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Abstract

Near-Kerr black hole initial data sets are constructed by applying either

the parabolic-hyperbolic or the algebraic-hyperbolic form of the constraints.

In both cases, strongly and weakly asymptotically flat initial data sets with
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is verified by numerically integrating the evolutionary forms of the constraint

equations in the case of various near-Kerr configurations.
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1 Introduction

For more than seven decades, the conformal or elliptic method, introduced by Lichner-

owicz and York [1–4], was almost the only 1 means to solve the constraints of general

relativity. Recently, in a series of papers [7–9], two alternative evolutionary formu-

lations of the Einstein constraint equations were also introduced. It is well-known

that by specifying a suitable boundary value problem within the elliptic method, it is

straightforward to arrange a setup capable of investigating the existence of asymptot-

ically flat solutions to the constraint equations. By contrast, it is not evident if there

is a way to guarantee the existence of asymptotically flat solutions to the constraint

equations when either of the novel parabolic-hyperbolic or algebraic-hyperbolic forms

of the constraints is used. The main issue is whether controlling merely the freely

specifiable part of the data, along with the “initial data” relevant for the constraint

variables —which are given only on one of the level sets foliating the conventional

initial data surface— is sufficient to guarantee appropriate fall-off behavior of all the

geometric fields involved in the constraints.

By their inherent nature, the constraints involve more variables than equations;

thereby, they always form an under-determined system. For instance, there are only

four constrained variables, regardless of the method applied, concerning the geomet-

rical content of a three-dimensional initial data set in general relativity. These are

the ones restricted by the Hamiltonian and momentum constraints [10, 11]. In con-

trast, the remaining eight variables are freely specifiable. Whenever one is looking for

asymptotically flat solutions located in a small neighborhood of a known one, it is very

tempting to choose all the freely specifiable variables to coincide with the correspond-

ing variables of the known asymptotically flat solution. This strategy was applied by

Beyer et al. [12, 13] in their pioneering studies of the asymptotic behavior of solutions

1There have been attempts to find other means of solving the constraints (see e.g. [5, 6]), but

none of them has proved to be a viable alternative to the conformal method.

3



to the evolutionary form of vacuum constraints. More concretely, they used data on

a time slice of the Kerr-Schild form of a single or superposed binary Schwarzschild

black holes, and they altered only the ”initial data” —these were also read off on

one of the foliating level surfaces — for some of the constrained variables [12, 13].

Their investigations demonstrated that for this choice of the freely specifiable data

— we referred to these in [14] as ”strictly near Schwarzschild” configurations— the

solutions to the evolutionary form of the constraints, apart from the seed solution,

cannot be asymptotically flat. More concretely, in the strictly near-Schwarzschild

setup, neither the algebraic-hyperbolic formulation in the single Schwarzschild case

[12] nor the parabolic-hyperbolic formulation in the single and binary Schwarzschild

black hole case [13] allow suitable fall-off for one of the constrained variable, K, that

is nothing but the trace of the tensorial projection of the extrinsic curvature [for its

definition see equation (6) below].2 These findings were confirmed in [14]. Note also

that our mode-by-mode (numerical) analysis also allowed us to conclude that only the

monopole part of K violates the desired decay rate [14]. Accordingly, this monopole

part is the only mode that gets in the way of obtaining asymptotically flat solutions

to the evolutionary form of the constraints in the strictly near-Schwarzschild case

[14].

It is important to emphasize that in the above-discussed investigations, the enorm-

ous freedom we have in choosing the freely specifiable part of the data was ignored

entirely. Based on this observation and to ensure a suitable fall-off rate for the con-

strained variable, K, Beyer et al. [15] invented a method that applies to the parabolic-

hyperbolic form of the constraints, by setting κ —which is one of the freely specifiable

variables, and which is the scalar part of the extrinsic curvature [see equation (5)

2Strictly speaking, K is not the only variable that violates the desired decay rate, but given the

spherically symmetric constraint equations, it can be argued that the slow decay rate of the other

problematic variables can always be traced back to the behavior of K.
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below]— to be proportional to K. Note that by assuming κ = RK, the principal

part of the constraints’ parabolic-hyperbolic form is also affected as these equations

contain tangential derivatives of κ. Nevertheless, provided that R > −1
2

holds, the

obtained modified parabolic-hyperbolic system is guaranteed to be well-posed, and,

more importantly, the initial data that was yielded by this method was also found to

be strongly asymptotically flat. The viability of this proposal of Beyer et al. [15] was

confirmed in our follow-up paper [14], where we also proposed altering part of the

freely specifiable data in case of the algebraic-hyperbolic system. It is fair to admit,

however, that the success of the latter proposal was limited.

