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We investigate the scalar mode quadrupole radiation of gravitational waves in F (R) modified
gravity. In F (R) gravity a massive scalar mode appears in the gravitational waves. We find explicit
expressions for the quadrupole radiation and the energy current of the scalar mode in general F (R)
gravity models. We consider a binary star and a bouncing star as astronomical sources of the
gravitational waves and calculate the quadrupole radiation of the scalar and tensor modes. The
scalar mode radiates under spherically symmetric conditions, but the tensor modes do not. The
scalar mode mass is estimated for some typical energy scales. We show a possibility to detect the
scalar mode in the future gravitational waves observation.

I. INTRODUCTION

F (R) gravity is a modified gravity theory in which the
Einstein-Hilbert action, R, is replaced by a general func-
tion of R. It has been introduced as non-linear general-
ization of Einstein’s theory[1]. One of the major applica-
tions of this idea has been made on the construction of
cosmological models with an accelerating expansion[2].
Numerous models have been proposed to explain the
early and late-time accelerating expansion of the uni-
verse, as a review, see, for example, [3–5].
There is potential to test the models of F (R) gravity by

looking at current observations attributed to the expan-
sion of the universe, for example, type Ia supernovae[6, 7],
CMB fluctuations[8, 9] and BAO[10, 11]. Evidence of
accelerating expansion alone is not sufficient, and other
procedures to test the model of F(R) gravity are being
explored. In fact, several studies have been done on the
verification of F(R) gravity through the equation of state
inside neutron stars[12, 13] and its contribution to the
solar system[14]. In this paper, we focus on the possibil-
ity of testing the models of F (R) gravity in gravitational
waves.
The first direct detection of gravitational waves(GWs)

from a binary black hole was succeeded in 2015 by
LIGO[15]. This is a new clue in examining the the-
ory of gravity. In consequence, the observed gravita-
tional waves were consistent with the predictions of gen-
eral relativity(GR). It shows that GR can be adapted
to strong gravity. However, GWs may directly reveal
the existence of phenomena beyond GR. Exploring extra
modes of GWs has already been done[16]. Expectations
are growing for the development of future GWs detec-
tors such as KAGRA[17], LIGO-India[18], LISA[19] and
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DECIGO[20].

One of the characteristics of F(R) gravity is that an
extra degree of freedom appears in GWs[21–26]. The
extra degree of freedom propagates as a scalar mode
of GWs. The scalar mode of F (R) gravity has a non-
vanishing mass depending on F (R) modification[27–33].
Thus, F (R) gravity can be constrained through the scalar
mode mass[34–39].

Here, we investigate the scalar mode propagation in
F (R) gravity in more detail. First of all, we try to solve
the wave equation with a source. Applying the procedure
in Ref.[40] to a general F (R) gravity, the wave equation
can be divided into tensor and scalar modes. Then we
study the gravitational waves propagation from gravita-
tional sources. We solve the wave equation for the scalar
mode and evaluate the quadrupole radiation. The scalar
mode radiation is considered from two typical sources,
a binary star and a bouncing star that shrinks in size
and bounces back. The amplitude of the scalar mode
is suppressed by the mass correction. We calculate the
suppression compared with the tensor modes. Then we
estimate the possibility to detect the scalar mode in fu-
ture gravitational wave observations. We also evaluate
the delay of the massive scalar mode from the first signal
according to the propagation speed.

This paper is organized as follows. Sec. 2 describes
the basic formulation for the tensor and scalar modes
of the gravitational wave. We give expressions for the
quadrupole radiation and energy current. In Sec. 3 we
evaluate the scalar mode radiation from a binary star and
a bouncing star and discuss the possibility to detect the
scalar mode. Finally, we give some concluding remarks.
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II. BASIC FORMULATION

A. Wave equation

F (R) gravity is motivated by an exploration of cosmic
accelerating expansion such as the inflation and dark en-
ergy by extension of the Ricci scalar, R to a general form,
F (R) in the action. It is expected that F (R) gravity in-
duces phenomena beyond GR. We focus on the possibility
to test the model of F (R) gravity through gravitational
wave propagation.
We start from the F (R) gravity action,

S =

∫

d4x
√−g

1

16πG
F (R) + Smatter. (1)

where G denotes the gravitational constant. The equa-
tion of motion is driven by varying the action (1) with
respect to the metric tensor,

