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Mauŕıcio Hippert,1 Emily Dillingham,2 Hung Tan,1 David Curtin,3 Jacquelyn Noronha-Hostler,1 and Nicolás Yunes1

1Illinois Center for Advanced Studies of the Universe, Department of Physics,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

2Department of Physics, Berea College, 101 Chestnut Street, Berea, KY 40404, USA
3Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada

(Dated: May 11, 2023)

The mirror twin Higgs model is a candidate for (strongly-interacting) complex dark matter, which
mirrors SM interactions with heavier quark masses. A consequence of this model are mirror neutron
stars – exotic stars made entirely of mirror matter, which are significantly smaller than neutron
stars and electromagnetically dark. This makes mergers of two mirror neutron stars detectable and
distinguishable in gravitational wave observations, but can we observationally distinguish between
regular neutron stars and those that may contain some mirror matter? This is the question we
study in this paper, focusing on two possible realizations of mirror matter coupled to standard model
matter within a compact object: (i) mirror matter captured by a neutron star and (ii) mirror neutron
star-neutron star coalescences. Regarding (i), we find that (non-rotating) mirror-matter-admixed
neutron stars no longer have a single mass-radius sequence, but rather exist in a two-dimensional
mass-radius plane. Regarding (ii), we find that binary systems with mirror neutron stars would
span a much wider range of chirp masses and completely different binary Love relations, allowing
merger remnants to be very light black holes. The implications of this are that gravitational wave
observations with advanced LIGO and Virgo, and X-ray observations with NICER, could detect or
constrain the existence of mirror matter through searches with wider model and parameter priors.

I. INTRODUCTION

Compact objects present a tantalizing opportunity to
study dark matter (DM) candidates. Their strong grav-
itational fields present a unique environment, and their
properties are coming under increased scrutiny thanks
to gravitational wave (GW) and X-ray observations.
Most DM candidates consider one weakly self-interacting
species due to simplicity [1, 2]. One of the consequences
of this assumption is that neutron stars (NSs) can then
contain DM only through direct (gravitational) capture
or through non-gravitational interaction channels, lead-
ing to admixed stars (i.e. those with a mixture of stan-
dard model (SM) matter and DM) [3–11]. Admixed
NSs can have a small DM core [10], or a DM halo that
would not affect the visible radius [11]; sometimes, such
stars can be composed almost entirely of DM, leading
to extremely tiny dark compact objects (with masses
of ∼ 10−8M⊙)[12]. Alternatively, some studies have
looked into NSs composed of hidden sector nucleons from
a dark-QCD sector [13, 14], fundamental asymmetric
DM fermions [10, 15–24], or asymmetric bosons [25–28].
These studies generally consider simplified interactions
of only 1 or 2 particle species. An extensive review of
DM capture within NSs can be found in [29].

In recent years, however, the possibility of complex,
strongly self-interacting DM candidates has been sug-
gested [30–32] and the consequence for compact objects
explored [33–35]. Specifically, mirror matter [36–40]
within the mirror Twin Higgs model [31, 32, 40–42] is
a nearly identical copy of the SM in its matter content
and gauge interaction, except that the masses of funda-
mental particles are scaled up by a factor f/v, where f

and v are vacuum expectation values of SM and mirror-
sector Higgs fields, respectively. This model is highly
motivated as a solution to the hierarchy problem for
f/v ∼ 3 − 7. The twin top quarks are neutral under all
SM gauge interactions, but their interaction with the SM
Higgs nevertheless stabilizes its mass and solves the little
hierarchy problem without predicting large signals at the
LHC [43, 44]. This is in contrast to other solutions to the
hierarchy problem like TeV-scale supersymmetry, which
predicts large LHC signals due to strong production cross
sections for new particles, like stops and gluinos [45].
Additionally, because mirror matter contains multiple
species that are strongly interacting, it is possible for
mirror matter to clump together to form mirror neutron
stars (MNSs) [33]. MNSs were found to be very similar to
SM NSs, except that they are significantly smaller, with
masses M ∼ (0.5− 1)M⊙ and radii R ∼ (4− 8) km [33].
These MNSs are entirely new hypothesized, electromag-
netically dark, compact objects with completely different
mass-radius sequences from SM NSs. Importantly, since
MNSs are entirely electromagnetically dark GWs from
MNS mergers are the best method to detect them. Their
distinct tidal deformability and mass range makes them
distinguishable from SM NSs or SM stellar-mass black
holes.

While mergers between MNSs are very distinct from
standard astrophysical gravitational wave signals and
represent a spectacular discovery opportunity for new
physics, the precise abundance and distribution of MNSs,
and hence the rate of their mergers, is almost impossi-
ble to predict for a given microphysical model of mirror
matter. Depending on the mirror matter distribution in
our universe, other astrophysical events involving mirror
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FIG. 1. Schematic representation of the coalescence between
a NS and a MNS. After inspiralling, radiating energy in GWs
(top panel), the two stars collide and merge (middle panel).
Depending on the stellar masses, the system either relaxes to
an admixed mirror star (bottom left panel) or collapses to a
small black hole (lower right panel).

matter may be much more common. It is therefore vital
to consider the full range of possible phenomena involv-
ing mirror matter and NSs.

What would happen if a NS and a MNS were to co-
alesce? Schematically, the evolution of such a binary
is depicted in Fig. 1. First, the two compact objects
would spiral around one another. While their separation
is large, they could be effectively treated as point parti-
cles in the post-Newtonian approximation [46]. Because
of GW emission, their orbit would shrink and eventu-
ally their separation would become small enough that
the stars would tidally deform each other. As their sep-
aration continues to decrease, the surface of the NS and
that of the MNS would cross each other and their stellar
interiors would begin to overlap. Unlike mergers of two
NSs or two MNSs, this would not be a standard collision
because mirror matter and regular matter only interact

gravitationally.1 After the MNS sinks to the center of
the NS, the final remnant would either be a black hole
or a stable NS with a mirror matter core, depending on
the mass of the progenitor stars.
The development of a quantitative description of the

coalescence sketched above requires the combination of
various techniques. In the inspiral, post-Newtonian the-
ory can be used to describe the orbital motion of the
stars and their tidal deformations. Indeed, the previous
study [33] has focused on this inspiral stage and the possi-
bility of using measurements of the tidal deformabilities
to distinguish between NS binaries and MNS binaries.
In this work we extend the inspiral analysis to NS-MNS
binaries.
The merger stage can only be described via a two-fluid,

numerical relativity simulation in which the fluids only
interact gravitationally, such as found in Ref. [47]. Even
without such a code, however, one can still study the
hypothetical remnant object: a “mirror-matter admixed
NS” (MANS, please do not confuse with MNS, which re-
ferred to Mirror NS), partially composed of SM matter
and mirror matter. There are three possibilities to create
MANS : (i) mirror matter accreting into the cores of a SM
NS, (ii) SM matter accreting into the cores of a MNS, and
(iii) MNSs and NSs merging into a stable admixed mirror
star remnant. In case (i) [(ii)], one would have very tiny
mirror matter [SM] cores that depend on the available
mirror matter [SM matter] from their surroundings and
the precise nature of the matter-mirror and matter in-
teractions (see e.g. [32] for a study of Twin Higgs mirror
matter accretion in white dwarfs). In case (iii), most NS
and MNS mergers would produce light black holes, but in
certain rare cases, stable admixed mirror star remnants
would remain with large mirror matter cores.
Case (iii) can happen because cosmological density

perturbations of baryons and mirror baryons are highly
correlated, meaning that ’mirror galaxies’ will be super-
imposed on ’regular galaxies’. Furthermore, if mirror
stars form in the mirror galaxy, it is likely that gas cool-
ing causes a dark disk to form, which is aligned with the
visible disk [48]. This spatial proximity makes it plausible
that mixed binaries form through gravitational encoun-
ters, perhaps in regions of high stellar and mirror-stellar
densities near the center of the galaxy. Since future grav-
itational wave observatories will be able to detect merg-
ers in the majority of the observable universe, even rare
events become potential signals.
In this paper, we study the properties of objects formed

in both formation scenarios of MANSs and address their
observational prospects. We essentially ask ourselves
the following question: how can we distinguish between
SM NSs, MNSs, and MANSs from GW observations
with advanced LIGO and Virgo, or X-ray observations
with NICER? To answer this question, we first construct

1 Mirror matter and SM matter do interact via Higgs exchange,
but the effect is negligible for astrophysical processes.
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two-fluid solutions to the Tolman-Oppenheimer-Volkoff
(TOV) equations, which describe non-rotating stars (ei-
ther SM NSs with f/v = 1, or MNSs or MANSs with
f/v > 1) in general relativity [16, 49–51]. Our primary
findings are the following:

• Given an equation of state (EoS), the mass-radius
sequence of stable NSs is continuously connected to
the mass-radius sequence of stable MNSs through
mass-radius sequences of stable MANS. This means
that MANSs have a two-dimensional (2D) mass-
radius plane, instead of a one-dimensional mass-
radius curve, given a SM EoS.

• MANSs can have the ultimate mass-radius twins,
i.e. stars with the exact same mass and radius,
but different DM fraction, and thus, composition.
These ultimate twins, however, can be told apart
by their tidal deformabilities, Λ.

• The mass-radius plane of stable MANSs is nearly
independent of the dark sector’s ΛQCD and ex-
tends to much lighter (smaller mass) and much
tinier (smaller radius) objects, relative to stable
NSs above the Chandresekhar limit.

• The relation between the tidal deformability and
the mass (or the compactness) of MANS is also
two-dimensional. This plane extends to a minimum
Λ ∼ 10, but not just for very massive objects, but
rather also for light objects with masses as low as
∼ 0.75M⊙.

• The inspiral of a NS and a MNS and that of a
MNS and another MNS fills a unique phase space of
symmetric mass ratio and chirp mass, unreachable
by NS binaries. The symmetric mass ratio can be
as low as 0.16 (corresponding to a mass ratio of
0.3), while the chirp mass can be as low as 0.5M⊙
(corresponding to a total mass of 1M⊙).

• The remnant of the merger between a NS and a
MNS primarily produces very light black holes,
with masses between ∼ (1.3, 3.7)M⊙. Occasionally,
such a merger may also produce a stable MANS
with a mass of MMANS ∼ (1.2, 1.6)M⊙ and radius
RMANS ∼ (8, 9.5) km. The merger of a MNS binary
can lead to black holes as small as M ∼ 0.8M⊙.

