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Abstract

Recent work has shown that it may be possible to detect gravitationally induced entanglement

in tabletop experiments in the not-too-distant future. However, there are at present no thoroughly

developed models for this type of experiment where the entangled particles are treated more funda-

mentally as excitations of a relativistic quantum field, and with the measurements modeled using

expectation values of field observables. Here we propose a thought experiment where two particles

are initially prepared in a superposition of coherent states within a common three-dimensional (3D)

harmonic trap. The particles then develop entanglement through their mutual gravitational inter-

action, which can be probed through particle position detection probabilities. The present work

gives a non-relativistic quantum mechanical analysis of the gravitationally induced entanglement of

this system, which we term the ‘gravitational harmonium’ due to its similarity to the harmonium

model of approximate electron interactions in a helium atom; the entanglement is operationally

determined through the matter wave interference visibility. The present work serves as the basis

for a subsequent investigation, which models this system using quantum field theory, providing fur-

ther insights into the quantum nature of gravitationally induced entanglement through relativistic

corrections, together with an operational procedure to quantify the entanglement.
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I. INTRODUCTION

Quantum mechanics and general relativity are our two most fundamental, experimentally

tested, and predictive theories. However, these theories are mutually incompatible and no

comparably successful theory unifying the two has been formulated, while little experimental

progress has been made. Recently, Bose et al. [1] and Marletto and Vedral [2] (BMV) pro-

posed in-principle-realizable experiments in which two particles could become entangled by

their mutual gravitational interaction [1, 2]. Detection of gravitationally induced entangle-

ment would then provide novel empirical evidence that might guide the development of new

theories aiming at resolving the tensions between classical gravity and quantum mechanics.

The BMV proposals have inspired a great deal of interest in the quantum information

science community, with ongoing discussions about the theoretical implications of detecting

gravitationally induced entanglement. Some contend that a positive detection would provide

definitive evidence for the quantum nature of the gravitational field [1–9]. Others have

pointed out possible ways in which a classical model of gravity could induce entanglement

in such an experiment [10–16]. Some have raised points about how several of the principles

of quantum information theory used to assert that gravitationally induced entanglement

necessitates quantum gravity, are not clearly satisfied in a quantum field theoretic setting

[17–20]. In response, there have also been several investigations into what implications can

be drawn from gravitationally induced entanglement without necessarily relying on such

assumptions [21–25].

Several variations of a gravitationally induced entanglement experiment have been pro-

posed [26–39]. To date, none of these proposed experiments have been modelled using a fully

quantum field theoretic description of both gravity, the particles involved, and the measures

of entanglement generated between the latter. Such an ab initio approach would allow one

to explore what can be learned in principle about the quantum nature of the gravitational

field from a gravitationally induced entanglement experiment in terms of these more funda-

mental structures, such as detecting the spin of the mediating boson with relativistic effects

taken into account [40]. In this work, we seek to develop a model of a non-relativistic gravi-

tationally induced entanglement thought experiment that adapts the BMV proposal in such

a way as to serve as the basis for such a relativistic quantum field theoretic model in the

future.
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FIG. 1: Scheme of the thought experiment for generating and probing

gravitationally-induced entanglement between two massive particles. Snapshots (a)-(e)

show the coherent state position maxima of the two particles, each initially in a

superposition state, at subsequent times. When the particle wavefunction components in a

given superposition state overlap, interference fringes develop in the spatial dependence of

the particle detection probability along the oscillation axis of the particle. The fringe

visibility decreases over time, corresponding to increasing entanglement between the two

particles.

Our thought experiment considers two particles that are located within a 3D harmonic

trap. The initial condition is a product state wherein each particle is prepared in a displaced

coherent state superposition along mutually orthogonal axes. As the coherent state wave-

function components of one of the particles evolve, they will overlap periodically, producing

interference fringes in the spatial probability distribution for detecting the particle. The

gravitationally-induced entanglement that develops between the two particles will cause the

visibility of these fringes to decrease. Figure 1 illustrates this scheme. We term this model

the ‘gravitational harmonium’ after its similarity to a model for approximating the Helium
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electrons’ Coulombic trapping potentials with harmonic potentials [41].1

The gravitational harmonium is readily suited for a full, quantum field theoretic treat-

ment. Under low energy laboratory conditions, we can model such a thought experiment by

a massive real scalar field ϕ coupled to gravity through the Einstein Hilbert action, expanded

to second order in κ =
√
32πG (with units ℏ = c = 1) [44, 45]:

S[ϕ, hµν ] = SM [ϕ] + SE[hµν ] + SI [ϕ, hµν ]. (1)

The action for the scalar field, ϕ, contains a harmonic potential that is spatially centered,

e.g., at rectilinear coordinate location r = 0 and given by

SM [ϕ] = −1

2

∫
d4x

[
ηµν∂µϕ∂νϕ+m2

(
1 + ω2r2

)
ϕ2
]
, (2)

while the gravity and interaction actions are respectively

SE[hµν ] =

∫
d4x

(
−1

2
∂ρhµν∂ρhµν + ∂νh

µν∂ρhµρ − ∂µh∂νh
µν +

1

2
∂µh∂µh

)
,

SI =

∫
d4x

(
κ

2
T µν (ϕ)hµν +

κ2

4
Uµνρσ (ϕ)hµνhρσ

)
,

(3)

where Tµν (ϕ) is the scalar field energy-momentum tensor, and Uµνρσ (ϕ) is a quadratic

tensor in ϕ [45]. Decoherence aspects of certain states within such a framework have been

considered in Ref. [46], and in a 0D model [47]. We may then describe the fringe visibility

by using the expectation value of the particle detection probability given in the Schrödinger

picture,

Tr

[
ρ (t)

