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Abstract

Studies of black hole superradiance often focus on the growth of a cloud in isolation, accompanied

by the spin-down of the black hole. In this paper, we consider the additional effect of the

accretion of matter and angular momentum from the environment. We show that, in many

cases, the black hole evolves by drifting along the superradiance threshold, in which case the

evolution of its parameters can be described analytically or semi-analytically. We quantify the

conditions under which accretion can serve as a mechanism to increase the cloud-to-black hole

mass ratio, beyond the standard maximum of about 10%. This occurs by a process we call

over-superradiance, whereby accretion effectively feeds the superradiance cloud, by way of the

black hole. We give two explicit examples: accretion from a vortex expected in wave dark matter

and accretion from a baryonic disk. In the former case, we estimate the accretion rate by using

an analytical fit to the asymptotic behavior of the confluent Heun function. Level transition,

whereby one cloud level grows while the other shrinks, can be understood in a similar way.
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1 Introduction

The phenomenon of black hole superradiance has been known since the 1970s [1–6]: mass and

angular momentum can be extracted from a Kerr black hole via an instability associated with the

presence of a light bosonic field. More recent work has emphasized axions or axion-like-particles as

particularly compelling examples of such a field [7], and explored observational signatures such as

the spin-down of black holes and gravitational wave emission [8–12]. See also [13, 14] for state-of-

the-art computations and a comprehensive review.

In this paper, we focus on the case of a scalar field; generalization to higher spins is straightfor-

ward. Consider a minimally coupled scalar Φ of mass µ on a Kerr background:

(−gαβ∇α∇β + µ2)Φ = 0 . (1.1)

Imposing boundary conditions that Φ is (1) ingoing at the horizon and (2) vanishes at infinity,

it can be shown that a solution of definite angular momentum numbers `,m has a discrete set of

frequencies ω, much like the hydrogen atom. Superradiance refers to the possibility of energy and

angular momentum extraction from the black hole, which occurs when the following inequality is

satisfied

Reω <
am

rsr+
, (1.2)

where rs = 2GMBH is the Schwarzschild radius, a is the spin of the black hole (maximal spin is

a = rs/2), and r+ is the outer horizon. The combination Ω+ ≡ a/(rsr+) is the angular velocity of

the horizon. For the hydrogen-like bound states, whenever (1.2) is satisfied, ω acquires a positive

imaginary part (Φ ∝ e−iωt), signalling an instability (see Table 1 for a summary of the different

cases). Typically, Reω is of the order of the scalar mass µ, and Imω � µ. The superradiance

condition can thus be re-expressed as a condition on the dimensionless spin of the black hole

a∗ ≡ 2a/rs as a function of µrs/2 (the gravitational radius to Compton scale ratio). See the top-

left shaded blue region of Figure 1 for an illustration for m = 1. This is the region of the parameter

space in which an initial scalar seed, no matter how small (even a quantum fluctuation), can grow,

extracting both mass and angular momentum in the process, thereby spinning down the black hole

(see the red arrows in the blue region). The upper bound on the mass of the cloud which grows in

this way is, as we will see, about 10% of the black hole mass [15].

The story we wish to tell starts when the black hole spins down to the boundary of the super-

radiance region. In particular, let us remember that black hole in nature rarely exists in isolation.

The ambient matter, be it baryonic or dark matter, can accrete onto the black hole. In most cases,

as we will check below, the accretion rate is small enough that the spin-down to the superradiance

boundary (the downward red arrows in the blue region) is not significantly affected. But once the

black hole approaches the vicinity of the boundary, the mass and angular momentum extraction

by the cloud slows down considerably. Meanwhile, the ambient accretion is still ongoing and can

compete with superradiance. In fact, to say “compete” does not quite convey the complete picture.
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Figure 1: Trajectories of black hole evolution in the mass-spin (“Regge”) plane (as determined

by 2.11 and 2.12). Here, the black hole mass is encoded in α ≡ µrs/2; the black hole spin is

described by a∗ ≡ 2a/rs. The superradiance region is the upper-left, blue shaded region (1.2 or

2.15), assuming the scalar angular momentum quantum number m = 1. The red arrows in that

region indicate the reduction of the black hole mass and spin as the m = 1 superradiance cloud

grows. The red arrows outside the blue region indicate the evolution of the black hole mass and

spin, when the (non-superradiant) m = 1 mode accretes onto the black hole. In this case, the

non-superradiant m = 1 mode could be from the cloud that was built up by superradiance (but

now, the cloud shrinks and gives back mass to the black hole), or it could be from the ambient

environment. The upper-right, shaded red region (a∗ > m/(2α), from 2.16) indicates where the

(non-superradiant) m = 1 mode spins down the black hole (i.e., the black hole gains both mass and

angular momentum from the mode, but gains mass faster such that ȧ∗ < 0). Lastly, the dotted

gray lines are lines of constant horizon area; black hole evolution always respects the second law

i.e. horizon area increases. See Section 2.2 for further discussions.

The two actually act in concert, in the following sense. The ambient accretion donates mass and

angular momentum to the black hole, while superradiance extracts mass and angular momentum

from the black hole at the same time: accretion effectively feeds the cloud—by way of the black

hole. The net result is a cloud that can grow to a significantly bigger size, and a black hole that

spins up and grows in mass. This behaviour has been seen for the first time through numerical

computations in [16], where baryonic accretion was considered. However, its dynamics has not

received an explanation so far. The goal of this paper is to study this phenomenon analytically.

Effectively, the black hole climbs up the boundary of the superradiance region (Figure 1). In detail,
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the black hole actually executes a trajectory ever so slightly above the boundary—we thus call

this over-superradiance-threshold-drift, or over-superradiance in short. It turns out an evolution

slightly under the boundary is also possible, where the cloud shrinks, giving mass back to the black

hole. We refer to this second way for the black hole to climb up the superradiance boundary as

under-superradiance-threshold-drift, or under-superradiance in short.

We summarize here the main novel results of this work.

• We show that the threshold drift is a generic behaviour that onsets whenever the accretion

timescale is much longer than the superradiance timescale. We do this in Section 3 with

qualitative arguments, and in Appendix C quantitatively in a toy model, showing that the

threshold drift is an attractor of the dynamics.

• We formulate a precise condition to discriminate between over- and under-superradiance, see

(3.9). This inequality also tells whether the cloud’s mass increases or decreases during the

process.

• We quantify the amount by which the trajectory deviates from the superradiance threshold.

This is done expressing the change in the angular velocity of the horizon in terms of the mass

of the cloud and the black hole parameters, see (3.12).

• We consider the possibility that accretion occurs from the ambient dark matter. Building on

earlier work by [17–19], we derive a widely applicable approximation for stationary accretion

of scalar dark matter onto a black hole, see (4.1) and Appendix A. This scenario is particularly

appealing in the context of wave dark matter, which is described by a light scalar field with

a mass . 30 eV, exhibiting wave phenomena (see, e.g., [20–23] and references therein). This

may or may not be the same scalar that leads to superradiance. Wave dark matter naturally

develops vortices due to wave interference ([24] and references therein), from which the black

hole can accrete mass and angular momentum in a way that triggers over-superradiance.

• We find analytical expressions to describe the threshold drift with dark matter accretion,

determining the evolution of the cloud’s mass as function of the black hole mass and the

initial conditions, see equations (4.9)-(4.12). We find that dark matter accretion, albeit slow,

can give a larger cloud-to-black hole mass ratio compared to baryonic accretion.

• We describe the “level transition” happening between different states of the cloud when

superradiance of multiple modes is considered. This was studied numerically in [25]. Here,

we show that this process can be understood as under-superradiance. The threshold drift

phenomenon also happens during the level transisition, which can therefore be studied with

the results derived earlier. We find analytically the coordinates of the relevant points of the

trajectory in the Regge plane, see (4.15).

• We extend the results of [16] concerning baryonic accretion, providing a sharp bound on the

maximum cloud-to-black hole mass ration attainable.

The outline of the paper is as follows. We begin in Section 2 with a brief review of superradiance
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in isolation (i.e., a single scalar mode present). The superradiance we are most interested in is

bound superradiance, which gives rise to the growth of a cloud around the black hole, reducing the

latter’s mass and angular momentum. In particular, the standard maximum cloud-to-black-hole

mass ratio of around 10% is derived in (2.19). We introduce the phenomenon of threshold drift in

Section 3, a process in which the black hole moves along the superradiance threshold in the mass-

spin (“Regge”) plane, by combining the effects of superradiance and accretion from the ambient

environment. The evolution of the black hole + superradiance cloud system is described by (3.5) to

(3.8). The distinction between over-superradiance and under-superradiance is explained here. In

Section 4, we present several different cases of interest, for both accretion from (wave) dark matter

(Section 4.1), and from a baryonic accretion disk (Section 4.3). In Section 4.2, we demonstrate how

the phenomenon of level transition, whereby one cloud level is depleted while another grows, can

be understood in the same threshold drift framework. We conclude in Section 5 with a discussion

of the observational implications and open questions. A number of technical results can be found

in the Appendices.

Notations and terminology. We work in natural units, with ~ = c = 1. Newton’s constant and

the reduced Planck mass are related by G = 1/(8πM2
Pl). Our metric signature will be (−,+,+,+),

with Greek letters standing for spacetime indices. The metric of a Kerr black hole of mass MBH

and angular momentum JBH is

ds2 = −
(

1− rsr

%2

)
dt2−2arsr sin2θ

%2
dtdφ+

%2

∆
dr2+%2dθ2+

(r2 + a2)2 − a2∆ sin2θ

%2
sin2θ dφ2 , (1.3)

where rs ≡ 2GMBH is the Schwarzschild radius, a ≡ JBH/MBH is the spin parameter (which is

taken to be nonnegative), %2 ≡ r2 + a2 cos 2θ and ∆ ≡ r2 − rrs + a2. The roots of ∆ = 0 give

the radii of the outer and inner horizons, r± ≡ rs/2±
√

(rs/2)2 − a2. The angular velocity of the

outer horizon is Ω+ ≡ a/(rsr+) and the dimensionless black hole spin parameter is a∗ ≡ 2a/rs,

ranging from 0 (non-rotating case) to 1 (extremal case). We introduce the dimensionless quantity

α ≡ µrs/2, where µ is the scalar field mass.

A few words on terminology are in order. Accretion is the process by which a black hole gains

mass. This can occur via accretion from the ambient environment (such as the surrounding dark

matter or baryonic disk), or accretion from the cloud that was built up by superradiance (but is no

longer in a superradiant state due to the evolution of the black hole). Most of the time, by accretion,

we implicitly refer to the former, i.e. ambient accretion. We reserve the word “cloud” to describe

the scalar cloud bound to the black hole, grown by superradiance. We reserve the words “ambient”

and “environment” to describe what is around the black hole other than the superradiance cloud

itself.
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2 Superradiance in isolation

In this section, we set the stage by reviewing the massive Klein-Gordon equation in Kerr back-

ground, describing solutions involving fluxes of mass and angular momentum into and out of the

black hole. Superradiance refers to the latter possibility. In particular, when the scalar is bound to

the black hole (the scalar vanishes far away from it), the superradiance is accompanied by an insta-

bility: a scalar cloud grows around the black hole. The resulting backreaction on the black hole’s

mass and angular momentum is described, and visualized in plots of the Regge plane. Throughout

this section, only a single mode (of angular momentum m) is present.1 Most of the discussion

focuses on this single mode being the superradiant mode, though some of the discussion applies

equally well if the single mode refers to accretion from the ambient environment. In the next sec-

tion, we will study situations in which two modes are present, including the most interesting case

where one mode refers to superradiance, and the other refers to ambient accretion.

