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Abstract

We calculate the 2 post-Newtonian correction to the radiation reaction acceleration for non-

spinning binary systems, which amounts to the 4.5 post-Newtonian correction to Newtonian accel-

eration. The calculation is carried out completely using the effective field theory approach. The

center-of-mass corrections to the results are complicated and are discussed in detail. Non-trivial

consistency checks are performed and we compare with corresponding results in the literature.

Analytic results are supplied in the supplementary materials.
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I. INTRODUCTION

The tremendous success of the LIGO and VIRGO [1, 2] gravitational wave detectors and

the plans for future, more sensitive, detectors are creating the need for extremely precise

theoretical calculations of binary inspirals. During the early stage of the inspiral, it is possible

to calculate perturbatively using the post-Newtonian (PN) expansion, which implements

an expansion parameter of v2/c2, where v is the typical relative velocity of the binary

constituents. This perturbative expansion is then matched onto numerical results, which

are necessary during the late stages of the inspiral phase, due to the breakdown of the

PN expansion. With more accurate theoretical calculations of the inspiral, it is potentially

possible to extract large amounts of information from the gravitational waveform.

An effective field theory (EFT) framework named nonrelativistic general relativity

(NRGR) [3] has proven to be a useful tool for calculating gravitational wave effects for

a binary inspiral. Most of the calculations in the EFT so far have been in the potential

sector, with the state of the art being the 4PN results [4, 5], which agree with the results

calculated using other methods [6–8]. In the radiation sector, the EFT results have recently

been calculated to 2PN [9], as compared to the 3PN results calculated using more tradi-

tional methods [10].1 However, using the EFT result [9], in this paper we will calculate

the next-to-next-to-leading order (NNLO) non-spinning radiation-reaction force completely

using EFT techniques. This amounts to a 4.5PN correction to the Newtonian acceleration.

Radiation reaction begins at 2.5PN order, first computed by Burke and Thorne [14, 15].

In the EFT approach, the incorporation of radiation reaction was developed in Refs. [16–18]

by implementing the classical limit of the “in-in” approach [19, 20] (see also the formalism

developed for nonconservative classical systems in Refs. [21, 22]). At 3.5PN order, the

radiation-reaction force was first calculated in Refs. [23–31] and subsequently rederived using

NRGR in Ref. [18]. The radiation-reaction force was first deduced at 4.5PN by using a flux-

balance argument to derive a general form using free gauge parameters [32] consistent with

the 2PN energy flux [33]. Recently, the 5PN memory and squared radiation-reaction effects

were computed using the EFT approach [34]. The tail effect enters at 4PN order, calculated

in Refs. [7, 8, 35] and subsequently in NRGR in Ref. [36–39]. The leading spin-orbit and

1 Recent progress has been made in obtaining the dynamics through 4PN in the spin sector [11–13] from

the EFT.
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spin-spin effects were calculated in Refs. [40, 41] in traditional methods and in Refs. [42, 43]

using the EFT.

In this paper, we calculate the non-spinning radiation-reaction force at 4.5PN order. The

paper is organized as follows. In section II, we review the long-range EFT prescription of

NRGR. We also give an overview of nonconservative Lagrangian mechanics that we use to

calculate the radiation-reaction diagrams and ultimately derive the equations of motion.

Next, in section III, we compute the radiation-reaction diagrams term-by-term in the mul-

tipole expansion and present the full 4.5PN acceleration in the center-of-mass frame, the

main result of this paper. Finally, in section IV, we perform consistency checks on our result

and compare with corresponding results from the literature, before concluding in V. We also

include an appendix with a discussion of radiative center-of-mass corrections necessary for

computing the full result. As the results are somewhat unwieldy, many of the analytical

equations are supplied in the supplementary results file.

Throughout the paper, we will use the total binary massm ≡ m1+m2, the mass difference

δm = m1−m2, and the symmetric mass ratio ν ≡ m1m2/m
2. We also use following notation

for relative coordinates: xi ≡ xi
1−xi

2 ≡ rni as the relative position, vi ≡ vi
1−vi

2 the relative

velocity, and ai ≡ ai
1 − ai

2 the relative acceleration.

II. EFT SETUP

The EFT is used to separate the relevant scales in the binary inspiral by successively in-

tegrating out the shorter distance scales, resulting in a hierarchy of EFTs [3]. The successive

EFTs are related via matching calculations, which ensure that the long-distance behavior

is accurately represented in each system. The short-distance physics is then encapsulated

in Wilson coefficients of the operators in the EFT, which are constructed to respect the

symmetries of the system (in this case general coordinate invariance).

For the calculation of the radiation reaction, we work with a diffeomorphism invariant

effective action, which describes arbitrary gravitational wave sources in the long-wavelength

approximation written in terms of multipole moments that live on the binary pair’s worldline.

In the center-of-mass (COM) frame, the action is given by [44]

Srad = −
∫

dt
√
ḡ00

[

M(t)+
1

2
Lijω

ij
0 −

∑

ℓ=2

(

1

ℓ!
IL(t)∇L−2Eiℓ−1iℓ−

2ℓ

(2ℓ+ 1)!
JL(t)∇L−2Biℓ−1iℓ

)]

,

(2.1)
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where L = (ii · · · iℓ) is a multi-index tensor, and M(t) is the Bondi mass associated with

the binary. IL(t) and JL(t) are the mass- and current-type source multipole moments,

respectively, which depend on the positions xK , K = 1, 2, of the massive bodies in the

binary. The electric and magnetic components of the Weyl tensor, Eij and Bij depend only

on the metric in the radiation region h̄µν . See Refs. [44, 45] for more details.