• If a NS and MNS merge and both are above their
respective Chandrasekhar limits2, the admixed core
of the remnant MANS can have masses up to

2 The NS Chandrasekhar limit is about M ∼ 1.4M⊙. There have
already been observations of objects below that limit [52, 53]
with X-Ray observation. From those X-Ray observations, one
can estimate the mass and sometimes the radius as well. How-
ever, time-integrated measures have been found to be susceptible
to systematic error (especially due to assumptions about the at-
mospheres) such that radii can differ by up to ∼ 50% [54, 55].

MDM ∼ 0.4M⊙ and radii as large as 4.5 km. Thus,
these cores can make up approximately one third
of the star’s mass and are distributed up to half of
their total radius.

• If MANS are formed by other means (e.g. accret-
ing matter), then a much wider 2D mass-radius se-
quence is possible that could lead to either DM ha-
los or cores.

The results summarized above differ from other recent
studies on mirror matter admixture on NSs [8, 56, 57]
and binary NS mergers [47]. These other studies explored
mirror matter candidates that, apart from discrete sym-
metries, are identical to SM particles. Our work is unique
in that we consider mirror Twin Higgs matter, with fun-
damental masses scaled up by f/v > 1, and we employ
first-principle results [58–64], from lattice QCD and chi-
ral perturbation theory, to scale the EoS with f/v [33].
For f/v = 1, our model EoS is also tuned to meet current
observational constraints on the NS mass-radius relation,
while mirror matter is considered in the range f/v ≳ 3
favoured by LHC constraints [43, 44]. This makes our
EoS models for the DM sector directly relevant for the
solution to the Hierarchy Problem as well as highly real-
istic.
The remainder of this paper presents the details that

led to the conclusions summarized above, and it is or-
ganized as follows. Section II briefly reviews our micro-
scopic model for the EoS of NS matter developed in [33],
and how we extend it to the mirror sector. Section III
outlines general methods for the calculation of two-fluid
stellar properties and their stability. Section IV presents
results regarding the properties of isolated NSs, MNSs
and MANS. Section V investigates and discusses the GW
imprint of a NS/MNS inspiral. Section VI describes the
possible remnants of a NS/MNS merger. Section VII
summarizes the signatures of mirror from various merger
scenarios, and Sec. VIII concludes and presents an out-
look of future work.

II. MICROSCOPIC MODEL

In this short section, we briefly describe our micro-
scopic model for the EoS of NSs and MNSs [33]. All of
the presented results are derived under the simplifying
approximations of vanishing temperature and slow rota-
tion, T ≃ 0 and Ω ≃ 0.
For the description of matter in the NS core, we employ

a relativistic mean-field nuclear model, suplemented by a
free gas of electrons and muons, so that charge neutral-
ity and chemical equilibrium under weak interactions are
satisfied. This model features scalar, vector, and vector-
isovector interactions and is tuned to reproduce proper-
ties of nuclear matter,3 as well as current constraints from

3 The nuclear physics inputs of our model are the incompressibil-
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NS observations [65–71]. At lower densities, we match
the model to a Baym-Pethick-Sutherland EoS for the NS
crust [72] via an interpolation procedure. A detailed ac-
count of our model can be found in [33] and references
therein. Results for NS properties obtained with this
model are reviewed in Sec. IVA.

For our description of matter inside a MNS, we adopt
the same model, but rescale parameters to account for the
different microphysics of the Twin Higgs mirror sector.
Our dark-matter model is then fixed by the ratio f/v
between the expectation values of the Higgs and Mirror
Higgs. We assume this ratio to lie in the range f/v ≃
(3− 7), as larger values would fail to naturally solve the
hierarchy problem in the minimal model [43], and smaller
values are ruled out by Higgs coupling measurements at
the LHC [73].

All the elementary masses in our model —that is, the
ones of leptons and quarks— are thus rescaled by the
same factor f/v, defined such that the SM is recovered
when f/v = 1. However, because of the non-perturbative
scale ΛQCD and the spontaneous breakdown of chiral
symmetry of QCD, this translates to non-trivial scal-
ings for the nuclear-model couplings and the baryon mass
with f/v. These scalings are extracted from low-energy
nuclear-physics phenomenology and first-principle results
from chiral perturbation and lattice QCD (see [33] for ex-
tensive details and suggestions for new calculations from
lattice QCD). In the absence of these inputs, extra cou-
plings are scaled according to dimensional analysis, but
for those couplings the details of this procedure have min-
imal impact on the overall EoS scaling. Details of these
scalings can be found in [33].

III. STELLAR STRUCTURE EQUATIONS

In this section, we review the equations that we use to
calculate the structure of MNSs. We also review simple
criteria for the stability of these stars and the calculation
of their Love number. These results are very well known
in the case of ordinary compact stars (see e.g. [74] and
references therein), but here we present them with an
extra layer of generality [3–11, 75].

Besides the single component stars already discussed
in Refs. [33], we address a third possibility, consisting
of two-component isolated stars, made of both SM and
mirror matter. This choice is motivated not only by com-
pleteness but by the possibility of such stars existing, as
a result of dark-matter admixture in NSs. We refer the
reader to Sec. IVB for details. In the case of such stars,
because interactions between ordinary and DM are as-
sumed to be negligible, the structure equations, stability

ity, symmetry energy, nucleon Dirac mass and binding energy
per nucleon at saturation density. The set of values that are
employed here and the corresponding parameters can be found
in [33].

analysis and calculation of Love number must be modi-
fied accordingly, as we present below [7].

A. Two-Fluid Configurations

The structure of (mirror) NSs follows from the equilib-
rium between the push of pressure and the pull of gravity,
summarized through the equation of hydrostatic equilib-
rium. In the case of two-component stars, however, the
lack of significant interactions between dark and visible
matter prevents their equilibration with one another.4.
Instead, each fluid component must independently neu-
tralize gravitational forces, resulting in two independent
“equilibrium” pressures, say, pSM and pDM. Nonetheless,
the two fluids interact via gravitation, and the Einstein
equations must be solved in the presence of both fluids at
the same time [3, 16]. Previous studies have also consid-
ered the effects of DM particles in equilibrium with NS
matter [76–80].
Two-component stars are odd creatures, and possess

two zero-pressure surfaces, which encompass the two in-
dependent fluids. In principle, these fluids can rotate
with different angular velocities without violating hydro-
static equilibrium. Nonetheless, after sufficiently long
times, tidal effects tend to synchronize their rotations.
In the following sections, for the sake simplicity, we as-
sume no differential rotation between the two fluid com-
ponents. Under this assumption, the two-fluid system we
consider is no different from a single-fluid system, except
that there are two stress-energy tensors on the right-hand
side of Einstein’s field equation.
Assuming two independent fluids amounts then to

writing the stress-energy tensor as the linear combina-
tion

Tµν = Tµν
SM + Tµν

DM , (1)

where each component is independently conserved, i.e.

Tµν
SM ;ν = Tµν

DM;ν = 0 (2)

Also, assuming global thermodynamic equilibrium, the
stress-energy tensor for each component can be written
as

Tµν
SM = (ϵSM + pSM)u

µ
SMu

ν
SM + pSMg

µν

Tµν
DM = (ϵDM + pDM)u

µ
DMu

ν
DM + pDMg

µν .
(3)

From the above equations, it is clear that the standard
case of a single fluid that leads to a SM-only NS can be
recovered by taking pDM = 0 = ϵDM. Thus, from here on,
we concentrate on calculations for the more general case
in which two fluids are present.

4 It is interesting to consider the impact of small possible cou-
plings, like a kinetic mixing between the SM photon and the
twin photon, which may result in non-negligible interactions be-
tween matter and mirror matter in this case [31, 32], but we leave
this for future work.
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B. Hydrostatic Equilibrium

Let us review the hydrostatic equilibrium equations
in the case of two independent fluids, relevant for
two-component stars with admixed cores [3, 16].
These equations generalize the well-known Tolman-
Oppenheimer-Volkoff (TOV) equations for single-fluid
stars, which can be recovered as a particular case, by
setting to zero the density and pressure of one of the
fluids.

We consider a static two-fluid hybrid star in spheri-
cal symmetry. The line element squared can therefore
be written as ds2 = −e2τdt2 + e2σdr2 + r2dΩ2, with sig-
nature (−,+,+,+), where τ and σ are functions of the
(areal) radial coordinate r and dΩ2 is the line element
squared of a two-sphere. The only non-zero component
of the four velocity of a static-fluid is the time component.
Therefore, uµ

SM = uµ
DM = N (1, 0, 0, 0), where N is a nor-

malization factor that ensures uµu
µ = −1. Even though

our study consider a MANS as a remnant of a merger,
not a component star in a binary, it is worth noting that
both fluids in the MANS can acquire a velocity relative
to the center of the star in a binary. However, [81] indi-
cated that the relative velocity is less than 5% of the time
component of the fluid four-velocity, which validates the
static-fluid assumption even in a binary.

With the four velocity known and a few algebraic ma-
nipulations, Eqs. (2) and the Einstein field equation sim-
plify to a set of TOV-like equations for two fluids:

dpi
dr

= − (ϵi + pi)
m+ 4πr3 (pSM + pDM)

r (r − 2m)
, (4a)

dm

dr
= 4π (ϵSM + ϵDM) r

2, (4b)

dNi

dr
= 4π

ni√
1− 2m/r

r2, (4c)

with i = {SM,DM}. Here, pSM,DM and ϵSM,DM are the
pressure and energy density of the SM and DM fluids,
respectively, while m = [1 − exp(−λ)]/2 is the enclosed
mass function. Notice that Eq. (4a) governs the hydro-
static equilibrium of the fluids separately. In Eq. (4c),
nSM,DM and NSM,DM are the baryon number density and
the total number of baryons and mirror baryons, respec-
tively.