2.1 Fluxes and evolution equations

Consider a scalar field Φ of mass µ in the Kerr background. Throughout the paper we will ig-

nore self-interactions of Φ.2 Under this assumption, the scalar obeys the Klein-Gordon equation

(−gαβ∇α∇β + µ2)Φ = 0, which can be solved by decomposing it into a linear combination of

Φω`m = e−iωteimφS`m(θ)Rω`m(r) , (2.1)

where ω is, in general, complex. Here, eimφS`m(θ) is a spheroidal harmonic, which reduces to the

spherical harmonic Y`m(θ, φ) if a = 0 or ω = µ, and Rω`m(r) is the radial function, which depends

on ω, `,m as well as the black hole parameters a and rs and scalar mass µ. Both the spheroidal

harmonic and the radial function are solution of the confluent Heun equation; details of the decom-

posed Klein-Gordon equation are given in Appendix A. The above expression is technically only

valid if Φ is complex; if it were real, one should simply add the complex conjugate:

Φω`m = e−iωteimφS`m(θ)Rω`m(r) + c.c. . (2.2)

Two central quantities of our study are the integrated energy and angular momentum fluxes

across the horizon. To derive them, we take the (r, t) and (r, φ) components of the scalar energy-

momentum tensor in the Kerr background; here, for simplicity we consider only one (ω, `,m) mode

1Focusing on a single mode is a reasonable starting point, because as we will see, the timescales associated with

different m’s are generally quite different.
2See Section 5 for a discussion on when this is a good approximation.
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and drop the subscripts:3

T rt = grr(∂rΦ
∗∂tΦ + ∂tΦ

∗∂rΦ) = 2
∆

%2
Im(ωR′∗R)|S|2e2 Im(ω)t, (2.3)

T rφ = grr(∂rΦ
∗∂φΦ + ∂φΦ∗∂rΦ) = −2

∆

%2
m Im(R′∗R)|S|2e2 Im(ω)t. (2.4)

From the near-horizon limit of the radial part of the Klein-Gordon equation,

∆
d

dr

(
∆

dR

dr

)
+ r2

sr
2
+(ω −mΩ+)2R = 0, (2.5)

we can extract the near-horizon behavior of R(r),

R(r) ∝ (r − r+)−iσ, σ =
rsr+(ω −mΩ+)

r+ − r−
, (2.6)

and evaluate the energy-momentum tensor at the horizon,

T rt(r+) = 2
rsr+

%2
(|ω|2 − Re(ω)mΩ+)Φ∗Φ(r+), (2.7)

T rφ(r+) = −2m
rsr+

%2
(Re(ω)−mΩ+)Φ∗Φ(r+). (2.8)

The angular integrals of these quantities provide the total energy and momentum fluxes across the

horizon, which we write as a variation of the mass and spin of the black hole:

ṀBH = 2rsr+(|ω|2 − Re(ω)mΩ+)|R+|2, (2.9)

J̇BH = 2rsr+m(Re(ω)−mΩ+)|R+|2, (2.10)

where we have set R+ ≡ R(r+).

A few comments are in order about these expressions. First of all, they hold when only one

(ω, `,m) mode is present. Because Tµν is quadratic in the field, interference terms appear when

multiple modes are present. As we argue in Appendix B.2, these interference terms are not expected

to play a significant role in the cases we are interested in, because they oscillate much faster than

the timescale of variation of MBH and JBH. Second, the frequency ω is determined by boundary

conditions. For a bound mode (i.e., Φ vanishes far away from the black hole), ω turns out to be

complex and discretized (see [13, 14] and Appendix B), while for an unbound mode (i.e., Φ does not

vanish far away) ω is real and can be interpreted as the energy of the scalar very far from the black

hole. In both cases, for applications of interest, ω ≈ µ, so that the equations can be approximated

as

ṀBH = 2rsr+µ(µ−mΩ+)|R+|2, (2.11)

J̇BH = 2rsr+m(µ−mΩ+)|R+|2. (2.12)

3In the case of a real scalar field, the following expressions only hold in a time-averaged sense. More precisely,

the expressions for Tµν in terms of a real (and canonically normalized) Φ has an extra factor of 1/2; this factor is

canceled, once one expresses Φ as in Eq. (2.2) and evaluates the time-averaged Tµν .
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Another important point is that, when we equate the fluxes to the changes of the black hole

parameters, we are no longer dealing with a linear system. In other words, the Klein-Gordon

equation, while superficially linear in the scalar field, is not strictly so because the black hole’s

geometry is modified by the scalar itself. When the parameters of the black hole change with time,

the time dependence of the field will no longer be strictly e−iωt. Equations (2.9) and (2.10), or

(2.11) and (2.12), therefore need to be supplemented with information on the long-term evolution

of the scalar field.

In case the mode under consideration is bound, this is usually done in a quasi-adiabatic approx-

imation [16, 25], in which the growth of the cloud is computed using the instantaneous value of

Im(ω) (and we will further apply the approximation Re(ω) ≈ µ). The total mass and angular

momentum are kept constant. The resulting evolution equations are

ṀBH = −Ṁc J̇BH = −J̇c
Ṁc = 2 Im(ω)Mc J̇c = m

µ Ṁc,
(2.13)

where Mc and Jc = mMc/µ are the mass and angular momentum carried by the bound mode (the

cloud). The role of |R+| in Eqs. (2.11) and (2.12) is thus replaced by Mc in the system of equations

here.

When multiple modes are present, an explicit model of the cloud profile is necessary to generalize

the above equation [25].

If the mode under consideration is unbound, such as in the case of scalar dark matter accretion

from the environment, then |R+| in Eqs. (2.11) and (2.12) would need to be connected to the scalar

field value far away. A stationary accretion flow solution (Appendix A) provides such a connection,

fixing the scalar amplitude at the horizon |R+| in terms of the scalar energy density ρ far away.

As we will see, for our main conclusions only a few ingredients of the equations above will be

relevant, namely the ratio J̇c/Ṁc (or J̇acc/Ṁacc for accretion modes) and the fact that the mass in

each individual bound state (n, `,m) grows as Ṁc/Mc ∼ 2 Im(ωn`m) ∼ (mΩ+−µ)α4`+5 (Appendix

B).

2.2 The Regge plane

We are interested in the evolution of the black hole in the mass-spin (“Regge”) plane (Figure 1).

On the x-axis, we have α ≡ µrs/2, which is a measure of the mass of the black hole, while on the

y-axis we have a∗ ≡ 2a/rs, i.e., the angular momentum to squared mass ratio.

Even though eventually we will be interested in situations where multiple modes are present, let

us first gain some intuition on the Regge flow for a single mode. From (2.9) and (2.10), we see that

the scalar field extracts energy and angular momentum from the black hole when

µ ≈ Re(ω) < mΩ+. (2.14)

This is the superradiance condition. If the mode of interest is bound (i.e., Φ vanishes far away), the

superradiance is accompanied by an instability, i.e. Imω > 0, telling us that the scalar field builds
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up around the black hole into a cloud. In other words, the gravitational potential of the black hole

does not allow the superradiance generated scalar to escape, leading to a run-away process. It is

useful to re-express the inequality as

a∗ >
m/α

1 + (m/2α)2
, for

2α

m
< 1, (2.15)

with m understood to be positive. This region is shown in blue in Figure 1.

It is worth noting that superradiance can occur with an unbound mode too. If one were to remove

the Φ → 0 boundary condition far away from the black hole, ω can be real (and not discretized).

This means the extraction of mass and angular momentum from the black hole does not occur by

an exponential build up of the scalar cloud. Rather, it occurs by sending the mass and angular

momentum out to infinity, a reverse accretion flow if you will. This is entry 3 in Table 1, whereas

bound superradiance is entry 1.

Note that the extraction of angular momentum implies, but is not implied by, ȧ∗ < 0, as

ȧ∗ ∝
2

r2
s

(
m− 2a∗α

)(
µ− ma∗

2r+

)
, (2.16)

where we used J̇BH = (m/µ)ṀBH and ṀBH ∝ (µ −mΩ+). This expression also tells us there is

a region a∗ > m/(2α), not overlapping with (2.15), where the black hole is spun down even if its

angular momentum increases. This region is shown in red (top-right corner) in Figure 1.

The Regge trajectories in Figure 1 are obtained by computing ȧ∗/α̇ from Eqs. (2.11) and (2.12).

The red arrows in the blue region represent the Regge trajectories when an m = 1 (bound) superra-

diance cloud grow, reducing the black hole’s mass and angular momentum. The red arrows outside

the blue region show the Regge trajectories when a (non-superradiant) m = 1 mode accretes onto

the black hole. Such a non-superradiant m = 1 mode could arise from the bound cloud that was

previously built up by superradiance (which now shrinks and gives back mass and angular momen-

tum to black hole), or it could be from the (unbound) ambient environment. Note that the field

amplitude at the horizon |R+| gets scaled out of the ȧ∗/α̇ ratio. However, the speed with which

the black hole follows these trajectories will depend on |R+|. We will see below how the timescale

can be quite different for different scenarios. See Table 1 for a summary of the various scalar field

configurations of interest.

2.3 Black hole spin down and growth of the superradiance cloud

Let us discuss in a bit more detail the case of bound superradiance (entry 1 in Table 1). Solving

(2.13), when Im(ω) is properly expressed as a function of the mass and spin of the black hole,

gives the time evolution of the black hole parameters due to the growth of the superradiance cloud.

While such a solution may not have an easy analytical expression, things simplify when the time

coordinate is factored out, i.e., when we only look at the trajectory in the Regge plane. We will
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µ < am/(rsr+) (superradiance) µ > am/(rsr+)

bound (complex ω, Reω < µ) 1. cloud grows (Imω > 0) 2. cloud shrinks (Imω < 0)

black hole shrinks black hole grows

unbound (real ω, ω ≥ µ) 3. ambient mass/ang. mom. 4. ambient mass/ang. mom.

extraction from black hole accretion onto black hole

Table 1: Summary table for the different scalar configurations of interest around a black hole. The

superradiance condition (1.2) has been applied with the approximation Reω ≈ µ.

use a similar approach in Section 3 when putting accretion and superradiance together, so let us

describe how it works.

Because the extraction happens with a fixed angular momentum-to-mass ratio (and equal to

J̇c/Ṁc = m/µ), (2.13) implies
d

dt

(
MBH −

µ

m
JBH

)
= 0. (2.17)

This simple observation fully determines the trajectory followed by the black hole in the Regge

plane. Superradiance can only last until Im(ω) reaches zero (i.e., J̇c = Ṁc = 0), which means

that the black hole hits the threshold µ = mΩ+, see Figure 1. As long as no other states are

considered, this will be a point of stable equilibrium for the system: moving above the threshold in

the Regge plane will cause the cloud to become superradiant, pushing the black hole down again;

moving below the threshold will cause the cloud to decay, giving mass and angular momentum to

the black hole, pushing the black hole back to the threshold. Intersecting the trajectory (2.17) with

the threshold µ = mΩ+, we can find analytically the final parameters (r′s, a
′) of the black hole in

terms of the initial ones (rs, a):

µr′s
m

=
1−

√
1− (2(µrs/m)(1− µa/m))2

2(µrs/m)(1− µa/m)
,

a′

r′s
=
µrs
m

(
1− µa

m

)
. (2.18)

The cloud mass at the end of the process will be Mc = (rs−r′s)/(2G). The maximum ratio between

the mass of the cloud and the mass of the black hole achievable with the evolution of a single state

can be thus obtained from the formula above:4

max
{ Mc

MBH

}
= max

{rs − r′s
r′s

}
= 10.78%, for

µrs
m
≈ 0.24 and

a

rs
= 0.5. (2.19)

How much time does it take to grow the cloud? Although the system of equations (2.13) is

nonlinear, the nonlinearities are negligible as long as the size of the cloud is small enough to not

make Im(ω) change appreciably. As a consequence, for a cloud growing from a small seed, for

4This estimate is precisely equivalent to the one presented in [15], where the authors compute instead max
{

(rs−
r′s)/rs

}
= 9.73%.
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example a quantum fluctuation, we can estimate the growth time as

Tgrowth ≈
log(Mc/Mc, seed)

2 Im(ω(rs, a))
, (2.20)

where rs and a are the initial black hole parameters. For a quantum fluctuation, we have Mc,seedrc ∼
1/2, where rc = rsn

2/(2α2) and n is the principal quantum number of the cloud, giving

log

(
Mc

Mc,seed

)
∼ 175.5 + log

(
Mc

MBH

M2
BH

M2
�

n2

α2

)
. (2.21)

The growth rate Im(ω(rs, a))/µ varies by orders of magnitude across the instability region of a

given mode, reaching a maximum of about 10−7 for α = 0.42, m = 1 [13]. Tgrowth can then be as

short as several hours for stellar black holes, and 105–106 years for supermassive black holes.

3 Threshold drift: combining superradiance with accretion

In this section we explain in detail the evolution of a black hole in the presence of both a cloud

from superradiance and accretion from the ambient environment.5 In Section 2 we showed that

the evolution of a black hole and its superradiance cloud is determined by the nonlinear6 equations

(2.13). It is worth stressing that these equations neglect potentially important effects, like the

depletion of the cloud due to gravitational waves, or self-interactions of the scalar field which mix

different levels. We will briefly discuss them in Section 5.

