors are722

only ∼ 10 : 1 after 100 events, but nonetheless the trend723

is clear. In contrast, DBHF_2507 (phase transition at724

∼ 1.5M⊙ and multiple stable branches) exhibits a no-725

tably different pattern. Although a strong preference is726

not developed either way, Bayes factors begin to (cor-727

rectly) favor multiple stable branches after 100 events.728

Finally, we are not able to confidently distinguish be-729

tween EoSs with a single stable branch or multiple stable730

branches in the mass range 1.6–2.3M⊙. This is because731

the individual events’ uncertainties on Λ are much larger732

than the true Λ in this mass range.6 It will therefore733

take the combination of many GW events to be able to734

precisely resolve the true value of Λ at high masses.735

6 Λ typically scales as Λ ∝ M−5 and rapidly decreases at high masses.

2. The Number and Properties of DI
MFeatures736

The remaining panels of Fig. 8 show similar trends737

for DI
M features. We show Bayes factors for at least738

one DI
M feature (n > 0) vs. no DI

M features (n = 0).739

In general, the strongest preference for a DI
M feature is740

for DBHF_2507, which has the largest phase transition741

among the three EoSs we consider. The evidence in fa-742

vor of at least one DI
M feature is nevertheless smaller743

for the largest ∆(E/N) (≥ 100MeV) compared to more744

moderate values (≥ 50MeV). This is true for all mass745

ranges, suggesting that we will be able to constrain a746

feature’s ∆(E/N) more easily than we may be able to747

constrain the mass range over which it occurs. Addi-748

tionally, we will need very large catalogs to confidently749

detect the presence of a DI
M feature. At best, we find750

Bayes factors of ∼ 10 : 1 after 100 events. This matches751

previous estimates, which place the required number of752

events between 200-400 [51, 52, 58]. See Sec. V for more753

discussion. Furthermore, while there will not be unam-754

biguous statistical evidence in favor of a DI
M feature at755

high masses (1.6–2.3M⊙), we do see an upward trend756

for DBHF_3504. This suggests that, even though our757

individual-event uncertainties on tidal parameters are758

large at these masses, we will nevertheless eventually759

be able to detect small phase transitions at high masses760

given enough events.761

Occam factors are readily apparent in these results,762

causing systematic shifts of comparable magnitude for all763

three injected EoSs. These tend to favor the presence of764

DI
M features, as it is likely that very stiff EoSs at interme-765

diate densities (unlikely to have DI
M features) are quickly766

ruled out by GW observations. As such, some fraction of767

the prior is ruled out after only a few detections reducing768

the evidence even though there are still many EoSs with-769

out DI
M features that match the data well. Furthermore,770

selecting EoSs with at least one feature at high masses771

requires MTOV to be at least as high as the lower-edge772

of this mass range because of how our DI
M feature ex-773

traction algorithm works. Such EoSs are better matches774

to the data for all the true EoSs considered. Even a few775

detections can quickly rule out MTOV ≪ 1.6M⊙, which776

penalizes EoSs for which our algorithm did not detect777

a DI
M feature above 1.6M⊙ because the EoS’s MTOV778

was below 1.6M⊙. Nevertheless, these Ocaam factors779

are typically ≲ 2, implying that large Bayes factors can780

still be interpreted at face value.781

Finally, it may be difficult to completely rule out the782

presence of DI
M features even if the true EoS does not783

have any phase transitions. Fig. 8 shows a possible ex-784

ception at the lowest masses considered, but even there785

the Bayes factors are only ∼ 0.5 after 100 events. This786

is yet another manifestation of the masquerade problem:787

EoSs with and without DI
M features can produce similar788

M–I relations, even for relatively large ∆(E/N).789



14

10−2

10−1

100

Bn
>

1
n

=
1

[0.8, 1.1]M�

Stable Branches ∆(E/N) > 10 MeV ∆(E/N) > 50 MeV

0.5

1.0

2.0

5.0

Bn
>

0
n

=
0

∆(E/N) > 100 MeV

0.1

0.2

0.5

1.0

2.0

Bn
>

1
n

=
1

[1.1, 1.6]M�
1

2

5

10

Bn
>

0
n

=
0

0 50 100

catalog size

0.2

0.5

1.0

2.0

Bn
>

1
n

=
1

[1.6, 2.3]M�

0 50 100

catalog size

0 50 100

catalog size

0 50 100

catalog size

1

2

5

Bn
>

0
n

=
0

DBHF DBHF 3504 DBHF 2507

FIG. 8. Bayes factors vs. catalog size comparing (left-most column) multiple stable branches vs. a single stable branch and (right
three columns) at least one DI

M feature vs. no DI
M features. We consider features that overlap with three mass ranges: (top row)

0.8–1.1M⊙, (middle row) 1.1–1.6M⊙, and (bottom row) 1.6–2.3M⊙. We also show three different injected EoSs: (blue, no phase
transition) DBHF, (orange, weak phase transition at ∼ 1.9M⊙) DBHF_3504, and (green, strong phase transition at ∼ 1.5M⊙)
DBHF_2507. Shaded regions denote 1-σ uncertainties from the finite size of our Monte Carlo sample sets. Different realizations
of catalogs will also produce different trajectories; these should only be taken as representative.