A. Calculation of diagrams

To calculate the nonconservative effects of radiation reaction using the action (2.1), we

need to formally double the number of degrees of freedom following the approach in Refs. [16,

17]. We take

xK → (xK(1),xK(2)), h̄µν → (h̄(1)
µν , h̄

(2)
µν ), (2.2)

where the (1) and (2) are the different “history” labels of the coordinates and fields. The

action is constructed from these degrees of freedom as

S[xK(1),xK(2), h̄
(1)
µν , h̄

(2)
µν ] = S[xK(1), h̄

(1)
µν ]− S[xK(2), h̄

(2)
µν ], (2.3)

where S includes both the worldline action (2.1) and the Einstein–Hilbert action, with

appropriate gauge fixing.2 By integrating out the long-wavelength gravitational modes, we

obtain the effective action for the open dynamics of the binary inspiral, which can be written

as

Seff [xK(1,2)] =

∫

dt(L[xK(1)]− L[xK(2)] +R[xK(1),xK(2)]), (2.4)

where L is the usual Lagrangian accounting for the conservative interactions and R is the

term containing nonconservative effects. To obtain the radiation-reaction force, we vary the

effective action and then take the physical limit, in which the doubled variables are identified

with the physical variables, i.e.,

xK(1),xK(2) → xK . (2.5)

In this work, we make a convenient coordinate redefinition to “plus-minus” coordinates,

defined by

xK+ ≡ (xK(1) + xK(2))/2, xK− ≡ xK(1) − xK(2), (2.6)

2 We use linearized harmonic gauge in this work, see Refs. [3, 9] for details.
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which simplifies the procedure for deriving the dynamics. We can then vary the action with

respect to the minus degrees of freedom, and then take the physical limit by simply setting

xK+ → xK , xK− → 0. (2.7)

The nonconservative acceleration is then given by varying R in Eq. (2.3) as

ai
K(t) =

1

mK

δR

δxi
K−

− 1

mK

d

dt

δR

δvi
K−

+ · · ·
∣

∣

∣

∣

xK−
→0

xK+→xK

. (2.8)

The topologies that we need to consider up to 4.5PN order are given by3

iSeff [x
±
K ] = iScon +

∑

l≥2
�

I
L

A
I
L

B

+

�

J
L

A
J
L

B

. (2.9)

We consider the contributions from the conservative action, Scon, separately, focusing now

on the dissipative terms. For this topology, we can find a general expression in terms of

multipole moments and their derivatives given by [37]

∫

dtR =
∑

ℓ≥2

(−1)ℓ+1(ℓ+ 2)G

(ℓ− 1)

∫

dt

[

2ℓ(ℓ+ 1)

ℓ(2ℓ+ 1)!
IL−(t)I

L(2ℓ+1)
+ (t) +

2ℓ+3ℓ

(2ℓ+ 2)!
JL
−(t)J

L(2ℓ+1)
+ (t)

]

,

(2.10)

where IL− ≡ IL(1) − IL(2) and IL+ ≡ (IL(1) + IL(2))/2, and ILA for A = (1), (2) are the different

history versions of the mass-type multipoles, with similar expressions for the current-type

multipoles.

The leading order nonconservative acceleration, entering at 2.5PN, can be computed from

the mass-quadrupole component of Eq. (2.10) given by R2.5PN = −G
5
I ij− I

ij(5)
+ using Eq. (2.8);

the result is simply the usual Burke–Thorne equation

ai
K = −2G

5
x
j
KI

ij(5)
0PN . (2.11)

Similarly, the 3.5PN acceleration was computed in Ref. [18].

3 Note that we only have to consider diagrams to linear order in the radiation modes, neglecting nonlinear

radiative effects that only contribute starting at the 5PN order [34]. It is worth observing, however,

that nonlinear gravitational effects enter through the multipole moments themselves within the potential

regime. Furthermore, there is a new topology at 4PN that accounts for the tail term, which we do not

consider here. See Ref. [36, 37] for details.
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III. RADIATION REACTION THROUGH 4.5PN

During the inspiral phase, the relative velocity v of the bodies is small, so we can expand

the acceleration in the PN expansion. For non-spinning binaries, we have

ai = ai
0PN + ai

1PN + ai
2PN + ai

2.5PN + ai
3PN + ai

3.5PN + ai
4PN + ai

4.5PN + · · · , (3.1)

where the subscript denotes the PN order of the term. The leading term, ai
0PN, is just the

Newtonian acceleration. The 1PN correction is the Einstein–Infeld–Hoffmann correction,

which scales as O(v2), while the 2PN correction scales as O(v4). At 2.5PN order, we have

the leading order radiation reaction, or Burke–Thorne, term. This is the first nonconservative

piece of the acceleration. At 3PN order, we again have a conservative correction. At 3.5PN,

we have the first correction to the Burke–Thorne term. At 4PN, we have a mix between con-

servative and nonconservative contributions, including the leading tail contribution. These

contributions have all been calculated using traditional methods [6–8, 14, 15, 23–31] and

using the EFT approach [4, 5, 16–18, 37]. Finally, at 4.5PN we get the 2PN correction to

the Burke–Thorne term, which is the focus of this paper.

In this section, we compute the radiation-reaction equations of motion at 4.5PN order.

For simplicity, we break the calculation into distinct multipole terms as well as contributions

from the conservative sector arising from order-reduced accelerations. Explicitly, through

the 4.5PN order, the action that yields the radiation-reaction acceleration can be written as

R4.5PN = −G

5
I ij− I

ij(5)
+ − 16G

45
J ij
−J

ij(5)
+ +

G

189
I ijk− I

ijk(7)
+ +

G

84
J ijk
− J

ijk(7)
+ − G

9072
I ijkl− I

ijkl(9)
+ , (3.2)

where the first term enters at 2.5PN and the first three terms contribute up to order 3.5PN.