In Section 2.3 we described the evolution of a black hole from its initial “starting point”, to its

final meta-stable, or at least long-lived, state, surrounded by a boson cloud of a single m mode.

Processes involving either additional states or external effects are needed to drive the gravitational

atom away from this final position in the Regge plane. In this section, we take the endpoint of the

single-mode evolution as an initial condition, and focus on the case where the system is fed mass

and angular momentum from the outside.7 How does the gravitational atom respond?

Suppose that some external fluxes of mass and of angular momentum change the parameters of

the black hole as

2GṀacc =
drs
dt

∣∣∣∣
acc

, 2GJ̇acc =
d(ars)

dt

∣∣∣∣
acc

. (3.1)

where the label “acc” stands for accretion. Like in the last section, we assume the bound, super-

radiance cloud is described by a single (n, `,m) state. The evolution equations (2.13) get modified

5The accretion could in principle also be from excited states of the cloud which still undergo superradiance, thus

falling in the first case of Table 1, providing a “negative accretion”, or extraction of mass. This is relevant for level

transition that will be discussed in Section 4.2. The threshold drift discussion in the current section applies equally

well, for accretion from the ambient environment, as for accretion from the cloud.
6The nonlinearity refers to the implicit dependence of Im(ω) on the mass and spin of the black hole.
7It is also possible, as we will see in Section 4, that the black hole reaches the threshold “from below”, instead

of from above, for example because of the same accretion mechanism that drives its subsequent evolution. The way

the black hole arrives at the threshold does not matter for the discussion here.

11



by accretion as follows:

ṀBH = Ṁacc − Ṁc, (3.2)

J̇BH = J̇acc −
m

µ
Ṁc, (3.3)

Ṁc = 2 Im(ω)Mc, (3.4)

where we approximated ω ≈ µ. At the end of the previous section, we have seen that the super-

radiance timescale can be very short compared to other astrophysical processes such as accretion

(see Eq. 2.20), going from hours to 105–106 years depending on the mass of the black hole. Thus,

superradiance, when it is operative, will tend to move the black hole to the superradiance threshold

in the Regge plane where it is turned off. And it is when the black hole is very close to the threshold

that accretion can compete with superradiance. The crucial observation for our discussion is that,

whenever the superradiance timescale is much shorter than the accretion timescale (assumed hence-

forth, which we will verify later), the system described by Eqs. (3.2), (3.3) and (3.4) will closely

follow the superradiance threshold line defined by µ = mΩ+ during its accretion-driven evolution

in the Regge plane, as long as the cloud has a high enough occupation number. We can see how

this works in a few different ways.

Let us start with a simple intuitive explanation. With reference to Figure 2, let us consider a black

hole sitting exactly on the superradiance threshold, µ = mΩ+. The second terms on the right-hand

sides of Eqs. (3.2) and (3.3) vanish, and we can think of accretion as a process that tends to drive

the black hole slightly away from the threshold. During this first step of the evolution, depending

on the slope of accretion with respect to the threshold, the black hole will end up either above or

below it.

Consider the case where the black hole is driven slightly above the threshold (left panel), su-

perradiance then kicks in, and because it is very efficient (unless one is on the threshold), quickly

moves the black hole back to the threshold. During this second step, the superradiance cloud

grows further in mass. The black hole loses mass in this second step, but the combined action of

the first (accretion) and second (superradiance) steps is such that the black hole has a net gain

in mass. The two-step combination repeats itself, and as a result, the black hole climbs up along

the superradiance threshold. (It can never climb down, by virtue of the second law of thermo-

dynamics; see Figure 1.) We refer to this phenomenon as over-superradiance-threshold-drift, or

over-superradiance in short.

Conversely, consider the case where the first (accretion) step takes the black hole below the

threshold (right panel). Remember the superradiance cloud is still there, and because the black

hole is below threshold, the cloud will in fact shrink and give mass back to the black hole. This

second step involves the existing superradiance cloud, but in a non-superradiant state, i.e. Imω < 0,

as opposed to Imω > 0, implying the scalar field decreases in value, that is to say, cloud loses mass.

The net effect of the first and second steps is once again to increase the black hole’s mass, and as

a result, the black hole climbs up along the superradiance threshold. We refer to this phenomenon

12



α

a
∗

α

Figure 2: Pictorial (i.e., not literal) representation of threshold drift, in the cases of over- (left) and

under-superradiance (right), defined by (3.9). The image is schematic and represents a zoom-in

of the Regge plane near the superradiance threshold (see Figure 1 for a zoom-out). The shaded

blue area denotes the region of superradiance instability. The red lines in the blue region show the

trajectories of the black hole under superradiance: the superradiance cloud grows and the black

hole shrinks. The red lines outside the blue region show the opposite: suppose a cloud grown by

superradiance already exists around the black hole, these red lines depict the evolution of the black

hole as the cloud shrinks and gives back mass and angular momentum to the black hole. In other

words, the red lines describe the effects of the cloud terms in (3.2) and (3.3). The green lines

depict how the black hole would evolve under accretion alone (accretion terms in (3.2) and (3.3)).

The left/right panel depicts the case where accretion tends to move the black hole above/below

the superradiance threshold. The black zig-zag line is a pictorial representation of the trajectory

followed by the black hole, which in reality is a smooth drift to the right, either slightly above (left)

or below (right) the threshold.

as under-superradiance-threshold-drift, or under-superradiance in short.

Of course, this discrete “zig-zag” description of over- or under-superradiance should not be taken

literally. In reality, the black hole’s evolution in the Regge plane is smooth: it drifts along a

trajectory that closely hugs the superradiance threshold, where the effects of accretion and super-

radiance (or cloud decay) finely complement each other. We call this phenomenon threshold drift.

It is worth emphasizing again that the black hole can only drift to the right, in the direction of

increasing its mass. This is because the other direction is forbidden by the second law of the black

hole thermodynamics, as the area of the event horizon would reduce (see Appendix B.3 and Figure

1). The superradiance trajectories at precisely the threshold are in fact parallel to lines of constant

area; the accretion trajectories must intersect them and point to the right.

This threshold drift phenomenon can be seen in numerical solutions for the evolution of the black
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hole in the Regge plane. For example, this explains why in [16], where accretion from a baryonic

disk was taken into account, the numerical evolution tracked the superradiance threshold for a

significant part of the black hole’s history. In Section 4, we will examine the case of baryonic

accretion more closely, and present a semi-analytic way to understand the black hole’s evolution.

We note that it is possible to understand the dynamics of the system in the Regge plane in terms

of a simpler toy model. This is described in detail in Appendix C, where we show that the threshold

drift is an attractor of the dynamics as long as the mass of the cloud has a sizable value.

Having established that the system follows a trajectory that lies very close to the superradiance

threshold in the Regge plane, we can thus enforce the condition µ = mΩ+ in the equations (3.2)

and (3.3), reducing it to a single ordinary differential equation. Let us first take the time derivative

of µ = mΩ+ (or equivalent, a∗ = (m/α)/(1 + (m/2α)2); see 2.15):

µ

m

d(ars)

dt
=
x4 + 3x2

(1 + x2)2

drs
dt
, (3.5)

where we defined x ≡ µrs/m. Note that the superradiance instability region, as well as its threshold,

spans the region 0 < x < 1. Combining (3.2) and (3.3) to eliminate the dependence on the mass of

the cloud, and then plugging (3.5) in, we obtain an equation for the evolution of the black hole’s

mass:
1− x2

(1 + x2)2

dx

dt
=

(
1− µ

m

J̇acc

Ṁacc

)
µ

m

drs
dt

∣∣∣∣
acc

, (3.6)

where drs/dt|acc ≡ 2GṀacc can be thought of as ṙs due to accretion alone. For given rates of

mass and angular momentum accretion, equation (3.6) describes how the mass of the black hole,

MBH ≡ mx/(2Gµ), evolves in time, as long as the superradiance cloud with azimuthal number m

has high enough mass to keep the black hole pinned at the superradiance threshold. While this

process takes place, the cloud’s mass Mc ≡ mxc/(2Gµ) evolves according to

d(x+ xc)

dt
=

µ

m

drs
dt

∣∣∣∣
acc

(3.7)

due to conservation of mass. Beware that if and when the cloud loses enough mass (say, at xc = 0),

it will no longer be able to keep the black hole near the threshold, and this effective description of

the evolution will break down. Equations (3.6) and (3.7) can be combined to give

dxc
dt

=

(
1

1− µJ̇acc/(mṀacc)

1− x2

(1 + x2)2
− 1

)
dx

dt
. (3.8)

Looking at the sign of the parenthesis on the right-hand side, this equation makes it easy to tell

whether we have

over-superradiance ←→ 1

1− µJ̇acc/(mṀacc)

1− x2

(1 + x2)2
> 1

under-superradiance ←→ 1

1− µJ̇acc/(mṀacc)

1− x2

(1 + x2)2
< 1 ,

(3.9)
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where once again, x is defined as µrs/m. Note that, due to the shape of the function (1 −
x2)/(1 + x2)2, any given fixed ratio J̇acc/Ṁacc satisfying 0 < J̇acc/Ṁacc < m/µ will produce over-

superradiance for a sufficiently small x (small black hole mass), but it will eventually turn into

under-superradiance as x approaches 1.

The presence of a superradiance cloud thus acts as a glue that keeps the black hole attached to the

superradiance threshold. The glue gets enhanced by over-superradiance (because the cloud grows),

and weakened by under-superradiance (because the cloud shrinks). If the cloud is completely

dissipated, either by under-superradiance or some other process, the threshold drift ends, with the

black hole moving away from it, following the Regge trajectories determined by accretion.

We can quantify the strength of this glue by computing the amount by which the actual trajectory

of the black hole deviates from the threshold. This can be done by combining (3.6) and (3.8) as

Ṁc =
1

1− x2

(
(1 + x2)2 µ

m
J̇acc − (x4 + 3x2)Ṁacc

)
(3.10)

and then using Ṁc = 2 Im(ω)Mc. Because Im(ω) depends on the black hole’s mass and spin, one

can extract the deviation of the threshold, which we can quantify as a small change in the angular

velocity of the horizon: Ω+ = µ/m + δΩ+, with δΩ+ � Ω+. In detail, using the result from [26],

we evaluate Im(ω) near the threshold to linear order as

Im(ω)
∣∣
mΩ+≈µ ≈ I δΩ+, I =

m4`+6(n+ `)!

4n2`+4(n− `− 1)!

`!4

(2`)!2(2`+ 1)!2

(
1− x2

1 + x2

)2` x4`+5

1 + x2
, (3.11)

so that

δΩ+ =
1

2IMc

(
(1 + x2)2

1− x2

µ

m
J̇acc −

x4 + 3x2

1− x2
Ṁacc

)
. (3.12)

The inverse dependence on Mc shows, as anticipated, that a larger cloud keeps the black hole closer

to the threshold. It is also easy to confirm that δΩ+ ≷ 0 when the over-/under-superradiance

condition (3.9) is satisfied.

So far, we have neglected any other effect that is able to change to the total mass of the system.

While this may be a good approximation if Φ is a complex scalar field, a real field undergoes an

inevitable decay via the emission of gravitational waves [27]. This adds an extra source term to

the right-hand side of (3.7). Such an extra source of cloud mass loss does not change the previous

criterion to distinguish between over-/under- superradiance, nor the time evolution of the black

hole parameters during the threshold drift, as Eq. (3.6) stays unchanged. However, it does change

the duration of the threshold drift, as the cloud will disappear faster. Moreover, this mechanism

for cloud mass loss becomes more important as the black hole gains mass during threshold drift,

since the radiated power goes as α4`+10.
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4 Examples and cases of interest

In this section, we apply the approach developed in Section 3 to three physical scenarios. First,

in Section 4.1 we consider cases where the black hole accretes dark matter from the ambient

environment, and the dark matter is itself a scalar field, which might or might not be the same as

the scalar making up the superradiance cloud. We will show in particular (see “Case 2” below) that,

for certain choices of the parameters, it is possible to grow a cloud of mass up to roughly a third of

the black hole mass, well beyond the standard ∼10% discussed in Section 2. Then, in Section 4.2 we

consider the phenomenon of level transition using the language of under-superradiance. Lastly, in

Section 4.3 we study the case where the ambient accretion is sourced by a baryonic disk. The same

phenomena of over- and under-superradiance occur here, with the advantage that disk accretion

can be more efficient, leading to a substantial cloud build-up in a shorter amount of time.