(
V −1

∫
V

dxϕ (x, 0)

)2
]
= V −2

∫
V

dxdx′Tr [ρ (t)ϕ (x, 0)ϕ (x′, 0)] , (4)

where ρ (t) is the density operator for a suitable evolving quantum scalar field state and V

is some small coordinate averaging volume corresponding to the spatial region occupied by

the particle detector. In order to calculate these expectation values we may employ a variety

of methods, such as the Dirac constraint quantization procedure, or the closed time path

formalism. These methods treat the issue of gauge fixing differently, yielding complementary

viewpoints for understanding how entanglement arises. This and other, unanticipated in-

sights may result from such a fundamental, operational quantum field theoretic description

of a gravitational entanglement experiment.

1 While we view such a scheme as a thought experiment that allows for a relativistic quantum field theoretic

analysis, it does resemble recent optical trapping schemes for massive particles that share a similar goal:

to probe gravitational entanglement in quantum systems [42].

4



In Section II we solve the corresponding non-relativistic Schrödinger equation to derive

the approximate time evolution of the two-particle, initial superposition pair state of this

system as gravitational entanglement between the two particles develops, with an accom-

panying fringe visibility reduction in the spatial dependence of the single particle detection

probability; further details are given in three appendices. As discussed above, this analysis

will be used as a reference for future work where the corresponding quantum dynamics will

be obtained within the above-described quantum field theoretic description [43]; we hope

to gain new insights into how gravity induces quantum entanglement by comparing the ap-

proximate non-relativistic model developed here with the more fundamental one involving

relativistic quantum fields. Section III considers the effect that alternative, modified gravity

interaction potentials would have on the non-relativistic quantum mechanical model for en-

tanglement generation and the corresponding reduction in visibility. Section IV gives some

concluding remarks.

II. NRQM GRAVITATIONAL HARMONIUM

Consider two particles with identical mass m that are confined to a harmonic trap with

frequency ω and interacting through gravity. The non-relativistic quantum dynamics of this

system is described by the Schrödinger equation with Hamiltonian given by

H =
p21
2m

+
p22
2m

+
1

2
mω2x21 +

1

2
mω2x22 −

Gm2

|x1 − x2|
, (5)

where x1 and x2 are the position coordinates of particles 1 and 2, respectively. This Hamil-

tonian is qualitatively similar to that of the Helium atom [with the substitution Gm2 → −e2

in Eq. (5)], where the electrons’ Coulomb confining potentials are approximately replaced

by harmonic confining potentials, and is known as ‘Hooke’s atom’ or the ‘Harmonium’ [41].

Because of this similarity, we name this model the ‘gravitational harmonium.’ Hamilto-

nian (5) can be conveniently expressed in dimensionless form with the position and time

coordinate subsitutions xi →
√

mω
ℏ xi, t→ ωt, and H → H/ℏω, giving:

H =
1

2

(
p21 + p22 + x21 + x22

)
−

√
2g0

|x1 − x2|
, (6)

where g0 = G
√

m5

2ℏ3ω is a dimensionless parameter characterizing the Newtonian gravita-

tional interaction between the two particles. In these scaled, dimensionless coordinates, the

Schrödinger equation is given as i∂tψ = Hψ.
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The initial state of our system is taken to be a product state wherein particle 1 is in

a superposition of coherent states |α1⟩ displaced along the x axis direction [i.e., α1 =

(α1x, 0, 0), with α1x ̸= 0], while particle 2 is in a superposition of coherent states |α2⟩

displaced along the orthogonal y axis direction [i.e., α2 = (0, α2y, 0), with α2y ̸= 0] (Fig. 1):

|ψ⟩ =N (|α1a⟩+ |α1b⟩) (|α2a⟩+ |α2b⟩)

=N (|α1a, α2a⟩+ |α1a, α2b⟩+ |α1b, α2a⟩+ |α1b, α2b⟩) ,
(7)

where N is a normalization factor. Here, the single particle coherent states are each param-

eterized by a complex vector α = (⟨x⟩+ i ⟨p⟩) /
√
2. For the initial state (7), both particles

subsequently remain undisplaced in the z-coordinate axis direction and we therefore sup-

press further mention of the z coordinate and treat x1 and x2 as two dimensional vectors

from now on; the coherent state parameter vectors α are then given by a pair of x and y

component complex numbers for each particle [α1 = (α1x, 0) and α2 = (0, α2y)].

In order to determine the subsequent Schrödinger evolution of the initial state in Eq. (7)

with Hamiltonian (6), we first consider the evolution of one of the individual coherent state

products |α1, α2⟩ for particles 1 and 2 that make up the superposition on the second line

of Eq. (7). We can then determine the full state evolution by linearity. It is convenient to

work in terms of symmetric center of mass (SCOM) coordinates given by

R =
1√
2
(x1 + x2) and, r =

1√
2
(x1 − x2) , (8)

with R referred to as the center of mass coordinate and r the relative difference coordinate.