Due to PN corrections to these multipoles, these terms also contribute at 4.5PN. We now

proceed to compute the 4.5PN acceleration term by term.
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A. Mass quadrupole

The mass quadrupole can be expanded as4

I ij =I ij0PN + ǫI ij1PN + ǫ2I ij2PN +O(ǫ2.5)

=
∑

K 6=L

mK

{

xi
Kx

j
K +

(

3

2
v2
K −

∑

L 6=K

GmL

r

)

xi
Kx

j
K

+
11

42

d2

dt2
(x2

Kx
i
Kx

j
K)−

4

3

d

dt
(xK · vKx

i
Kx

j
K)

}

TF

+O(ǫ2), (3.3)

where ǫ counts the PN order and the O(ǫ2) expression can be found in Ref. [9]. Then through

4.5PN, the mass quadrupole component of the action can be written as

Smq =− G

5

∫

dt [I ij0−I
ij(5)
0+ + ǫ(I ij0−I

ij(5)
1+ + I ij1−I

ij(5)
0+ )

+ ǫ2(I ij0−I
ij(5)
2+ + I ij2−I

ij(5)
0+ + I ij1−I

ij(5)
1+ ) + · · · ], (3.4)

where the numeric subscript on the multipole moments is its PN order. The O(ǫ0) and O(ǫ1)

terms correspond to the 2.5PN and 3.5PN radiation-reaction mass quadrupole contributions,

respectively. However, upon variation, these terms also contribute to the 4.5PN acceleration

through order reduction of accelerations. Looking specifically at the terms that depend on

I ij0−, after varying the action, we find

ai
K = −2G

5
x
j
K(I

ij(5)
0 + ǫI

ij(5)
1 + ǫ2I

ij(5)
2 ). (3.5)

Each of these terms contributes at 4.5PN, as each of these terms is itself dependent on

accelerations and higher time derivatives that are not of definite PN order. The first term

receives corrections through order reduction using the 2PN conservative acceleration or two

order-reduced 1PN accelerations. The second term has corrections from the 1PN acceler-

ation. The final term only requires order reduction using the Newtonian acceleration. We

must of course also vary the terms that depend upon I ij1− and I ij2−. These are more compli-

cated, but follow similarly to the above. For instance, for the I ij1−I
ij(5)
0+ term, one will again

need the order-reduced 1PN acceleration.

In this general frame, this completes the 4.5PN mass quadrupole contribution. However,

we must consider additional terms that arise when making the coordinate transformation to

4 We neglect spin dependence in the multipole moments, which enter here at 1.5PN for spin-orbit couplings

[46] and 2PN for spin-spin couplings [12, 13, 47].
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the COM frame, in which we compute the relative acceleration ai = ai
1−ai

2. The coordinate

shift can be written as

xi
1 =

m2

m
xi + δxi, (3.6)

xi
2 =− m1

m
xi + δxi, (3.7)

where δxi is given order by order in a PN expansion as

δxi = ǫδxi
1PN + ǫ2δxi

2PN + ǫ2.5δxi
2.5PN + ǫ3δxi

3PN + ǫ3.5δxi
3.5PN +O(ǫ4). (3.8)

The terms δxi
2PN was recently computed using EFT methods in Ref. [9], while δxi

2.5PN

vanishes in our gauge.5 The 3PN COM shift has yet to be computed in our gauge, but is

beyond the scope of this paper as it does not contribute at the 4.5PN order in the dissipative

sector. The relevant terms, which we reproduce here for convenience, are

δxi
1PN =

νδm

2m
xi

(

v2 − Gm

r

)

, (3.9)

δxi
2PN =

νδm

2m

{

xi

[(

3

4
− 3ν

)

v4 +
Gm

r

((

19

4
+ 3ν

)

v2

)

+

(

−1

4
+

3ν

2

)

ṙ2 +

(

7

2
− ν

)

Gm

r

]

− vi

[

7

2
Gmṙ

]}

. (3.10)

Note that δxi
3.5PN is nonvanishing in our gauge (see Appendix A), and will be discussed

in section III E as it contributes at 4.5PN when shifting to the COM frame within the

conservative sector.

We apply these COM coordinate transformations to the 2.5PN and 3.5PN mass

quadrupole terms in the acceleration in relative coordinates. Working with the multipole

moments in the COM frame, we have a contribution given by

ai
COM = −2G

5
xj d

5

dt5
(mδxi

1PNδx
j
1PN − 1

3
mδx2

1PNδ
ij), (3.11)

where the 2PN shift does not contribute due to the symmetry of the mass quadrupole mo-

ment. Additionally, we find that there will be COM corrections to expressions containing

the 1PN multipole moment when applied after variation with respect to the minus coordi-

nates. Adding these corrections to our result yields a final expression for the COM frame

mass quadrupole contribution, which can be found in the supplemental file.