Gµν = 8πGTµν , (2)

where we introduce the modified Einstein tensor, Gµν ,
defined by

Gµν ≡F ′(R)Rµν − 1

2
gµνF (R)

+ (gµν✷−∇µ∇ν)F
′, (3)

and Tµν is the energy-momentum tensor derived from the
matter action, Smatter . To find the gravitational wave
equation, the metric perturbation is employed in Eq.(3).
We consider the perturbation of the metric tensor around
a flat Minkowski background, ηµν ,

gµν = ηµν + hµν . (4)

The perturbation of F (R) and F ′(R) around the back-

ground curvature R̃ is given by

F (R) = F (R̃) + F ′(R̃)δR, (5)

F ′(R) = F ′(R̃) + F ′′(R̃)δR. (6)

The scalar mode of GWs is identified with

F ′′(R̃)

F ′(R)
δR = Φ. (7)

It should be noted that the curvature, R̃, vanishes in the
flat Minkowski background.
The gravitational wave equation (2) contains a mixture

of tensor and scalar modes. We extend the prescription
separating these two modes in Ref.[40] to a general F (R)
gravity. To find a wave equation for the physical degrees
of freedom we introduce, h̄µν ,

h̄µν = hµν + (bΦ− 1

2
h)ηµν , (8)

and impose the following gauge conditions,

∇ν h̄µν = 0. (9)

In these conditions the lowest order of Ricci tensor and
scalar are expressed as

R(1)
µν =− 1

2

[

�

(

h̄µν − h̄

2
ηµν

)

+ b(ηµν�Φ+ 2∂µ∂νΦ)

]

, (10)

R(1) =
1

2
�h̄− 3b�Φ. (11)

We set Tµν = 0 and derive the perturbed equation of
motion from Eq.(2),

R(1)
µν − 1

2
ηµνR

(1) + [ηµν�− ∂µ∂ν ] Φ = 0. (12)

The perturbed equation is divided into the tensor and
scalar parts,

−1

2
�h̄µν + (b + 1) [ηµν�− ∂µ∂ν ] Φ = 0. (13)

To eliminate the scalar part from Eq.(13), we set b =
−1. Then Eq.(13) reduces to

�h̄µν = 0. (14)

The wave equation of the tensor mode is now success-
fully extracted and equivalent to the one in GR. On the
other hand, the scalar mode equation can be obtained by
tracing Eq.(12).

[

�−m2
]

Φ = 0, (15)

where the mass squared in Eq.(15) is expressed as,

m2 =
1

3

F ′(0)

F ′′(0)
. (16)

The existence of scalar mode is attributed to the F (R)
modification. In other words, physics beyond GR
emerges. This is because the F (R) modified gravity has
an extra degree of freedom[22–24]. A gauge choice such
that h vanishes is not possible due to the non-zero mass
existence in Eq.(15). The degree of freedom of hµν is now
reduced to six by the gauge condition in Eq. (9). There is
still room for gauge choice in the tensor mode wave equa-
tion in Eq.(14). h̄µν is further fixed by the gauge trans-
formation generated by ξµ satisfying �ξµ = 0. By im-
posing the transverse-traceless gauge conditions on h̄µν

as in GR,

ηµν h̄µν = 0, h̄0i = 0, (17)

the remaining four gauge degrees of freedom of ξµ are
fixed. The physical degree of freedom of the tensor
modes, h̄µν is two. Thus the GWs propagation of tensor
mode in F (R) gravity is nothing changes from GR. The
two degrees of freedom corresponding to GR are the ten-
sor modes, h̄µν and the other is the scalar mode, Φ. The
mass in Eq.(16) depends on the function F (R)[27–29, 31–
33]. The scalar mode shows the verifiability of modified
gravity theory through the GWs detections[36, 37].
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B. Tensor modes

To consider the phenomena of GWs, the energy-
momentum tensor is induced in the wave equation for
tensor mode (14) as a source of GWs,

�h̄µν = 8πG̃Tµν . (18)

where we redefine the gravitational constant as G̃ =
G/F ′. We find the radiation of gravitational waves from
the solution of this equation.
It is more convenient to employ the Fourier represen-

tation of h̄,

h̄µν(x, t) =
1√
2π

∫

dk0h̄µν(x, k
0)e−ik0t. (19)

Green’s function is defined by the solution of �G(x) =
δ(x). By using the Fourier representation of Green’s
function, the tensor mode solution of Eq.(18) is found
to be

h̄µν(x, k
0) =− 16πG̃

∫

d3xG(x − x
′, k0)