B. Prospects for Characterizing Phase Transitions790

In addition to detecting the presence of a phase transi-791

tion, we wish to determine its properties should it exist.792

Fundamental to this is the ability to infer the correct M–793

Λ relation. That is, to infer the correct Λ(M) for all M794

simultaneously. Fig. 9 demonstrates that our nonpara-795

metric inference is capable of this, regardless of the true796

EoS used to generate injections. This is often not the case797

for parametric models of the EoS (see [52, 58] and discus-798

sion in Sec. V). Fig. 9 shows one-dimensional marginal799

posteriors for Λ(M) at M = 1.2, 1.4, 1.6, 1.8, and800

2.0M⊙ for different catalog sizes and each of the three801

injected EoSs. We find that the low-density (low-mass)802

EoS is relatively well measured. Λ1.2 will have a relative803

uncertainty (standard deviation divided by the mean)804

between 6% (DBHF_3504) and 7% (DBHF_2507) at805

M = 1.2M⊙ after 100 detections. However, it will gen-806

erally take more events before we can confidently resolve807

features at higher masses, even without the presence of a808

phase transition. With catalogs of 100 events, we are only809

able to constrain Λ2.0 to between 40% (DBHF_3504) and810

55% (DBHF_2507). In agreement with Fig. 8, it is likely811

to take more than 100 events to unambiguously distin-812

guish between EoSs with and without phase transitions.813

For example, the Λ2.0 posterior for DBHF_2507 still has814

nontrivial support at the location of the DBHF’s Λ2.0,815

and vice versa, even with the full catalog of 100 events.816

Even though we identify phase transition features from817

macroscopic relations, we expect the inferred microscopic818

properties to be robust given the one-to-one mapping819

between p–ε and, e.g., M–R [77]. Fig. 10 shows how820

constraints on the onset mass (Mt) and ∆(E/N) evolve821

with the catalog size for DBHF (no phase transition) and822

DBHF_2507 (strong phase transition). In order to high-823

light constraints on the transition mass, Fig. 10 addition-824

ally reweighs the posterior so that it corresponds to a (as825

much as possible) uniform prior in the transition mass. It826

only shows EoSs that have at least one identified DI
M fea-827

ture that overlaps with 0.8–2.3M⊙.828

Characterizing onset properties is challenging because829

of the wide variability in softening behavior during the830

course of the phase transition. That is, the onset den-831

sity as identified by a running local maximum in cs may832

not correspond to any immediately obvious features in833

macroscopic relations, as is the case in Fig. 3. Therefore,834

we may expect a long tail towards low onset masses even835

if the end of the transition is well determined.836

Additionally, we sometimes observe unintuitive behav-837

ior when we condition on the presence of features that do838

not exist (left panel). For example, the marginal poste-839

rior for Mt (conditioned on the existence of at least one840

feature) peaks at Mt ≳ 1.6M⊙ for DBHF. Transitions841
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FIG. 9. Sequences of one-dimensional marginal posteriors for Λ(M) at (left to right) 1.2, 1.4, 1.6, 1.8, and 2.0M⊙ for different
simulated EoSs: (top, blue) DBHF, (middle, orange) DBHF_3504 (phase transition at ∼ 1.9M⊙) and (bottom, green) DBHF_2507
(phase transition at ∼ 1.5M⊙). These posteriors show the distributions of Λ(M) > 0 (i.e., they only consider EoSs with
MTOV ≥ M). These posteriors are conditioned only on simulated GW events (no real observations), and a line’s color denotes
the number of simulated GW events within the catalog (light to dark : fewer to more events) along with the true injected values
(vertical black lines). The prior is shown for reference (grey shaded distributions). For very small Λ, primarily associated with
DBHF_2507 at high masses, the true value falls near the lower bound in the prior. The primary effect of additional observations
is to reduce support for larger values of Λ. While significant uncertainty in Λ(M) remains after 100 events, the nonparametric
prior is able to correctly infer Λ(M) at all M simultaneously, including sharp changes in Λ(M) over relatively small mass ranges.

that begin at these masses are difficult to detect with842

GW observations alone, see Figs. 8 and 9. Therefore,843

these EoSs are not strongly constrained by observations,844

particularly compared to EoSs that have transitions that845

begin at lower masses. This explains why the posterior846

tends to disfavor low Mt, and the peak at higher masses847

should be interpreted primarily as a lower limit.848

However, transitions that begin at very high masses849

(Mt ≳ 1.8M⊙) are also disfavored by the data. This is850

unintuitive, as we expect very weaker tidal constraints851

for high mass systems. However, by conditioning on the852

presence of at least one identified DI
M feature, which in853

turn are only identified by our algorithm if the EoS does854

not collapse to a BH as part of the transition, we de facto855

require EoSs with large onset masses to be rather stiff.856

That is, only the stiffest EoS can have an DI
M feature857

begin at high mass and not collapse directly to a BH. At858

the same time, these EoSs are ruled out by observations859

at smaller masses, which favor more compact stars and860

soft EoSs. Therefore, a high Mt is disfavored by low-mass861

observations and the correlation induced within the prior862

by requiring at least one identified DI
M feature at high863

mass.864

We contrast this with DBHF_2507, in which there is865

a phase transition near 1.5M⊙ (right panel). Here, we866

find a similar peak in the one-dimensional marginal pos-867

terior for Mt, but there is additional information in the868

joint posterior for Mt and ∆(E/N). The joint poste-869

rior for DBHF mostly follows the prior, particularly for870

Mt ∼ 1.6M⊙, whereas for DBHF_2507 it is shifted rela-871

tive to the prior towards the injected values and disfavors872

large ∆(E/N). These considerations highlight the fact873

that low-dimensional marginal posteriors conditioned on874

specific, sometimes ad hoc, features will require care to875

interpret correctly. It may be better, then, to consider876

sets of marginal distributions for macroscopic observ-877

ables, such as Fig. 9, at the same time. At the very least,878

the latter can provide context for inferred constraints on879

proxies for microphysical properties.880

V. DISCUSSION881

We summarize our main conclusions in Sec. VA be-882

fore comparing them to existing work in the literature in883

Sec. V B. We conclude by discussing possible extensions884

to our study in Sec. V C.885
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FIG. 10. Joint posteriors for ∆(E/N) and transition onset mass (Mt) inferred from simulated GW catalogs for (left, blue) DBHF
and (right, green) DBHF_2507. Grey curves denote the (reweighed) prior, color denotes the size of the catalog, and contours in
the joint distribution are 50% highest-probability-density credible regions. Solid lines denote the true parameters for DBHF_2507;
there are no such lines for DBHF because it does not contain a phase transition. As in Fig. 6, extracted parameters correspond to
the feature with the largest ∆(E/N), but here we only require features to overlap the broad range 0.8–2.3M⊙.