5 Contrast this with the nonzero COM correction at 2.5PN computed in Ref. [48] using harmonic coordi-

nates.
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B. Mass octupole

The mass octupole can be written as

I ijk = I ijk0 + ǫI ijk1 +O(ǫ2) (3.12)

=
∑

A 6=B

mA

{[(

1 +
3

2
v2
A −

∑

B 6=A

GmB

r

)

xi
Ax

j
Ax

k
A +

1

18

d2

dt2
(x2

Ax
i
Ax

j
Ax

k
A)

]

STF

− 7

9

d

dt

[

(xi
Ax

j
Ax

k
Ax

l
A)STFv

l
]

}

+O(ǫ2), (3.13)

again neglecting spin. Then the octupole contributions to the action, using Eq. (3.2), are

Smo =
G

189

∫

dt [ǫI ijk0− I
ijk(7)
0+ + ǫ2(I ijk1− I

ij(7)
0+ + I ijk0− I

ij(7)
1+ ) + · · · ]. (3.14)

The O(ǫ) term contributes to the 3.5PN radiation-reaction acceleration, as well as to the

4.5PN acceleration upon reducing accelerations using the 1PN acceleration. As an example,

after varying the third term, proportional to I ijk0− I
ij(7)
1+ , we find that

ai
1 =

G

63
x
j
1x

k
1I

ijk(7)
1 . (3.15)

We additionally must consider the first term in Eq. (3.14) with 1PN acceleration reductions

and the second term with Newtonian acceleration, which together with the above yield

the 4.5PN acceleration. This completes the octupole term in the original frame. When

transforming to the COM frame, we pick up an additional 4.5PN piece from the 1PN COM

shift in the 3.5PN term. The mass octupole expression for ai in the COM frame can be

found in the supplementary file.
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C. Current quadrupole

The current quadrupole can be written as

J ij =ǫ0.5J ij
0 + ǫ1.5J ij

1 +O(ǫ2.5) (3.16)

=
∑

A

mA

(

1 +
v2
A

2

)

[

(xA × vA)
ix

j
A

]

STF

+
∑

A 6=B

GmAmB

r

[

2(xA × vA)
ix

j
A − 11

4
(xB × vA)

ix
j
B − 3

4
(xB × vA)

ix
j
A

+ (xA × vA)
ix

j
B +

7

4
(xA × xB)

iv
j
A +

vA · x
4r2

(xA × xB)
i(xj

A + x
j
B)

]

STF

+
1

28

d

dt

[

∑

A

mA(xA × vA)
i(3x2

Av
j
A − xA · vAx

j
A)

+
∑

A 6=B

GmAmB

2r3
xi
A(xA × xB)

j(6x2
A − 7xA · xB + 7x2

B)

]

STF

+O(ǫ2.5), (3.17)

and thus the term in the action that contributes through 4.5PN is given by

Scq = −16G

45

∫

dt [ǫJ ij
0−J

ij(5)
0+ + ǫ2(J ij

1−J
ij(5)
0+ + J ij

0−J
ij(5)
1+ ) + · · · ]. (3.18)

The current quadrupole term first enters the acceleration at 3.5PN through the first term

in Eq. (3.18). The 4.5PN acceleration contains three contributions: two pieces from the

1PN current quadrupole in either the plus or minus coordinates, and a third from reducing

accelerations in the 3.5PN acceleration with the 1PN conservative acceleration. Upon shift-

ing to the frame of the COM, we find an additional contribution from the 1PN coordinate

correction in the 3.5PN acceleration. The full expression can be found in the supplementary

file.

D. Mass hexadecapole

The mass hexadecapole term contributes first at the 4.5PN order and is given by

Smh = − G

9072

∫

dt ǫ2I ijkl0− I
ijkl(9)
0+ +O(ǫ3). (3.19)

Thus, we only need the leading order expression of the mass hexadecapole, given by

I ijkl0 =
∑

A

mA[x
i
Ax

j
Ax

k
Ax

l
A]STF. (3.20)
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Upon variation, we find that

ai
1mh = − G

2268
x
j
1x

k
1x

l
1I

ijkl(9)
0 , (3.21)

and in the COM frame

ai
mh = − G

2268
(1− 3ν)xjxkxlI

ijkl(9)
0 , (3.22)

which can be found in the supplementary file.

E. Current octupole

The current octupole term contributes first at the 4.5PN order as well and is given by

Sco =
G

84

∫

dt ǫ2J ijk
0− J

ijk(7)
0+ +O(ǫ3). (3.23)

Thus, we only need the leading order expression of the current octupole, given by

J ijk
0 =

∑

A

mA[ǫ
ilmx

j
Ax

k
Ax

l
Av

m
A ]STF = mν(1 − 3ν)[ǫilmxjxkxlvm]STF. (3.24)

Upon variation, we find that the contribution to the acceleration from the current octupole

is

ai
1co =

G

84
x
j
1x

k
1[2(ǫ

ilmJ
jkm(7)
0 + ǫijmJ

klm(7)
0 + ǫjlmJ

ikm(7)
0 )vl

1 + ǫijmxl
1J

klm(8)
0 ], (3.25)

and in relative coordinates

ai
co =

G

84
(1− 3ν)xjxk[2(ǫilmJ

jkm(7)
0 + ǫijmJ

klm(7)
0 + ǫjlmJ

ikm(7)
0 )vl + ǫijmxlJ

klm(8)
0 ]. (3.26)

Again, the COM contribution can be found in the supplementary file.

F. Conservative acceleration reductions

In this section, we discuss 4.5PN terms that result from corrections to the conservative

accelerations at lower orders. Variation of the conservative Lagrangian yields accelerations

that are themselves acceleration dependent. Order reducing these conservative terms with

nonconservative accelerations yields additional nonconservative corrections at 4.5PN. Ad-

ditionally, since the COM is no longer conserved at 3.5PN, there arise nonconservative

corrections at 4.5PN in relative coordinates when shifting to the COM frame.
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In the 1PN acceleration, we obtain a reduced contribution from inserting the 3.5PN

acceleration as

a
(red)
1 =

[

1

2

Gm2

r
(a2 · n)ni − (a1 · v1)v

i
1 − ai

1

(

3
Gm2

r
+

1

2
v2
1

)

+
7

2

Gm2

r
ai
2

]

a3.5PN

. (3.27)

The full 3.5PN acceleration can be found in the supplementary materials. There is an

additional piece resulting from order reducing accelerations and higher coordinate derivatives

in the 2PN acceleration using the leading order Burke–Thorne acceleration at 2.5PN, yielding

a 4.5PN correction. This concludes the calculation of the 4.5PN acceleration in the original

coordinate system.