In terms of these coordinates, Hamiltonian (6) decomposes into the sum of the center of

mass and relative difference coordinate Hamiltonians:

H =
1

2

(
p2R +R2

)
+

1

2

(
p2r + r2 − g0

r

)
. (9)

The ket |α1, α2⟩ can equivalently be described by coherent state parameter vectors for the

SCOM coordinates as follows:

αR =
1√
2
(α1 +α2) and, αr =

1√
2
(α1 −α2) . (10)

These parameter vectors are nonzero in both their x and y components. From Eq. (9),

the Hamiltonian is separable in the SCOM coordinates, and the center of mass coordinate

evolves as a simple, 2D quantum harmonic oscillator.
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In order to approximate the evolution of the relative difference coordinate, we Taylor ex-

pand the potential terms in our Hamiltonian to second order about the position expectation

values. For coherent states, whose wavefunctions are given by Gaussians of the form

ψ (r) = exp i
[
(r − ⟨r⟩)T Ω (r − ⟨r⟩) + ⟨pr⟩ (r − ⟨r⟩) + γ

]
, (11)

the Gaussian parameters then evolve as follows [48]:

⟨ṙ⟩ = ∂H

∂ ⟨pr⟩
, ⟨ṗr⟩ = − ∂H

∂ ⟨r⟩
, (12)

Ω̇ = −2Ω2 − 1

2

∂2V

∂ri∂rj

∣∣∣
r=⟨r⟩

, (13)

γ̇ = iTrΩ + L. (14)

Here, L is the system’s classical Lagrangian evaluated for the solutions ⟨r⟩ and ⟨pr⟩, and V

includes the harmonic and gravitational potential terms. We consider initial coherent state

parameter values α1 = (α, 0) and α2 = (0, iα) for some real number α. This corresponds to

the condition that the average relative distance ⟨r⟩ between particles 1 and 2 remains fixed

in the absence of their mutual gravitational attraction (g0 = 0). Approximate solutions

to Eqs. (12)-(14) are derived in Appendix A, and their numerical validation is given in

Appendix C.

As an aside, it is interesting to note that the initial product state |α1,α2⟩ evolves into

a state where particles 1 and 2 are entangled due to nonzero off-diagonal terms in Ω. The

entanglement entropy is approximately

S ≈ 9g20t
2

64α6

[
1− log

(
9g20t

2

128α6

)]
, (15)

for g0t
α3 ≪ 1. This is in contrast to other gravitational entanglement proposals, where the ap-

proximate time-evolved state only develops entanglement due to the different gravitationally-

induced relative phases between various localized position state components resulting from

their initial spatial superpositions. Such entanglement results in our method of approxima-

tion since it keeps track of the motion of the particles’ expectation values subject to the

gravitational interaction between them. However, the gravitationally-induced relative phase

terms will provide the dominant contribution to the entanglement between the two particles

when we consider superpositions of spatially localized states as we show in the following.

In order to isolate the entanglement arising from the gravitationally-induced relative

phases, we only keep the time-dependent phase contributions to each initial product state
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component of the full superposition state that arise from evaluating the action along the

gravitationally perturbed two-particle trajectories:

|ψ⟩ =N
(
eiδSaa |α1a, α2a⟩+ eiδSab |α1a, α2b⟩+ eiδSba |α1b, α2a⟩+ eiδSbb |α1b, α2b⟩

)
, (16)

where N is the normalization. The δS terms are given by the differences between the

action along the classical path for particles subject to both the harmonic and gravitational

interactions and the action for the harmonic interaction alone, where the initial conditions

are given by the position and momentum expectation values for the coherent product state

component the eiδS phase terms are each multiplying.

We choose the following initial coherent state parameter values related to the individual

particle (not SCOM) coordinates: α1ax = α, α1bx = αe−iπ/4, α2ay = αeiπ/2, and α2by =

αeiπ/4, with α a real number [see Fig. 1(a)]. This corresponds to components |α1a, α2a⟩

and |α1b, α2b⟩ both being in the configuration described for the single coherent product

state component above where the particles’ relative difference coordinate is constant in

our approximation. These two pairs are out of phase with each other by a phase factor

of π/4. This implies that the components |α1a, α2b⟩ and |α1b, α2a⟩ have coherent state

parameter values for the rx and ry components that are out of phase by ±π/4, which does

not correspond exactly to the evolution considered for the single component case above, but

may be approximated by the same methods as described in Appendix A. The entanglement

entropy for the state (16) is approximated in Appendix B and we obtain

S ≈
(c g0
α
t
)2

{
1− log

[(c g0
α
t
)2
]}

, (17)

where c is an O(10−1) parameter defined in Appendix B. Comparing the entropy (15) arising

for the individual initial two-particle product state components (7) with the relative phase

entanglement entropy (17), we see that the former scales as α−6 while the latter scales as

α−2. Recall that α is chosen as a real number that can be interpreted as the initial maximum

displacement of the coherent state position space wave function in units of the harmonic

oscillator zero point uncertainty. In any conceivable, realistic implementation, we expect