A. Summary886

We introduced a new algorithm to identify phase tran-887

sitions within the EoS of dense matter based on NS prop-888

erties and the underlying cs behavior. This algorithm889

does not rely on a parametrization, and as such works890

for both parametric and nonparametric representation891

of the EoS. Our approach improves upon previous stud-892

ies by demonstrating that physically meaningful density893

scales can be extracted directly from NS observables. We894

further demonstrated that nonparametric EoS inference895

can recover the correct macroscopic properties, such as896

Λ(M), at all masses simultaneously. As such, we suggest897

that extracting physical quantities from nonparametric898

EoS draws is preferable to directly modeling of the p–899

ε relation with ad hoc parametric functional forms, as900

different choices for the parametrization can introduce901

strong model-dependence on the conclusions [60].902

This approach is similar in spirit to efforts to con-903

strain the nuclear symmetry energy and its derivatives904

(slope parameter: L) with nonparametric EoSs [45, 46].905

Studies based on parametric EoS models described in906

terms of L have suggested tension between terrestrial907

experiments and astrophysical observations [17, 78, 79].908

Refs. [45, 46] instead extracted L from nonparametric909

EoS realizations by imposing β-equilibrium at ρsat with-910

out relying on an explicit parametrization far from ρsat.911

They demonstrated that any apparent tension was due912

to model assumptions rather than the data, as nonpara-913

metric models were able to accommodate both terrestrial914

constraints on L and astrophysical observations of NSs.915

Returning to this work, we showed that current as-916

trophysical data disfavor only the strongest phase tran-917

sitions and the presence of multiple phase transitions.918

However, the data are still consistent with two stable919

branches and/or one moderate phase transition. We also920

showed that we will not be able to confidently detect the921

presence of a phase transition with catalogs of ≤ 100922

GW events. Although we do not directly estimate how923

many events will be needed for computational reasons,924

extrapolating Fig. 8 suggests that we may need several925

hundred events to reach Bayes factors ≳ 100, often taken926

as a rule-of-thumb for confident detections [80]. We can,927

however, expect to confidently rule out the presence of928

multiple stable branches at low masses after 100 events.929

While the exact rates of NS coalescences and future GW-930

detector sensitivities are still uncertain, it is unlikely that931

we will obtain a catalog of this size within the lifetime of932

the advanced LIGO and Virgo detectors [65].933

B. Comparison to other work934

As discussed briefly in Sec. I, several authors have pro-935

posed tests based on features in the distribution of macro-936

scopic observables. Chen et al. [50] investigated a piece-937

wise linear fit of the M–R relation with two segments938
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that captures phase transitions through a change in the939

slope. However, beyond possible systematics associated940

with the simplicity of the piecewise linear model, quanti-941

tative conclusions hinge on the assumption that the mea-942

surement uncertainty on R from GW events is roughly943

the same for all masses. This is unrealistic for massive944

systems in which the relative uncertainty in the tidal de-945

formability grows quickly. Chatziioannou and Han [51]946

pursued a related method that models the population of947

detections hierarchically and searches for a second pop-948

ulation with significantly different radii at high masses.7949

They found that phase transitions could be identified950

with O(100) events if hybrid stars emerge at ∼ 1.4M⊙.951

Landry and Chakravarti [52] introduced a method for952

identifying the presence of twin stars, which can arise due953

to strong first-order phase transitions, in the population954

of merging binary NSs based on gaps in the joint distribu-955

tion of masses and binary tidal deformabilities. However,956

these and related approaches that directly model the M -957

Λ relation [82, 83] offer no obvious pathway to micro-958

scopic EoS properties nor the ability to enforce physical959

precepts such as causality and thermodynamic stability.960

What is more, not all microscopic models that contain961

phase transitions produce macroscopic observables with962

this phenomenology (the masquerade problem), and this963

phenomenology might be caused by other effects, such964

as a mix of binary NS and NS-BH binaries at the same965

masses [81] or even dark matter [84].966

Alternative approaches involve modeling the p–ε rela-967

tion directly. Several authors have attempted this with968

parametric models of varying complexity. Pang et al.969

[58] introduced a piecewise-polytropic model for first-970

order phase transitions and carried out model selection971

between models that do and do not support phase tran-972

sitions, respectively. They concluded that a strong phase973

transition could be identified with 12 GW events, each974

with signal-to-noise ratio S/N > 30.8 However, in addi-975

tion to technical issues associated with their Bayes factor976

calculation, their results appear to be affected by model977

systematics within their EoS parametrization. They ar-978

rive at counterintuitive conclusions: weaker phase tran-979

sitions are detected more easily than stronger ones (their980

Fig. 5), and the inference precision is largely unaffected981

by the observation of more events (their Fig. 9).9 We982

7 Chen and Chatziioannou [81] proposed a similar technique to distin-
guish between binary NS and NS-BH systems. In this case, a reduced
inferred radius is attributed to the presence of a BH in the binary
(which does not exhibit tidal effects) rather than a softening in the
EoS.