4.1 (Wave) dark matter accretion

Black holes in nature are inevitably surrounded by dark matter. If the dark matter is comprised

of a scalar field, much of our earlier discussion regarding the mass and angular momentum fluxes

into the black hole horizon applies to dark matter as well. A concrete, compelling example is the

axion, or axion-like-particles (see [28, 29] for reviews). We assume their self-interaction strength is

sufficiently weak to be ignored, but will return to a discussion of this in Section 5. The same axion

could be both the dark matter of the ambient environment, as well as the scalar that makes up the

superradiance cloud. Or the two could be different scalar fields. We will use µ′,m′ to refer to the

mass and angular momentum of the dark matter scalar, and µ,m to refer to the mass and angular

momentum of the superradiance scalar. In the language of Table 1, the dark matter scalar from

the ambient environment is “unbound” whereas the scalar of the superradiance cloud is “bound”.

To determine the dark matter ambient accretion rate onto the black hole, we use Eqs. (2.11) and

(2.12), with the horizon scalar amplitude R+ ≡ Racc(r+) fixed by using the stationary accretion flow

solution which connects it to the scalar amplitude far away Racc(ri), at a radius we call ri � r+.

This is described in detail in Appendix A, giving us the following useful approximations, from wave

to particle limits:8

|Racc(r+)|2
|Racc(ri)|2

=



(
ri
rs

)3/2 1

2
(`′ + 1) . µ′rs (Particle) ,(

ri
rs

)3/2( 2µ′rs
`′ + 1

)6`′+3

2

√
rs
ri
� µ′rs .

1

2
(`′ + 1) (Intermediate) ,(

ri
rs

)−2`′

µ′rs � 2

√
rs
ri

(Wave/Ultralight) ,

(4.1)

8Approximate fitting formulae are needed if one wants to obtain an approximate analytical treatment and not

to solely rely on a numerical study. This is due to the nature of the scalar wave equation (1.1), which is of the

(confluent) Heun type (see Appendix A for further details—see also Refs. [30, 31] for recent progress on connection

formulae for the Heun function).
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where `′ is the second quantum number of the accreting mode and µ′ is the mass of the field,

which we label differently from µ for the sake of generality, to allow the dark matter field and the

superradiance field to be different. The precise expressions and bounds in (4.1) actually depend on

the dimensionless spin a∗ and magnetic quantum number m′; however, as shown in Appendix A,

their effects on the estimates (4.1) are within O(1) unless a∗ > 0.95. In other words, the spin of

the black hole does not have a significant impact unless it is close to extremal. These expressions

generalize to non-zero angular momentum those given in [18].

The quantity ri is taken to be the radius at which the dark matter density matches the typical

density ρi in the broader environment, i.e. ρi = ρ(ri). A quantitative estimate of ri is needed to fix

the amplitude of the accreting mode, and thus the timescale of the whole process. For spherically

symmetric accretion, we follow [18] and take ri to be the radius of impact of the black hole (the

radius at which the gravitational potential of the black hole is similar to that of the dark matter

halo), i.e. ri/rs ∼ 106(vtypical/300 km/s)−2 where vtypical is the velocity dispersion of the dark matter

halo. For dark matter accretion flow of angular momentum (per particle) m′ 6= 0, we will take ri

to be the minimum of the de Broglie wavelength (the length scale over which wave dark matter is

roughly coherent or homogeneous [23]), and and the radius of impact:

ri
rs

= min

{
103(µ′rs)−1

(
vtypical

300 km/s

)−1

︸ ︷︷ ︸
de Broglie wavelength

, 106

(
vtypical

300 km/s

)−2

︸ ︷︷ ︸
virial radius

}
. (4.2)

The motivation for considering the de Broglie wavelength will be clear in a moment.

Once the asymptotic dark matter density ρi ≈ T00 ≈ 2µ′2|Φacc(ri)|2 ≈ µ′2|Racc(ri)|2/(2π) is

fixed,9 equations (2.11) and (2.12) supplied with (4.1) determine the dark matter accretion onto

the black hole. Our goal is to study the subsequent evolution, and especially its interplay with

superradiance. Note that equations (4.1) and (4.2) are only needed to fix the normalization of the

accreting flux, and thus the timescale of the threshold drift. A different normalization would not

impact in any way the trajectory of the black hole in the Regge plane, nor the mass of the cloud

as function of that of the black hole.

What values of `′ and m′ should we use for the accreting mode? In general, several modes will be

present at the same time, with a distribution depending on the mass of the scalar and its velocity

dispersion. However, in two specific cases we can make a simplifying assumption.

One possibility is to assume spherical accretion with `′ = m′ = 0. This can be motivated two

different ways. For small values of µ′rs, the angular momentum barrier strongly suppresses all

modes with `′ ≥ 1, see second and third line of (4.1). It is thus natural to only consider the purely

radial infall corresponding to `′ = m′ = 0. Another motivation is the tendency of wave dark matter,

especially in the ultralight regime, to form solitons at the center of galaxy halos [32]. The solitons

provide a natural `′ = m′ = 0 environment in which the central supermassive black hole resides. A

9For the last equality, we took the average over the angular variables.
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number of recent papers explore the interaction between a supermassive black hole and the soliton

that hosts it [18, 33–36].

A second possibility is to assume an accretion flow with `′ = m′ = 1. This is motivated by the

observation that wave dark matter generically has vortices, at the frequency of one vortex ring

per de Broglie volume [24]. A vortex is a one-dimensional structure, along which the dark matter

density vanishes and around which the dark matter velocity circulates, with winding number m′

generically being ±1. Let us thus consider a situation in which a black hole happens to coincide

with such a vortex, with `′ = m′ = 1. In general, there is no reason the black hole spin direction

and the vortex angular momentum align. We will for simplicity assume so, noting that they would

tend to align if the black hole is spun up by the dark matter accretion. The question of whether

a vortex, once it intersects a black hole, would remain stuck to it, is an interesting one, which we

leave for future work.

It is helpful to have an idea of what the mass accretion rate might be for these two possible

scenarios. For spherical accretion:

Ṁacc ∼ 400 M� / yr.

(
ρi

10 M� / pc3

)(
MBH

109 M�

)2(ri/rs
106

)3/2

(4.3)

for µ′rs∼> 0.5. The displayed value for density ρi corresponds to that of a soliton of mass 1.12 ×
109 M� and µ′ = 10−22 eV. For `′ = m′ = 1 accretion:

Ṁacc ∼ 1.2× 10−2 M� / yr.

(
ρi

10 M� / pc3

)(
MBH

109 M�

)2(ri/rs
103

)3/2

(4.4)

in the particle regime µ′rs∼> 1. There is suppression due to the angular momentum barrier if the

particle mass is low µ′rs∼< 1 (for `′ = 1), in which case the accretion rate becomes

Ṁacc ∼ 2.5× 10−5 M� / yr.

(
ρi

10 M� / pc3

)(
MBH

109 M�

)2(ri/rs
103

)3/2(µ′rs
0.5

)9

. (4.5)

Thus we see that the timescale for mass accretion, MBH/Ṁacc, tends to be quite long (longer than

a Hubble time) if the dark matter accretion flow has non-vanishing angular momentum.

When (4.1) is substituted into either (2.11) or (2.12), and the threshold condition µ = mΩ+ =

am/(rsr+) (i.e., we are studying threshold drift at the superradiance threshold for m) is imposed

together with the conservation of the total mass, we get the following equations for the evolution

of the mass of the black hole and of the cloud:

1− x2

(1 + x2)2

dx

dt
= K

(m′ −mµ′/µ)2

1 + 1/x2
, (4.6)

d(x+ xc)

dt
= K

(mµ′/µ−m′)
1 + 1/x2

mµ′

µ
, (4.7)

where, as in Section 3, we defined x = µrs/m and xc = (Mc/MBH)x. In these expressions, we

set K ≡ 4G|Racc(r+)|2(µ/m), where Racc(r+) is related to the asymptotic dark matter density
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by (4.1). To derive the above, we have set J̇acc/Ṁacc = m′/µ′ in Eqs. (3.6) and (3.7), thanks to

the simplifying assumption that the wave dark matter accretion is due to a single m′ mode. We

have also used Eqs. (2.11) and (2.12) which determine the mass and angular momentum fluxes

(with the unprimed µ and m replaced by µ′ and m′). The relation a2 + r2
+ = rsr+ was useful for

relating rs/r+ to x ≡ µrs/m = a/r+ (assuming we are at superradiance threshold for m), giving

us rs/r+ = 1 + x2.

From (4.6) we see that the mass of the black hole can only increase (recall that x < 1; see

Eq. 2.15); on the other hand, the sign of dxc/dt can be read off from (3.8), which is

dxc
dt

=

(
1

1−R
1− x2

(1 + x2)2
− 1

)
dx

dt
, R ≡ m′µ

mµ′
, (4.8)

which can be integrated to give a simple relation between the mass of the cloud and the mass of

the black hole:

xc + x− 1

1−R
x

x2 + 1
= constant. (4.9)

This relation eliminates the time dependence and gives the mass of the cloud as function of the

mass of the black hole, xc(x). It tells us that the total mass of the black hole + cloud system is

determined by a constant (fixed by initial conditions for x and xc on the superradiance threshold)

plus x/[(1−R)(x2 + 1)].

Three main different cases can be distinguished.

Case 1. If R ≡ m′µ/(mµ′) ≤ 0, then the parenthesis on the right-hand side of (4.8) is always

negative for 0 < x < 1. This is under-superradiance: the mass of the cloud decreases, dxc/dt ≤
0, while the mass of the black hole increases, dx/dt ≥ 0 (recall that on the threshold, the black

hole can only move to the right in the Regge plane, by the second law). Moreover, the black

hole’s mass will increase faster than the ambient accretion rate, i.e. dx/dt ≥ (µ/m)[drs/dt]acc,

because it receives mass from both the ambient environment and the cloud that was built

up by superradiance. The black hole will thus move along the superradiance threshold faster

than naively expected based on ambient accretion alone, but only before the cloud is depleted.

An example of this case is shown in Figure 3, for the case of spherically-symmetric accretion

`′ = m′ = 0. After the cloud’s depletion, the black hole will leave the threshold and move

under the effect of accretion alone. How much faster can the black hole increase its mass?

From (4.8), we find that the speed is increased by a factor

ẋ

ẋacc
= (1−R)

(1 + x2)2

1− x2
, (4.10)

which can in principle become very large near the edge of the superradiant threshold, around

x . 1, where the black hole approaches extremality. (ẋacc ≡ (µ/m)drs/dt|acc = ẋ + ẋc.)

Remember however that this would also mean that the cloud depletes very fast, and thus

that the threshold drift will end very soon.
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Figure 3: Evolution of the mass of the black hole and of the cloud, solving (4.6) and (4.7) with

m′ = 0 (spherically symmetric accretion) and m = 1. The masses are expressed in dimensionless

units as x = µrs/m and xc = xMc/MBH. Formulae (4.1) and (4.2) have been used to deter-

mine the amplitude of the field close to the black hole from ρi and vtypical, which we fixed to be

103 GeV/cm3 = 27 M�/pc3 and 300 km/s respectively. The mass of the scalar field(s) has been

fixed to µ = µ′ = 10−20 eV, while the initial value of x is 0.2 (corresponding to 1.34× 109M�) and

that of xc is 0.02. This is an example of under-superradiance (Case 1), where a cloud that was

built up from superradiance (m = 1) gives mass back to the black hole, while ambient accretion

(m′ = 0) also adds mass to the black hole.

Case 2. If 0 < R ≡ m′µ/(mµ′) < 1, then we have over-superradiance for x < x? and under-

superradiance for x > x?, where x? is the zero of (4.8):

1− x2
?

(1 + x2
?)

2
= 1−R =⇒ x? =

√
−3 + 2R+

√
9− 8R

2(1−R)
. (4.11)

The point x = x? (depicted with a star in Figure 4; x? ∼ 0.5 for R = 1/2) corresponds to

a local maximum for the mass of the cloud during threshold drift. This case is perhaps the

most interesting one, because over-superradiance provides a mechanism to boost the cloud’s

mass.