We follow [74] closely for the standard numerical imple-
mentation to solve the two-fluid TOV equation, except
for the initial conditions and stopping conditions. For
the initial conditions, we need to specify the energy den-
sities of both the SM species and the DM species, ϵSMc and
ϵDM
c , at the center of the star. Let us say then that we
choose some value of ϵSM

c and ϵDM
c and begin to integrate

the equations out from the center. At some radial coor-
dinate, the pressure of one of the fluids (either the SM or
the DM fluid) drops to 10−8 of the corresponding central
pressure. That value of the radial coordinate defines the
“radius of the admixed core Rin,” which contains both
fluids. Of course, that is not all of the star, since the

density and pressure of the other fluid can still be large
at that radius. The integrator then continues, with the
energy density and pressure of the first fluid set to zero,
until the pressure of the second remaining fluid drops to
10−8 of the corresponding central pressure. The radial
coordinate value at that place defines the outer radius of
the entire star Rout and the integrator stops. The total
mass MMANS of the star is then simply the value of m
evaluated at the radius Rout.
The description of this implementation presented

above anticipates one of the main results of this paper:
stable two-fluid stars have (2D) mass-radius planes in-
stead of (1D) mass-radius curves. Mathematically, this
tracks back to the need to specify two initial conditions,
ϵDM
c and ϵSMc , to find a stellar solution to the two-fluid
TOV equations. This means that one can independently
change ϵDM

c while keeping ϵSMc constant (thus, increasing
the number of mirror baryons in the star), or alterna-
tively independently change ϵSMc while keeping ϵDM

c con-
stant (thus, increasing the number of SM baryons in the
star). As we will show in the next section, the sequence
of stable stellar configurations is, indeed, represented by
a plane in mass and radius.

C. Tidal Deformability

Tidal deformation emerges under strong external tidal
fields. If a MANS is in a binary orbit with another com-
pact object, at some point the MANS and the other com-
pact object will be a distance r12 appart such that the
MANS will become tidally deformed due to the gravi-
tational pull of the other compact object. In this case,
the tidal deformability can be calculated within this two
fluid approach as well, see [7, 25, 82]. Just as SM
NSs, the two-fluid MANS can be tidally deformed when
the distance r12 between the stars is small enough, i.e.
Rout ≪ r12 ≪ Rext, where Rext is the radius of curvature
of the source of the external field (the other compact ob-
ject) and Rout is the radius of the entire two-fluid MANS.
A multipolar expansion of the metric exterior to the star
can be written as [83]:

−1 + gtt
2

=− MMANS

Rout
−

3Q
(tid)
ij

2R3
out

(
ninj − 1

3
δij

)
+O

(
1

R4
out

)
+

1

2
EijR2

outn
inj +O

(
R3

out

)
,

(5)

where Eij is the (quadrupole) tidal tensor field,

Q
(tid)
ij is the corresponding tidally-induced and traceless

quadrupole moment tensor, and ni = xi/Rout is a field-
point unit vector. The tidal deformability λ can be de-

fined by Q
(tid)
ij = −λ Eij . The dimensionless tidal de-

formability can then be written as

Λ = λ/M5
MANS, (6)
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where MMANS is the mass of the entire two-fluid star ob-
tained from the two-fluid TOV equations.

The quantity λ can be calculated by solving the Ein-
stein field equations interior to the star at first order in
the tidal perturbations. The version of this equation for
a single fluid star is presented e.g. in [74]. To obtain
the corresponding equation for a two-fluid star, one may
naively replace ϵ → ϵSM + ϵDM, p → pSM + pDM, and
m → mSM + mDM in the relevant equations, where mi

can be obtained using the equation dmi/dr = 4πϵir
2

with i ∈ {SM, DM}. However, because both fluids exert
gravitational attraction on each other, one must employ
Eq. (4a) to write dϵi/dr = (dϵi/dpi)(dpi/dr), instead of
applying a naive replacement in the corresponding term
for one-fluid stars.

In the end, the Einstein field equations at first order
in the tidal perturbation become

r
dy∗
dr

+ y2∗ + F (r)y∗ + r2Q(r) = 0 (7)

with

F (r) =
r + 4πr3(pSM + pDM − ϵSM − ϵDM)

r − 2mSM − 2mDM

(8)

and

Q(r) =
4πr

r − 2mSM − 2mDM

[
5(ϵSM + ϵDM) + 9(pSM + pDM)+

pSM + ϵSM

cs2SM

+
pDM + ϵDM

cs2DM

− 3

2πr2

]
+

−
(
2
mSM +mDM + 4(pSM + pDM)πr

3

r(r − 2mSM − 2mDM)

)2

,

(9)

which agrees with [7]. Here the quantity y∗ is defined
by y∗ ≡ rh′

2(r)/h2(r), where h2 is related to time-time
component of the metric by gtt = −e2τ (1+h2Y2m(θ, ϕ)),
with Y2m the ℓ = 2 spherical harmonic. Notice that the
quantity h2 represents a first-order-in-perturbation term
due to tidal effects. The quantity cs

2
i in Eq. (9) is the

speed of sound squared of the ith fluid5, which is defined
as cs

2
i ≡ dpi/dϵi. After solving the interior equation,

Eq. (7), one can match the interior solution to the exte-
rior metric of Eq. (5) to find the ratio of coefficients Qtid

ij

and Eij , and thus, to obtain Λ. Doing so, one finds

Λ =
16

15

{
(1− 2C)

2
[2− y + 2C (y − 1)]

}
{

2C [6− 3y + 3C(5y − 8)]

+ 4C3
[
13− 11y + C(3y − 2) + 2C2(1 + y)

]
+3(1− 2C)2 [2− y + 2C(y − 1)] ln (1− 2C)

}−1
,

(10)

5 Note that the Q(r) term depends on 1/c2s1 and 1/c2s2, which
can diverge during a first-order phase transition. In this radial
regime, however, the pressure and density drops violently to keep
the ratio finite.

where C = MMANS/Rout is the gravitational compactness
of the entire star and y = y∗(Rout).

D. Stability Analysis

The stability of stellar configurations may be deter-
mined by analyzing the spectrum of radial density os-
cillations. In a complete analysis, one adds a harmonic
perturbation of the form ξ(r)e−iωt to the metric fields
and linearizes the Einstein field equations with respect
to the perturbation. The result of this procedure is a
Sturm-Liouville problem, whose solution determines the
frequency eigenvalues {ωi}. In this approach, unstable
radial modes manifest as exponentially increasing solu-
tions, with Imωi > 0 [49, 84, 85]. The equation of radial
pulsation for a single-fluid compact star was first derived
by Chandrasekhar[86]. Here, we resort to a simpler, less
rigorous, stability criterion, following [87, 88]. An analo-
gous criterion, for single-fluid stars, is explained in detail
by Weinberg [89].
Assuming invariance under time reversal, each eigen-

mode ξi(r) has a pair of fundamental frequencies ω±
i =

±
√
ω2
i , where ωi ∈ R is an eigenvalue. The onset of

instability then corresponds to the point at which the
lowest-lying eigenvalue ω2

0 flips sign and becomes nega-
tive. Precisely at this point, ω±

0 = 0, and the field per-
turbations are simply ξ0(r), which is a static configura-
tion, and therefore, in equilibrium. Because equilibrium
configurations are uniquely specified by central densities,
these modes must correspond to shifts ϵic → ϵic + δϵic.
Moreover, if we approach ω2

0 → 0+ from above, these
configurations will be joined by arbitrarily slow oscilla-
tions, which must leave the total (mirror) baryon number
Ni unchanged.
All of this implies that at the onset of unstable radial

modes, the total mirror baryon and SM baryon numbers
must be stationary under variations of ϵic: δNSM

δNDM

 =

 ∂NSM/∂ϵ
SM
c ∂NSM/∂ϵ

DM
c

∂NDM/∂ϵ
SM
c ∂NDM/∂ϵ

DM
c

 δϵSMc

δϵDM
c

 = 0.

(11)
The existence of nontrivial solutions δϵic ̸= 0 demands
that the matrix in Eq. (11) have zero determinant:

∂NSM

∂ϵSMc

∂NDM

∂ϵDM
c

− ∂NSM

∂ϵDM
c

∂NDM

∂ϵSMc
= 0. (12)

This is the criteria for the onset of radial instability for
two-fluid stars.
One might wonder if Eqs. (11) and (12) are consistent

with the well-known condition ∂M/∂ϵc = 0 in the case
of a single fluid. For single-fluid stars, Eq. (11) will only
have nontrivial solutions if ∂N/∂ϵc = 0. Under the as-
sumption of uniform entropy per baryon, the stellar mass
is stationary under any transformation ϵ(r) → ϵ(r)+δϵ(r)
that leaves the total baryon number N unchanged [89].
This holds if and only if the TOV equation is satisfied,
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and thus, exclusively for equilibrium configurations. In
light of this result, demanding that ∂N/∂ϵc = 0 is equiv-
alent to imposing that ∂M/∂ϵc = 0, which is the widely
used criteria for the onset of instability [89].

The result mentioned above has recently been gener-
alized to the case of two fluid stars [16]. Given that
the entropy per baryon in the SM fluid and the entropy
per mirror baryon in the DM fluid are kept uniform,
Eqs. (4a)-(4c) are satisfied if and only if any transforma-
tion ϵi(r) → ϵi(r) + δϵi(r) satisfying δNi = 0, with i =
{SM,DM}, also leaves the mass unchanged, i.e. δM = 0.
Equation (11) is precisely the condition that NSM and
NDM are stationary, under which case M is stationary
as well. That is, at the onset of instability, δNSM = 0,
δNDM = 0 and δM = 0 under variations of the central
energy densities, (ϵSM

c , ϵDM
c ) → (ϵSM

c + δϵSM
c , ϵDM

c + δϵDM
c ).

The physical intuition behind this simpler stability cri-
terion is also left unchanged. Suppose a single-fluid star is
taken out of equilibrium, with ϵc → ϵc+δϵc, while its total
baryon number N = N(ϵc) is kept fixed. The star is then
at a baryon-number difference ∆N = N(ϵc)−N(ϵc+δϵc)
away from equilibrium. Assuming ∂M/∂N > 0, if
∆N > 0, there is a mass excess, indicating that the
gravitational pull is too strong and the star will con-
tract. If ∆N < 0, gravitational attraction is not suf-
ficiently strong and the star expands. In the spirit of
Le Chatelier’s principle, equilibrium is stable if an in-
crease in density δϵc > 0 leads to a restoring expansion,
with ∆N ≈ −(∂N/∂ϵc)eqδϵc < 0, where the derivative is
taken in hydrostatic equilibrium. Therefore, a necessary
condition for stable equilibrium is that δN/δϵc > 0, or
equivalently δM/δϵc > 0 [90].