8 Assuming merging binaries are uniformly distributed in volume
within a Euclidean universe, the S/N is distributed as p(S/N ) ∝
(S/N )−4. This means that to observe 12 events with S/N > 30
requires a total of > 187 events above the detection threshold used
in Sec. IV (S/N = 12) and 324 events above the more realistic
detection threshold S/N = 10 [85, 86].

9 For most parameters, statistical uncertainty roughly scales as
N−1/2, where N is the number of detections. Systematic uncer-
tainty is independent of N .

speculate that the cause is the fact that their paramet-983

ric EoS model does not closely reproduce either of their984

injected EoSs, leading to model systematics [60]. If sys-985

tematic issues are less severe for the injected EoS with a986

weak phase transition than the one with a strong transi-987

tion, the former could be more easily distinguished from988

EoSs without phase transitions.989

Two other recent studies have looked at the astro-990

physical evidence for or against the presence of phase991

transitions. Both Tan et al. [57] and Mroczek et al.992

[87] constructed EoS models by adding features to the993

speed of sound such as spikes, dips, and plateaus. As994

explained in Tan et al. [57], these features are motivated995

by specific theoretical expectations of phase transition996

phenomenology. Mroczek et al. [87] employs underlying997

EoS realizations drawn from a few simple GP priors, re-998

sulting in what they call a modified Gaussian Process.999

In comparison, our nonparametric prior inherently gen-1000

erates broad ranges of phase transition morphology with-1001

out the need to modify realizations post hoc. Mroczek et1002

al. [87] must add features by hand because their original1003

GP was constructed with long correlation lengths and1004

small variances. As such, it only produces smooth EoSs1005

without phase-transition-like features by itself. Addition-1006

ally, Mroczek et al. [87] report a Bayes factor for models1007

with or without such features, finding no strong evidence1008

either way. Though this generally agrees with our conclu-1009

sions, the quantitative comparison might be affected by1010

the fact that their prior is first “pruned” by rejecting EoSs1011

that do not fall within broad boundaries that represent1012

realistic EoS. Inevitably, these boundaries carry informa-1013

tion about current astrophysical observations. Therefore,1014

it may not be surprising that subsets of different pri-1015

ors (each chosen to resemble current astrophysical data)1016

predict the current observed data with comparable fre-1017

quency, which is what is implied by a Bayes factor ∼ 1.1018

Several other authors have investigated models in-1019

tended to test specifically for the presence of deconfined1020

quarks in NS cores, e.g. [88–90]. Many of these studies1021

base the evidence for the presence of quark matter on1022

the behavior of the polytropic index (γ = d log p/d log ε)1023

in addition to using various parametric and nonparamet-1024

ric representations of the EoS and approximations to as-1025

trophysical likelihoods. For example, Annala et al. [90]1026

present approximate ranges for γ, cs, and other statistics1027

and propose that massive NS cores likely contain matter1028

displaying approximate conformal symmetry, which may1029

be indicative of a transition to deconfined quarks. These1030

studies typically focus on the composition of matter at1031

the highest densities possible within NSs (near MTOV).1032

Some studies have even claimed evidence for the presence1033

of deconfined quark matter based on γ at high densities.1034

Our DI
M features are more agnostic about the composi-1035

tion of new matter and are sensitive over a broad range1036

of masses. They should therefore provide a complemen-1037

tary approach to direct modeling based on assumptions1038

about NS composition and microphysical interactions.1039

Finally, several other authors have introduced EoS1040
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models with many parameters and increased model free-1041