Note that the cloud-to-black hole mass ratio,

xc
x

=
1

x

(
xc(0) + x(0)− 1

1−R
x(0)

1 + x(0)2

)
− 1 +

1

1−R
1

1 + x2
, (4.12)

reaches maximum at a certain x < x?. Depending on the initial masses x(0) and xc(0), as

well as on the value of R, this cloud-to-black hole mass ratio can reach higher values than
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Figure 4: Regions of superradiance instability for m = 1 (blue) and m = 2 (light blue) in the

Regge plane, together with the streamlines of dark matter accretion (from (2.9) and (2.10), in

green), for m′ = 1 and µ′ = µ. When an m = 2 cloud is present, the black hole moves along the

corresponding threshold: the mass of the cloud increases along the red line (over-superradiance),

reaches a maximum at the star (see equation (4.11)) and then decreases along the blue line (under-

superradiance). Throughout both processes, the black hole’s mass increases. The threshold drift

depicted here is an illustration of Case 2, combining m = 2 superradiance cloud with m′ = 1

ambient accretion.

the 10% mentioned in Section 2.3. We show an example in Figure 5, where we use the same

parameters as in Figure 3, but change the values of m′ and m to 1 and 2 respectively. First

of all, we see that, even if the asymptotic dark matter density is the same in both cases,

the evolution is now much slower, due to the suppression by angular momentum as indicated

by (4.1). Second, we observe that the cloud’s mass is indeed boosted, reaching values as

high as xc = 0.31x at the peak, beyond the limit of about 0.1 derived in (2.19), though this

requires a long timescale (∼ 5× 1012 yrs in Figure 5), because typical dark matter density in

the environment gives only a somewhat low accretion rate. Higher values of xc are possible,

but require starting the evolution at lower values of x(0), so that the black hole drifts along

the superradiant threshold for a longer time, giving the cloud more time to grow. In fact,

from (4.12), the highest possible cloud-to-black-hole mass ratio is R/(1−R) and is formally

attained in the x(0) → 0 limit. For the parameters chosen for Figure 4, R = 1/2 which

means the cloud-to-black-hole mass ratio could in principle reach unity. Because (4.1) is
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Figure 5: An illustration for Case 2: evolution of the mass of the black hole and of the cloud, solving

(4.6) and (4.7) with m′ = 1 (ambient vortex accretion) and m = 2 superradiance cloud. In the left

panel, the parameters are the same as for Figure 3; in the right panel, the initial value of x is taken to

be 0.4, to illustrate the dependence on initial condition. In the left panel, the evolution of the black

hole requires a time much longer than the age of the Universe, as a consequence of (1) the expected

modest dark matter density in a typical environment, and (2) the angular momentum suppression

in the “Intermediate” regime in (4.1). This example is thus not of practical interest, but serves the

purpose of demonstrating the boost of cloud-to-black-hole mass ratio by over-superradiance. We

will see an example of more practical interest with baryonic accretion.

suppressed for small values of the black hole mass, however, this would require waiting for

an exponentially longer time before reaching the peak. In the right panel of Figure 5, we

show that the evolution is faster for larger x(0), but also that the cloud’s mass cannot grow

as large.

The upshot is that the potentially large cloud mass that could be attained by threshold drift

is a bit academic, if the source of ambient accretion is dark matter, due to its modest density

in typical environments, resulting in a long timescale for cloud build-up. However, we will

see below the case of ambient accretion from a baryonic disk, which gives a much shorter

timescale.

Case 3. If R ≡ m′µ/(mµ′) > 1, then from equation (4.7) we see that the total (black hole +

cloud) accretion rate is negative. This means that the “ambient accretion” is actually not

accreting at all, but is itself in the regime of superradiance, extracting mass and angular

momentum from the combined black hole + cloud system, i.e. it is more accurate to call it

ambient extraction. This is not bound superradiance, as in the case of the superradiance
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cloud, but unbound superradiance (i.e., entries 1 and 3 respectively in Table 1). However,

recall from (4.6) that the black hole cannot lose mass while moving along the threshold.

This is not a contradiction: it means the presence of an external extraction of mass (and

angular momentum) induces the already existing cloud to lose to the black hole more mass

(and angular momentum) than what is extracted. In other words, what we have is under-

superradiance: the system as a whole (black hole + cloud) loses mass; the cloud loses mass

faster than the whole system; the black hole gains mass.

This case with R ≡ m′µ/(mµ′) > 1 can be achieved for instance by m′ = m = 1 and µ > µ′.

If µ′ = µ, this threshold drift by ambient extraction requires m′ ≥ 2 since m has to be at

least unity. Winding higher than unity is not generically expected for a vortex formed out

of chance destructive interference in wave dark matter [24]. However, in Section 4.2 we will

see how this case can be realized fairly naturally, by replacing the unbound superradiance

(from the ambient environment) with bound superradiance (from another level m′ 6= m in

the superradiance cloud).

4.2 Level transition

The evolution of mass and spin of an isolated black hole, due to the superradiance instability, is

initially dominated by the fastest-growing mode. Let us use m to denote the angular momentum

of this mode. This phase of the evolution, described in Section 2.3, brings the black hole from

its initial position in the Regge plane (black circle in Figure 6) to the threshold of the instability

region of the grown mode (blue circle) along a trajectory determined by

d(ars)/dt

drs/dt
=
m

µ
. (4.13)

The final parameters (r′s, a
′) are linked to the initial ones (rs, a) by equation (2.18). If other modes

(and the ambient environment) are neglected, the system is now in stable equilibrium, with the

black hole sitting on the level m superradiance threshold.

What happens when other modes (of the bound cloud) are taken into account? The exponential

dependence of the instability rate on the angular momentum number, Im(ω) ∼ α4`+5, ensures a

large separation of timescales between the growth of the first and of the next levels. The next-fastest

growing mode will thus ‘silently’ grow without noticeably affecting the black hole parameters for a

long time, until its mass eventually becomes comparable to that of the, previously grown, fastest

mode.

Given this large separation of timescales, we can describe the evolution of the system with the

approach developed in Section 3, similar to “Case 3” of Section 4.1. The main difference from Case

3 there is this: the mass and spin extracted by the next-fastest growing mode (let us denote its

angular momentum by m′), do not escape to infinity, but rather go into the m′ level of the bound

superradiance cloud. The black hole undergoes threshold drift, from the blue to the red circle as

in Figure 6), according to equation (4.9) with µ′ = µ. The drift is of the under-superradiance
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Figure 6: Trajectory in the Regge plane followed by an isolated black hole under the effect of

superradiance from two modes (thick black lines), computed from equations (36) of [25]. The two

modes are m = 1 and m′ = 2. The trajectory has a zig-zag shape, whose endpoints’ positions (blue,

red and green circles) we predict analytically. The portion from blue circle to red circle is level

transition, which can be understood as threshold drift along the m = 1 superradiance threshold.

The green circle is located on the m′ = 2 threshold. The green dotted lines are lines of equal

horizon area. The thin lines with arrows indicate generic trajectories for modes with m′ = 1, 2, 3.
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type, just as in Case 3 before, such that the level m part of the cloud loses mass to the black hole,

while the level m′ part gains mass from the black hole, and the black hole as a whole gains mass.

The threshold drift stops when level m is completely depleted, indicated by the position of the red

circle in Figure 6. The threshold drift from blue circle to red is what we call level transition.10 The

superradiance cloud switches from being dominated by level m to being dominated by level m′.

Once level m is emptied out, level m′ continues its superradiance growth on its own. Without

level m, there is no longer the glue to keep the black hole stuck at the level m threshold. Thus, the

black hole moves from red to green circle. This is just the standard single mode Regge trajectory.

The green circle is where the trajectory hits the level m′ threshold. The trajectory is determined

by
d(ars)/dt

drs/dt
=
m′

µ
, (4.14)

The whole evolution from the initial black circle to the final green circle is thus a zig-zag in the

Regge plane.

The locations of all the colored circles in the Regge plane can be written down analytically given

the initial (black) circle. The blue circle is given by (2.18). The green circle is given by the same

expression with m→ m′, a′ → a′′, r′s → r′′s :

µr′′s
m′

=
1−

√
1− (2(µrs/m′)(1− µa/m′))2

2(µrs/m′)(1− µa/m′)
,

a′′

r′′s
=
µrs
m′

(
1− µa

m′

)
. (4.15)

Notice how, because total mass and angular momentum are conserved, the green circle is no different

from where the black hole would end if there were only level m′ superradiance all along. The

intersection of such a Regge trajectory with the level m threshold gives the location of the red

circle.

All these conclusions can be verified by computing the time evolution of the black hole parameters

with the two-mode model developed in [25]. The black line in Figure 6 is the result of a numerical

integration of equations (36) of [25] for the case with ` = m = 1 and `′ = m′ = 2, with small initial

seeds for both modes. Its zig-zag shape is evident, as well as its perfect match with the position of

the circles, which are computed with our analytical description of the evolution. The results as a

function of time are reported in Figure 7.

4.3 Baryonic accretion

A natural kind of ambient accretion around a black hole is due to a baryonic accretion disk. Its

interplay with the superradiance was considered in [16]. The results of [16] showed that, for a

significant portion of its evolution, the black hole evolved along the superradiance threshold, in the

sense we described in Section 3. In this section, we show how their results can be understood in a

simple way by considering (3.6) and (3.8).

10Note that this is different from the “atomic level transition” that accompanies the emission of gravitational

waves, see e.g. [37].
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Figure 7: Left panel: mass and spin evolution of the black hole during the trajectory depicted in

Figure 6. Right panel: zoom around the level transition.

The accretion rate considered in [16] is a fraction fEdd of the Eddington rate11 [38–40],

Ṁacc =
fEdd

τSal
MBH, τSal =

2M2
PlσT

mp
= 4.5× 107 yrs, (4.16)

with the angular-momentum-to-mass accretion ratio given by that of particles on the ISCO [41],

J̇acc

Ṁacc

=
rs

3
√

3

1 + 2
√

3rISCO/GM − 2√
1− 2GM/(3rISCO)

, (4.17)

where rISCO is the radius of the innermost stable circular orbit. It is straightforward to implement

these formulae in the effective equations derived in Section 3.

It should be noted that the above accretion model has certain limitations. For instance, fEdd is

likely a function of time. Also, we expect modifications to J̇acc/Ṁacc as the black hole gets spun

up close to extremality ([42] gave an upper bound of a∗ ∼ 0.998).

We solve (3.6) and (3.8), with fEdd = 0.01, an initial black hole mass of x = 0.2 and cloud mass

of xc = 0.1x. (Recall x ≡ µrs/m, xc ≡Mcx/MBH; the precise value for µ/m does not matter once

one expresses everything in terms of x and xc.) The results are shown in Figure 8. The threshold

drift associated with baryonic accretion is like that depicted earlier in Figure 4, except that the

entire drift is in the over-superradiance regime: the cloud’s mass in Figure 8 increases with time.

In other words, there is no under-superradiance portion, and over-superradiance continues all the

11Here, σT is the Thomson cross section and mp is the proton’s mass.
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Figure 8: Evolution of a black hole + superradiance cloud system, in the presence of accretion from a

disk: solution of equations (3.6) and (3.7) with accretion given by (4.16) and (4.17) with fEdd = 0.01.

The associated threshold drift proceeds until the black hole hits extremality, corresponding to x = 1;

however, as explained in the text, equations (3.6) and (3.7) break down close to that point. As

shown by the dotted line in the plot, the cloud’s mass increases during the threshold drift, i.e. this

is over-superradiance. See footnote 12 on the slight dip in cloud mass towards the end.

way until the black hole is close to extremality.12 It is easy to see that the smaller the initial mass

of the black hole, the larger the xc/x ratio can grow. By using this observation, we are able to find

the largest achievable xc/x ratio, which happens to be roughly 36%. This extends the results of

[16], where an example with xc/c larger than 30% was shown.

It is interesting to note that, if the accretion disk produces a strong magnetic field, the Bland-

ford–Znajek (BZ) process [43] can contribute to the energy extraction from the black hole, alongside

superradiance. This effect can in principle simply be added as an extra source term in (3.6) and

(3.8), contributing with sign opposite to that of baryonic accretion. The impact of the BZ process

on the mass-spin evolution of the black hole, however, is expected to be negligible compared to the

accretion from the disk. As a rough comparison, from well-known estimates of its power output

12 Close to the end, at high masses and spins, the cloud’s mass can be seen decreasing slightly. This is an artifact of

the ω ≈ µ approximation used in deriving (3.6) and (3.8). We have checked that including higher-order corrections

in α goes in the direction of restoring over-superradiance at the very end of the cloud’s evolution. One should also

keep in mind, as remarked above, additional effects could prevent the black hole from reaching extremality.
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ṀBZ (see, e.g., chapter IV of [44]), we find

ṀBZ

Ṁacc

∼ 7× 10−4

fEdd

(
MBH

109M�

)(
B⊥

104 G

)2

, (4.18)

where B⊥ is the normal magnetic field at the horizon. The estimate (4.18) assumes extremal black

hole spin, for which ṀBZ is maximized.