α ≫ 1, so that the entanglement entropy for the relative phase terms dominates over the

entropy arising for the single component terms. This justifies the approximation of keeping

only the relative phase terms in the time-evolved state for the purposes of determining the

gravitationally-induced entanglement between the two harmonically trapped particles.
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While the growth of entanglement entropy as given by Eq. (17) demonstrates that the

evolving state [resulting from the initial state (7)] develops genuine entanglement between

the two particles, the entanglement entropy is not itself an observable; we still require a

means for measuring the entanglement. Consider the probability distribution for detecting

particle 1 on the x axis. In terms of the approximate evolved state (16), we have

|⟨x1|ψ⟩|2 =|N |2
{
2
[
1 + Re

(
ei(δSaa−δSab) ⟨α2b|α2a⟩

)]
|ψ1a (x1) |2

+2
[
1 + Re

(
ei(δSba−δSbb) ⟨α2b|α2a⟩

)]
|ψ1b (x1) |2

+2Re
[
ψ1a (x1)ψ

∗
1b (x1)

(
ei(δSaa−δSba) + ei(δSab−δSbb)

+ei(δSaa−δSbb) ⟨α2b|α2a⟩+ ei(δSab−δSba) ⟨α2a|α2b⟩
)]}

,

(18)

where ψ1a (x1) = ⟨x1|α1a⟩ etc. When the average positions for ψ1a and ψ1b overlap, which

corresponds to their classical paths crossing in configuration space, we have |ψ1a| = |ψ1b|.

The third term in the above expression will then have spatially oscillatory terms:

ψ1aψ
∗
1b =|ψ1a|2 exp

[
i
√
2 (Imα1ax − Imα1bx)

(
x1 −

1√
2
Reα1ax

)]
= |ψ1a|2eiΦ(x1), (19)

where here Φ denotes the phase term in the middle expression. These oscillatory terms

appear as fringes modulated by a Gaussian envelope, as indicated schematically in Fig. 1.

Expressing the probability distribution (18) in the form | ⟨x1|ψ⟩ |2 = χ+ 2[Reµ cosΦ(x1)−

Imµ sinΦ(x1)], the extrema of the distribution occur at χ ± 2|µ|. The fringe visibility V ,

defined as the ratio of the difference between the extrema to their sum, is given approximately

as

V =
2|µ|
η

≈ 1− 1

8

(
cg0t

α

)2

(20)

for α ≫ 1; the constant c is the same as that appearing in Eq. (17). Comparing Eq.

(17) with Eq. (20), we can see that the visibility scales monotonically with the entangle-

ment entropy (Fig. 2). As the entanglement entropy increases, the reduced state for either

particle behaves increasingly as an effective classical mixture of coherent states and so the

quantum interference in the particle position detection probability distribution decreases

correspondingly. Therefore, the fringe visibility can be employed as an operational mea-

sure of the entanglement entropy for probing gravitationally induced entanglement in our

harmonic particle trap scheme. Using, for example, masses m ∼ 10−14 kg and a separation

distance ∼ 102 µm as in Ref. [1], and an optical trapping potential frequency ω ∼ 102 kHz
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FIG. 2: Entanglement entropy S (units of nits, where 1 nit = 1
ln 2

bits) for the reduced

state of one of the particles and the fringe visibility 1−V for particle 1 as a function of the

scaled time parameter g0
α
t.

as in Ref. [42], gives a value g0
α

∼ 10−6 which would result in percentage level changes in

the fringe visibility in times of order one second.

Recently, a rather general quantum interferometric identity was obtained that relates the

concurrence (C), visibility (V), and which-path information (“particleness” P) as comple-

mentary measures for certifying the quantum aspects of gravitational entanglement interac-

tions [49]:

V2 + P2 + C2 = 1. (21)

For the entangled state considered in this work, and in the limit of large α where we can

treat the coherent state component pairs as mutually orthogonal to a good approximation,

our state can be alternatively interpreted as that arising for the two interferometer setup

described in Ref. [49], and using the forms for P ,V , and C given there. For our system

state, we have: P ≈ |(|eiδSaa |2 + |eiδSab|2) − (|eiδSba|2 + |eiδSbb|2)| = 0, V2 ≈ 2|eiδSaa−iδSba +

eiδSaa−iδSbb| ≈ 1 − 1
4

(
cg0
α
t
)2

and C2 ≈ 2|eiδSaa+iδSbb − eiδSab+iδSba| ≈ 1
4

(
cg0
α
t
)2
, hence obeying

the identity (21) to the leading order in α−1 with which we calculate these measures.

III. ALTERNATIVE POTENTIALS

The method of approximating the evolution of the state considered in this work is not

unique to the Newtonian gravitational potential; it can also be applied to other weak in-

teractions that are treated as perturbations to the harmonic trap. Of potential interest is
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a Coulomb type potential generalized to arbitrary dimensions or a Yukawa potential [50].

Coulomb potentials of various dimensions may be useful if practical applications of this pro-

posal use extended objects to effectively reduce the dimension of the interaction. Yukawa

potentials arise in theories with massive gravitons or in theories containing light scalar par-

ticles such as dilatons, and both could be used as alternatives to test for possible deviations

from the inverse square law [51]. Here, we calculate the effect these different potentials

would have on the entanglement entropy or fringe visibility.