dom, some of which are implemented as neural networks1042

of varying complexity [73, 91–94]. Our conclusions based1043

on current observations are broadly consistent with these1044

other approaches, and therefore we only remark that our1045

DI
M feature could be extracted from any EoS, regard-1046

less of the underlying model (or lack thereof). It should1047

be straightforward to investigate phase transition phe-1048

nomenology with realizations from any EoS prior in the1049

literature, although this is beyond the scope of our cur-1050

rent study.1051

C. Future work1052

Finally, we discuss possible extensions and the impact1053

that additional assumptions may have on our analysis.1054

As mentioned in Sec. III, we intentionally condition1055

our nonparametric prior on very little information from1056

nuclear theory or experiment beyond causality and ther-1057

modynamic stability. It would be of interest to better un-1058

derstand how terrestrial experiments or ab initio theoret-1059

ical calculations such as chiral EFT at low densities may1060

impact our conclusions. For example, Fig. 3 from Essick1061

et al. [61] shows that improved constraints at very low1062

densities (≲ ρsat/2) can improve uncertainty in the pres-1063

sure at higher densities (∼ 3ρsat) when combined with1064

astrophysical data. Furthermore, theoretical calculations1065

suggest a moderate value of L, which would remove even1066

the hint that a phase transition may occur at low densi-1067

ties found in Essick et al. [46] when they assumed L was1068

large.1069

At the other extreme, it is worth clarifying the impact1070

of pQCD calculations. Several conflicting reports exist in1071

the literature, suggesting that the pressures at very high1072

densities (∼ 40ρsat) limit the pressures achieved in the1073

highest-mass NS [25, 95], while other studies point out1074

that these conclusions depend on the details of how the1075

densities relevant for NSs are extrapolated to the pQCD1076

regime [26]. Indeed, the current proposal for mapping1077

pQCD calculations to lower densities [24] maximizes the1078

likelihood over the extrapolation rather than marginal-1079

izing over the EoS within the extrapolation region, al-1080

though Gorda et al. [95] marginalize over a nonpara-1081

metric extrapolation based on GPs for at least part of1082

the extrapolation region (up to ∼ 10ρsat but not all the1083

way to ∼ 40ρsat). The fact that the conclusions depend1084

on the choice of where the extrapolation begins suggests1085

that they could depend strongly on the prior assumptions1086

for EoS behavior within the (unobserved and unobserv-1087

able) extrapolation region between the central density of1088

MTOV stars and the pQCD regime.1089

Additional information about the EoS will be im-1090

printed in post-merger signals from coalescing NS sys-1091

tems. An extensive literature exists (e.g., Refs. [96, 97])1092

mostly focusing on the ability to resolve the dominant1093

frequency of the post-merger emission thought to be as-1094

sociated with the fundamental 2-2 mode of the massive1095

remnant. Additional work will be needed to connect our1096

nonparametric inference based on tides observed during1097

the GW inspiral to the complicated physics at work dur-1098

ing the post-merger. See, e.g., Wijngaarden et al. [98] for1099

a way to model the full GW signal. This may include ex-1100

tending our nonparametric EoS representation to include1101

finite-temperature effects [99].1102

In addition to incorporating more information within1103

the inference, we may be able to dig deeper into fea-1104

tures of the current data. As mentioned in Sec. II B,1105

our procedure does not identify phase transitions that re-1106

sults in the direct collapse to a BH, although we do find1107

that the sharpness of the final decrease in arctan(DI
M )1108

may correlate with whether the collapse was due to only1109

self-gravity or assisted by a sudden decrease in cs. Fu-1110

ture work may develop additional features targeting this1111

phenomenology, as it could have implications for the be-1112

havior of merger remnants that may or may not power1113

electromagnetic counterparts depending on how long the1114

remnant survives [100–102].1115

Assuming a phase transition is identified, an open chal-1116

lenge is to extend the inference to determine the order of1117

the phase transition (e.g., first- vs. second-order). A1118

smooth crossover from hadronic to quark matter may,1119

for example, be mimicked by either a weak first-order1120

phase transition or a second-order one [103]. Condensa-1121

tion of pions or kaons may also give rise to a second-order1122

phase transition [104]. Our feature is able to detect a va-1123

riety of possible morphologies, but additional statistics1124

will need to be developed to further categorize the cs1125

behavior within the phase transition’s extent.1126

Finally, we would also be remiss if we did not re-1127

mind the reader that our feature specifically targets phe-1128

nomenology associated with decreases in cs and asso-1129

ciated increase of compactness. If, instead, a smooth1130

crossover as realized in, e.g., quarkyonic matter [22, 23,1131

33] only manifests as a sudden increase in the speed of1132

sound, the features introduced here will not detect it.1133

Additional features targeting such behavior would need1134

to be developed. To that end, it may be of general in-1135

terest to more carefully study the types of correlations1136

between cs at different densities that are preferred by as-1137

trophysical data. In the future, we will interrogate our1138

nonparametric posteriors to not only constrain cs but1139

also how quickly cs can vary. For example, we do not ex-1140

pect periodic, extremely rapid oscillations in cs to have1141

a significant impact on NS properties, and therefore they1142

may only be very weakly constrained by the data. See,1143

e.g., Tan et al. [57] for more discussion. However, this will1144

likely require more advanced sampling techniques to effi-1145

ciently draw representative sets from our nonparametric1146

processes. See Appendix C.1147
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Appendix A: Incompressible Newtonian Stars with1583

Two Phases1584

We examine the feature extraction procedure laid out1585

in Sec. II B within a simpler context: incompressible stars1586

with two phases in Newtonian gravity. Despite its sim-1587

plicity, this demonstrates the main features of more real-1588

istic stars while greatly simplifying the mathematics.1589

We consider incompressible stars with a piecewise con-1590

stant density ρ as a function of the pressure p separated1591

by a transition pressure pT1592

ρ(p) =

{
ρL if p ≤ pT
ρH if p > pT

. (A1)

We combine this EoS with the Newtonian equations of1593

stellar structure1594

dm

dr
= 4πr2ρ , (A2)

dp

dr
= −Gmρ

r2
, (A3)

and a central pressure pc, where m is the enclosed mass1595

up to radius r.1596

For pc ≤ pT , the solution is trivial as the star is de-1597

scribed by a single fluid:1598

R =

√
3pc

2πGρ2L
, (A4)

M =
4π

3
ρLR

3 , (A5)

I =
2

5
MR2 , (A6)

for the radius R, mass M and moment of inertia I. In1599

this case, the star is always stable as dM/dpc > 0 and1600

DI
M = d log I/d logM = 5/3 is constant.1601

For pc > pT , the star contains a core of high-density1602

matter with radius1603

Rc =

√
3(pc − pT )

2πGρ2H
. (A7)

The entire star’s macroscopic properties are then implic-1604

itly determined by1605

pT =
4πGρL(ρH − ρL)R

3
c

3

(
1

Rc
− 1

R

)

+
2πGρ2L

3

(
R2 −R2

c

)
, (A8)

M =
4π

3

[
(ρH − ρL)R

3
c + ρLR

3
]
, (A9)

I =
8π

15

[
(ρH − ρL)R

5
c + ρLR

5
]
, (A10)

In this case, the star can become unstable (dM/dpc < 0)1606

if ρH is much larger than ρL. Regardless of stability,1607
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FIG. 11. Stellar sequences for incompressible two-phase
Newtonian stars with ρL = 2ρsat = 5.6 × 1014g/cm3, pT =
5×1034dyne/cm2, and various values of ρH . We plot (top) the
M -I relation and (bottom) arctan(DI

M ) as a function of the
stellar mass. Stable branches are shown with solid lines, and
unstable branches are shown with dotted lines. The bottom
panel inset focuses near the discontinuity for curves with; ticks
on the y-axis correspond to the values in Eq. A11.