5 Discussion

In summary, we have explored how superradiance (which extracts mass and angular momentum

from a black hole) could work in tandem with accretion (which donate both to the black hole).

Superradiance, because of its ability to build up a substantial cloud around the black hole, is often

more efficient than accretion from the ambient environment, see discussion at the end of Section

2.3, around Eqs. (4.3)-(4.5) and Eq. (4.16).

This means the black hole will generically evolve towards the superradiance threshold in the Regge

(black hole spin versus mass) plane. Once sufficiently close to the threshold, the superradiance rate

is reduced to an extent that accretion can compete. The subsequent evolution of the black hole

spin and mass, a climb along the threshold we call threshold drift, is the focus of this paper. We

provide simple evolution equations describing the climb: Eqs. (4.6) and (4.8). We give an analytic

relation between the black hole mass and superradiance cloud mass (4.9), and a formula for the

end-point of over-superradiance (4.11).

Of the possible scenarios, perhaps the most interesting ones are cases where µ/m (mass-to-

angular-momentum ratio for the superradiance scalar) is less than Ṁacc/J̇acc (mass-to-angular-

momentum accretion rate ratio), assuming both have the same sign as the black hole spin. The

black hole gains mass and angular momentum during the threshold drift, even as the superradiance

cloud does the same. Effectively, the ambient accretion serves to feed the superradiance cloud

via the black hole. We refer to this process as over-superradiance. This way, the superradiance

cloud can acquire a mass that exceeds the standard maximum of 10%MBH from superradiance

alone without accretion. We have considered two separate examples of ambient accretion: one is

accretion of the surrounding dark matter from a wave dark matter vortex (with J̇acc/Ṁacc = m′/µ′

and m′ = 1; Case 2 of Section 4.1); the other is the accretion of baryons from a disk (Section

4.3). The latter is more efficient, and the highest superradiance cloud mass we find is about 35%

that of the black hole, consistent with the results of [16]. Dark matter accretion can in principle

achieve an even higher cloud mass (comparable to that of the black hole), with the caveat that the

accretion rate is slow and the cloud build-up takes longer than a Hubble time, see (4.4) and (4.5).

The long timescale for dark matter accretion is due both to the moderate dark matter density in

typical environments, and to the suppression of accretion by the angular momentum barrier (4.1).

One could get around the angular momentum suppression by increasing the dark matter particle

mass µ′ (while keeping the superradiance scalar mass µ fixed). But it can be shown the resulting
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cloud-to-black-hole mass ratio is diminished (4.12), due to the smaller R ≡ m′µ/(mµ′).
Dark matter accretion can proceed at a much faster rate for spherical accretion, which is the

example depicted in Figure 3 (Case 1 in Section 4.1). The process illustrated there is under-

superradiance, where the cloud mass shrinks while both the cloud and the ambient accretion feeds

the black hole. Perhaps most interesting is the fact that the black hole spins up during the threshold

drift (it has to, by the second law), despite the fact that the ambient accretion gives mass but not

angular momentum to the black hole. The spin-up of the black hole is entirely due to the angular

momentum from the diminishing cloud.

The possibility of a substantial superradiance cloud raises a number of interesting questions.

(1) The cloud’s own gravity cannot be ignored, that is to say, the geometry is no longer completely

dominated by the black hole. How will this affect the dynamics and evolution of the cloud? It

is known that a self-gravitating, rotating boson cloud (without a black hole) is unstable on short

timescales [45, 46]. How would accounting for both the gravity of the black hole and that of the

cloud modify the story? As one dials up the cloud-to-black-hole mass ratio, when will the instability

observed by [45, 46] become relevant? (See also [36] for a recent numerical solution of the accretion

process of a boson star by a black hole.) (2) An increased mass of the cloud will, in general, enhance

nonlinear effects such as self-interaction and the gravitational backreaction on the geometry. At a

minimum, such nonlinear effects would change the profile of the cloud and, possibly, the associated

flux through the horizon. The relative importance of the cloud’s self-gravity versus the black hole’s

gravity is obviously determined by Mc/MBH. For self-interaction, the relevant self-interaction to

gravity ratio is λΦ4/(µ2Φ2rs/r) where r ∼ 1/(rsµ
2) is the cloud size, and λ is the self-coupling

strength (for an axion, λ ∼ µ2/F 2 where F is the axion decay constant). This ratio is roughly

α2(Mc/MBH)(M2
Pl/F

2). Moreover, self-interaction is able to shutdown the growth of subdominant

superradiant modes via level mixing, as explained in [8], and also trigger scalar emission [47].

It would be useful to explore these nonlinear effects further [48], in light of the possibility of a

substantial cloud mass, and thus cloud density. (3) In a binary setting, if one (or both) of the

binary components has a substantial cloud, the inspiral dynamics can be heavily affected. For

example, in cases of extreme mass ratios, a small compact object can move through the cloud of

the big black hole. A more massive cloud will lead to enhanced dynamical friction, accretion and

orbital resonances [20, 49–56]. (4) The threshold drift phenomenon implies that black holes can

experience interesting evolution along superradiance thresholds. Under what circumstances is such

an evolution observable in real time, such as in Event Horizon Telescope data?

These questions deserve further investigation. We hope to do so in the near future.
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A Scalar hair around Kerr black holes

In this appendix we collect relevant facts about scalar hair solutions around a Kerr black hole.

We start by presenting the full exact solution to the Klein-Gordon equation, followed by analytic

estimates for the particle and wave regimes. Finally we present numerical results to support the

estimates in (4.1).

A.1 Klein-Gordon equation in a Kerr background

The exact solutions to the Klein-Gordon equation in a Kerr-Newman background are constructed

in [57]. Here we restrict ourselves to the Kerr case (Q = 0), with metric (1.3). The Klein-Gordon

equation for a (complex) scalar field Φ with mass µ in Boyer-Lindquist coordinates reads

0 =

{
1

∆

[
(r2 + a2)2 −∆a2 sin2 θ

] ∂2

∂t2
− ∂

∂r

(
∆
∂

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

∆ sin2 θ
(∆− a2 sin2 θ)

∂2

∂φ2
+

2a

∆

[
(r2 + a2)−∆

] ∂2

∂t ∂φ
+ µ2%2

}
Φ , (A.1)

where %2 ≡ r2 +a2 cos 2θ and ∆ ≡ r2− rrs+a2 = (r− r+)(r− r−) with r± ≡ rs/2±
√

(rs/2)2 − a2.

To solve (A.1), we make the ansatz

Φ = e−iωteimφS(θ)R(r) . (A.2)

Substituting this into (A.1) leads to

0 =
1

∆

[
(r2 + a2)2 −∆a2 sin2 θ

]
(−ω2)− 1

R

d

dr

(
∆

dR

dr

)
− 1

S

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
− 1

∆ sin2 θ
(∆− a2 sin2 θ)(−m2) +

2a

∆

[
(r2 + a2)−∆

]
(−iω)(im) + µ2%2. (A.3)

We isolate the r- and θ-dependent terms and pick the separation constant λ such that the angular

and radial equations are [58]

0 =
1

∆

d

dr

(
∆

dR

dr

)
+

1

∆

[
1

∆

(
ω(r2 + a2)− am

)2
− (µ2r2 + λ)

]
R (A.4)

and

0 =
1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

[
−
(
aω sin θ − m

sin θ

)2

− µ2a2 cos2 θ + λ

]
S , (A.5)

respectively.
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A.1.1 Angular dependence

Changing variable z = cos θ, the angular equation (A.5) becomes

d

dz

(
(1− z2)

dS

dz

)
+
(

Λ`m + g2(1− z2)− m2

1− z2

)
S = 0 , (A.6)

with

Λ`m(g) = λ`m + 2aωm− µ2a2 , g2 = a2(µ2 − ω2) = −a2k̄2 . (A.7)

The labels (`,m) correspond to successive solutions and eigenvalues Λ`m(g) to (A.6). Here m is an

integer such that −` ≤ m ≤ `.
For g2 = 0, i.e. ω = µ or a = 0, (A.6) reduces to the associated Legendre equation, in which case

Λ`m = `(` + 1). The full angular dependence in such case is the spherical harmonics Y`m(θ, φ) ∝
eimφPm` (cos θ), where Pm` (z) is the associated Legendre polynomial of the first kind.

The solutions to (A.6) for g2 > 0 (g2 < 0) are known as prolate (oblate) angular spheroidal

wave functions, which we denote with PS`m(g, z), as in Mathematica [59]. The basic properties of

PS`m(g, z) can be found in e.g. [60]. The parameter g2 controls the deviation from Pm` (z), which

has been taken to be zero throughout this paper. If g2 is small but nonzero, we can include small

corrections with the series expansions of PS`m(g, z) and Λ`m in powers of g2, which to O(g2) read

PS`m(g, z)

= Pm` (z) + g2

(
(`−m+ 1)(`−m+ 2)Pm`+2(z)

2(2`+ 1)(2`+ 3)2
− (`+m− 1)(`+m)Pm`−2(z)

2(2`− 1)2(2`+ 1)

)
+O(g4) (A.8)

and

Λ`m(g2) = `(`+ 1)− g2 2
(
`2 + `+m2 − 1

)
(2`− 1)(2`+ 3)

+O(g4) . (A.9)

In this paper, for fixed g we adopt the same normalization as in Mathematica [59]:13∫ 1

−1
dzPS`m(g, z)PS`′,m′(g, z) = δ`,`′δm,m′

2(`+m)!

(2`+ 1)(`−m)!
, (A.10)

that is, we normalize PS`m(g, z) in the same way as Pm` (z). Therefore, our unit-normalized angular

solution is

S`m(θ) =

√
(2`+ 1)(`−m)!

2(`+m)!
PS`m(g, cos θ) ≈

√
(2`+ 1)(`−m)!

2(`+m)!
Pm` (cos θ) +O(g2) . (A.11)

Clearly as g → 0, eimφS`m(θ) reduces to the usual spherical harmonics Y`m(θ, φ).

13For different g and g′, PS`,m(g, z) and PS`,m(g′, z) are not orthogonal. However, the non-orthogonality is small

if both g and g′ are small, as we have been assuming in this paper.
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A.1.2 Radial dependence

We rewrite (A.4) as

0 =
d2R

dr2
+

(
1

r − r+
+

1

r − r−

)
dR

dr
+

1

∆

[
1

∆

(
ω(r2 + a2)− am

)2
− (µ2r2 + λ`m)

]
R , (A.12)

which has singularities at r = r± and r =∞. Making the change of variable

x =
r − r+

r− − r+
(A.13)

puts the equation into the form

0 =
dR2

dx2
+

(
1

x
+

1

x− 1

)
dR

dx
+

(
A2

1 +
A2

x
+

A3

x− 1
+
A2

4

x2
+

A2
5

(x− 1)2

)
R , (A.14)

where

A1 = k̄(r+ − r−) , A2 =
2a2(m− 2aω)2

(r+ − r−)2
−
(
k̄2 + ω2

)
r2

+ + λ`m ,

A3 = −
[

2a2(m− 2aω)2

(r+ − r−)2
−
(
k̄2 + ω2

)
r2
− + λ`m

]
,

A4 =
r+rsω −ma
r+ − r−

, A5 =
r−rsω −ma
r+ − r−

. (A.15)

Here we recall k̄ is defined by ω2 = k̄2 + µ2. Note that these expressions break down when the

black hole is exactly extremal so that r+ = r−. Throughout this paper we focus on the case where

the black hole is not exactly extremal.