For a two-fluid star, the two central densities and two
conserved charges are mutually intertwined, making the
physical picture less clear. However, an analogous heuris-
tic argument can be found by diagonalizing the matrix
∂Ni/∂ϵc j , with {i, j} = {DM,SM}, in Eq. (11). By do-
ing so, one obtains two independent sets of variables,
(ϵAc , NA) and (ϵBc , NB) corresponding to eigenvalues κA

and κB , such that: δNA

δNB

 =

 κA 0

0 κB

 δϵAc

δϵBc

 . (13)

Because NA and NB are linear combinations of NSM and
NDM, they are also conserved and are kept fixed as the
star is perturbed. Changes to ϵAc and ϵBc are then per-
formed independently to find that equilibrium configura-
tions can be stable only if both eigenvalues are positive

κA > 0, κB > 0. (14)

This generalizes the widely used stability condition
∂M/∂ϵc > 0 to multi-fluid stars.

Finally, we observe that Eq. (12) provides one condi-
tion for two independent variables ϵSM

c and ϵDM
c . There-

fore, as the mass-radius relation for two-fluid stars is an
area, the boundary of the stable region is a set of curves.

This is in contrast to the case of a single fluid, for which
the mass-radius relation is a curve and stable regions are
delimited by points.
Henceforth, we will determine stability by using the

condition in Eq. (14), which is in agreement with previous
stability studies of two-fluid dark-matter admixed stars
[49, 84, 85]. A rigorous stability analysis of two-fluid
stars, using e.g. our EoS, is left to future work.

IV. PROPERTIES OF INDIVIDUAL STARS

Before we study coalescences involving NSs, MNSs
and MANSs, we must first address the properties of
each of these stars in isolation. Masses and radii fol-
low directly from the EoSs discussed in Sec. II and the
equations of structure (including the two-fluid Tolman-
Oppenheimer-Volkoff (TOV) equation), which were re-
viewed in Sec. III B. The calculation of tidal deformabil-
ities, can be computed as described in Sec. III C. Results
for isolated MNSs and NSs were already presented in [33],
but we present them again here for completeness. We also
present results for a new type of object (MANS), which
we remind the reader are compact ojbects composed of
an admixture of mirror matter (f/v > 1) and SM matter
(f/v = 1).

A. Neutron Stars and Mirror Neutron Stars

The NS EoS discussed in Sec. II [33] can be inserted
into Eqs. (4a), (4b) and (7), with pDM = ϵDM = 0, to cal-
culate the mass, radius and tidal deformabilities of SM
NSs. The resulting mass-radius and tidal deformability-
mass relation are shown in Fig. 2 and are consistent with
the current observational constraints [33]. The latest
NICER measurement of pulsar J0740+6620 [65, 66] was
not used to constrain model parameters in Ref. [33], but
yet, the mass radius curve is consistent with these ob-
servations. The aim of the present study is not to ad-
vocate for a particular model of NS matter. Instead, we
simply choose an EoS that is in agreement with known
astrophysical observations, and which we can extend to
the mirror sector to draw new predictions. An extensive
discussion of uncertainties from the SM EoS and mass-
radius relation can be found in Ref. [33], where we show
that our predictions for MNS matter are robust against
these uncertainties, as well as model details.
Similarly, the MNS EoS of Sec. II can be inserted into

the same equations, but this time with pSM = ϵSM = 0
and specific choices of f/v, to calculate the mass, radius
and tidal deformabilities of MNSs. The resulting mass-
radius and Λ-mass sequences of MNSs are also shown
in Fig. 2, where Chandrasekhar-mass configurations are
marked with a filled circle in the mass-radius panel [33],
and we calculate the sequences down to 64%MCh. Fig-
ure 2 allows us to compare predictions for NSs and MNSs.
Observe that, in the phenomenologically relevant range
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FIG. 2. Upper panel: Mass-radius relations for NSs and
MNSs with quark masses scaled by mq′/mq = f/v. Lower
panel: tidal deformability-mass for NSs and MNSs with quark
masses scaled by mq′/mq = f/v. The blue and beige shaded
regions correspond to 2σ confidence regions, using X-ray ob-
servations of pulsars J0030+0451 and J0740+6620, respec-
tively by NICER [65–68]. Red shaded regions represent 2σ
confidence intervals from GW event GW170817 observed by
advanced LIGO/Virgo [69–71].

f/v ≃ 3 − 7, the mass-radius and Λ-mass sequences for
MNS are shifted to lower masses and smaller radii, and
to smaller Λ and smaller masses. This is perhaps most
clearly seen for the Chandrasekhar-mass configurations,
which go from the well-known ∼ 1.4M⊙ value for SM
matter to sub-solar masses for MNS. Moreover, the Λ-
mass sequences for NSs and MNSs are very clearly sep-
arated, indicating they could be distinguished by their
GW signatures [33].

B. Mirror-Matter-Admixed Neutron Stars

Besides isolated NSs and MNSs, our model enables us
to make predictions for a third class of objects, not ad-
dressed in [33]: MANS, compact objects akin to NSs and
MNSs, but containing both SM (f/v = 1) and mirror
matter (f/v > 1) in their interior. We will here consider
the structure of MANS with an arbitrary fraction of mir-
ror matter, which our two-fluid set up is tailored-made
to handle. In particular, we set pSM(ϵSM) to the SM EoS
and pDM(ϵDM) to the mirror matter EoS with a choice
of f/v in the 2-fluid structure equations [Eqs. (4a) and
(4b)] to solve for MANS. We vary the fraction of mirror
matter to SM through the choice of SM and mirror mat-

ter central energy densities. By then varying f/v and
these central densities, we are able to study how the as-
trophysical properties of MANS are affected by the Higgs
vacuum expectation value (VEV) in the mirror sector.
Before proceeding, let us comment on how the analysis

we carry out here differs from previous related work. Pre-
vious studies explored admixed stars with mirror matter,
but they set f/v = 1 i.e. they assumed that the SM EoS
was identical to the mirror matter EoS [8, 56, 57]. Our
study is quite different because we use first-principle lat-
tice QCD results to scale the SM EoS with f/v, thus
using a consistent EoS for both sectors. Most previous
work fixed the fraction of DM to SM because the specific
DM capture model studied predicted a certain fraction.
The details of capture, however, depend sensitively on
the precise nature of the DM self-interactions, the in-
teractions between DM and SM matter, and unknown
astrophysical details, such as the precise distribution of
mirror matter in our galaxy. Lifting this restriction, the
phase space of solutions of admixed stars is clearly two-
dimensional, and the properties of MANS vary depending
on the choice of fraction, as we will see below.

1. Full mass-radius region

The full mass-radius plane of MANS is shown in the
left panel of Fig. 3 for f/v = 5 and various choices of cen-
tral densities shown in the right panel of this figure. Pure
SM NSs are shown with a dashed cyan line, while pure
MNSs are shown with a green dashed line. Everything
in between is a MANS, where we now clearly see that
what used to be a one-dimensional mass-radius sequence
for a NS or a MNS is now a two-dimensional mass-radius
plane. In this figure, we fixed f/v = 5 as a representative
example, but we have checked that we find qualitatively
similar results for other values of f/v.
How low of a mass can MANS have? SM NSs have

a Chandrasekhar limit of ∼ 1.4M⊙, but lower NS mass
measurements have been claimed using X-ray observa-
tions [52, 53].6 One of the lowest SM NS observed is
approximately 0.9M⊙ (i.e. ∼ 64% of the Chandrasekhar
limit), and this is shown with a cyan up triangle in Fig. 3.
Fixing the SM central density to this value and then in-
creasing the central density of mirror matter leads to the
solid red line. For illustration, let us now assume that the
smallest MNS possible is also 64% of the Chandrasekhar
mass of that MNS sequence, shown with a green down tri-
angle in Fig. 3. Fixing the mirror matter central density,
ϵDM
c , to 64% of its Chandrasekhar mass and increasing
the SM central density, ϵSMc , leads to the orange line in
the figure. The region in the (ϵSMc , ϵDM

c ) below the red line

6 These time-integrated measures have been found to be suscepti-
ble to systematic error (especially due to assumptions about the
atmospheres) such that radii can differ by up to ∼ 50% [54, 55],
but we still adopt this measurement as an interesting benchmark.
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FIG. 3. Mass-radius plane of MANS (left panel) for different choices of central SM and mirror-matter energy densities (right
panel). The SM NS and the MNS mass-radius sequences are shown with a cyan and a green dashed line respectively. The
cyan up triangle and the green down triangle correspond to energy densities at which a SM NS and a MNS would have masses
of 64% their Chandrasekhar limits respectively. Increasing the mirror matter and the SM central densities respectively then
leads to the red and orange boundaries. Observe that the mapping from (ϵSMc , ϵDM

c ) to (Rout,M) is not bijective at low radii,
allowing for the possibility of ultimate twins. Two examples of ultimate twins are shown with filled blue and open green circles
and squares.

and the orange line is shown with a light gray color in
both panels.

One of the most interesting features of the two-
dimensional mass-radius plane is the possibility of ulti-
mate twins: stars with the same mass and radius but
different DM fraction. This occurs because the mapping
from (ϵSMc , ϵDM

c ) to (Rout,M) is not bijective at low radii.
Examples of such twins are shown with a filled blue cir-
cle and square, and an open green circle and square. As
is clear from the right panel, these MANS have different
ratios of mirror matter to SM matter central densities;
the green cases are actually MNSs, while the blue cases
are MANSs. Although not shown in the figure, there
are actually an infinite number of ultimate twins, as one
varies the central densities, with the pattern shown in
the figure.

Let us pause at this point and discuss an unexpected
feature of the results presented above: the allowed region
of MANSs is not bounded from the left by the MNS se-
quence (thick long-dashed green curves in Fig. 3). Con-
sider then what happens to MANS as we start with a
SM NS and we begin to add mirror matter while keep-
ing the total mass fixed, as shown schematically in the
cartoon of Fig. 4. As one increases the DM fraction
YDM ≡ NDM/(NSM+NDM) by increasing the mirror matter
energy density, one can identify the following stages:

• SM NSs. Initially, YDM = 0 and the star is purely
made out of SM matter

• MANS with a DM core and a SM halo. As we
increase ϵDM

c and thus YDM, the mirror matter set-
tles at the center of the star (because of the ex-
tra concentration of gravitational mass in the ad-

FIG. 4. Typical outer radius Rout for stellar configurations
with different mirror baryon fractions YDM ≡ NDM/(NSM +
NDM). The inset illustrates the definition of the inner and
outer radii, Rin and Rout. The minimum value for the outer
radius corresponds to a configuration where both fluids oc-
cupy the entirety of the star, that is, when Rin = Rout, which
happens at YDM ∼ 0.75. For 0 < YDM ≲ 0.75, we find NSs
develop a DM core, YDM ≳ 0.75, we find a DM halo instead.

mixed region) and the star now has two radii: one
which contains some of the SM matter and all of
the mirror matter (Rin = RDM) and one that con-
tains all of the SM and mirror matter in the star
(Rout = RSM). The spherical region inside the in-
ner radius, r < Rin, will be called the core, and for
these MANSs, it is where all of the mirror matter
resides. The shell region outside the inner radius
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but inside the outer radius, Rout > r > Rin, will be
called the halo, and for these MANS, it is composed
entirely of SM matter.