When shifting to relative coordinates in the COM frame, we must consider one additional

contribution. Naively, we would expect to have a 2.5PN COM correction to the 2PN accel-

eration; however, this vanishes because there is no 2.5PN COM shift in our gauge. However,

there is a nonzero 3.5PN correction, as discussed in Appendix A. Applying this to the 1PN

acceleration yields

ai
COM =

δm

m

[(

−G

2r
+

1

2
v2

)

δẍi
3.5PN − Gm

2r3
(x · δẍ3.5PN)x

i + (v · δr̈3.5PN)vi

− Gm

r3

(

2(x · δẋ3.5PN)v
i + (v · δẋ3.5PN)x

i

)]

, (3.28)

where δx3.5PN = (n · δx3.5PN) and

δxi
3.5PN =

δm

m

{[

212G3m3ν2

105r3
ṙ +

G2m2ν2

r2

(78

7
ṙv2 − 26

5
ṙ3
)

]

xi

+

[

− 8

35
Gmv4ν2 − 48G3m3ν2

35r2
− G2m2ν2

r

( 58

105
v2 +

398

105
ṙ2
)

]

vi

}

(3.29)

is the 3.5PN COM correction.

G. Full result

We now arrive at a full 4.5PN result by summing over all contributions as described

above. The full result in relative coordinates can be written as

ai
4.5PN = Axi + Bvi, (3.30)
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where the coefficients A and B can be written as

A =
G5m5νṙ

r7

(

−73178

135
− 56416

105
ν − 3040

21
ν2

)

(3.31)

+
G4m4νṙ

r6

[(

493214

315
+

207052

105
ν +

9932

35
ν2

)

v2 −
(

2177438

945
+

1028644

189
ν +

96436

105
ν2

)

ṙ2
]

+
G3m3νṙ

r5

[(

−20747

105
− 1774ν +

3928

3
ν2

)

v4 +

(

−19151

105
+

108773

15
ν − 19756

7
ν2

)

v2ṙ2

+

(

21508

21
− 716027

105
ν +

83414

105
ν2

)

ṙ4
]

+
G2m2νṙ

r4

[(

−46372

105
+

74759

35
ν − 51532

35
ν2

)

v6 +

(

54085

21
− 258268

21
ν +

186635

21
ν2

)

v4ṙ2

+

(

−12274

3
+

56683

3
ν − 40526

3
ν2

)

v2ṙ4 +
(

1980− 8658ν + 5823ν2
)

ṙ6
]

,

and

B =
G5m5ν

r6

(

927826

2835
+

73772

105
ν +

3008

35
ν2

)

(3.32)

+
G4m4ν

r5

[(

−89926

315
− 305576

315
ν − 17972

105
ν2

)

v2 +

(

33926

45
+

13504

3
ν +

4380

7
ν2

)

ṙ2
]

+
G3m3ν

r4

[(

−673

21
+

173872

315
ν − 2376

35
ν2

)

v4 +

(

75211

105
− 1332301

315
ν − 79052

105
ν2

)

v2ṙ2

+

(

−46224

35
+

177399

35
ν +

140618

105
ν2

)

ṙ4
]

+
G2m2ν

r3

[(

18124

315
− 9621

35
ν +

5004

35
ν2

)

v6 +

(

−23053

35
+

98632

35
ν − 39359

35
ν2

)

v4ṙ2

+

(

28274

21
− 104015

21
ν +

19774

21
ν2

)

v2ṙ4 +

(

−2324

3
+

7070

3
ν +

833

3
ν2

)

ṙ6
]

.

The full result can also be found in the supplementary file.

IV. CONSISTENCY CHECKS ON RESULTS

A. Quasicircular limit

In this section, we consider the special case of quasicircular orbits. In particular, we will

use the acceleration through 4.5PN order to compute the expression ω̇/ω2, where ω is a well-

defined orbital frequency for the special case of quasicircular orbits. This expression, when

written as a function of ω, is gauge independent under a large class of gauge transformations

and will allow comparison with the general results derived in Ref. [32]. Additionally, one

13



can use flux-balance arguments to compute ω̇/ω2 exclusively from the far-field, allowing a

direct comparison between the near-field and far-field EFT regimes.6

We follow the approach of Ref. [32]. The quasicircular orbit limit is defined by the

relations

rω2 = −〈n · a〉, (4.1)

v = rω, (4.2)

ṙ = 0 +O(v5). (4.3)

Using these relations, and defining γ ≡ Gm/r, we can write

v2

r2
= ω2 = γ

[

1 + γ(−3 + ν) + γ2
(

41

4
ν + ν2

)

+O(v5)

]

(4.4)

using the conservative equations of motion through 2PN, which can be inverted and written

in terms of either ω or v as

γ = (Gmω)2/3
[

1 +

(

1− ν

3

)

(Gmω)2/3 +

(

3− 65ν

12

)

(Gmω)4/3 +O(v5)

]

, (4.5)

= v2
[

1 + (3− ν)v2 +

(

18− 89

4
ν + ν2

)

v4 +O(v5)

]

. (4.6)

Taking the circular limit of the radiation-reaction acceleration in Eq. (3.30) and using

Eq. (4.4), we have

(ai)RR
circ =

32γ4νvi

5m3

[

1 +

(

−3431

336
+

5

4
ν

)

γ +

(

659217

18144
+

26095

2016
ν − 7

4
ν2

)