Changing the potential results in different values for the first order corrections to the

classical trajectories used in the calculation of the entanglement entropy given by Eq. (17),

which in turn results in different forms for the δS terms that appear in the phase factors of

the time evolved state. Since the entanglement entropy and fringe visibility can be expressed

as functions of these δS terms, it suffices to compute the modified forms of the latter. A

new interaction potential equates to changing the Kameltonian K in Eq. (A6), which will

result in a modification to the values

˙̄η1x =
1

2π

∫ 2π

0

− ∂K

∂ϕx

∣∣∣
0
dt =

1

2π

∫ 2π

0

−∂K
∂r

ηx0 sin (t+ ϕx0) cos (t+ ϕx0)

r

∣∣∣
0
dt (22)

˙̄ϕ1x =
1

2π

∫ 2π

0

∂K

∂ηx

∣∣∣
0
dt =

1

2π

∫ 2π

0

∂K

∂r

sin2 (t+ ϕx0)

r

∣∣∣
0
dt, (23)

and similarly for the y components. Here, η and ϕ are the Hamilton Jacobi coordinates for

the classical harmonic oscillator which are used in our approximation in Appendix A. For

the initial conditions considered above, i.e., α1ax = α, α1bx = αe−iπ/4, α2ay = αeiπ/2, and

α2by = αeiπ/4, these modifications result in phase terms given by

δSaa = δSbb =

(
1

2
α
∂K

∂r
−K

) ∣∣∣
r=α

t, (24)

δSab + δSba = 2
(
α2 ˙̄ϕ1x − K̄

) ∣∣∣
r=rab

t. (25)

Here, δSaa and δSbb are evaluated along r = α which is a constant in the first order classical

canonical perturbation theory approximation. The terms δSab and δSba can be evaluated

along the trajectory for r in the ab component and we only use the perturbation to ϕx, and

not ϕy, due to the symmetries of the initial conditions. The expressions for the entanglement

entropy and fringe visibility can be recovered from Eqs. (17) and (20), but now with the

constant cg0
α

replaced by

C = 2
(
α2 ˙̄ϕ1x − K̄

) ∣∣∣
r=rab

+

(
2K − α

∂K

∂r

) ∣∣∣
r=α

. (26)
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FIG. 3: Value of the constant C given in the text which controls the scaling of

entanglement entropy and fringe visibility for (a) Yukawa potential with various values of

the Yukawa mass µ, and (b) Coulomb potential with dimension, d = 2, 3, as a function of

the initial coherent state eigenvalue α, with g0 = 1.

We calculate this quantity for a Coulomb potential in arbitrary dimension, i.e.

K =

−g0 r2−d d > 2

g0 log r d = 2
, (27)

and for a Yukawa potential with

K = g0
e−µr

r
, (28)

where µ is related to the mass of the mediating particle. The values of C for the Yukawa

potential with various values of the mass µ and for the Coulomb potential in various di-

mensions d are shown in Fig. 3. These different values of the parameter C would result

in different scalings for the entanglement entropy and fringe visibility. With precise enough

visibility measurements, such differences could serve as a probe for possible new quantum

modified gravity theories through their resulting particle entanglement.

IV. CONCLUSION

Merging quantum mechanics and gravity is one of the loftiest goals of modern physics.

Recent work investigating gravitationally induced quantum entanglement provides a path-

way to new insights into this problem.

In this paper, we have developed a thought experiment model to detect gravitationally

induced entanglement at the level of non-relativistic quantum mechanics, similar to other
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proposals in the literature. Advantageously, our setup readily lends itself to a more funda-

mental quantum field theoretic description, to be presented in a subsequent work, wherein

the massive particles which become entangled through gravity are constructed out of scalar

field quanta, and the fringe visibility is modeled by an expectation value of field observables.

This quantum field theoretic approach will allow us to go beyond the predictions of our

non-relativistic quantum mechanical model in several ways. First of all, we will be able

to systematically account for relativistic corrections to our predicted measure of entangle-

ment, corresponding to the limit of a large harmonic oscillator trapping potential frequency.

Secondly, since different methods of carrying out this approach, such as the closed time

path formalism [52, 53], or the Dirac constraint quantization procedure [46, 54], treat gauge

fixing in different ways, we may be able to more comprehensively understand gravitational

entanglement generation in these different approaches. Aside from these insights, there may

be other, less expected, lessons to be learned. As mentioned in the introduction, the de-

scription of gravitational entanglement in terms of non-relativistic quantum mechanics is

not sensitive to the spin (i.e., helicity) of the mediating massless boson [40]; a relativistic,

quantum field theoretic approach that accounts for retardation effects, such as the present

proposed approach, is required in order to reveal the distinguishing helicity two, graviton

nature of the entanglement.
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Appendix A: Approximate Evolution of Gaussian Parameters

In order to find the solutions to Eqs. (12)-(14), restated here,

⟨ṙ⟩ = ∂H

∂ ⟨pr⟩
, ⟨ṗr⟩ = − ∂H

∂ ⟨r⟩
, (A1)

Ω̇ = −2Ω2 − 1

2

∂2V

∂ri∂rj

∣∣∣
r=⟨r⟩

, (A2)

γ̇ = iTrΩ + L. (A3)

we introduce a bookkeeping parameter λ into the Hamiltonian (9), multiplying the gravita-

tional potential term

H =
1

2

(
p2r + r2 − λ

g0
r

)
. (A4)

Thus we treat the gravitational term as a perturbation to the harmonic oscillator, and at the

end of the calculation take λ → 1; this procedure is validated a posteriori with the relative

magnitudes of the terms in the resulting perturbation series being sufficiently small. For