• MANS with equal DM and SM matter. As we in-
crease ϵDM

c and YDM further, the radius that con-
tains the mirror matter grows, while the radius
that contains the SM matter shrinks. Eventually,
one reaches a critical value YDM = Y ∗

DM at which
Rin = RDM = RSM = Rout and the entire star is
occupied by both fluids. This is when the MANS
sequence reaches its minimum radius.

• MANS with a SM core and a DM halo. Increasing
ϵDM
c and YDM even further, the radius that contains
SM matter is now inside the radius that contains
the DM, so RSM < RDM, and therefore, the MANS
now has a SM core (Rin = RSM) and a DM halo
(Rout = RDM). This is the flip case to the MANS
with a DM core and a SM halo.

• MNSs. Eventually, ϵDM
c is increased enough that

YDM tends to unity and the MANS becomes a MNS.
Since the radius that contains the DM grows as we
increase ϵDM

c , Rout = RDM while Rin = RSM = 0. In
particular, note that the radius of the MNS is here
larger than the radius of the MANS with equal DM
and SM matter.

From this analysis, one can clearly see that the stellar
radius Rout decreases for YDM < Y ∗

DM and it increases
for YDM > Y ∗

DM, until at YDM = Y ∗
DM the MANS has the

minimum allowed value for Rout. This critical value is the
point at which the star is entirely filled with both fluids,
so that the maximum possible concentration of mass is
achieved. The sequence of stars with YDM = Y ∗

DM(M)
therefore delimits the mass-radius region from the left in
Fig. 3.

A consequence of the results presented above is that
the mirror-baryon fraction YDM is indeed zero at the
right most boundary (at the SM NS sequence), but it
is not unity at the left most boundary, and therefore,
YDM must change non-monotonically as the MANS ra-
dius changes near the MNS sequence. Because the ra-
dius is non-monotonic in YDM, the region to the left of
the MNS sequence (to the left of the thick long-dashed
green curve in Fig. 3) is composed of two overlapping
areas with different values of YDM. Let us investigate
how these overlapping areas are connected . Since YDM

is one-to-one in ϵDM
c , one can focus on any constant ϵDM

c

curve, such as the orange curve in Fig. 3. Starting at
the intersection of this sequence with the MNS sequence
(i.e. the intersection of the thick dashed green curve and
the orange curve, which also corresponds to the right-
most star in Fig. 4)), as ϵSM

c increases, the mass-radius
point moves left along the orange curve, as shown in the
top panel of Fig. 5, which is just a zoomed version of
the left panel of Fig. 3. After hitting the left boundary,
where Rout = Rin (the central star in Fig. 4), the mass-
radius sequence turns around and begins to move right.

When this happens, the region left to the pure MNS se-
quence becomes double-valued in YDM. One can see this
more clearly in the bottom panel of Fig. 5, which shows
the mass-radius plane again, with points of different YDM

color-coded. This region between the MNS sequence and
the left-most boundary is where the ultimate mass-radius
twins live.

FIG. 5. Mass-radius regions, zoomed to the region inside
which ultimate twins exist (top) and color-coded to indicate
stars with different DM fraction (bottom), fixing f/v = 5.
The arrows in the top panel indicate the direction in which
the SM central energy density increases. Observe that there
is a region (between the left-most boundary and the MNS
sequence) inside which different YDM leads to stars with the
same mass and radius, which we have defined in this paper as
ultimate twins.
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FIG. 6. Left panel: Mass-radius region for MANSs that contain a DM core (instead of a DM halo). The black dashed line is
the isolated NS mass-radius sequence. Green shaded regions are constraints from LIGO and NICER [65–71]. The overlapping
shaded regions connected to the isolated NS sequence are the mass-radius regions for MANSs with a DM halo for different values
of f/v. Right panel: DM core mass as a function of its radius Rin for different values of f/v. Observe that the mass-radius
planes are mostly insensitive to the value of f/v, although the relation between the mass and radius of the DM core is not.

2. MANSs through Accretion of Dark Matter into Neutron
Stars

Having explored the entire mass-radius plane that con-
nects NSs and MNSs, we now explore predictions for
MANSs formed from accretion of DM into SM NS. Since
SM NSs cannot have masses smaller than some per-
centage (64% for this paper) of their respective Chan-
drasekhar masses (0.9M⊙ for this paper), the mass of
the MANS after DM accretion is also constrained from
below. Such MANS have a DM core instead of a DM
halo, with Rin = RDM < RSM = Rout.

The left panel of Fig. 6 shows the mass-radius plane
for these objects for various values of f/v. Observe that
the mass-radius region for these MANS depends very
weakly on f/v, and thus, on the mirror quark mass
m′

q = (f/v)mq. The right panel of Fig. 6 shows the
mirror-matter mass MDM as a function of the inner ra-
dius Rin. While the inner radius Rin can change by a
factor of ∼ 2 with varying f/v, the maximum value of
MDM changes at most by ∼ 15%.

Why is the mass-radius plane approximately universal
with f/v but the MDM-Rin plane is not? Let us consider
the mass-radius plane first. Near the SM NS sequence,
for small MDM, the DM core is very small (compare to
the total radius of the star). The influence of such a core
is then to only increase the total mass (by adding DM
mass), while keeping the size of the inner radius small (as
one can see on the right panel). As the MDM increases
further, the size of the inner core also increases and the
f/v universality begins to be lost because different f/v
lead to different sizes of DM cores (as seen again on the
right panel).

A more detailed view of the maximum DM mass,
Mmax

DM , as a function of the initial SM mass MSM, is pre-
sented in Fig. 7. Indeed, one observes that the curves for

different f/v lie very close to each other for small Mmax
DM ,

partly explaining the behavior observed in Fig. 6. The
dependence of Mmax

DM on f/v becomes weaker for decreas-
ing MDM and for increasing f/v, as Rin becomes larger.
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FIG. 7. Maximum amount of mirror matter that can be added
to a SM NS before it becomes unstable, as a function of its
total SM mass. Different values of f/v are considered for the
mirror matter contribution.

One might näıvely expect that adding DM to a NS
would correspond to increasing ϵDM

c at a fixed ϵSMc , but
this, however, is not the case. As DM is added to a
NS, the increase in stellar mass leads to an increase in
gravitational pull, which leads to an increase in the SM
central density ϵSMc . In fact, this change in ϵSMc can be
used to investigate the effect of DM-admixture on the
matter distribution and hydrostatic balance of the SM
fluid. Results for the fractional change of ϵSMc as a func-
tion of MDM are shown in Fig. 8, where we fix SM mass
at MSM = 0.9M⊙. The point at which the star becomes
radially unstable is marked by a star and coincides with
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the maximum of MDM, as one would expect. Observe
that the SM central density can increase by a factor of
∼ 5 − 7 due to the admixture of DM. Surprisingly, this
change tends to be smaller for smaller values of f/v, even
though Mmax

DM tends to be larger.
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FIG. 8. Fractional change in the central energy density of
SM matter ϵSM

c , normalized to its value in the absence of DM
ϵNS
c , as a function of the admixed DM mass MDM. Here, we
increase MDM at a fixed SM mass of MSM = 0.9M⊙. The
point at which the star becomes radially unstable is marked
by a star, with faint lines corresponding to unstable configu-
rations. Different colors correspond to different values of f/v.

C. Compactness and Tidal deformability of MANSs

As we have seen above, MANSs can have rather small
radii, so one may expect their compactness C = M/Rout

to also be large and their tidal deformability to be small.
The top panel of Fig. 9 shows the compactness as a func-
tion of the total mass M for MANSs with different val-
ues of f/v. Observe that, even with the addition of DM,
MANS never reach a compactness above C = 0.3, which
is comparable to the maximum compactness of SM NSs.
However, for MNSs and DM-rich MANS, this large value
of compactness is achieved at much lighter masses. As
the mass of a star increases, the star acquires a higher
compactness, and therefore, it should become harder to
deform and thus it possess a smaller tidal deformability
(i.e. a smaller Λ). The relation between Λ and the total
mass M is shown on the middle panel of Fig. 9, which
corroborates this expectation.

The tidal deformability of MANSs, however, is not
monotonic in the mass of the star, contrary to the in-
tuition presented above. Figure 10 shows the compact-
ness as a function of mass (left) and the tidal deforma-
bility as a function of mass (right) for the f/v = 5 case.
For concreteness, let us focus on a particular stellar se-
quence, depicted through the dotted magenta line. When
the mirror-matter central density is zero (ϵDM

c = 0), the
MANS is simply a SM NS, shown at the point where

FIG. 9. Compactness of MANSs as a function of total mass
(top) and tidal deformability as a function of total mass (bot-
tom) for different values of f/v (shown with different colors).
The black solid line corresponds to SM NSs, while the colored
solid lines correspond to MNSs with different values of f/v.
Observe that the compactness of MANSs is at most 0.3, which
is comparable to that of SM NSs. Such high-compactness
stars also correspond to the maximum mass configurations,
which occurs at lower masses for MANSs than for SM NSs.
Similarly, the tidal deformability of MANSs can be extremely
low, even at low masses.

the magenta line connects to the cyan line. As one in-
creases ϵDM

c , the sequence moves to the left (as shown
by the arrows on the magenta line), terminating in the
ultimate twins shown with the green empty circle and
blue filled circle. Observe that for M ≳ 0.85M⊙, as ϵ

DM
c

increases, the mass and compactness decrease, while the
tidal deformability increases. The compactness decreases
because, although the radius decreases, it does so slower
than the mass. The tidal deformability increases because,
as the star becomes lighter, it also becomes easier to de-
form, as expected.
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FIG. 10. Compactness versus total mass (left) and tidal deformability versus total mass (right) for the f/v = 5 case. The
color coding of curves is the same as in Fig. 3, except that here we also introduce a new sequence (colored magenta), with
arrows indicating the direction in which ϵDM

c increases, which we discuss in the main text. Observe that the behavior of the
compactness and the tidal deformability is not monotonic in the total mass. Observe also that ultimate twins have the same
mass, radius and compactness, but different tidal deformabilities.