DI
M is discontinuous whenever ρH ≥ ρthr ≡ 3ρL/2.1608

Fig. 11 shows that1609

lim
pc→p+

T

d log I

d logM
=




+5/3 if ρH < ρthr
+5/4 if ρH = ρthr
−5/3 if ρH > ρthr

. (A11)

Similar threshold behavior is encountered in other pa-1610

rameters combinations, for example the mass, radius or1611

tidal deformability, as also shown for relativistic poly-1612

tropic NSs with 1st-order phase transitions [35].1613

Appendix B: The role of thresholds within feature1614

extraction1615

As part of the feature identification algorithm in-1616

troduced in Sec. II B, we included a threshold on the1617

amount the sound-speed must decrease within a candi-1618

date DI
M feature. We now discuss the motivation for and1619

impact of this and other thresholds in more detail.1620

We represent our uncertainty in the EoS as a random1621

process for cs as a function of pressure with support for1622

every possible causal and thermodynamically stable EoS.1623

We can therefore think of the behavior of our feature ex-1624

traction algorithm in terms “fluctuations” in cs under dif-1625

ferent realizations of this random process. Specifically, by1626

selecting the running local maximum, we de facto set a1627

threshold on cs that subsequent local maxima must pass1628

if they are to be associated with the start of a phase tran-1629

sition. This means that small fluctuations in the height of1630

subsequent local maxima, either above or below the pre-1631

vious running local maximum, can change the features1632

extracted. These changes can sometimes be dramatic, as1633

the proxy for the onset density selected may jump to a1634

much lower density. By imposing a threshold on Rc2s
, we1635

make this type of selection explicit within the algorithm.1636

Although this does not remove the issue of small fluctua-1637

tions qualitatively changing the estimated onset density,1638

it at least provides a more concrete way to control the1639

types of features selected. Fig. 4 demonstrates the im-1640

pact of a large threshold on Rc2s
for one EoS realization.1641

Although not used within our main analysis, we1642

implement an additional threshold on the change in1643

arctan(DI
M ) observed within the candidate phase tran-1644

sition. That is, we define ∆arctan(DI
M ) as the difference1645

between the maximum arctan(DI
M ) for any density be-1646

tween the onset and end points and the local minimum1647

in arctan(DI
M ) that defines the end point. If this value1648

is small, it will likely be difficult to detect such a feature1649

from macroscopic properties of NSs. One may wish to re-1650

move them at the time of extracting features. In practice,1651

though, we choose to record all features, regardless of how1652

small ∆arctan(DI
M ) is, and then filter them post hoc by1653

selecting subsets of features with different ∆(E/N).1654

Fig. 12 shows the impacts of threshold on both Rc2s
and1655

∆arctan(DI
M ) for an EoS realization with rapid oscilla-1656

tions in cs. Our main results require ∆arctan(DI
M ) ≥ 01657

(satisfied axiomatically) and Rc2s
≥ 1.1.1658

Appendix C: Computational Challenges1659

As discussed in Sec. IV, our current nonparametric1660

sampling methods (i.e., direct Monte Carlo sampling)1661

may not scale to catalogs of ≳ 100 detections. This1662

is perhaps not surprising. That is, the total likelihood1663

becomes increasingly peaked with more detections, and1664

the majority of realizations from the nonparametric prior1665

will have vanishingly small likelihoods. As such, they do1666

not contribute to the posterior. With our current set of1667

∼ 310, 000 prior samples, we retain ∼ 19, 300 effective1668

samples in the posterior conditioned on real astrophys-1669

ical data. Heavy pulsar mass measurements alone rule1670

out the largest portion of our prior, about 80%. See,1671

e.g., Fig. 4 of Essick et al. [61].1672

The number of effective samples is substantially higher1673

in our simulation campaigns if we do not include massive1674

pulsars (Fig. 13). Since our main goal is to explore how1675

well GWs can constrain phase transitions, we only con-1676

sider catalogs of simulated GW events in Sec. IV and do1677
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FIG. 12. An additional example of the impact of thresholds within the feature extraction algorithm with an EoS realization with
a relatively short correlation length. (top) trivial thresholds; (middle) threshold on the size of ∆arctan(DI

M ); (bottom) threshold
on the amount c2s must decrease (analogous to Fig. 4). The rapid oscillations in c2s are identified when selecting based on Rc2s

but
they are rejected when selecting based on ∆arctan(DI

M ); their relatively small ∆(E/N) do not produce significant changes in the
M -I relation.