Several questions remained open for further study even after this significant pro-

gress reported in [15]. For example, are there other suitable modifications of the free

part of the data? Are there modifications that do not affect the principal parts of

the evolutionary forms of the constraints? Could the more general non-strictly Kerr

initial data configurations be asymptotically flat? Is it possible to control the rate of

decay of the initial data to produce weakly or strongly asymptotically flat solutions?

The results reported in this paper were inspired by curiosity about the above

questions. Our motivation also benefited from a recent work by Beyer and Ritchie

[16] demonstrating that the original parabolic-hyperbolic system —without applying

any alteration— is suitable to yield asymptotically hyperboloidal initial data sets.

Analogous support was provided by the success of constructing initial data —even

though these are relevant only for the strong field regime— using the parabolic-

hyperbolic formulation of the constraints, for single or binary rotating Kerr black

hole configurations in [17, 18].

The objectives set out in the present paper are many and varied. For the first

time, we investigate the asymptotic behavior of the space of initial data sets in a small

neighborhood of the initial data obtained on a Kerr-Schild time slice of a rotating Kerr

black hole. We do this by modifying only the monopole part of some freely specifiable
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variables. This, on the one hand, guarantees that no alteration of the principal parts

of the evolutionary forms of the constraints will occur. Hence the well-posedness of

the relevant PDE systems is expected to hold, based on the results covered in [9].

On the other hand, while the method proposed in [15] applies only to the parabolic-

hyperbolic system, our proposal can also be used in solving the algebraic-hyperbolic

system by controlling the monopole part of the freely specifiable secondary lapse,

N̂ . In addition, we also introduce a straightforward method, applicable to both of

the evolutionary forms of the constraints, that allows us to control the fall-off rate

of the monopole part of the constrained variable K, thereby generating weakly and

strongly asymptotically flat initial data with any desired fall-off rate. The viability

of the introduced new methods is verified by integrating the evolutionary forms of

the constraint equations numerically in the case of various near-Kerr initial data

configurations.

The structure of the paper is as follows: In section 2, we recall the notions and

notations utilized in this paper. Section 2.2 focuses on defining the most relevant

spin-weighted variables, while section 2.3 and section 2.4 recall the exact form of

the equations and some of their properties concerning the parabolic-hyperbolic and

algebraic-hyperbolic form of the constraints, respectively. Section 2.5 we select a

suitable (Kerr-Schild) time slice foliation to the Kerr black hole background. As a

closing to section 2, in section 2.6, we recall the notion of strong and weak asymptotic

flatness. Our main results are presented in section 3. Since in all the former studies,

exclusively the asymptotics of near-Schwarzschild initial data was investigated, in

section 3.2, we start by examining the asymptotics of strictly near-Kerr black hole

initial data configurations. Although this does not yield the desired fall-off behavior,

we still find it beneficial to provide this for comparison and to verify that even in

this more complicated case, it is indeed only the monopole part of K that requires

suitable control. Section 3.3 and section 3.4 present our proposal applied to the
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parabolic-hyperbolic and the algebraic-hyperbolic formulations, respectively. These

sections start with motivating our novel approach by inspecting the analytic solutions

in spherical symmetry and then presenting the corresponding numerical results in the

case of near-Kerr initial data configurations. We close this paper with our final

remarks in section 4. 3

2 Preliminaries

The geometric content of an initial data set is represented by a pair of symmetric

tensor fields (hab, Kab), where hab is a Riemannian metric on a three-dimensional

manifold Σ. Once Σ is embedded into a four-dimensional spacetime (M, gab) the fields

hab and Kab get to be the induced metric and extrinsic curvature of Σ in (M, gab).