This behavior, however, changes drastically when ϵDM
c

has increased enough that M ≲ 0.85M⊙. Now, as the
mass continues to decrease, the compactness increases,
while the tidal deformability decreases. The compact-
ness increases because the radius begins to decrease faster
than the mass. In turn, the tidal deformability decreases
because, as the compactness increases, the star becomes
more difficult to deform. We conclude from this then
that the tidal deformability is indeed tied to how easy or
hard it is to deform a star, but the latter is connected to
the compactness of the star, and not just its total mass,
when one changes ϵcDM while fixing ϵcSM.

Another interesting feature of Fig. 10 refers to the ul-
timate twins, which we recall are depicted with a green
empty circle and a green filled square. As explained ear-
lier, ultimate twins are MANSs with the same mass and
radius, but different internal DM composition and, thus,
different ϵcDM. As such, ultimate twins must also have
the same compactness, which is corroborated by the left
panel of Fig. 10. The tidal deformabilities of these twins,
however, is not the same, as shown in the right panel of
this figure. Indeed, the twin with a combination of mirror
matter and SM matter (the blue filled square and filled
circle in Figs. 10 and 3) has a lower tidal deformabil-
ity than the twin that only possesses mirror matter (the
green empty circle and empty square in Figs. 10 and 3).

Why is this? The reason that for a two-fluid star the
tidal deformability does not just scale with the compact-
ness can be gleaned from the definition of Λ in Eq. (7)
and (9). As one can see from these equations, Λ is a func-
tion of both the compactness of the star and the variable
y∗, evaluated at the surface of the star. From the dif-
ferential equation that y∗ must satisfy, one can schemat-
ically argue that y∗(Rout) will depend on the pressure

and energy density inside the star, the averaged value of
which can be related to the compactness of a star in a
single-fluid model. For a two-fluid model, however, the
average pressure and density do not just scale with the
compactness. In fact, for a two-fluid model, the averaged
value of the pressure is much larger for a two-fluid star
than for a single-fluid star. A larger amount of interior
pressure translates into a star that is more difficult to
deform, and thus one with a lower tidal deformability.
This is indeed what we find with ultimate twins, which
always have one member that is very near the MNS se-
quence (essentially a single fluid star with ϵSMc ≈ 0) and
one member in the MANS plane (a two fluid star with
ϵSMc ̸= 0 ̸= ϵDM

c ). Therefore, the MANS member of the
twin has a larger averaged pressure, is more difficult to
deform, and thus has a smaller Λ.

The different tidal deformabilities suggests the possi-
bility that GW observations of the inspiral of stellar-mass
compact objects could be used to detect MANSs. We
have already seen that the Λ-M relation of MANSs lies
on a plane instead of a line. Therefore, a set of mea-
surements of Λ, each with sufficient accuracy, could al-
low us to reconstruct the Λ-M relation and determine
its dimensionality. To further determine whether there
are ultimate twins in this plane, one would have to mea-
sure the mass, radius and tidal deformability of the same
star, which may be achievable if one can infer not just Λ,
which is the quadrupolar (electric-type) tidal deformabil-
ity, but also the octopolar one. This could be achievable
with third-generation detectors.

Inferences on the compactness, and thus the radius,
of MANS through the Λ-C relation, however, must be
done with great care. This is because, although SM NSs
share a nearly EoS insensitive relation between the tidal
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deformability and the compactness, this universality is
lost in MANS, as shown in Fig. 11. Indeed, observe how
SM NS sequences and MNS sequences all share a nearly
identical Λ-C relation, MANSs do not, and in fact, they
possess a two-dimensional Λ-C relation. Therefore, the
measurement of the tidal deformability of MANSs can-
not be associated with a single compactness (and thus a
single radius).

SM+DM(f/v=3)

SM+DM(f/v=5)

SM+DM(f/v=7)

f/v = 1
f/v = 3
f/v = 5
f/v = 7
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FIG. 11. Tidal deformability as a function of compactness
for different values of f/v. Observe that while SM NSs and
MNSs (solid black and color lines) all share an approximately
insensitive Λ-C relation, but MANS do not. Instead, the Λ-C
relation for MANS is not a one-dimensional curve, but rather
a two-dimensional place, which can differ significantly from
the relation for SM NSs and MNSs.

V. INSPIRALLING MIXED BINARIES

In this section, we present predictions for the observ-
able signatures of inspiraling binaries of NSs and MNSs.
We present results for the chirp mass and mass ratio be-
tween these stars and find that MNS-MNS and NS-NS
inspirals produce unique GW signatures.

A. Mass Ratio Properties

Having determined the structure of isolated NSs,
MNSs and MANSs, we now investigate binary systems
composed of NSs and MNS, specifically NS-MNS, and
MNS-MNS binaries.

The properties of these binaries are limited by the for-
mation mechanisms for these objects. For instance, there
are no known mechanisms to create NSs below a certain
threshold M

(SM)
min . To limit ourselves to viable NS and

MNS masses, we implement minimum mass thresholds

according to the estimated constraint M ≳ M
(SM)
min ≃

0.9−1M⊙ for NSs [52]. For definiteness, and to avoid the

risk of being overly restrictive, we take M
(SM)
min = 0.9M⊙.

To extrapolate this estimate to the mirror sector, we fix
the ratio between Mmin and the Chandrasekhar mass of

MNSs at M
(SM)
min /MCh. = 0.64. In practice, this yields a

scaling of Mmin with the (mirror) baryon mass m′
B :

M
(DM)
min

M
(SM)
min

=
M

(DM)
Ch.

M
(SM)
Ch.

=

(
mB

m′
B

)2

, (15)

where mB is the SM baryon mass and m′
B/mB as a func-

tion of f/v is taken from Ref. [33]. These are the same
restrictions we placed on the minimum mass of MANS in
Sec. IVB1.
With this in mind, let us now look at the allowed mass

ratio q ≡ M1/M2 and total mass Mbin = M1 + M2 re-
gions for NS-NS, NS-MNS and MNS-MNS binaries, using
the convention M1 ≤ M2. Results are shown in Fig. 12,
where the shaded areas correspond to the predicted re-
gion for NS-MNS inspirals. The areas corresponding to
NS-NS and MNS-MNS binaries are enclosed by dotted
and dashed lines, respectively. Each panel corresponds
to a different value of f/v = 3, 5 and 7. For all values
of f/v, we find significant regions in the q-Mbin space
that are exclusive of NS-MNS and MNS-MNS inspiral
and mergers, indicating that these systems can be effec-
tively distinguished from the binary masses alone. For
f/v ≳ 5, we find no overlap between the three different
regions. For example, one could have a (0.5, 0.5)M⊙ bi-
nary MNS inspiral, which would lead to a mass ratio of
1 and a total mass of 1M⊙, which is not possible for a
binary NS inspiral.

B. Gravitational Wave Signatures

In the event of a NS-MNS binary coalescence, GW ra-
diation from the inspiral phase would provide the best
candidate for signatures of its exotic nature. In a co-
alescence, the evolution of the orbital and, therefore,
GW, frequency is determined by the chirp mass M ≡
η3/5(M1 + M2) of the binary, where η ≡ M1M2/(M1 +
M2)

2 is the symmetric mass ratio. The chirp mass and
symmetric mass ratio regions relevant to NS-NS, NS-
MNS and MNS-MNS inspirals are shown in Fig. 13.
The low values of chirp mass for MNS-MNS and NS-
MNS binaries indicate that the inspiral phase would be
responsible for most of the detectable GW radiation emit-
ted by such binaries. The merger of such compact ob-
jects would be outside the sensitivity band of second-
generation ground-based detectors.

The inspiral of binaries containing MNSs would also
be less loud than those composed of SM NSs. The chirp
mass of the binary system determines the magnitude of
the GW signal, since the latter scales with ∼ M5/6/DL,
where DL is the luminosity distance to the source. As
can be seen from the figure, the chirp mass of a NS-
MNS binary is M ∼ 0.9M⊙ for f/v = 3, and M ∼
0.7M⊙ for f/v = 7, which is smaller than M ∼ 1.2M⊙
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FIG. 12. Mass ratio q vs. total mass M of binary systems for three different values of f/v. The shaded region enclosed by solid
lines corresponds to binaries composed of one NS and one MNSs, while the region delimited by dashed lines corresponds to
binaries of two MNSs. For reference, we also show the region corresponding to SM NS binaries, delimited by the black dotted
lines.
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FIG. 13. Symmetric mass ratio η vs. chirp mass M of binary systems for three different values of f/v. The shaded region
enclosed by solid lines corresponds to binaries composed of one NS and one MNSs, while the region delimited by dashed lines
corresponds to binaries of two MNSs. For reference, we also show the region corresponding to SM NS binaries, delimited by
the black dotted lines.

for NS-NS binaries. This suggests that GW signals from
NS-MNS inspirals should be ∼ 60 − 80% that of NS-NS
binaries, and therefore, although weaker, they should still
be detectable. Such a detection would then allow us to
distinguish a NS-MNS binary from a NS-NS binary just
from the chirp mass measurement.

GW emission in the late inspiral phase is also char-
acterized by the tidal deformabilities of the inspiraling
stars. The tidal deformabilities of the two stars, Λ1 and
Λ2, can be calculated by solving Eq. (7) with a given EoS
[91]. Using current GW detectors, only a certain com-
bination of the individual tidal deformabilities Λ1 and
Λ2, the so-called “chirp deformability”[92, 93], can be
measured. This implies that without any additional in-
formation, the individual tidal deformabilities are degen-
erate and cannot be solved for from a GW measurement.
One way to break this degeneracy is to use EoS insensi-
tive relations, including the binary Love relation [94], or
some functional form for the EoS [95]. However, both ap-
proaches assume that the merging compact objects have
a single EoS that can describe both stars. In the case

of an inspiraling NS-MNS, this is a poor assumption be-
cause each compact object has a different EoS, therefore
completely breaking the universality of the binary Love
relation.