γ2 +O(v10)

]

. (4.7)

Taking a time derivative of Eq. (4.6) and solving for ṙ, reducing the acceleration terms using

the conservative equations of motion through 2PN and nonconservative equations of motion

in Eq. (4.7), we find

ṙ = −64

5
νγ3

[

1−
(

1751

336
+

7ν

4

)

γ +

(

230879

18144
+

40981η

2016
+

η2

2

)

γ2 +O(v10)

]

. (4.8)

Finally, taking a time derivative of Eq. (4.4) and solving for ω̇/ω2 as a function of ω, we

find

ω̇

ω2
=

96

5
ν(Gmω)5/3

[

1−
(

743

336
+

11

4
ν

)

(Gmω)2/3

+

(

34103

18144
+

13661

2016
ν +

59

18
ν2

)

(Gmω)4/3
]

. (4.9)

This exactly reproduces the near-field results of Ref. [32] and far-field expression in Ref. [33],

a nontrivial check on our results.

6 Note that we neglect the contribution from the tail term, which does not mix with our results here.
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B. Energy flux-balance equation through NNLO

In this section, we use the energy flux-balance equations as a consistency check on the

radiative equations of motion. We expect the locally-induced power loss to be equivalent

to the energy flux at infinity up to a total derivative that time-averages to zero. This total

time derivative amounts to a redefinition of the local conserved energy, akin to a “Schott”

term in electrodynamics [49], which vanishes in the far-field regime. Through NNLO, the

energy flux-balance equation is given by [50]

dE

dt
= −

(

G

5
I
(3)
ij I

(3)
ij +

G

189
I
(4)
ijkI

(4)
ijk +

16G

45
J
(3)
ij J

(3)
ij +

G

84
J
(4)
ijkJ

(4)
ijk +

G

9072
I
(5)
ijklI

(5)
ijkl + . . .

)

. (4.10)

We first show that the LO radiation-reaction acceleration is consistent with the energy

flux-balance equation. With the LO radiation reaction ai
K = −2G/5xj

KI
ij(5)
0 , the 2.5PN

energy flux-balance equation is given by

dE

dt
= −2G

5

∑

A

mAx
i
Av

j
AI

ij(5)
0 = −G

5
I
ij(1)
0 I

ij(5)
0 , (4.11)

which agrees with the mass quadrupole term in Eq. (4.10) modulo a total time-derivative.

At NLO, the acceleration, as derived from the nonconservative Lagrangian, is given by

ai
A =− 16G

45
ǫikl

(

x
j
Ax

k
AJ

jl(6)
0 + 3xj

Av
k
AJ

jl(5)
0

)

+
G

63
x
j
Ax

k
AI

ijk(7)
0

− 2G

5
x
j
AI

ij(5)
1 − G

5

(

∂I ij1−
∂xi

A−

I
ij(5)
0+ − d

dt

∂I ij1−
∂vi

A−

I
ij(5)
0+

)

PL

. (4.12)

We do not need to consider the order-reduced accelerations arising from substituting the

2.5PN acceleration in the 1PN conservative acceleration; these do not contribute to energy

loss due to energy conservation. Integrating by parts liberally, for example with I
(6)
ij,0 and

I
(7)
ij,0, the NLO energy flux becomes

dE

dt
=

16G

45
Jjl,0J

(6)
ij,0 +

G

189
I
(1)
ijk,0I

(7)
ijk,0 −

G

5
I
(1)
ij,0I

(5)
ij,1 −

G

5
I
(1)
ij,1I

(5)
ij,0, (4.13)

which again agrees with the energy-flux balance equation, Eq. (4.10), at NLO modulo a

total time-derivative.

Similarly, given the NNLO accelerations in sections IIIA–III E (again neglecting the
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reduced conservative equations of motion) we find that

dE

dt
= −G

84

∑

A

mAǫ
ijkvi

Ax
k
Ax

l
Ax

m
AJ

jlm(8)
0 − G

2268

∑

A

mAv
i
Ax

j
Ax

k
Ax

l
AI

ijkl(9)
0

+
16G

45
J jl
0 J

ij(6)
1 +

G

189
I
ijk(1)
0 I

ijk(7)
1 − G

5
I
ij(1)
0 I

j(5)
i2 − G

5
I
ij(1)
1 I

ij(5)
1

+
∑

A

vi
A

[

−G

5

(

∂Ijk2−
∂xi

A−

I
jk(5)
0+ − d

dt

∂I ij2−
∂vi

A−

I
ij(5)
0+

)

− 16G

45

(

∂J ij
1−

∂xi
A−

J
ij(5)
0+ − d

dt

∂J ij
1−

∂vi
A−

J
ij(5)
0+

)

+
G

189

(

∂I ijk1,−

∂xi
A−

I
ijk(7)
0+ − d

dt

∂I ijk1−

∂vi
A−

I
ijk(7)
0+

)]

PL

. (4.14)

To show that this is consistent with the right-hand side of Eq. (4.10), we must simplify this

expression. We collect the higher time-derivative terms, explicitly calculate the variations

and rewrite them in terms of multipole moments. This is a lengthy but straightforward

process; it can be shown that left-hand side of the NNLO energy flux then becomes

dE

dt
= −G

84
Jijk,0J

(8)
ijk,0 −

G

9072
I
(1)
ijkl,0I

(9)
ijkl,0 +

16G

45

(

Jjl,0J
(6)
ij,1 + Jjl,1J

(6)
ij,0

)

+
G

189

(

I
(1)
ijk,0I

(7)
ijk,1 + I

(1)
ijk,1I

(7)
ijk,0

)

− G

5

(

I
(1)
ij,0I

(5)
ij,2 + I

(1)
ij,1I

(5)
ij,1 + I

(1)
ij,2I

(5)
ij,0

)

, (4.15)

which again agrees the energy flux-balance equation, Eq. (4.10), at NNLO modulo a total

time derivative. This check helps establish the validity of the multipole moments in use and

the nonconservative action approach for the derivation of the radiation-reaction effects.