× Tµν(x
′, k0). (20)

As is well-known, the Fourier representation of Green’s
function is given by

G(x, k0) =
1

√
2π

3

∫

1
√
2π

3

1

−k2 + k20
eik·xd3k

=− 1

4π|x|e
ik0|x|. (21)

Substituting Eq.(21) into Eqs.(20) and (19), we obtain
the retarded solution of the tensor mode,

h̄µν(x, t) = 4G̃

∫

d3x′Tµν(x
′, t− |x− x

′|)
|x− x′| . (22)

This solution shows that GWs emitted from the source
travel at the speed of light. The only difference in tensor
mode between GR and F(R) gravity is the gravitational

constant. If G̃ is regarded as the observed constant, no
difference appears.

C. Scalar mode

For the scalar mode propagation from gravitational
sources, the trace of the energy-momentum tensor is in-
troduced in the wave equation (15),

[�−m2]Φ = 8πG̃T. (23)

Green’s function for scalar mode is defined as the solution
of [� − m2]G(x) = δ(x). The difference from Green’s
function in the tensor mode is the non-vanishing mass.

After the integral with respect to the wave vector, we
obtain the Fourier representation of the green’s function,

G(x, k0) =
1

√
2π

3

∫

1
√
2π

3

1

−k2 −m2 + k20
eik·xd3k

= − 1

4π|x|e
i
√

k2
0−m2|x|.

The Fourier representation of the scalar mode is given by

Φ(x, k0) = −16πG̃

∫

d3xG(x− x
′, k0)T (x

′, k0). (24)

By the inverse Fourier transformation, the scalar mode
is represented as

Φ(x, t) =− 16πG̃

∫

dk0
∫

d3x′G(x− x
′, k0)

× T (x′, k0)e
−ik0t

=4G̃

∫

d4x′T (x′, t′)G(|x− x
′|, t− t′). (25)

To simplify the expression we set t − t′ = ∆t. Then,
Green’s function, G(|x − x

′|,∆t), is rewritten as

G(|x − x
′|,∆t) =

1

2π|x− x′|

∫ ∞

−∞

ei(
√

k02−m2|x−x
′|−k0∆t)dk0. (26)

The Green’s function is represented by the Bessel func-
tion according to Ref.[41, 42],

G(|x− x
′|,∆t) =

δ(∆t− |x− x
′|)

|x− x′| − m
√

∆t2 − |x− x′|2

× J1(m
√

∆t2 − |x− x′|2)θ(∆t − |x− x
′|). (27)

Substituting Eq.(27) to Eq.(25), the retarded solution of
the scalar mode is found to be

Φ(x, t) =4G̃

∫

d3x′

[

T (x′, t− |x− x
′|)

|x− x′|

−
∫ t−|x−x

′|

−∞

dt′
m

√

∆t2 − |x− x′|2

×J1(m
√

∆t2 − |x− x′|2)T (x′, t′)
]

. (28)

We introduce the time-dependent parameters, tp =
t − |x− x

′|, tf = t + |x− x
′| and write τ =

√

(t′ − tp)(t′ − tf ). Then the second term on the right-
hand side in Eq.(28) is rewritten as

∫

V

d3x′

∫ ∞

0

mdτ
J1(mτ)

m
√

τ2 + |x− x′|2

× T (x′, t−
√

τ2 + |x− x′|2). (29)
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We transform the integral variable τ to ζ with mτ =
m|x− x

′| sinh ζ. Eq.(29) is simplified to
∫

V

d3x′

∫ ∞

0

dζJ1(m|x− x
′| sinh ζ)

× T (x′, t− cosh ζ|x − x
′|). (30)

Therefore, the scalar mode is found to be

Φ(x, t) = 4G̃

∫

d3x′

∫ ∞

0

dζ

[

δ(ζ)

|x− x′|

−mJ1(m|x− x
′| sinh ζ)

]

T (x′, t− cosh ζ|x− x
′|). (31)

It should be noted that cosh ζ takes the value from 1 to∞
for the interval of the integration, ζ : 0 → ∞. We regard
cs ≡ 1/ cosh ζ as the velocity of scalar mode propagation.
For ζ = 0 the velocity is equal to the speed of light. At
the limit ζ → ∞ the scalar mode does not propagate, i.e.
cs = 0.