To explore the potential breakage of the binary Love
relations, we plot the relations for MNS-MNS and NS-
MNS binaries in Fig. 14. The top panel shows the bi-
nary Love relations of MNS-MNS binary systems with
both stars with the same f/v. One can clearly see that
the EoS insensitivity is preserved for different values of
f/v, keeping q fixed, which is unsurprising for MNS-MNS
mergers because they both come from the same EOS. In
that panel, NS-NS binaries are shown in black, and they
lie on top of the other curves. The middle panel shows
the binary Love relations of a lighter NS with a heavier
MNS. We cannot calculate the relations for lower mass
ratios and high f/v because, from Fig. 2, MNSs become
lighter for higher f/v, and for some q and f/v, there
are no MNS that are heavy enough. In this case, we
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FIG. 14. Binary Love relations for binaries of two MNSs (top),
a MNS with a heavier NS companion (middle), and a MNS
with a lighter NS companion (bottom). The asymmetric bi-
nary Love number Λa ≡ (Λ1 − Λ2)/2 is shown as a function
of the symmetric Love number Λs ≡ (Λ1 + Λ2)/2. Different
colors correspond to different values of f/v, while the distinct
line styles represent different mass ratios q ≡ M1/M2. Ob-
serve that, in the top panel, curves for fixed values of q, but
different values of f/v, lie on top of each other, and there-
fore present EoS-insensitivity. In the middle panel, two of the
curves are very close to each other, but they correspond to dif-
ferent mass ratios. In the bottom panel, the EoS-insensitivity
is completely lost.

see that the EoS insensitivity is lost7, with the f/v = 2
curve lying far from the f/v = 3 curve for fixed q = 0.90.
The bottom panel shows the binary Love relations for a
higher NS with a lighter MNS. Because MNSs tend to be
lighter than NS, this is the most common scenario of a
MNS-NS binary. Observe, once more, that the EoS in-
sensitivity is completely lost because, for the same mass
ratio q (dashed curves for example), there is no overlap
for curves with different values of f/v. Observe also that,
since MNSs are typically less deformable than NSs (due
to their higher compactness), the asymmetric Love num-
ber Λa can be negative. This occurs for both f/v > 4
and q > 0.60, and tends toward Λa = −Λs as f/v and q
increase, making Λ1 much smaller than Λ2.
Before continuing with a discussion of the post-merger

phase, let us end with a warning. Many GW searches
today use a prior on the chirp mass and symmetric mass
ratio that may exclude MNS stars all together. Indeed,
only a fraction of the allowed η-M region overlaps with
the region expected to be occupied by NS-NS binaries.
Because of this, GW events from binary systems includ-
ing one or two MNSs run the risk of being overlooked
in a template-based coherent analysis. To detect such
events, the priors on the chirp mass and the symmet-
ric mass ratio should be updated to include the relevant
mass ranges (i.e. much lower masses). Alternatively, one
could rely on wavelet methods or excess power methods,
both of which do not rely on templates, to detect such
events, although such approaches may be less efficient
than template-based searches.

VI. POST-MERGER REMNANT

In this section, we discuss the possible remnants of a
MNS-NS collision. In particular, we present results for
possible stable MANS remnants. We also comment on
the formation of black holes when a stable stellar config-
uration is not achieved.

A. NS-MNS Collision

A NS-MNS binary merger would be a unique event.
Because there are no interactions via QCD, QED, or
weak interactions that exist between mirror matter and
the SM, one cannot directly change the SM EoS of NSs to
add in the contribution of mirror matter. In other words,
collisions of NSs and MNSs would not be like NS-NS col-
lisions at all because they would be like “ghosts passing
through each other.” Rather, they are likely to continue
to inspiral well passed the regime where their surfaces are
overlapping. Once inside each other, the nested stars are

7 The f/v = 2 and q = 0.9 curve is almost on top of the f/v = 3
and q = 0.60 curve, by pure coincidence.
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FIG. 15. Left panel: Mass-radius region for stable remnants of a NS-MNS merger. The black dashed line is the isolated
NS mass-radius sequence. Green-shaded regions are constraints from LIGO and NICER [65–71]. The overlapping shaded
regions are the allowable mass-radius region for stable remnants, for different values of f/v. Right panel: The shaded regions
correspond to the allowed dark-matter mass and radius for the mirror-matter core of the stable remnants of NS-MNS mergers.
Stable remnants are not expected for f/v ≲ 4.

1.3 1.4 1.5

MMANS = MSM +MDM [M�]

0.14

0.16

0.18

0.20

0.22

0.24

Y
D

M
=
N

D
M
/(
N

S
M

+
N

D
M

)

f/v = 5

f/v = 6

f/v = 7

FIG. 16. Mirror matter fraction YDM versus total massMMANS

for stable remnants of NS-MNS coalescences. Allowed regions
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color. Stable remnants are not expected for f/v ≲ 4.

likely to keep on spinning at different rotational angu-
lar frequencies, even as differential rotation within each
fluid subsides, because the only mechanism for angular-
momentum transfer between the two fluids in the rem-
nant is gravitational, including tidal effects. While the
observational signature of NS-MNS mergers can be in-
teresting due to the above differences to NS-NS mergers,
conclusions would have to rely on input from computer
simulations, which are not yet available. We thus leave
the discussion of the merger phase of NS-MNS binaries
for future work.

B. MANS Remnants

After a sufficiently long time, transient effects should
die out and a NS-MNS merger would lead to a black
hole or to a MANS, like the ones discussed in Sec. IVB.
In both cases, the resulting configurations are restricted
by the relevant mass thresholds for each of the colliding
stars. Let us then consider these end-states and discuss
whether they would lead to interesting observational sig-
natures.

Let us once again consider the viable star requirement
(MNS ≥ 0.9M⊙) but this time we will also apply this
constraint to MNS (MMNS ≥ 0.9(mB/m

′
B)

2 M⊙). To ac-
complish this, we follow the procedure in Sec. VA and
use Eq. (15). For simplicity, we neglect the effects of ro-
tation on the stellar structure. We also neglect possible
(SM and DM) particle number losses during the merger.
The resulting range for MANS remnants is shown in the
left panel of Fig. 15. The right panel of this figure shows
the DM mass MDM versus inner radius Rin for values
of f/v of the stable remnants. The effect of the lower-
mass threshold Mmin on possible stable post-merger rem-
nants is noticeable. In combination with radial stability
constraints (see Sec. IIID), the minimal mass thresholds
lead to a tight region in MMANS–Rout inside which MANS
remnants can exist and only if f/v ≳ 5. When f/v ≲ 4,
on the other hand, all remnants either violate the mini-
mum threshold condition or are radially unstable. Con-
sequently, NS-MNS binaries in the left panels of Fig. 12
and Fig. 13, corresponding to a dark sector with f/v=3,
will all collapse to black holes after coalescence.

Figure 16 shows the corresponding ranges in mirror
baryon fraction YDM = NDM/(NSM+NDM) and total mass
MMANS for MANS remnants of NS/MNS mergers, when
f/v = 5, 6 and 7. The mass of these objects is tightly lim-
ited to the regime (1.2−1.55)M⊙. The DM fraction YDM
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is also on a tight range, from ∼ 15% to ∼ 25%. Observe
that the mirror-matter fraction YDM is anti-correlated
with the total mass of the star, which we can under-
stand intuitively as follows. Increasing the amount of
DM at the center of the star leads to stronger gravita-
tional forces. That additional force must be balanced by
larger pressure gradients, which means the pressure in
the MANS will drop faster in the radial direction. Be-
cause the energy density is a monotonic function of pres-
sure, the energy density will also drop faster, leading to a
smaller total mass. Another consequence of Figure 16 is
that all MANS produced from a MNS-NS merger leading
to a stable remnant are of the form of a DM core with a
SM halo.

C. Black-Hole Remnants

If a stable MANS cannot form, the system will even-
tually collapse to a black hole. Because of the lower
mass thresholds on the colliding stars, this turns out to
be the most likely scenario. Black-hole remnants from
MNS-NS coalescences, however, would be very light, ly-
ing in the mass range ∼ (1.3, 3.7)M⊙. Black holes from
MNS-MNS coalescences would be even lighter, in the
interval ∼ (0.8, 3.2)M⊙. To explain how we come to
these numbers, we look at the minimum mass Mmin

from f/v = 4 that produces no stable remnants. Then,

M
f/v=4
min ∼ 0.4M⊙ and the MSM

min = 0.9M⊙ so our total
minimum black hole mass from a coalescence of a SM
NS and a MNS with f/v = 4 is then MBH

min ∼ 1.3M⊙.
Of course, for larger f/v then smaller Mmin are possible.

For instance, M
f/v=7
min = 0.3M⊙. However, the coales-

cence of this MNS with a MSM
min = 0.9M⊙ NS leads to

a stable configuration (as shown in Fig. 15) so it would
not produce a black hole. The maximum values of a
black hole mass for a MNS-NS coalescence comes from
taking the maximum mass for f/v = 2 and adding that
to the maximum mass of the standard model sequence
such that MBH

max = 1.6 + 2.1 = 3.7M⊙. In Sec. VII we
will focus specifically on the difference between f/v < 5
and f/v ≥ 5 for two reasons: i.) f/v ≥ 5 obtain stable
configurations whereas f/v < 5 only produce black hole
remnants ii.) f/v = 5 also is the smallest f/v that pro-
vides no overlap in the η vs M relation shown in Fig. 13.
Thus, for much of our following calculations, it is impor-

tant to know that M
f/v=5
min ∼ 0.4 and M

f/v=5
max ∼ 0.9.

Such a light range of remnant black hole masses would
have important implications for the GWs emitted post-
merger. In particular, the GW ringdown, generated
as the remnant settles to its final stable configuration,
would occur at very high frequencies. The GW frequency
of the dominant fundamental ringdown mode scales as
fGW ∼ 0.44/(2πMR), where MR is the mass of the rem-
nant [96, 97]. For a normal black-hole binary merger with
component masses m1 = m2 = 5M⊙, one then expects
fGW ∼ 1400 Hz. However, for a MNS-NS coalescence

(with m1 = m2 = 3M⊙), the black hole remnant would
ring at fGW ∼ 2300 Hz, while for a MNS-MNS coales-
cence (with m1 = m2 = 1M⊙), the black hole remnant
would ring at fGW ∼ 14, 000 Hz. This means that while
the ringdown of a MNS-NS coalescence may be observ-
able, it will be incredibly hard to observe the ringdown
of a MNS-MNS collision. Moreover, if somehow only the
ringdown were observed, then it would be impossible to
distinguish this small-mass black hole remnant from a
primordial black hole.

VII. OBSERVATIONAL PROSPECTS

Because of the unique signatures for binary MNSs
mergers and NS-MNS mergers, we find that there are
multiple ways that one could detect the presence of mir-
ror matter within NSs. Here we will list all the unique
signatures that underlie various scenarios, summarizing
several discussions presented earlier in this paper.