V. CONCLUSION

In this paper, we calculate the radiation reaction force at the 4.5PN order for non-spinning

compact binary inspiral completely in the EFT approach. This amounts to a 2PN correction

to the leading Burke–Thorne radiation-reaction term. To accomplish this, we used the recent

EFT calculation of the 2PN correction to the mass quadrupole, calculated in Ref. [9].

We can write the results in terms of the acceleration of one of the binary constituents or

in terms of the relative coordinates. In order to write in terms of the relative coordinates, we

need to transform into the center-of-mass frame. For the 4.5PN result, we need to include

the 3.5PN radiative correction to the center-of-mass, which is nonzero in our chosen gauge.

We calculate this correction to the center-of-mass in the appendix, and then use this to write

the results in terms of the relative coordinates.
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As a first consistency check, we calculated the adiabatic parameter ω̇/ω2 in the qua-

sicircular limit. Since this expression is gauge independent under a large class of gauge

transformations, we can compare to other calculations and find agreement with the results

presented in Ref. [32]. As a second consistency check, we calculate the flux-balance equation

at NNLO and find agreement up to a total time derivative, as expected.

Combining the results in this paper with previous results, we have completed the noncon-

servative corrections to the equations of motion for spinning compact binaries through 4.5PN

order derived entirely using the EFT approach. This is an important step towards complet-

ing the equations of motion through 5PN for use in producing templates for gravitational

wave detectors now and in the future.
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Appendix A: Radiative center-of-mass corrections

Energy and momentum loss due to gravitational radiation emission leads to a shift in the

COM momentum and position of a binary system [50]. In our gauge, the leading radiative

corrections to the COM are 3.5PN effects, which enter the PN equations of motion at 4.5PN.

The conservative definition of the COM vector Gi relates to the linear momentum Pi

through the Noetherian integral Ki = Gi − tPi. The invariance of the conservative La-

grangian under the Lorentz boost leads to the conservation of Ki, which implies that [48]

dGi

dt
= Pi, (A1)

where Pi remains constant, i.e.,
dPi

dt
= 0 (A2)
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for all conservative PN orders. This relation no longer holds upon the inclusion of dissi-

pative effects. With radiation reaction considered in the binary dynamics, the flux-balance

equations for the energy, angular momentum, and linear momentum can be combined to

compute the averaged secular evolution of the binaries. In this section, we focus on solving

for a COM position Gi at 3.5PN that is consistent with the flux-balance equation results in

Ref. [52].

At the leading 2.5PN order, the balance equation for total linear momentum including

the net force can be written as

∑

A

mAa
i
A,2.5PN +

dPi
2.5PN

dt

∣

∣

∣

∣

a0PN

= −2G

5
IjI ij(5), (A3)

where the mass-type dipole moment I i =
∫

d3xT 00xi corresponds to the conserved COM Gi.

The Pi
2.5PN is a possible linear momentum term at 2.5PN that can be solved by the equation

above, similar to the “Schott” term in electromagnetism [49]. The Schott-like momentum

depends on the expression of the radiation-reaction force on the right-hand side of Eq. (A3).

We can rewrite some of the time derivatives on the multipole moments with the addition of

a total time derivative that can be absorbed into the left-hand side, equivalent to a gauge

transformation.

Using the Burke–Thorne acceleration (2.11) and the leading mass dipole I i =
∑

A mAx
i
A,

it can be shown from Eq. (A3) that there is no net radiation effects on the linear momentum

at 2.5PN related by some gauge transformation, i.e., Pi
2.5PN = 0. With the 3.5PN radiation

reaction included, the balance equation for linear momentum is given by [52]

dPi

dt
= −2G

5
IjI

(5)
ij −

(

2G

63
I
(4)
ijkI

(3)
jk +

16G

45
ǫijkI

(3)
jmJ

(3)
km

)

+O
(

ǫ4.5
)

, (A4)

where the net force at 3.5PN contains contributions from

dPi

dt

∣

∣

∣

∣

3.5PN

=
∑

A

mAa
i
A,3.5PN +

dPi
1PN

dt

∣

∣

∣

∣

a2.5PN

+
dPi

3.5PN

dt

∣

∣

∣

∣

a0PN

, (A5)

with Pi
3.5PN a possible Schott term modification to the linear momentum at 3.5PN. Equating

Eq. (A4) and Eq. (A5) to solve for Pi
3.5PN leads to an explicit expression for the secularly

evolving linear momentum consistent with the flux-balance equations. At 3.5PN order,

Eq. (A4) includes

dPi

dt

∣

∣

∣

∣

3.5PN

=− 2G

5
Ij,0I

(5)
ij,1 −

2G

5
Ij,1I

(5)
ij,0 −

2G

5
Ij,0I

(5)
ij,0

∣

∣

∣

∣

a1PN

− 2G

63
I
(4)
ijkI

(3)
jk − 16G

45
ǫijkI

(3)
jmJ

(3)
km, (A6)
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with the LO mass octupoles and current quadrupoles. For the terms in Eq. (A5), the

radiation-reaction force
∑

A mAa
i
A,3.5PN taken from Ref. [18] includes

∑

A

mAa
i
A,3.5PN =

∑

A

δ

δxi
A−

(

−G

5
I ij0−I

ij(5)
1+ − G

5
I ij1−I

ij(5)
0+ − 16G

45
J ij
0−J

ij(5)
0+ +

G

189
I ijk0− I

ijk(7)
0+

)