The fields (hab, Kab) are subject to the constraints which, in the vacuum case, read

as

(3)R−KabK
ab +K2 = 0, (1)

DbK
b
a −DaK = 0 , (2)

where Da and (3)R are the covariant derivative operator and Ricci scalar associated

with hab, respectively, and K denotes the trace of the extrinsic curvature.

2.1 Foliation based decompositions

The geometric construction underlying the evolutionary interpretation of the con-

straints lies on the assumption that the 3-dimensional initial data surface, Σ, can be

foliated by a one-parameter family of 2-surfaces, S%, which are the % = const level

surfaces of a function % : Σ→ R [7–9].

3Unless indicated otherwise, our conventions and notations are the same as in [11]. In particular,

we use geometric units.
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The unit normal to the S% surfaces is n̂a = N̂Da%, such that n̂an̂a = 1. Then the

induced metric on S% reads as

γ̂ab = hab − n̂an̂b , (3)

whereas the operator projecting fields defined on Σ onto S% is γ̂ab = haeγeb. The

covariant derivative operator associated with γ̂ab is denoted by D̂a, whereas the cor-

responding Ricci scalar and the extrinsic curvature of the 2-surfaces by R̂ and K̂ab,

respectively. To uncover implicit involvements of the lapse, K̂ab will be replaced by

the product N̂−1
?
Kab, where

?
Kab = 1

2
L[ρ−N̂ ]γ̂ab.

A radial flow vector field, ρa, is also chosen such that its integral curves inter-

sect each S% level surface precisely once, and it is normalized such that ρaDa% = 1.

Then the lapse and shift associated with ρa are N̂ = ρan̂a and N̂a = γ̂abρ
b, respect-

ively. Using these variables the geometric content of the metric, hab, can be uniquely

represented by the triplet (N̂ , N̂a, γ̂ab) [14].

The extrinsic curvature, Kab, can also be decomposed as

Kab = κ n̂an̂b + kan̂b + kbn̂a + Kab, (4)

where

κ = Kab n̂
an̂b , ka = Kbc γ̂

b
an̂

c , Kab = Kcd γ̂
c
aγ̂

d
b . (5)

The tensorial projection of the extrinsic curvature can further be split into its trace

and trace-free parts, which are given as

K = Kabγ̂
ab and

◦
Kab = Kab − 1

2
K γ̂ab . (6)

Note finally that the septet (N̂ , N̂a, γ̂ab;κ,ka,K,
◦
Kab) is algebraically equivalent to

the geometric content represented by the pair (hab, Kab) on Σ.
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2.2 Spin-weighted variables

As argued in [19–21], it is rewarding to use spin-weighted variables. In doing so, one

first introduces a complex null dyad, {qa, qa}, where bar denotes complex conjugate,

on one of the S% level surfaces, say on S%0 such that qab = qaqb is required to be

the unit sphere metric on S%0 . Then the dyad {qa, qa} is automatically normalized

as qabqaqb = 2, whereas the indices of the dyad are raised and lowered by qab and

qab, respectively. To get a complex null dyad, {qa, qa} on each of the % = const level

surfaces the dyad fixed on S%0 is Lie-dragged with respect to ρa onto Σ. Note that then

the action of the tangential derivative D̂a can be rephrased using the Newman-Penrose

ð and ð operators [21]. The basic variables we use in the succeeding subsections,

including the spin-weighted ones, are listed in Table 1.
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notation definition spin-weight

a 1
2
qi qj γ̂ij 0

b 1
2
qiqj γ̂ij 2

d a2 − b b 0

A qaqbCe
ab qe = d−1

{
a
[
2 ð a− ðb

]
− b ðb

}
1

B qaqbCe
ab qe = d−1

{
aðb− b ðb

}
1

C qaqbCe
ab qe = d−1

{
aðb− b

[
2ð a− ðb

]}
3

R̂ 1
2
a−1

(
2 R−

{
ðB− ðA− 1

2

[
C C−B B

] } )
0

N qiN̂
i 1

k qiki 1

K γ̂kl Kkl 0
◦
Kqq qkql

◦
Kkl 2

◦
Kqq qk ql

◦
Kkl = (2 a)−1[ b

◦
Kqq + b

◦
Kqq ] 0

?
K

?
K = γ̂ij

?
Kij 0

?
Kqq qiqj

?
Kij = 1

2

{
2 ∂ρb− 2 ðN + C N + A N

}
2

?
Kqq qk ql

?
Kkl = a−1{d ·

?
K}+ 1

2
[ b

?
Kqq + b

?
Kqq ] } 0

Table 1: The variables applied in providing the evolutionary form of the constraints.