D. Quadrupole radiation

Here we focus on GW radiation whose source is suffi-
ciently far away from the observer and the gravitational
source is non-relativistic. In this case, the GW radiation
is generated by the quadrupole and higher moments of
the energy and momentum distributions.
First, we consider the tensor mode solution. For the

observer, |x− x
′| ∼ |x| ≡ r, Eq.(22) is written as

h̄ij(x, t) ∼ 4G̃

r

∫

T ij(x′, t− r)d3x′, (32)

at the leading order. From the conservation law,
∂µT

µν = 0, we obtain

∂µ∂νx
ixjT µν(x) = 2T ij(x).

The three-dimensional spatial integration of this equa-
tion gives

∫

2T ij(x)d3x

=

∫

d3x
[

∂m∂lx
ixjTml + ∂0∂0x

ixjT 00(x)

+2∂k∂0x
ixj(T k0(x) + T 0k(x))

]

= ∂0∂0

∫

d3xxixjT 00(x). (33)

From the first line to the second line in this equation,
we drop the surface terms. Substituting Eq.(33) into
Eq.(32), the tensor mode solution is represented as the
2nd derivative of the quadrupole moment, Iij ,

h̄ij(x, t) ∼ 2G̃

r
∂0∂0

∫

T 00(x′, t− r)xi′xj ′d3x′

=
2G̃

r

d2Iij

d2t
. (34)

It should be noted that the projection operators are nec-
essary to describe the polarization of the tensor modes.
Next, we move to the scalar mode solution (31). The

change of variable, w = mr sinh ζ, makes the integral of
the Bessel function easier to compute [43],

∫ ∞

0

dζmJ1(mr sinh ζ)

=

∫ ∞

0

dw
mJ1(w)

√

w2 + (mr)2

= mI 1
2

(mr

2

)

K 1
2

(mr

2

)

, (35)

where I 1
2
and K 1

2
denote the modified Bessel functions

and satisfy,

I 1
2
(z) =

√

2

πz
sinh z, K 1

2
(z) =

√

π

2z
e−z. (36)

For the distant observer, it is assumed that the veloc-
ity of scalar mode propagation is almost constant and
the energy-momentum tensor is independent of the value
of cosh ζ. In other words, assuming that the energy-
momentum tensor does not depend on the velocity or
the velocity changes a little. Then Eq.(31) becomes

Φ = 4G̃

∫

d3x′

∫ ∞

0

dζ

[

δ(ζ)

r
−mJ1(mr sinh ζ)

]

× T (x′, t− r

cs
)

∼ 4G̃

∫

d3x′

[

1

r
− 1− e−mr

r

]

T (x′, t− r

cs
)

=
4G̃e−mr

r

∫

d3x′T (x′, t− r

cs
). (37)

The tracing of the energy-momentum tensor can be di-
vided into 00 and spatial parts. T00 gives the mass
density and Tij is related to the 2nd derivative of the
quadrupole moment as can be seen from the tensor mode
analogy,

Φ =
4G̃e−mr

r

∫

Td3x′

=
4G̃e−mr

r

∫

(T 0
0 + T i

i)d
3
x
′ (38)

=
4G̃e−mr

r
M +

2G̃e−mr

r

d2I

d2t
. (39)

The scalar mode has a Yukawa-like potential depend-
ing on the total mass and the trace of the quadrupole
moment, I. This property is due to the fact that the
scalar mode is massive, which has been obtained in other
studies[31, 33]. The additional quadrupole radiation part
enables us to understand dynamical phenomena.

E. Energy current

Following the procedure developed in [40], we calculate
the effective energy-momentum tensor for a general form
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of Φ. The gravitational radiations carry energy and then
act as a source of gravitational fields. In order to intro-
duce the background metric arising from gravitational
waves themselves we have to consider the perturbation
around a curved background metric, γµν .

gµν = γµν + hµν . (40)

The perturbation of the modified Einstein tensor can
be described as,

Gµν = GB
µν + G(1)

µν + G(2)
µν ,

where the number in the upper indices denotes the order
of the expansion and GB

µν is the modified Einstein tensor
for the background. For the GWs the 1st order term

vanishes, G(1)
µν = 0, from the wave equation. Then the

background satisfies

GB
µν = −G(2)

µν . (41)

Later, we will average over several wavelengths,< G(2)
µν >,

assuming that the background is on a large scale com-
pared with the wavelengths of GWs. Eq.(41) means that
the background metric γµν is O(h2). So the background
is decomposed