not include the heavy pulsars.1678

Although the existing set of EoS realizations from the1679

nonparametric prior process will be sufficient for the cat-1680

alog sizes expected over the next few years (current data1681

and an additional O(10) GW detections [13]), analyzing1682

larger simulated catalogs might be challenging. Fig. 131683

shows the number of effective EoS samples in the poste-1684

rior as a function of the simulated GW catalog size and1685

for different simulated EoS. Solid lines only include simu-1686

lated GW events; dashed lines include both heavy pulsars1687

and simulated GW events. Although there are differences1688

between the injected EoS, we observe an approximately1689

exponential decay in the number of effective posterior1690

samples with the size of the catalog. This implies we will1691

need exponentially more draws from the current prior in1692

order to analyze larger catalogs, which is computation-1693

ally untenable in the long run.1694

However, given the expected rate of detections over the1695

next few years, brute force may still be sufficient in the1696

short run. That is, given the low computational cost of1697

producing additional EoS realizations, we may be able1698

to draw more samples from the existing prior processes,1699

solve the TOV equations, and compute the corresponding1700

astrophysical weights fast enough to keep up. With the1701

current implementation, this takes O(10) sec/EoS, which1702

is tractable compared to the expected rate of GW detec-1703

tions of O(few)/year.1704

However, this approach will not work indefinitely. We1705

would be much better off spending (finite) computational1706

resources in regions of the (infinite dimensional) vector-1707

space of EoS with significant posterior support. This1708

is one motivation for sampling from the posterior using1709

a Monte Carlo Markov Chain (MCMC) rather than di-1710

rect Monte Carlo sampling. Some authors in the broader1711

GP literature have investigated implementations of GPs1712

within MCMC schemes. These typically involve evolv-1713

ing a handful of reference points used to model the GP’s1714

mean function along with the hyperparameters of the co-1715

variance kernel (see, for example, Titsias et al. [105]).1716

This de facto parametrizes the EoS prior with a handful1717

of hyperparameters, at which point standard techniques1718

for sampling from parametric distributions in hierarchi-1719
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FIG. 13. The effective number of EoS samples from the pos-
terior process as a function of catalog size for (solid) catalogs
comprised of only mock GW observations and (dashed) cata-
logs that include real pulsar mass measurements in addition to
mock GW observations. For each of the three true EoS consid-
ered in Sec. IV, we find an approximately exponential decrease
of the number of effective samples with the catalog size.

cal inference can be employed. Other authors have sug-1720

gested neural networks as a computationally efficient way1721

to generate EoS proposal, but many (if not all) of these1722

proposal are also de facto parametric representations of1723

the EoS itself or uncertainty in the EoS, which are then1724

sampled with standard techniques [73, 91–94].1725

An alternative method to focus computational efforts1726

in high-likelihood region is to use the posterior from ini-1727

tial analyses with small catalogs to draw additional EoS1728

proposals for future (larger) catalogs, similar to simu-1729

lated annealing [106]. The rate of detection is likely to1730

be slow enough that new posteriors could be periodically1731

developed (along with emulators to efficiently draw more1732

samples) without the need for extensive automation. As1733

long as the noise at the time of each event is indepen-1734

dent, this may be a computationally efficient path for-1735

ward. However, we leave exploration of such methods for1736

future work.1737

Appendix D: Additional Representations of Current1738

Astrophysical constraints1739

Here we present additional representations of the con-1740

straints on phase transition phenomenology with current1741

astrophysical data. Similar to Fig. 1, Fig. 14 shows1742

posteriors for macroscopic observables conditioned on1743

EoSs with either small (∆(E/N) ≤ 10MeV) or large1744

(∆(E/N) ≥ 100MeV) phase transitions for masses be-1745

tween 1.1–2.3M⊙. In general, we see that there are1746

weaker correlations between macroscopic properties at1747

low masses (1.4M⊙) and high masses (2.0M⊙) for EoSs1748

with large phase transitions than for EoSs with small1749

phase transitions, even though the marginal uncertainty1750

for each is approximately the same. Notable exceptions1751

are that EoS with small ∆(E/N) can support smaller1752

R1.4 and larger MTOV than EoS with large ∆(E/N).1753

Tables II–V show additional detection statistics for dif-1754

ferent types of features conditioned on different subsets1755

of the data, analogous to Table I. We report different1756

combinations of (P) pulsar mass measurements, (G) GW1757

tidal measurements, and (X) X-ray pulse profiling with1758

NICER. Tables II and III report the evidence for multi-1759

ple stable branches. Tables IV and V report the evidence1760

for DI
M features. Note that one can compute additional1761

Bayes factors for different combinations of the data based1762

on these numbers. For example,1763

B(GX|P ) =
B(GXP )

B(P )
(D1)

Appendix E: Additional Examples of Phase Transition1764

Phenomenology1765

This appendix includes additional examples of phase1766

transition phenomenology using both EoSs with known1767

microphysical descriptions (Fig. 15) as well as realiza-1768

tions from our nonparametric prior (Figs. 16 and 17).1769

Fig. 15 shows an EoS with mixed phases, analogous1770

to Fig. 3. The more complicated structure in cs demon-1771

strates two shortcomings of the new feature introduced1772

in Sec. II B. The feature does not always identify the cor-1773

rect beginning and end of the phase transition; the mi-1774

crophysical model used to construct this transition has1775

the mixed phase extend beyond the end of the identified1776

region. The true end of the phase transition occurs near1777

ρ ∼ 1015 g/cm3 and M ∼ 1.5M⊙. Also, some features1778

may be difficult to identify as they are overwhelmed by1779

the final collapse to a BH, which often means there is no1780

local minimum in arctan(DI
M ). This is the case for the1781

true end of this transition.1782

Figs. 16 and 17 show a few realizations from our1783

nonparametric prior with particularly complex behavior,1784

such as multiple strong phase transitions leading to three1785

disconnected stable branches. These demonstrate that1786

our DI
M feature identifies and classifies a broad range of1787

behavior, some of which may not have been anticipated1788

with parametric descriptions. For example, Tan et al. [57]1789

and Mroczek et al. [87] introduced a variety of paramet-1790

ric features in the sound-speed and attempted to classify1791

which types of features led to observable effects within1792

macroscopic relations. Our procedure can identify rele-1793

vant density scales associated with these behaviors and1794

others without access to the underlying parametric con-1795

struction.1796

This flexibility is due to the fact that our nonparamet-1797

ric prior contains support for multiple different correla-1798

tion length scales and marginal variances in the speed1799

of sound, particularly compared to some others in the1800

literature, e.g., Refs. [7, 87, 95]. This is achieved by1801
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TABLE II. Additional ratios of maximized likelihoods for the number of stable branches based on current astrophysical observations:
(P) pulsar masses, (G) GW observations from LIGO/Virgo, and (X) X-ray timing from NICER.