⟨r⟩ and ⟨pr⟩, we use classical canonical perturbation theory, moving to the Hamilton-Jacobi

coordinates of the 2D harmonic oscillator given by

⟨rx⟩ =
√
2ηx sin (t+ ϕx) , ⟨ry⟩ =

√
2ηy sin (t+ ϕy) . (A5)

The Hamilton-Jacobi coordinates are those generated by a canonical transformation where

the unperturbed Hamiltonian is zero and therefore these coordinates are constants. However,

the gravitational term remains and so the transformed Hamiltonian (Kameltonian) in these

coordinates is given by

K = −λ g0√
2
[ηx sin

2 (t+ ϕx) + ηy sin
2 (t+ ϕy)]

−1/2. (A6)

We assume a perturbative solution and to first order the equations of motion are given by

η̇x1 = − ∂K

∂ϕx

∣∣∣
0
= −λg0

ηx0 sin (t+ ϕx0) cos (t+ ϕx0)√
2[ηx0 sin

2 (t+ ϕx0) + ηy0 sin
2 (t+ ϕy0)]3/2

, (A7)

ϕ̇x1 =
∂K

∂ηx

∣∣∣
0
= λg0

sin2 (t+ ϕx0)

2
√
2[ηx0 sin

2 (t+ ϕx0) + ηy0 sin
2 (t+ ϕy0)]3/2

, (A8)
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and similarly for the y components. The right hand side of these equations is periodic and

we approximate the solutions by their time averages over an oscillator period as follows:

ηx1 ≈ η̇x1t = −λ g0t

2
√
2π

∫ 2π

0

ηx0 sin (t+ ϕx0) cos (t+ ϕx0)

[ηx0 sin
2 (t+ ϕx0) + ηy0 sin

2 (t+ ϕy0)]3/2
dt, (A9)

ϕx1 ≈ ϕ̇x1t = λ
g0t

4
√
2π

∫ 2π

0

sin (t+ ϕx0)
2

[ηx0 sin
2 (t+ ϕx0) + ηy0 sin

2 (t+ ϕy0)]3/2
dt, (A10)

and similarly for the y components. For initial conditions given by α1 = (α, 0) and α2 =

(0, αeiπ/2) for some α > 0, the relative difference coordinate coherent state parameters are

αrx = α√
2
and αry = −i α√

2
. This leads to the following first order solutions:

⟨rx⟩ = α cos
[(

1 + λ
g0
2α3

)
t
]
, ⟨ry⟩ = −α sin

[(
1 + λ

g0
2α3

)
t
]
. (A11)

Such a time average has the advantage that ⟨r⟩ = α is constant.

We can only approximate Ω analytically for these particular initial conditions where

⟨r⟩ = α is constant. Assuming a solution of the form Ω ≈ Ω0 + λΩ1 to Eq. (13) for the

initial conditions α1 = (α, 0) and α2 = (0, αeiπ/2) this results in the following equations of

motion:

Ω̇0 =− 2Ω2
0 − 1, (A12)

Ω̇1 =− 2(Ω0Ω1 + Ω1Ω0)

− g0
2α3

 1− 3 cos2
[(
1 + λ g0

2α3

)
t
]

3 cos
[(
1 + λ g0

2α3

)
t
]
sin

[(
1 + λ g0

2α3

)
t
]

3 cos
[(
1 + λ g0

2α3

)
t
]
sin

[(
1 + λ g0

2α3

)
t
]

1− 3 sin2
[(
1 + λ g0

2α3

)
t
]

 .
(A13)

The initial condition for all coherent state parameters is given by Ω = i
2
1. This gives a

solution to the equation for Ω1, which we then expand as a series in λ, but keep terms where

it appears in the phases of oscillating terms. We find that the solution has a lowest order

term proportional to λ−1. This is due to the fact that we are taking an ‘improper’ series

expansion by leaving in the phase terms. However if we assume an approximate solution for

Ω given by Ω0 and the λ−1 order term of Ω1 we find that this is also a solution of the zeroth

order equation of motion:

Ω =
i

2
1 +

3

8

[
e−i(2+ g0

α3 )t − e−2it
]i 1

1 −i

 , (A14)
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where we have taken λ → 1 and note that this expression is still valid for α ≫ 1. The

off-diagonal terms clearly make the state nonseparable in the rx and ry coordinates, and

upon transforming back to the particle coordinates, the scaled covariance matrix which we

will denote Ω12 is given by

Ω12 =
i

2
1 +

3

16

[
e−i(2+λ

g0
α3 )t − e−2it

]

i 1 i −1

1 −i −1 i

i −1 i 1

−1 i 1 −i

 , (A15)

which implies that this is an entangled state between particles 1 and 2.