PL

− 2G

5
mAx

j
AI

(5)
ij

∣

∣

∣

∣

a1PN

+

(

∂L1PN

∂xi
A

− d

dt

∂L1PN

∂vi
A

)
∣

∣

∣

∣

a2.5PN

, (A7)

where L1PN is the 1PN conservative Lagrangian, and the 1PN momentum can be derived

from

dPi
1PN

dt

∣

∣

∣

∣

a2.5PN

=
d

dt

(

∑

A

∂L1PN

∂vi
A

)
∣

∣

∣

∣

a2.5PN

, (A8)

with
∑

A ∂L1PN/∂x
i
A = 0. Cancellations from Eq. (A5) and Eq. (A6) give

∑

A

δ

δxi
A,−

(

−G

5
I ij1−I

ij(5)
0+ − 16G

45
J ij
0−J

ij(5)
0+ +

G

189
I ijk0− I

ijk(7)
0+

)

PL

+
dPi

3.5PN

dt

=− 2G

5
Ij1I

ij(5)
0 − 2G

63
I
ijk(4)
0 I

jk(3)
0 − 16G

45
ǫijkI

jm(3)
0 J

km(3)
0 . (A9)

Integrating by parts liberally and performing the variation of the minus coordinates, we

find

dPi
3.5PN

dt
=

d

dt

{

G

63
(−I

(6)
ijkIjk + I

(5)
ijkI

(1)
jk − I

(4)
ijkI

(2)
jk − I

(3)
ijkI

(3)
jk + I

(2)
ijkI

(4)
jk )

+
8G

45
ǫijk(2IjlJ

(5)
kl + I

(1)
jl J

(4)
kl − I

(2)
jl J

(3)
kl − I

(3)
jl J

(2)
kl + I

(4)
jl J

(1)
kl ) +

8G

15
JjJ

(4)
ij

+
G

105

∑

A

mA

[

(11x2
Ax

j
Aδ

ik − 17xi
Ax

j
Ax

k
A)I

(6)
jk

+
(

34(xA · vA)x
j
Aδ

ik − 11x2
Av

j
Aδ

ik − 46vi
Ax

j
Ax

k
A − 22xi

Ax
j
Av

k
A

)

I
(5)
jk

]

}

−
∑

A

8G

15
mAǫjklx

j
Aa

k
AJ

(4)
il − I

(5)
jk

[

G

63
I
(2)
ijk +

8G

45
ǫijlJ

(1)
kl

+
G

105

∑

A

mA

(

−22xi
Av

j
Av

k
A − 22xi

Ax
j
Aa

k
A + 12vi

Ax
j
Av

k
A + 17ai

Ax
j
Ax

k
A

+ δik
(

8v2
Ax

j
A + 34(xA · aA)x

j
A + 12(xA · vA)v

j
A − 11x2

Aa
j
A +

21GmBx
j
A

r

)

)]

,

(A10)

in which the terms outside the total time derivative vanish after substituting the Newtonian

equations of motion and the LO multipole moments. Therefore an explicit linear momentum
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P i that obeys the flux-balance equation at the 3.5PN order is given by

Pi
3.5PN =

G

63
(−I

(6)
ijkIjk + I

(5)
ijkI

(1)
jk − I

(4)
ijkI

(2)
jk − I

(3)
ijkI

(3)
jk + I

(2)
ijkI

(4)
jk )

+
8G

45
ǫijk(2IjlJ

(5)
kl + I

(1)
jl J

(4)
kl − I

(2)
jl J

(3)
kl − I

(3)
jl J

(2)
kl + I

(4)
jl J

(1)
kl ) +

8G

15
JjJ

(4)
ij

+
G

105

∑

A

mA

[

(11x2
Ax

j
Aδ

ik − 17xi
Ax

j
Ax

k
A)I

(6)
jk

+
(

34(xA · vA)x
j
Aδ

ik − 11x2
Av

j
Aδ

ik − 46vi
Ax

j
Ax

k
A − 22xi

Ax
j
Av

k
A

)

I
(5)
jk

]

. (A11)

Next, the 3.5PN COM position Gi is related to Pi
3.5PN by [53]

dGi

dt
= Pi − 2G

21
I ijk(3)Ijk(3). (A12)

We equate Eq. (A12) with the total 3.5PN expansion of the flux of the COM position, which

can be constructed by some total time derivatives,

dGi

dt
=

dGi
3.5PN

dt
+

dGi
1PN

dt

∣

∣

∣

∣

a2.5PN

=
d

dt

{

G

63
(−IjkI

(5)
ijk + 2I

(1)
jk I

(4)
ijk − 3I

(2)
jk I

(3)
ijk − 4I

(3)
jk I

(2)
ijk + 5I

(4)
jk I

(1)
ijk)

+
8G

45
ǫijk(2IjmJ

(4)
km − I

(1)
jmJ

(3)
km − I

(3)
jmJ

(1)
km + 2I

(4)
jmJkm) +

8G

15
JkJ ik(3)

+
G

105
I
(5)
kl

∑

A

mA(11δ
ikx2

Ax
l
A − 17xi

Ax
l
Ax

k
A)

}

− 8G

15
ǫjkl

∑

A

mAx
k
Aa

l
AJ

ij(3), (A13)

where all multipole moments are their LO expressions. The last term outside the total

derivative vanishes after substituting the Newtonian equations of motion. Therefore, the

COM position Gi at 3.5PN can be determined as the Schott terms inside the time derivative

of Eq. (A13), which contributes to a 4.5PN piece of corrections to the 1PN acceleration.
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