• Scenario 1 - binary MNS inspiral and merger
with f/v ≥ 5: Both objects are dark (no electro-
magnetic signatures) and the symmetric mass ratio
and chirp mass is entirely distinguishable from that
of SM NS binaries. The tidal deformabilities are
orders of magnitude smaller than that of SM NSs,
and the remnant is also dark, but may produce a
more massive MNS or a black hole. The black hole
remnant would be very light and certainly lower
than the maximum mass of a NS (black hole masses
starting at M ∼ 0.8M⊙ for f/v = 7).

• Scenario 2 - binary MNS inspiral and merger
with f/v < 5: Since both objects are dark (no elec-
tromagnetic signatures), we need to rely on GW
measurements and need to look into the parame-
ter space of such measurements. For the param-
eter space of mass ratio and Mbin (or η and M),
there is a small overlap between SM NS binaries
and MNS binaries. Therefore, for most binary sys-
tems, a MNS binary can be distinguished from a
SM NS binary, and evidence of DM can be found
once we detect a binary system in the MNS-MNS
region. Tidal deformabilities are approximately one
order of magnitude smaller than that of SM NSs,
and the remnant is dark, but may produce a more
massive MNS or a black hole. In this case, however,
the black holes produced may be smaller than the
maximum mass of SM NSs, i.e. the black hole rem-
nants can be as small as M ≳ 1.3M⊙.

• Scenario 3 - NS-MNS inspiral and merger
with f/v ≥ 5: One object is dark, but the NS
may produce electromagnetic signatures from tidal
disruption. The symmetric mass ratio and chirp
mass are entirely distinguishable from those of SM
NS binaries. The tidal deformabilities of the binary
components are orders of magnitude different from
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each other. The remnant may produce a MANS or
a black hole. The resulting admixed star has a
significantly smaller radius than that of a SM NS.
The black hole remnant may be lighter than the
maximum mass of the SM NS sequence (black hole
masses starting at M ∼ 1.4M⊙).

• Scenario 4 - NS-MNS inspiral and merger
with f/v < 5: One object is dark but the NS
may produce electromagnetic signatures from tidal
disruption. The symmetric mass ratio and chirp
mass are mostly distinguishable from those of SM
NS binaries, but some small overlap region exists.
The tidal deformabilities of the binary components
are an order of magnitude different from each other.
The remnant will be a black hole. The black hole
remnant may be lighter than the maximum mass of
the SM sequence (masses starting at M ∼ 1.3M⊙).

• Scenario 5 - MANS-MANS inspiral and mergers
or NS-MANS inspiral and mergers: Both objects
may produce electromagnetic signatures from tidal
disruption. The symmetric mass ratio and chirp
mass may overlap with that of SM NS binaries.
Tidal deformabilities would break universal rela-
tions and may appear similar to twin stars [98, 99].
The remnant will be a black hole in most scenarios,
unless the DM core is extremely small.

• Scenario 6 - Radius measurement of
MANS with X-rays: Because a MANS can have
an outer layer (or halo) entirely composed of SM
matter, it can have a hot spot on its surface,
just like a SM NS. If the hot spot emits X-rays,
NICER could potentially observe them and obtain
the MMANS and Rout. Notice that it is possible
to observe two MANSs with the same mass, but
with very different radii, because MANSs exist in
a 2D area in the mass-radius plane. Therefore,
from an observational perspective, MANSs may be
confused with 1st-order phase transition (1st-order
PT) twin stars, which also allows two SM NSs with
the same mass but very different radii [100]. The
difference between MANSs and 1st-order PT twin
stars (known as mass twins [101–107]) is that mass
twins are produced by a single SM EoS (one fluid
only), and they lie on a single non-monotonic mass-
radius curve, instead of a non-bijective mapping
from (ϵSMc , ϵDM

c ) to the (Rout,M) plane that occurs
for MANS. However, MANSs would not be subject
to constraints to the EoS of nuclear matter in the
same way as mass twins [108–110]. Moreover, it
may still be possible to distinguish the 2D mirror
matter plane from mass twins with just the mea-
surement of two compact objects with the same
mass, if they have drastically different radii. For
instance, applying the heavy maximum mass con-
straint of Mmax ∼ 2M⊙ [111], it is difficult to pro-
duce mass twins; only extremely large first-order

phase transitions can produce a large radius differ-
ence between the different branches (e.g. see Fig.
12 and Fig. 14 from [112]). Thus, admixed mirror
stars may initially mask as mass twins, but once a
2D mass-radius plane is measured, they would be
clearly identified as mirror matter.

• Scenario 7 - Black hole-NS Twins: Binary in-
spirals and mergers involving MNSs have the po-
tential to create very light black holes. A striking
possibility is that this would lead to black hole-NS
mass twins—that is, a black hole and a NS with the
same gravitational mass. In order to clearly dis-
tinguish these objects from each other, one would
need a sufficiently good measurement of the their
tidal deformability, since black hole are expected to
have none. This could prove very difficult for very
massive NSs, because their deformability, Λ ∼ 10,
would not be sufficiently different from that of black
holes. Therefore, it would be more feasible to dis-
tinguish between lighter black hole-NS twins, say
with M ≈ 1.4M⊙.

We have outlined some of the specific scenarios for the
inspiral and merger of compact objects containing mir-
ror matter. However, some signatures will only appear
if a large population of these objects is measured. The
primary signature with large statistics is that if admixed
mirror stars exist, then one could find a 2D plane in the
mass-radius or the tidal deformability-mass relation. The
size and shape of the 2D mass-radius plane depend on a
number of factors, such as the value of f/v, the min-
imum mass of a MNSs (i.e. if they are subject to the
Chandrasekhar limit or not), if the admixed stars are
produced due to accreted mirror matter or as a remnant
of a MNS-NS merger, and details of the EOS. However,
the existence of the 2D plane is robust, only possible in
a two-fluid model, and would not occur from any known
SM EOS.

Thus, if it were to become clear from obser-
vations (say with GW detectors such as advanced
LIGO/Virgo/KAGRA, or the X-ray telescope NICER)
that the mass-radius posteriors of compact objects can-
not be described through a one-dimensional sequence
alone (even considering disconnected sequences), then
such a measurement would be a clean-cut signature for
admixed mirror stars. Such a measurement would require
the confidence ellipses on the mass-radius (or mass-tidal
deformability) plane of two independent observations of
at least two different NSs to be non-overlapping. This
could happen, for example, if one were to observe a com-
pact object with M = 1M⊙ and R ≲ 6 km, with an
accuracy of δR ≲ 4 km. Black holes of such a low mass
could potentially be distinguishable from admixed mir-
ror star remnants through the quasi-normal GWs they
would emit as they settle down to their final stationary
configuration.
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VIII. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated the effects of Twin
Higgs mirror matter in isolated MANS, and in NS-MNS
and MNS-MNS binaries. We have found that, instead
of forming a single curve, MANS span over an 2D re-
gion on the mass-radius plan. This region ranges from
the SM NS mass-radius curve on the left, past the MNS
sequence, to a curve of minimal radius, where Rout ∼ 4
km, and the star is filled with both DM and SM mat-
ter throughout its extension. Because the outer radius
changes non-monotonically with the DM fraction YDM in
the star, different YDM intervals can overlap in the mass-
radius diagram, leading to “ultimate twins,” i.e. stars
with the same exact mass and radius, but different in-
ternal composition. While these twins have exactly the
same mass and radius, their tidal deformability is differ-
ent and would distinguish the two compact objects.

We have also explored the properties of MANS that
would have formed via DM capture in NSs above a gen-
erous assumed NS formation threshold MSM ≳ 0.9M⊙.
Surprisingly, we find that the corresponding mass-radius
region is nearly independent of the mirror Higgs scale,
yielding approximately the same region for f/v = 3− 7.
If we allow for the possibility of mirror matter capture,
then a DM-admixed NS can support masses in the same
range as a regular NS, but with a smaller radius (as low
as R ∼ 8 km). Conversely, if we begin with a MNS
and allow for SM capture, then masses on the small end
of NS are possible but the radii are significantly smaller
R ∼ 4 km. A smoking-gun signature of MANS is the
mass-radius plane that they inhabit, which presents a
2D structure, unlike any other object studied so far. In-
deed, even objects with distinct stable branches due to
first-order phase transition (mass twins) still exist in a
one-dimensional sequence.

We then moved to a discussion of the effects of mirror
matter in NS-MNS and MNS-MNS binary systems. We
found that the amplitude of the GWs emitted by these
binary systems (at fixed distance) would be smaller than,
but still comparable to, the one from NS-NS binaries due
to the smaller total mass of MNSs. We also emphasize
that, by measuring the chirp mass M and the symmetric
mass ratio η alone, one can distinguish a MNS-NS or
MNS-MNS system from a NS-NS one. This distinction
is clear-cut only when f/v ≳ 5. We have also shown that
binary Love relations cannot be näıvely applied to break
the degeneracy of a GW measurement from a NS-MNS
system, because that relation is no longer EoS insensitive.
These relations can, however, be applied without change
to MNS-MNS binaries.

NS-MNS mergers are of particular interest because
they provide a promising way to form MANSs. How-

ever, stability against radial oscillations and NS and MNS
mass thresholds impose very stringent constraints on the
resulting remnant. For f/v < 5, we have found no possi-
bility of stable MANSs remnants. For f/v ≥ 5, we find a
small stable mass-radius region. In cases where a stable
MANS remnant is not formed (the most likely scenario),
collapse to a black hole will follow. In that case, one
could potentially measure the post-merger ringdown.
One very intriguing possibility that arises from the co-

alescence of MNS-MNS and NS-MNS is that they can
produce very light black-hole remnants, with masses as
low as 0.8M⊙. Thus, depending on the masses of the
MNS-MNS and NS-MNS binaries, it is possible to pro-
duce black hole remnants in the range (0.8 − 3.7)M⊙,
MNSs remnants in the range (0.8− 1.5)M⊙, and MANS
remnants in the range (1.2−1.6)M⊙. Thus, mirror mat-
ter provides a mechanism that allows for black holes,
MNSs and MANSs remnants - all in the same mass range,
but with very different radii.
Our work opens up a number of new possibilities and

questions. It is not clear what the precise merger and
post-merger signals of such a two fluid model would be
like. Would the two-fluid nature of the compact objects
affect the peak frequency of the GWs emitted at merger?
What properties would we expect if spin is considered?
Is there a possibility of a Kilonova if MANS merge? In
order to answer these questions, a full two-fluid numerical
relativity simulation is required, which we leave to future
work.
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