Thus, gravity gives rise to entanglement without considering a superposition of coherent

state products. In order to quantify this entanglement, we evaluate the entanglement entropy

using the formalism for Gaussian states [56]. The Wigner function for this state is given by

a Gaussian distribution on phase space whose covariance matrix, in the two particle phase

space coordinates basis, is given by (x1,x2,p1,p2), is

Σ =

 1
2
(ImΩ)−1 − (ImΩ)−1ReΩ

ReΩ (ImΩ)−1 2
[
ImΩ + ReΩ (ImΩ)−1ReΩ

]
 . (A16)

The symplectic eigenvalues, νi, of one of the subsystems are obtained by determining the

eigenvalues of iJΣ1, where Σ1 is the submatrix of the covariance matrix corresponding to

particle 1 and J is the symplectic form given by

J =

 0 1

−1 0

 . (A17)

The entanglement entropy is then given by

S =
∑
i

1

2
(νi + 1) log

[
1

2
(νi + 1)

]
− 1

2
(νi − 1) log

[
1

2
(νi − 1)

]
≈ 9g20t

2

64α6

[
1− log

(
9g20t

2

128α6

)]
, (A18)

where we sum over the symplectic eigenvalues for one of the particles. The bottom expression

here contains the lowest order terms in α−1.
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Appendix B: Approximate Phase Dependent Entanglement Entropies

For initial conditions given by α1ax = α, α1bx = αe−iπ/4, α2ay = αeiπ/2, and α2by =

αeiπ/4, we find the terms δS for the various components by using the classical canonical

perturbation theory method described in appendix A to solve for the classical paths. We

then use these trajectories to calculate the difference in action between the perturbed and

unperturbed (pure harmonic oscillator) solutions. We also take λ → 1 here and find that

our approximation are still valid for α ≫ 1. The δS terms are given by

δSaa =δSbb =
3g0
2α

t (B1)

δSab =
α2

4

{
cos

[
2
(
1 + Cϕ

g0
α3

)
t
]
− sin

[
2
(
1 + Cϕ

g0
α3

)
t
]
− cos (2t) + sin (2t)

}
+
g0
α
t

(
Cϕ +

1

2
Cλ

{
cos

[
2
(
1 + Cϕ

g0
α3

)
t
]
+ sin

[
2
(
1 + Cϕ

g0
α3

)
t
]}

+ Cgab

)
(B2)

δSba =− α2

4

{
cos

[
2
(
1 + Cϕ

g0
α3

)
t
]
− sin

[
2
(
1 + Cϕ

g0
α3

)
t
]
− cos (2t) + sin (2t)

}
+
g0
α
t

(
Cϕ −

1

2
Cλ

{
cos

[
2
(
1 + Cϕ

g0
α3

)
t
]
+ sin

[
2
(
1 + Cϕ

g0
α3

)
t
]}

+ Cgba

)
, (B3)

where Cϕ, Cλ, Cgab, and Cgba are given respectively by

Cϕ =
1

2π

∫ 2π

0

dt
cos2

(
t+ π

4

)(
sin2(t) + cos2

(
t+ π

4

))3/2 (B4)

Cλ =
1

2π

∫ 2π

0

dt
sin(t) cos(t)(

sin2(t) + cos2
(
t+ π

4

))3/2 (B5)

Cgab =
1 + Cϕ

g0
α3

π

∫ π

1+Cϕ
g0
α3

0

dt
(
sin2

(
t+

π

4

)
+ cos2(t)

)−1/2

(B6)

Cgba =
1 + Cϕ

g0
α3

π

∫ π

1+Cϕ
g0
α3

0

dt
(
sin2(t) + cos2

(
t+

π

4

))−1/2

. (B7)
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The reduced density matrix for particle 1 is given by

ρ1 =|N |2
{
|α1a⟩ ⟨α1a|

[
2 + 2e

α2
(

1√
2
−1

)
cos

(
δSaa − δSab +

α2

√
2

)]
+ |α1a⟩ ⟨α1b|

[
ei(δSab−δSbb) + ei(δSaa−δSba)

+e
α2

(
1√
2
−1

)(
e
i
(
δSaa−δSbb+

α2
√
2

)
+ e

i
(
δSab−δSba− α2

√
2

))]
+ |α1b⟩ ⟨α1a|

[
e−i(δSab−δSbb) + e−i(δSaa−δSba)

+e
α2

(
1√
2
−1

)(
e
−i

(
δSaa−δSbb+

α2
√
2

)
+ e

−i
(
δSab−δSba− α2

√
2

))]
|α1b⟩ ⟨α1b|

[
2 + 2e

α2
(

1√
2
−1

)
cos

(
δSba − δSbb +

α2

√
2

)]}
.

(B8)

We shall denote the four outer product terms in the curly brackets of this expression respec-

tively as ρaa, ρab, ρba, and ρbb. The eigenvalues of the density matrix σi are given by

σi =
|N |2

2

[
ρaa + ρbb + 2Re

(
eα

2(eiπ/4−1)ρab

)
±
(
(ρaa − ρbb)

2 + 4
{
eα

2(
√
2−2)ρaaρbb + |ρab|2

+(ρaa + ρbb) Re
(
eα

2(eiπ/4−1)ρba

)
−

[
Im

(
eα

2(eiπ/4−1)ρba

)]2})1/2
]
,

(B9)

where i = {1, 2}. The coherent state components of particle 1 are orthogonal to a good

approximation for α ≫ 1. In this limit, the reduced state for particle 1 can be written as

ρ1 ≈
1

4
{2 |α1a⟩ ⟨α1a|+

(
ei(δSab−δSbb) + ei(δSaa−δSba)

)
|α1a⟩ ⟨α1b|

+
(
e−i(δSab−δSbb) + e−i(δSaa−δSba)

)
|α1b⟩ ⟨α1a|+ 2 |α1b⟩ ⟨α1b|},

(B10)

and the eigenvalues can be approximated as

σi ≈
1

2
± 1

4
|ρab|, (B11)

with

|ρab| ≈ [2 + 2 cos (δSab − δSbb − δSaa + δSba)]
1/2 =

{
2 + 2 cos

[
(2Cϕ + Cgab + Cgba − 3)

(
g0t

α

)]}1/2

≈2− 1

4
(2Cϕ + Cgab + Cgba − 3)2

(
g0t

α

)2

.