Note that, in virtue of
◦
Kabγ̂

ab = 0, for the contraction
◦
Kqq =

◦
Kabq

aqb, as indicated

in Table 1,
◦
Kqq = (2a)−1

[
b
◦
Kqq + b

◦
Kqq

]
, (7)

holds. Note also that γ̂ab can be given, in terms of the dyad {qa, qa}, and the variables

a and b, as

γ̂ab = a qab + 1
2
[b qaqb + b qaqb] . (8)

Note, finally, that the geometric content of (hab, Kab) can also be represented by

the octet (N̂ ,N, a,b;κ,k,K,
◦
Kqq). As shown in [9, 19, 20] by choosing N̂ , k and

10



K as constrained variables, we arrive at the parabolic-hyperbolic formulation while

selecting κ, k and K as constrained variables we arrive at the algebraic-hyperbolic

formulation of the constraints.

2.3 The parabolic-hyperbolic equations

Selecting N̂ , k, K as constrained variables the Hamiltonian and momentum con-

straints read as [21]

?
K
[
∂rN̂ − 1

2
NðN̂ − 1

2
N ðN̂

]
− 1

2
d−1N̂2

[
a
{
ððN̂ −BðN̂

}
− b

{
ð2
N̂ − 1

2
A ðN̂ − 1

2
CðN̂

}
+ cc.

]
−A N̂ − B N̂ 3 = 0 , (9)

∂rk− 1
2
N ðk− 1

2
N ðk− 1

2
N̂ ðK + fPH = 0 , (10)

∂rK− 1
2
N ðK− 1

2
N ðK− 1

2
N̂ d−1

{
a(ðk + ðk)− bðk− bðk

}
+ FPH = 0 , (11)

where the coefficients A, B, and the source terms fPH , FPH , in (9), (10) and (11),

are given as

A = ∂r
?
K − 1

2
N ð

?
K − 1

2
N ð

?
K + 1

2

[
?
K2 +

?
Kkl

?
Kkl
]
, (12)

B = −1
2

[
R̂ + 2κK + 1

2
K2 − d−1[2 a k k− b k

2 − b k2]−
◦
Kkl

◦
Kkl
]
, (13)

fPH = −1
2

[
kðN + kðN

]
−
[
κ− 1

2
K
]
ðN̂ +

?
K k− N̂

[
ðκ + qi

•

n̂l
◦
Kli − qiD̂l ◦Kli

]
,

(14)

FPH = 1
4
N̂ d−1

{
2 a B k− b( C k + A k) + cc.

}
− d−1

[
(a k− b k)ðN̂ + cc.

]
+
[ ◦
Kij

?
Kij −

(
κ− 1

2
K
) ?
K
]

(15)

with cc. denoting the complex conjugate of the preceding terms, while the explicit

form of the terms, such as
?
Kij

?
Kij,

◦
Kij

?
Kij,

◦
Kij

◦
Kij, qi

•

n̂l
◦
Kli, q

iD̂l
◦
Kli, can be found in

[21].
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As shown in [9], (9) is a Bernoulli-type parabolic equation, while (10) and (11)

form a first-order symmetric hyperbolic system. This coupled parabolic-hyperbolic

system always gets to be well-posed in those subregions of Σ where the positivity

of
?
K can be guaranteed. As

?
K is determined by the freely specifiable variables a,

b, and N, the coupled parabolic-hyperbolic system can always be guaranteed to be

well-posed at least on a one-sided neighborhood of the initial data surface S%0
4 in

Σ. Note also that besides the freely specifiable eight real functions, represented by

the variables (N, a,b;κ,
◦
Kqq), on Σ, we also have the freedom to choose initial data

(N̂ |%0 ,k|%0 ,K|%0) to the parabolic-hyperbolic equations (9)-(11) on S%0 .