M [M⊙]
Stable Branches

maxLn≥2
n=1(P) maxLn≥2

n=1(G) maxLn≥2
n=1(X) maxLn≥2

n=1(PG) maxLn≥2
n=1(PGX)

0.8-1.1 1.00 0.84 0.45 0.79 0.47

1.1-1.6 1.00 0.81 0.33 0.23 0.14

1.6-2.3 1.00 0.75 0.68 0.69 0.20

TABLE III. Additional ratios of marginal likelihoods for the number of stable branches based on current observations.

M
[M⊙]

Stable Branches

Bn≥2
n=1(P) Bn≥2

n=1(G) Bn≥2
n=1(X) Bn≥2

n=1(PG) Bn≥2
n=1(PGX) Bn≥2

n=1(G|P) Bn≥2
n=1(GX|P)

0.8-1.1 0.169± 0.012 0.872± 0.010 0.115± 0.010 0.421± 0.043 0.362± 0.036 2.485± 0.181 2.219± 0.162

1.1-1.6 0.102± 0.009 1.369± 0.014 0.042± 0.005 0.029± 0.005 0.030± 0.006 0.282± 0.064 0.291± 0.055

1.6-2.3 1.007± 0.043 0.586± 0.017 0.384± 0.028 0.088± 0.027 0.147± 0.028 0.088± 0.026 0.120± 0.026

TABLE IV. Additional ratios of maximized likelihoods for the number of DI
M features based on current observations.

M
[M⊙]

min∆(E/N)
[MeV]

DI
M Features

maxLn≥1
n=0(P) maxLn≥1

n=0(G) maxLn≥1
n=0(X) maxLn≥1

n=0(PG) maxLn≥1
n=0(PGX)

0.8-1.1

10 1.00 1.01 0.95 0.88 0.57

50 1.00 1.01 0.73 0.86 0.49

100 1.00 1.01 0.68 0.31 0.26

1.1-1.6

10 1.00 1.01 0.83 0.85 0.57

50 1.00 1.01 0.73 0.78 0.49

100 1.00 1.01 0.68 0.31 0.26

1.6-2.3

10 1.00 0.91 0.83 0.78 0.52

50 1.00 0.91 0.73 0.78 0.49

100 1.00 0.83 0.68 0.31 0.29

TABLE V. Additional ratios of marginal likelihoods for the number of DI
M features based on current astrophysical observations.

M
[M⊙]

min∆(E/N)
[MeV]

DI
M Features

Bn≥1
n=0(P) Bn≥1

n=0(G) Bn≥1
n=0(X) Bn≥1

n=0(PG) Bn≥1
n=0(PGX) Bn≥1

n=0(G|P) Bn≥1
n=0(GX|P)

0.8-1.1

10 1.781± 0.014 1.244± 0.005 1.519± 0.016 0.897± 0.017 1.222± 0.020 0.504± 0.009 0.684± 0.011

50 0.624± 0.008 1.379± 0.007 0.451± 0.008 0.355± 0.011 0.366± 0.011 0.570± 0.017 0.588± 0.016

100 0.373± 0.010 1.393± 0.010 0.254± 0.009 0.067± 0.005 0.117± 0.008 0.180± 0.013 0.292± 0.021

1.1-1.6

10 1.865± 0.016 1.250± 0.006 1.420± 0.016 0.778± 0.018 1.043± 0.020 0.417± 0.009 0.563± 0.010

50 0.950± 0.012 1.426± 0.008 0.682± 0.011 0.368± 0.011 0.463± 0.013 0.388± 0.012 0.481± 0.013

100 0.516± 0.011 1.377± 0.009 0.350± 0.011 0.073± 0.004 0.152± 0.009 0.142± 0.009 0.267± 0.017

1.6-2.3

10 2.671± 0.028 0.457± 0.006 1.761± 0.030 0.512± 0.020 1.012± 0.035 0.192± 0.007 0.387± 0.013

50 2.265± 0.029 0.512± 0.007 1.596± 0.030 0.469± 0.020 0.898± 0.034 0.207± 0.009 0.399± 0.015

100 1.366± 0.027 0.604± 0.009 0.914± 0.026 0.170± 0.010 0.383± 0.023 0.124± 0.008 0.256± 0.016
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FIG. 14. Distributions of radii and tidal deformabilities at reference masses as well as MTOV conditioned on current data. These
distributions de facto exclude EoSs with MTOV < 2M⊙ by requiring Λ2.0 > 0 (enforced through the logarithmic scale). As in
Fig. 1, there are much weaker correlations between low-mass and high-mass observables.

marginalizing over covariance-kernel hyperparameters as1802

described in Essick et al. [53] so that the overall prior1803

process contains O(150) different GPs, each of which gen-1804

erates different types of correlation behavior.1805
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FIG. 15. An additional example of an EoS with mixed phases (Gibbs construction) from Han et al. [67], analogous to Fig. 3.
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FIG. 16. Several realizations from our nonparametric prior, each with a single stable branch but with different numbers of phase
transitions.
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FIG. 17. Additional realizations from our nonparametric prior, each with multiple stable branches. Typically, we always identify
a phase transition associated with the loss of stability between stable branches, even if the stable branches are small (bottom row).
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