(B12)
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The entanglement entropy is then approximately

S =− σ1 log σ1 − σ2 log σ2

≈ 1

16
(2Cϕ + Cgab + Cgba − 3)2

(
g0t

α

)2

{
1− log

[
1

16
(2Cϕ + Cgab + Cgba − 3)2

(
g0t

α

)2
]}

.

(B13)

This entanglement grows faster than that due to the covariance terms in one component

of our full state by a factor of α4, which will be very large in any realistic implementation, so

our approximation where the local entanglement terms are ignored is justified. Noting this,

we can further simplify the above expression by approximating Cgab, and Cgba to find that

they only have corrections proportional to α−3 which are negligible. Therefore, we have

Cgab ≈Cgba ≈
1

2π

∫ 2π

0

dt
{
sin2

(
t+

π

4

)
+ cos2 t

}−1/2

, (B14)

giving the following expression for the entanglement entropy:

S ≈
(cg0
α
t
)2

{
1− log

[(cg0
α
t
)2
]}

, (B15)

where c = 1
4
(2Cϕ + 2Cgab − 3) ≈ 0.1004.

Appendix C: Numerical Validation of Analytical Approximation to Time Evolution

In order to validate the analytical approximation to the time evolved state of the gravi-

tational harmonium described above, we also numerically approximate the time evolution of

this state and compare the numerical and analytical approximations. In order to do this we

choose a basis for our state space given by simultaneous eigenstates of the two dimensional

harmonic oscillator Hamiltonian and the angular momentum operator, whose position space

wave functions are given by

⟨r, ϕ|n,±l⟩ =
(

n!

π (n+ l)!

)1/2

e±ilϕe−r2/2rlLl
n(r

2) (C1)

where l > 0, and Ll
n are the generalized Laguerre polynomials [57]. The energy of these

states is En,l = 2n+ l + 1 for a simple harmonic oscillator, in the absence of gravity.
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The gravitational potential term can be evaluated in this basis with matrix elements

given by

Vnmjl = ⟨n, l| − g0
r
|m, j⟩ = −2g0δjl

(
n!m!

(n+ l)!(m+ j)!

)1/2 ∫ ∞

0

e−r2rj+lLl
n(r

2)Lj
m(r

2)dr

(C2)

=− g0

N∑
i=0

Γ(N + l + 1/2)xi

N !(N + 1)2(L
l−1/2
N+1 (xi))

2
Ll
n(xi)L

l
m(xi),

where N > n,m, the xi are the zeros of L
l−1/2
N , and the last equality is found by Gauss-

Laguerre quadrature. Therefore the Hamiltonian for the gravitational harmonium has ma-

trix elements in this basis given by Hnmlj = (2n+ l + 1) δnmδjl + Vnmjl. By evaluating a

finite number of these basis elements, we approximate the Hamiltonian on the subspace

spanned by the finite number of basis states corresponding to these matrix elements. We

then numerically diagonalize this matrix and approximate the propagator on this subspace

by U(t) = Pe−iEtP †, where P is the change of basis matrix to the eigenbasis of H, and E is

the diagonal matrix of eigenvalues of H.

We act with this propagator on an initial state corresponding to one component of our

initial state considered above, i.e., a product of coherent states of particles 1 and 2. This

corresponds to a coherent state of a 2D harmonic oscillator in the separation coordinate we

are considering here. In this basis, coherent states are given by

|α, β⟩± =
∞∑

n,l=0

(
(n+ l)!

n!

)1/2
1

l!
αlβn |n,±l⟩ . (C3)

The parameters α, β correspond roughly to the semi-major axis and eccentricity of the

trajectory of the position expectation value respectively, and the label ± corresponds to

counter-clockwise or clockwise rotation [57]. For the component of our state corresponding

to particles 1 and 2 having constant separation between position expectation values, we find

β = 0 and α is the same as considered in previous sections.

In order to determine if the numerically approximated time evolved state validates our

analytical approximation, we make use of a distance measure between states given by

d(|ψ1⟩ , |ψ2⟩) = 1− Re ⟨ψ1|ψ2⟩ (C4)

and evaluate the distance between our numerical approximation and either the analyti-

cal approximation of the gravitational harmonium, or a pure harmonic oscillator without
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FIG. 4: Distance measures dSHO and dGH for various values of the parameters g0 and α,

with g0
α
= 10−6 as a function of time (in units ω−1). With dSHO > dGH , we have that the

numerical approximation is closer to our analytical approximation than to a pure harmonic

oscillator as quantified by this distance measure.

gravity, both projected onto the subspace spanned by the basis elements we used here,

i.e., dGH

(
U(t) |α⟩ , eiδS |α(t)⟩

)
and dSHO (U(t) |α⟩ , |α(t)⟩), respectively. We find that for

1 < α < 10 and g0
α
= 10−6, and t up to 1s (which corresponds to t = 105 in units ω−1) as in

Sec. II, we have dGH < dSHO (see Fig. 4). This establishes that our time evolved state is

closer to that of our analytical approximation of the gravitational harmonium than to the

evolving harmonic oscillator state with gravity neglected, thus validating our approximation.
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