γµν = ηµν + jµν , (42)

where jµν is the order O(h2). The curvature tensor of
the background is also O(h2). Then the 2nd-order per-
turbation of the Ricci tensor is given by

R(2)
µν =

1

4
∇µh

αβ∇νhαβ +
1

2
hαβ

× (∇µ∇νhαβ +∇α∇βhµν −∇α∇νhµβ −∇α∇µhβν)

− 1

2
(∇βh

αβ − 1

2
∇αh)(∇νhµα +∇µhαν −∇αhµν)

+
1

2
∇βhα

ν(∇βhµα −∇αhµβ). (43)

From Eq.(8) with b = −1 it is expressed by h̄ and Φ as,

R(2)
µν =

1

4
∇µh̄

αβ∇ν h̄αβ +
1

2
h̄αβ∇µ∇ν h̄αβ

+
3

2
∇µΦ∇νΦ+ Φ∇µ∇νΦ +

1

2
γµνΦ�Φ. (44)

Thus the 2nd-order modified Einstein tensor (3) is found
to be

G(2)
µν =F ′

[

R(2)
µν − 1

2
γµνR

(2) − 1

2
hµνR

(1)

]

+ F ′′

[

R(1)R(1)
µν − 1

4
γµνR

(1)2
]

+ γµν�(F ′′R(2))− γµνh
αβF ′∂α∂βΦ

+ hµν�(F ′′R(1))− γµνγ
αβΓρ(1)

αβF
′∂ρΦ

− ∂µ∂ν(F
′′R(2)) + Γρ(1)

µν F
′∂ρΦ, (45)

where the perturbation of the connection is

Γρ(1)
µν =

1

2
γρλ(∂µhλν + ∂νhµλ − ∂λhµν)

=
1

2
γρλ(∂µh̄λν + ∂ν h̄µλ − ∂λh̄µν)

− 1

2
γρλ(γλν∂µΦ+ γµλ∂νΦ− γµν∂λΦ).

On a large-scale background curvature, the terms that
remain after averaging over several wavelengths are

〈

R(2)
µν

〉

=
〈

−1

4
∂µh̄

αβ∂ν h̄αβ +
1

2
∂µΦ∂νΦ+

1

2
γµνΦ�Φ

〉

, (46)

and

〈

R(2)
〉

=
〈

γµνR(2)
µν − hµνR(1)

µν

〉

=

〈

9

2
Φ�Φ

〉

. (47)

The averages over several wavelengths for Eqs.(10) and
(11) are

〈

R(1)
µν

〉

=
1

2
〈γµν�Φ+ 2∂µ∂νΦ〉 ,

〈

R(1)
〉

= 〈3�Φ〉 ,

where we use the wave equation Eq.(14) so we take
�h̄µν = 0. Then we get

〈

R(1)R(1)
µν

〉

=

〈

3�Φ∂µ∂νΦ +
3

2
γµν(�Φ)2

〉

.

Thus, we obtain the average of the 2nd order perturba-
tion of modified Einstein tensor (45),

〈

G(2)
µν

〉

= F ′

〈

−1

4
∂µh̄

αβ∂ν h̄αβ − 3

2
∂µΦ∂νΦ

〉

. (48)

The effective energy-momentum tensor is defined by

F ′TG
µν ≡ − 1

8πG̃

〈

G(2)
µν

〉

. (49)

Substituting Eq.(48) into Eq.(49), we successfully de-
rived the effective energy-momentum tensor including the
scalar mode in the general case, Φ.

TG
µν =

1

8πG̃

〈

1

4
∂µh̄

αβ∂ν h̄αβ +
3

2
∂µΦ∂νΦ

〉

. (50)

By the replacement of t and r, the energy current is
given by

dEGW

dt
=−

∫

< TG
0r(t− r) > r2dΩ

=

∫

< TG
00(t− r) > r2dΩ, (51)
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where we take the propagation speed of the scalar mode
to almost light speed, cs ∼ 1. We will see the validity of
this assumption in the later section. . The tensor and
scalar modes, h̄ and Φ, are described by the 2nd deriva-
tive of the quadrupole moment. For a distant observer
the total mass, M , is conserved, and the time deriva-
tive of the first term in Eq.(39) drops. Then the energy
current is written in the quadrupole representation,

dEGW

dt
=

〈

G̃

5

...
I ij

...
I ij

+ 12G̃e−2mr
...
I

2

〉

, (52)

Eq.(52) shows that the scalar mode emerges in gravita-
tional radiation in addition to the tensor modes.
Blow the gravitational constant G̃ is written as G.