To proceed, we introduce a new function R(x) = eiA1x(−x)iA4(1−x)iA5f(x) to bring the equation

into the form

f ′′(x) +

(
α+

1 + β

x
+

1 + γ

x− 1

)
f ′(x) +

(
C

x
+

D

x− 1

)
f(x) = 0 (A.16)

with

α = 2iA1 = 2ik̄(r+ − r−) , η = −A2 = −
[

2a2(m− 2aω)2

(r+ − r−)2
−
(
k̄2 + ω2

)
r2

+ + λ`m

]
,

δ = A3 +A2 = −rs (r+ − r−)
(
k̄2 + ω2

)
, β = 2iA4 = 2i

r+rsω −ma
r+ − r−

,

γ = 2iA5 = 2i
r−rsω −ma
r+ − r−

, (A.17)

and

C =
1

2
− (1 + β)(1 + γ − α)

2
− η, D = −1

2
+

(1 + β + α)(1 + γ)

2
+ δ + η . (A.18)

32



The equation (A.16) is known as the confluent Heun equation,14 with linearly independent solutions

HeunC (α, β, γ, δ, η;x) and (−x)−βHeunC (α,−β, γ, δ, η;x) (A.19)

normalized so that HeunC (α, β, γ, δ, η; 0) = 1. Therefore, we conclude that the full radial function

is

Rω`m(x) = e
1
2αx(−x)βm/2(1− x)γm/2

[
C1HeunC (α, βm, γm, δ, η`m;x)

+ C2(−x)−βmHeunC (α,−βm, γm, δ, η`m;x)
]
. (A.20)

A.1.3 Full solution and boundary condition at the horizon

Putting everything together and restoring the original radial coordinate, the full solution is

Φω`m(t, r, θ, φ) = e−iωteimφS`m(θ)Rω`m(r) (A.21)

with

Rω`m(r) = e−ik̄(r−r+)

(
− r − r+

r− − r+

)βm
2
(
− r − r−
r− − r+

)γm
2
[
C1HeunC

(
α, βm, γm, δ, η`m;

r − r+

r− − r+

)
+ C2

(
− r − r+

r− − r+

)−βm
HeunC

(
α,−βm, γm, δ, η`m;

r − r+

r− − r+

)]
. (A.22)

Now we would like to pick the solution that is purely ingoing at the outer horizon r = r+. This can

be thought of as the solution that has a constant phase along an infalling null curve. As r → r+,

the confluent Heun functions in (A.22) tend to one and the full solution approaches

Φω`m(t, r → r+, θ, φ) = S`m(θ)
(
C1e

−iω(t−r∗)e−iωr+eimφout + C2e
−iω(t+r∗)eiωr+eimφin

)
. (A.23)

Here we have introduced the infalling and outgoing Eddington-Finkelstein coordinates

tin = t+ r∗ , φin = φ+
a

r+ − r−
ln
r − r+

r − r−
, (A.24)

tout = t− r∗ , φout = φ− a

r+ − r−
ln
r − r+

r − r−
, (A.25)

with the tortoise coordinate r∗ defined by

r∗ = r +
r+ + r−
r+ − r−

[
r+ ln

(
− r − r+

r− − r+

)
− r− ln

(
− r − r−
r− − r+

)]
. (A.26)

Now, infalling null curves are those with constant v = t + r∗. Therefore, to impose the purely

infalling boundary condition, we set C1 = 0.

14Some properties of the confluent Heun equation and its solutions can be found in e.g. [61].
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To summarize, the solution for Φ with the correct infalling condition at the horizon is given by

(A.21) with

S`m(θ) =

√
(2`+ 1)(`−m)!

2(`+m)!
PS`m(g, cos θ)

Rω`m(r) = |Rω`m(r+)|e−ik̄(r−r+)

(
− r − r+

r− − r+

)−βm2 (
− r − r−
r− − r+

)γm
2

×HeunC

(
α,−βm, γm, δ, η`m;

r − r+

r− − r+

)
.

(A.27)

Note that, far away from the black hole, the geometry is approximately flat and spatial gradients

of the scalar field can be neglected, so that the field density for a single mode takes the form

ρµ`m(r, θ, φ) = −T tt ≈ |∂tΦµ`m|2 + µ2|Φµ`m|2 = 2µ2|Φµ`m|2 , (A.28)

where we are taking ω ≈ µ. The field amplitude |Rµ`m(r+)| at the horizon in (A.27) is then related

to the angular average ρ̄i,`m of the field density at r = ri � rs through

ρ̄i,`m = 2µ2

∫
S2
|Φµ`m(ri)|2 = 2µ2|Rµ`m(ri)|2

= 2µ2|Rµ`m(r+)|2
∣∣∣∣HeunC

(
α,−βm, γm, δ, η`m;

ri − r+

r− − r+

)∣∣∣∣2 . (A.29)

A.2 The r →∞ limit

In this section we study the large distance behavior of the radial solution (A.27). To this end, we

go back to the radial equation (A.14) and we write

R(x) = e±iA1x(1− x)−
1
2 (−x)∓i

B
2 F (x) , (A.30)

with

B =
√

4(A3 +A2
4 +A2

5)− 1 . (A.31)

The ± signs correspond to the two linearly independent solutions. In terms of F in (A.30), the

radial equation (A.14) in the large-x limit reads

xF ′′ + (c± ± 2iA1x)F ′ ± 2iA1a±F = 0 (x� 0) , (A.32)

where

a± = ±A2 +A3

2iA1
+
c±
2
, c± = 1∓ iB . (A.33)

When k̄2 6= 0, the solution to (A.32) is exactly the confluent hypergeometric function:

1F1(a±, c±,∓i2A1x) . (A.34)
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The general large-x radial solution is then a linear combination of the two ± solutions:

R(x) ≈ C̃1 e
iA1x(−x)

−1−iB
2 1F1(a+, c+,−i2A1x)+C̃2 e

−iA1x(−x)
−1+iB

2 1F1(a−, c−, i2A1x) . (A.35)

Using the fact that

1F1(a, c, z →∞) ∝ ezza−c
(

1 +O

(
1

z

))
, (A.36)

one has, for k̄2 6= 0,

R(r) ≈ C3
eiA1r

r
e
−iA2+A3

4A1
log

(
r−r+
r+−r−

)
+ C4

e−iA1r

r
e
i
A2+A3
4A1

log
(
r−r+
r+−r−

)
. (A.37)

However, we are interested in the case k̄2 = 0. In this limit the confluent hypergeometric functions

in (A.35) become degenerate. We can take k̄ → 0 in (A.35) using

lim
λ→0

1F1

(a
λ
, c;λz

)
= 0F1(c, az) . (A.38)

Combining this with

Jα(x) =
(x2 )2

Γ(α+ 1)
0F1

(
α+ 1;−x

2

4

)
, (A.39)

we have, for large r,

R(r)
k̄=0≈ C̃3

JB
(
2µ
√
rs r
)

√
r

+ C̃4
J−B

(
2µ
√
rs r
)

√
r

, (A.40)

where we have absorbed r-independent factors into the constants C̃3 and C̃4. For k̄ = 0, the

quantity B is

B = 2

√
−
(
`+

1

2

)2

+ µ2rs(2rs − r+) . (A.41)

The precise relation between C̃3, C̃4 and the overall amplitude |Rω`m(r+)| in (A.27) depends on the

scalar mass µ, the black hole mass rs and spin a, and the angular momentum quantum numbers

`, m. Such relation is usually not easy to find analytically in closed form. In the following, we

first discuss two limiting cases, i.e. the particle and the wave regimes, for which it is possible to

find a simple expression for the ratio |R(r+)|2/|R(ri)|2 where ri � rs. We will later discuss the

intermediate regime in Appendix A.3, where we will obtain an approximate connection formula by

fitting the numerical solution of the radial equation. The results are summarized in Eq. (4.1).
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The particle limit. The approximation (A.40) is valid when µ2rs(r − r+) � 1. For this to be

valid all the way down to the near-horizon region r ≈ r+, we need in particular µrs � 1. Now, if

we further have

2µ
√
rs(r − r+)�

∣∣B2
∣∣ , (A.42)

we can use the asymptotic expression for the Bessel function

Jα(y) =

√
2

πy

[
cos
(
y − απ

2
− π

4

)
+O

(
y−1
)]
, y �

∣∣∣∣α2 − 1

4

∣∣∣∣ (A.43)

to obtain a simple estimate. Excluding the extreme case µrs &
√
ri/rs and focusing on ` ∼ O(1),

we can use the following approximation for large enough r:

|Rµ`m(→∞)|2 k̄=0∼ r−
3
2 , for µrs &

`+ 1

2
. (A.44)

We will later confirm numerically this approximation as well as its range of applicability.

The wave (ultralight) limit. For an ultralight scalar with mass µ2 . 1/rsri, the approximation

(A.40) does not hold for any distance r . ri. However, to the leading order this case can be

approximated in terms of a static massless scalar, i.e. ω = µ = 0. Writing

R(x) =

(
− x

1− x

) ima
r+−r−

Y (x) , (A.45)

equation (A.14) takes the hypergeometric form

x(1− x)Y ′′(x) +

(
1 +

2ima

r+ − r−
− 2x

)
Y ′(x) + `(`+ 1)Y (x) = 0 . (A.46)

Picking the solution that is regular at the outer horizon, r = r+, we have

R`m(r) = |R`m(r+)|
(
r − r+

r − r−

) ima
r+−r−

2F1

(
−`, `+ 1; 1 +

2ima

r+ − r−
;
r − r+

r− − r+

)
. (A.47)

Finally, the asymptotics for the hypergeometric functions implies the following large-r behavior:

|R`m(r →∞)|2 ∝ r2` , for µ2 . 1/rsri . (A.48)

To conclude, we have derived the first and third line of (4.1). Unfortunately, the most inter-

esting regime for the interplay between scalar hair and superradiance is the intermediate regime

2
√
rs/ri � µrs . 1

2(` + 1), i.e. the second line of (4.1). In this case (A.48) is not applicable,

while (A.40) is only valid down to some distance r0 � r+ outside the near-horizon region such that

2µ
√
rsr0 ∼ 1. We will need to rely on numerical studies to obtain a good estimate, which is what

we discuss next.
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A.3 Numerical results for hair solutions

In this section we carry out numerical studies of the hair solution in the different regimes, proving

in particular evidence for our estimates (4.1).

A.3.1 |R+|/|Ri| as a function of α at a∗ = 0 and the three regimes

To demonstrate the separation of three regimes (4.1), we first focus on the case with a∗ = 0. Recall

that m enters the radial function (A.27) only through the combination ma∗, and thus a nonzero

m has no effect in this case. Figure 9 shows plots of the ratio |R+|/|Ri| as a function of α for

` = 0, 1, 2, with R+ ≡ R(r+) and Ri ≡ R(ri).
15 Here we choose ri = 400rs (we set rs = 2 when

making the plots).
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3/4

` = 2
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` = 0

Figure 9: |R+|/|Ri| as function of α, with ` = 0, 1, 2 at a∗ = 0. The horizontal black line marks

the value of |R+|/|Ri| in the particle regime. The wave regime values behave as expected, although

not distinguishable on this plot. The vertical dashed lines indicate the boundary α ' (` + 1)/2,

which was indicated in equation (4.1).

15We will see in Figure 10 that |R(r)| is an oscillatory function of r in the intermediate regime. Therefore,

normalizing the scalar profile |R(r)| at fixed ri would result in the presence of spikes in |R+|/|Ri| as a function of

α, which correspond to the minima of the oscillations in Figure 10. We get around this problem by sampling several

|R+|/|Ri| values within the range 350rs < r < 450rs, and take the minimum |R+|/|Ri| value. Some remnants of

the spikes can still be seen in the plot in Figure 9, most prominently for ` = 0.
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It is clear from Figure 9 that, for fixed `, there are three qualitatively different phases as α

increases from 0 to 1: two asymptotic flattened regions and an intermediate phase. The flattening

of the ratio |R+|/|Ri| as α → 1 and α → 0 correspond respectively to the “particle” and “wave”

regimes studied analytically in the previous section.16 As expected, in the particle regime, the

value of |R+|/|Ri| plateaus around (ri/rs)
3/4.17 The numerical values in the wave regime agree

with the (ri/rs)
−2` approximation, although not distinguishable in Figure 9 due to their small size.

Figure 10 illustrates the typical behaviors for the radial function |R(r)|2/|R+|2 as a function of r in

the three regimes: monotonically increasing (wave regime), oscillatory (intermediate regime), and

monotonically decreasing (particle regime).

104

109

Wave regime (α = 0.01)
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|R
(r

)|2
/|R

+
|2 Intermediate regime (α = 0.5)

0 100 200 300 400 500 600 700 800
r

10−3

10−1

Particle regime (α = 1)

Figure 10: |R(r)|2/|R+|2 as function of r when a∗ = 0 and (`,m) = (2, 2) in the three regimes.