III. SCALAR MODE QUADRUPOLE

RADIATION

A. Binary star

At present, GWs from compact binary stars are the
most promising source for observations. We focus on
the scalar mode GWs from binary stars. It is assumed
that the binary star rotates on the xy plane and these
masses have m1,m2 and the stellar distance is L. The
distances from the center of gravity to each star are given
by (r1, r2) = (m2L/M,m1L/M).
The quadrupole moment is defined by

Iij =

∫

d3x′ρ(x′)x′
ix

′
j . (53)

The density and position of the binary star are repre-
sented as,

ρ(x) = m1δ(x− x1) +m2δ(x − x2),

x1 = (r1 cosωt, r1 sinωt, 0),

x2 = (−r2 cosωt,−r2 sinωt, 0), (ω =
√

GM/L3).

After the spatial integration, the quadrupole moment of
the binary star is derived

Iij =





L2µ cos2 ωt L2µ cosωt sinωt 0
L2µ cosωt sinωt L2µ sin2 ωt 0

0 0 0



 , (54)

where µ denotes the reduced mass, µ ≡ m1m2/(m1+m2).
When we take the typical velocity of the stars v and
the distance between Earth and the binary star r, the
amplitude of tensor mode from a binary star is evaluated
by Eq.(34),

|hij | =
4G

rc4
µL2(2πf)2

r
∼ 4G

rc4
µv2

r

∼ 5× 10−23

(

100Mpc

r

)(

µ

10M⊙

)

( v

0.1c

)2

. (55)

On the other hand, the trace of the quadrupole mo-
ment (54) becomes I = L2µ. If the trace of the
quadrupole moment does not have time dependence, the
scalar mode does not radiate from a binary star. How-
ever, we have not taken into account the energy carried
out by GWs. For consistency with current GW observa-
tions, we assume tensor mode GW radiation to be dom-
inant. Since the tensor modes GW carries away the en-
ergy of a binary star, the interstellar distance L decreases
monotonically with time as L = L0(1− t/tcoal)

1/4 where
tcoal is the time of coalescence [44, 45],

tcoal =
5

256

c5

G3

L0
4

µM2
.

The scalar mode may have a chirp signal that does not
oscillate from Eq. (39). Thus the amplitude is calculated
to be

Φ ∼4GµL0
2

c4t2coalr
∼ 218

52
Gµ3

c2Mr

(v

c

)

∼5× 10−31

(

100Mpc

r

)(

10M⊙

M

)2

×
(

µ

10M⊙

)2
( v

0.1c

)14

. (56)

The strain of the amplitude is extremely small and it is
consistent with the assumption. It increases over time
but is not quite sufficient for observation. There is lit-
tle hope to observe the scalar mode GWs from a binary
star. However, we considered only the inspiral phase.
The compact binary coalescence has the phases such as
merger and ringdown phases [46]. It is an interesting
topic, although it requires more precise analysis [47, 48].

B. Bouncing star

Let us now study a toy model that we call a bouncing
star. It is far from a real phenomenon such as a supernova
explosion. However, it does provide some clues about the
scalar mode propagation in spherically symmetric gravi-
tational sources.
We consider a star with the radius R(t) and the den-

sity ρ = M/(4π3 R(t)3), where M is the total mass of
the star and does not depend on time. The trace of the
quadrupole moment becomes

I =

∫

d3x′ρ(x′)x′
ix

′i = 4π

∫ R(t)

0

dr′ρr′
4

=
3

5
MR(t)2. (57)

We assume that the star shrinks and bounces once and
write the time evolution of radius as,

R(t) = R0(1− be
−(t−t0)2

τ2 ).
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The star shrinks to R0(1 − b) and bounces at t = t0.
The bouncing time interval is characterized by τ . In this
situation, the scalar mode from Eq.(39) is given by

Φ =
48G̃MR0

2b

5τ2
e−mr

r

[(

1− 2(t− t0)
2

τ2

)