In the previous section, we obtained the analytic approximations (A.44) and (A.48) for the large-r

behavior of R(r), and thus for the ratio |R+|/|Ri|, in the particle and wave limits. Even though

we have little analytic control over the intermediate regime, we can use the numerical results in

16Note that the upper bound of the wave regime here is the boundary between “regime II” and “regime III”

defined in [18], not the one between “regime I” and “regime II”. However, the behavior of |R+|/|Ri| is identical in

regime I and regime II, which means we cannot distinguish them by plotting |R+|/|Ri|. We therefore merge regime

I and II of [18] into a single one in our discussion, and call it the “wave regime”.
17We have chosen ri = 400rs in our numerical calculations, but the height of the plateau in Figure 9 is actually

3503/4. This is an artifact of our procedure of smoothing out the oscillations in the intermediate regime. The

behavior of |R+|/|Ri| remains qualitatively the same.
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Figure 9 to extract some simple estimates for the scaling of R(r). The results are summarized

in Eqs. (4.1). In Figure 11, we show that a very good agreement between (4.1) and the exact

numerical results is achieved within O(1) error for ` = 1 and ` = 2.
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10−3 10−2 10−1 100

α

10−5

10−3

10−1

101

` = 2

Numerical

Approximation

Figure 11: Estimates (red dash) vs. exact numerical results (blue solid) for |R+|/|Ri|, with ` = 1

and ` = 2 for a∗ = 0.

The region where our approximation is the least accurate is the transition between the wave

and intermediate regimes, which we simply define as the point where the approximations (4.1) for

the two regimes meet. It is worth noting that numerical studies show that this bound decreases

with increasing the ratio ri/rs, as described in our approximation, while the rate of the drop in

the intermediate regime and the lower bound of the particle regime are not affected by this ratio.

Therefore, for a larger ri, |R+|/|Ri| is smaller in the wave regime due to a longer drop.

A.3.2 |R+|/|Ri| on the Regge plane

In the previous section we have identified three different regimes for the study of the scalar hair

solution around a non-rotating Schwarzschild black hole (a∗ = 0). Here we study the effect of

turning on a∗. The main conclusion is that our approximations (4.1) receive modifications of at

most O(1) unless a∗ > 0.95. As a first example, Figure 12 shows the ratio |R+|/|Ri| as a function

of α at a∗ ' 0.505.
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Figure 12: |R+|/|Ri| as function of α for a∗ ' 0.505, with low values of (`,m). The horizontal and

vertical dotted lines are the same as in Figure 9. Note that this figure deviates from figure 9 by

only a small fraction.

Compared with Figure 9, |R+|/|Ri| for the same ` but different m now behave differently. We see

that the value of |R+|/|Ri| in the particle regime now depends on the value of m, while it remains

largely unaffected in the wave regime. Also, the boundaries separating the regimes are shifted,

depending on the sign and size of ma∗. However, the effect of a nonzero a∗ on these plots is within

O(1) unless a∗ & 0.95. The dependence of |R+|/|Ri| on a∗ in the three different values of α is

illustrated in Figure 13.
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Figure 13: |R+|/|Ri| as function of a∗ for low values of (`,m) for α = 0.02, 0.72 and 0.94.

Finally, Figure 14 shows the value of |R+|/|Ri| on the Regge plane (α, a∗), for (`,m) = (2, 2).

In this figure, the deep blue and light yellow regions correspond to the wave and particle regimes

respectively, while the greenish region is the intermediate regime.
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Figure 14: |R+|/|Ri| on the Regge plane (α, a∗) for (`,m) = (2, 2).

From both Figure 13 and 14, it is clear that the change of transition points between the three

regimes as a∗ increases is well within O(1) unless the black hole is near-extremal (a∗ > 0.95).

Therefore, we have established the validity of the approximations (4.1) up to a∗ ∼ 0.95, and

therefore justifying dropping the a∗ (and thus m) dependence in (4.1). When the black hole is near

extremal (a∗ > 0.95), all our analysis breaks down and a separate discussion is required.

B Superradiance

In this appendix, we will review some aspects of black hole superradiance and the corresponding

system of the “gravitational atom”.

B.1 Bound states

At distances much larger than the Schwarzschild radius, r � rs, it is convenient to consider the

following ansatz for the scalar field Φ:

Φ(t, r) =
1√
2µ

[
ψ(t, r)e−iµt + ψ(t, r)∗eiµt

]
, (B.1)

where ψ is a complex scalar field which varies on a timescale longer than µ−1. It can be shown that,

to leading order in an expansion in powers of rs/r, the Klein-Gordon equation (∇ν∇ν − µ2)Φ = 0

reduces to

i
∂ψ

∂t
=

(
− 1

2µ
∇2 − α

r

)
ψ , where α ≡ µrs

2
, (B.2)
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which is equivalent to the Schrödinger equation for the hydrogen atom, if we identify α with the

fine structure constant. When ψ is taken to (exponentially) vanish at infinity, Eq. (B.2) is then

solved by hydrogenic-like discrete bound states, whose spectrum is the familiar

ωn`m = µ

(
1− α2

2n2

)
. (B.3)

Higher-order corrections in powers of α will be present, due to

1. higher-order terms that we neglected in (B.2);

2. the causal ingoing boundary conditions at the horizon, which differ from the demand of

regularity at the origin of the hydrogen atom.

The corrections of second type are particularly relevant, because they introduce a small imaginary

part to ωn`m, making the population of the bound states either exponentially decrease or increase

over time. The first terms in expansions are [26]

Re(ωn`m) = µ

(
1− α2

2n2
− α4

8n4
+ fn`

α4

n3
+ h`

ma

rs

α5

n3
+ . . .

)
, (B.4)

Im(ωn`m) = 4
r+

rs
Cn`g`m

(
mΩ+ − Re(ωn`m)

)
α4`+5, (B.5)

where the expressions of the coefficients fn`, h`,Cn` and g`m are given in [26]. The most relevant

feature, to our purposes, is that Im(ωn`m) changes sign in correspondence of the superradiance

threshold, mΩ+ = Re(ωn`m) ≈ µ. We thus see that the states are quasi -bound, as some of them

decay, while others grow by superradiance.

B.2 Fluxes and nonlinear evolution

Our analysis has so far only dealt with the linear regime; the superradiant states, however, will

eventually extract enough mass and angular momentum from the black hole to significantly change

its parameters. To study this phase of the evolution, we can write down the fluxes of energy and

angular momentum of the scalar field, under the assumption that only one (n, `,m) mode is present:

T rt = grr(∂rΦ
∗∂tΦ + ∂tΦ

∗∂rΦ) = 2
∆

%2
Im(ωR′∗R)|S|2e2 Im(ω)t, (B.6)

T rφ = grr(∂rΦ
∗∂φΦ + ∂φΦ∗∂rΦ) = −2

∆

%2
m Im(R′∗R)|S|2e2 Im(ω)t. (B.7)

From the near-horizon limit of the radial part of the Klein-Gordon equation,

∆
d

dr

(
∆

dR

dr

)
+ r2

sr
2
+(ω −mΩ+)2R = 0, (B.8)

we can extract the near-horizon behavior of R(r) and write

T rt(r+) = 2
rsr+

%2
(|ω|2 − Re(ω)mΩ+)Φ∗Φ(r+), (B.9)

T rφ(r+) = −2m
rsr+

%2
(Re(ω)−mΩ+)Φ∗Φ(r+). (B.10)
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Equating the fluxes of mass and angular momentum to the change in the parameters of the black

hole, and performing an angular integral, we arrive to

drs
dt

= 4G
∑
n,`,m

rsr+(|ωn`m|2 − Re(ωn`m)mΩ+)|Rn`m(r+)|2, (B.11)

d(ars)

dt
= 4G

∑
n,`,m

rsr+m(Re(ωn`m)−mΩ+)|Rn`m(r+)|2. (B.12)

In these equations, we are summing over all (n, `,m) modes. Technically, this would not be allowed,

because Tµν is quadratic in the field and would thus contain interference terms. However, in the

limit of small spheroidicity (a2(µ2 − ω2) ≈ a2µ2α2/(2n2) � 1), the angular integral kills the

interference terms among states with different (`,m) because of the orthonormality of spherical

harmonics. Interferences between overtones with same angular momentum, instead, oscillate with

frequency ωn − ωn′ ≈ (1/2)µα2(1/n′2 − 1/n2). Comparing the power of α with (B.5), it is easy to

see that this frequency is much faster than the superradiance growth timescale, therefore it is same

to mediate these interferences to zero.

The way equations (B.11) and (B.12) are used to describe the nonlinear evolution of a superradiance-

generated cloud has been described in Section 2.1.

B.3 Superradiance and area law

The area of the horizon of a Kerr black hole is 4πrsr+. Using that

d(
√
rsr+)

dt
=

√
rsr+

2r+ − rs

(
drs
dt
− a

rsr+

d(ars)

dt

)
, (B.13)

we can combine (B.11) and (B.12) to get

d(
√
rsr+)

dt
= 4G

∑
n,`,m

(rsr+)3/2

2r+ − rs
|ωn`m −mΩ+|2|Rn`m(r+)|2 ≥ 0. (B.14)

This shows that the second law of black hole thermodynamics, d(Area)/dt ≥ 0, is respected.

Moreover, we see that along the trajectory due to superradiance, we have

d(
√
rsr+)

drs
=

√
rsr+

(2r+ − rs)µ
(
µ−mΩ+

)
, (B.15)

where we used (2.13) and (B.13). Using rs to parametrize the curve of the superradiance trajectory,

this equation is telling us that the derivative of the area along the said curve vanishes at µ =

mΩ+. The superradiance trajectories are thus tangent, on the threshold, to the constant area

lines, see Figure 1. This means that the evolution is a quasi-adiabatic process in the vicinity of the

superradiance threshold.
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C A toy model

Equations (3.2), (3.3) and (3.4) contain some complications that may hide the physically relevant

parts. Consider the following system of differential equations:

X ′ = λX − (Y −X)Z, (C.1)

Y ′ = λY − 2(Y −X)Z, (C.2)

Z ′ = (Y −X)Z. (C.3)

Here, the variables X and Y play the role of the two coordinates in the Regge plane, say α and a∗,

while the variable Z plays the role of the mass of the cloud, say |R(r+)|2. The line Y = X is taken

here to represent the superradiance threshold, µ = mΩ+, and we used the fact that the growth rate

(Im(ω) ∝ (mΩ+ − µ), see (B.5)) is proportional to the distance from the threshold. Finally, the

parameters λX and λY mock up the accretion rates of mass and angular momentum. The factor

of 2 in (C.2) is there to make sure that the slope of the threshold is smaller than the slope of the

superradiance flux (any other larger-than-1 number would work equally well).

It is easy to see that equations (C.1), (C.2) and (C.3) imply X + Z = λXt+ CX and Y + 2Z =

λY t+CX , where CX and CY are integration constants, and thus Y −X = (λY −λX)t+CY −CX−Z.

Plugging this back into (C.3), we get

Z ′ =
(
(λY − λX)t+ CY − CX − Z

)
Z. (C.4)

Recall that the variable Z represents the mass of the cloud: we thus require Z(0) > 0. This implies

that Z(t) > 0 for every t, as otherwise Z(t) would cross the trivial solution Z(t) = 0. If λY > λX ,

the line Z(t) = (λY − λX)t + (CY − CX) is an attractor for all t > 0: at large times, the solution

can be expanded perturbatively as

Z(t) = (λY − λX)t+ (CY − CX)− const.× exp

(
−(λY − λX)

t2

2
− (CY − CX)t

)
+ . . . (C.5)

In this case, the mass of the cloud increases (linearly) with time. If λY < λX , instead, the line

Z(t) = (λY − λX)t+ (CY − CX) will only be an attractor for a finite time, during which the mass

of the cloud will decrease linearly; afterwards, the line Z(t) = 0 will become the new attractor: the

solution at large times will be

Z(t) = const.× exp

(
(λY − λX)

t2

2
+ (CY − CX)t

)
+ . . . (C.6)

The two cases λY > λX and λY < λX are in obvious correspondence with the over-superradiance

and under-superradiance we described in Section 3.

In both cases, when Z(t) is attracted to the line (λY − λX)t+ (CY − CX), we see that

Y −X = (λY − λX)t+ CY − CX − Z (C.7)
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is attracted to zero. The system therefore drifts along the threshold Y = X as long as the mass of

the cloud, Z, is large enough. From

Y − 2X = (λY − 2λX)t+ CY − 2CX , (C.8)

we can find the approximate evolution of the individual coordinates X and Y , using Y − 2X ≈
−X ≈ −Y . Of course, in this toy model we have treated the parameters λX and λY as free. In the

realistic case, if the second law of black hole thermodynamics holds (which requires the null energy

condition and global hyperbolicity), the possible accretion fluxes are constrained to those that

increase the black hole area. We saw in Section (B.3) that the superradiance trajectory is tangent,

on the threshold, to the constant-area lines. As in this toy model the superradiance trajectory is

Y = 2X, the said constraint on accretion would mean λY < 2λX .
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