−b

(

1− 4(t− t0)
2

τ2

)

e
−(t−t0)2

τ

]

e
−(t−t0)2

τ2 , (58)

where the static potential is neglected. The scalar mode
is emitted from the star with spherical symmetry. This
result is interesting because the tensor modes do not ra-
diate from spherically symmetric objects.
We estimate the amplitude of the bouncing star. Ap-

plying the bouncing of the core in a supernova explosion,
we find

|Φ|typical =
48G̃MR0

2b

5τ2
e−mr

r

= 7.93× 10−44MR0
2b

τ2
e−mr

r

= 2× 10−20

(

10kpc

r

)(

M

M⊙

)(

R0

6000km

)2 (
1s

τ

)2

,

where the exponential term is dropped by assuming that
the mass is sufficiently small and b approximated to 1.
It shows that a core collapse of a supernova explosion in
our galaxy may emit the detectable scalar mode GWs.
Also, the energy current in this event is estimated from
Eq.(52),

dEGW

dt
∼ 12G

c5
M2R0

4b

τ8

∼ 2× 1043
(

M

M⊙

)2 (
R0

6000km

)4 (
1s

τ

)8

erg/s. (59)

The gravitational potential energy released in the super-
nova collapse is estimated in the order of 1053erg [49–51].
The scalar mode GWs cost only 10−8% of total energy
emission. The existence of a scalar mode does not have a
significant contribution to supernova explosions and sub-
sequent growth.
Fig.1 shows the time dependence of the radius of the

bouncing star, amplitude, and energy current of the
scalar mode GWs for b = 1. We also show the figure
in the case of b = 0.5 in Fig.2 for comparison. The pa-
rameter b produces a large difference in energy release.
Therefore, a dramatic event, such as the collapse of a star,
is necessary to generate detectable scalar mode GWs.

C. Scalar-tensor ratio

We compare the amplitudes for the tensor and scalar
modes. The scalar-tensor ratio of GWs is defined by

R =
|Φ|
|hij |

. (60)

We assume that the quadrupole radiation intensities of
both modes are equivalent, Ï = Ïij . The scalar-tensor
ratio only depends on the exponential term in Eq.(39),

R = e−mr. (61)

Below we estimate the ratio in some mass scale of mod-
ified gravity. The scale of mass depends on the mod-
ification scale of gravity theory. For instance, the R2

model[2], F (R) = R+R2/M2 has the scalar mode mass,

m = M/
√
6 from Eq.(16).

For the dark energy scale,
m = 10−33eV ∼ (4200Mpc)−1 we obtain

R ∼ (0.999998)
r

10kpc ,

(0.976)
r

100Mpc ,

(0.368)
r

4200Mpc ,

where the distances are assumed as 10kpc for the scale of
the Galaxy, 100Mpc for the scale of galaxy clusters, and
4200Mpc for the scale of primordial gravitational waves.
Since the attenuation is a few to 60 percent, they are not
a major obstacle to observation. On the other hand, we
obtain

R ∼
(

10−7×1050
)

r

10kpc

, (62)

for the inflation scale, m = 1015GeV ∼ (2 × 10−31m)−1.
In this case, the scalar mode rapidly suppresses. It seems
very difficult to observe the scalar mode with the inflation
scale. Therefore, the scalar mode GWs are interesting
observable physical quantities when the typical scale of
the modified gravity is at the dark energy scale.

D. Constraints from propagation speed

We obtain the speed of the scalar mode propagation
in Eq.(31). Constraints from the propagation speed also
help in the verification of the scalar mode GWs as well as
the scalar-tensor ratio. The mass constraints are found
from the propagation speed in some observation periods.
The propagation speed for a wave packet is derived as
the group velocity,

cs =
∂ω

∂k
. (63)

The dispersion of the scalar mode is ω =
√
k2 +m2. The

propagation speed of the scalar mode becomes

cs =

√

k2

k2 +m2
=

√

ω2 −m2

ω2
. (64)

The tensor modes propagate at light speed and the scalar
mode does at cs. From Eq.(64) the scalar mode mass is
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FIG. 1. Time dependence of radius(left), amplitude(middle), energy current(right) at b = 1.
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FIG. 2. Time dependence of radius(left), amplitude(middle), energy current(right) at b = 0.5.

estimated as

m = ω

√

(

1−
(cs
c

)2
)

= 4.14× 10−15

(

f

1Hz

)

√

1−
(cs
c

)2

[eV/c2], (65)

where we denote ω = 2πf and the light speed c is not
omitted.
We write ∆t as the difference between the arrival time

of the tensor and scalar modes at a distance r. It is
described as,

∆t =
r

cs
− r

c
, (66)

Then the ratio of the propagation speeds is estimated as,

cs
c

=
1

1 + c∆t
r

. (67)

If we detected GWs from inside the Galaxy, r ∼ 10kpc,
and the maximum delay is a century, the lower bound of
cs/c is determined from Eq.(67),

cs
c

≥ 0.99695. (68)

In a century-long observation, the upper bound of the
scalar mass is 3.2× 10−16eV/c2 ≥ m from Eq.(65).
In Table.I, the mass constraints are summarized for

several cases of distance and observation period. In es-
pecially, the scalar mode GW has ∆t ∼ 3× 10−26s delay

TABLE I. The upper bound of scalar mode mass
m[eV/c2] at 1Hz

.

Period 10kpc 100Mpc 4200Mpc

a second 5.8× 10−21 6× 10−23 9× 10−24

a day 1.7× 10−18 1.7× 10−20 2.6× 10−21

a year 3.2× 10−17 3.2× 10−19 5.0× 10−20

a century 3.2× 10−16 3.2× 10−18 5.0× 10−19

from the tensor modes when the mass is 10−33eV/c2. The
scalar mode mass in the dark energy scale is difficult to
observe because of the tiny delay from the tensor modes.

IV. CONCLUSION

We have investigated the quadrupole radiation of GWs
in F (R) gravity. F (R) gravity has an extra degree of free-
dom in the wave equations beyond GR. Thus the scalar
mode also radiates in addition to the tensor modes. The
scalar mode has a mass that depends on the F (R) modifi-
cation. We have derived the retarded solution in Eq.(31).
The quadrupole radiation in the scalar mode is repre-
sented as a function of the trace of the quadrupole mo-
mentum. It has been shown that the amplitude of the
scalar mode is suppressed exponentially. Also, we have
derived the GW energy current including the scalar mode
for a general F (R) form in Eq.(52).
We have considered the scalar mode radiation from

several astronomical sources. The radiation from binary
stars is currently the most successful gravity source for
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tensor modes but the amplitude is too weak to detect the
scalar mode GWs. However, there is not enough research
on the moment of star coalescence and there is room for
the observation of the scalar mode radiation.
We have evaluated a simple model of the bouncing star.

The model is not appropriate to adapt to real stars, but
it provides some clues to understand the scalar mode ra-
diation. Spherically symmetric sources emit the scalar
mode GWs, not the tensor modes. Applying the super-
nova explosions to the bouncing star, we show that the
scalar mode radiation from the events inside the Galaxy
is possible to detect in future GWs observations. This
phenomenon is expected to be a promising candidate for
the detection of scalar mode GWs. We have calculated
the ratio of the amplitude for the scalar and tensor modes
and found it proportional to e−mr. If the scalar mode
mass is at the dark energy scale, it does not suppress
even for a cosmological distance. On the other hand, it
is promptly suppressed at the inflation scale.
It is known as the chameleon mechanism that matter-

energy density increases the mass of a scalar mode, mak-
ing them unobservable. The mechanism is applied to
the modified gravity. It has been shown that the sig-
nal is screened in ground-based detectors such as LIGO,
while space-based ones such as LISA have a chance to
observe[31]. In this work, we have focused on the GWs
radiation from gravitational sources with a small mat-
ter energy density. The contribution from the back-
ground matter field is not taken into account. We are
interested in evaluating the screening mechanism for the
scalar mode in the solar system and on Earth.
The upper bounds on the scalar modes mass have been

estimated from the propagation speed constraints in the

observation period. It is much smaller than the inflation
scale and larger than the dark energy scale. In addition
to that, in phenomena where tensor modes are hardly
radiated, we are able to obtain similar constraints from
the photon instead of the massless tensor modes.
We conclude that the verification of F (R) modified

gravity using GWs is hopeful for the mode of the current
accelerating expansion. It is difficult to obtain evidence
of modification on a high-energy scale such as inflation in
the current GW detectors. The scalar mode can be radi-
ated from a spherically symmetric gravitational source,
which is not predicted by GR. The observation of the
scalar mode directly proves the necessity of an extension
of GR.
There are other sources of GWs. We are inter-

ested in GWs from the early universe such as bubble
collisions[52–55]. GWs from high-energy events in the
early universe may directly or indirectly influence obser-
vations of cosmological phenomena[56]. These phenom-
ena will become important with the next generation of
GW observations[57–64]. We will continue the work and
compare the results in F (R) gravity with other modified
gravity theories such as F (T )[65, 66], F (G)[67–69], other
formalisms, Palatini F (R)[70] and Cartan F (R)[71]. By
examining these in detail, we hope to find the potential
of the modified gravity.
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