2.4 The algebraic-hyperbolic equations

Choosing K, k and κ as basic variables the constraints read as [21]

∂rK− 1
2
N ðK− 1

2
N ðK− 1

2
N̂ d−1

{
a(ðk + ðk)− bðk− bðk

}
+ FAH = 0 , (16)

∂rk−1
2
N ðk−1

2
N ðk+N̂ K−1

{
κðK−d−1

[
(ak−bk)ðk+(ak−bk)ðk

]}
+fAH = 0 ,

(17)

κ = 1
2
K−1

[
d−1
(
2a kk− b k

2 − b k2
)
− 1

2
K2 − κ0

]
, (18)

with

κ0 = (3)R−
◦
Kkl

◦
Kkl , (19)

where the pertinent source terms FAH , fAH are given as

FAH = 1
4
N̂ d−1

{
2 a B k− b( C k + A k) + cc.

}
− d−1

[
(ak− bk)ðN̂ + cc.

]
+
[ ◦
Kij

?
Kij −

(
κ− 1

2
K
) ?
K
]
, (20)

4The initial data for the evolutionary form of the constraints, specified on one of the % = const

level sets in Σ, should not be confused with an initial data set (Σ;hab,Kab) relevant for the time-

evolution part of the Einstein’s equations.
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fAH =− 1
2

[
kðN + kðN

]
+ 1

2
N̂ (d ·K)−1

[
(a k− b k)(B k + B k) + (a k− b k)(C k + A k)

]
−
[
κ− 1

2
K
]
ðN̂ + N̂

[
1
2
K−1ðκ0 + N̂−1

?
K k− qi

•

n̂l
◦
Kli + qiD̂l ◦Kli

]
. (21)

As shown in [9], (16)-(17) form a first-order Friedrichs symmetrizable hyperbolic

system for the vector valued variable (K,k) provided that the inequality κ ·K < 0

holds. Notice that as this latter condition refers to the dependent variables, its validity

has to be checked during the integration of the underlying system. Note also that in

doing so the fields (N̂ ,N, a,b;
◦
Kqq) can be specified at will throughout Σ, along with

the Cauchy data for the system (16)-(17) constituted by the pair (K|%0 ,k|%0) given

on the % = %0 initial data level set.

2.5 Foliations of Kerr-Schild time-slices

As indicated in the introduction, one of our principal aims is to explore the asymptotic

behavior of at least a small neighborhood of the initial data sets deduced from a

rotating Kerr black hole on a Kerr-Schild time slice. Accordingly, such as in all the

former investigations [12–16, 19], we start by deducing a distinguished initial data set,

represented by (N̂ ,N, a,b;κ,k,K,
◦
Kqq), relevant for a Kerr spacetime, with mass and

rotation parameters M and a, respectively, on a tKS = const Kerr-Schild time-slice.

These time-slices are preferable as they connect the black hole interior with spacelike

infinity.

The Kerr-Schild form

gab = ηab + 2Hlalb , (22)

with

H =
Mr3

r4 + a2z̃2
, la =

(
1,
rx̃+ aỹ

r2 + a2
,
rỹ − ax̃
r2 + a2

,
z̃

r

)
, (23)

is probably one of the simplest and most widely used representation of the Kerr black

hole spacetime, with spin pointing to the positive z̃-direction. In (22) ηab stands for the
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metric of an auxiliary Minkowski spacetime with inertial coordinates (t̃, x̃, ỹ, z̃). The

spatial part of these coordinates (x̃, ỹ, z̃) and the Boyer-Lindquist radial coordinate,

r, are related via the implicit relation

x̃2 + ỹ2

r2 + a2
+
z̃2

r2
= 1 . (24)

The tKS = const Kerr-Schild time-slices of a Kerr spacetime are nothing but t̃ = const

time-level surfaces of the auxiliary Minkowski spacetime. As (x̃, ỹ, z̃) are Cartesian

coordinates on the t̃ = const time-level surfaces, it is tempting to foliate the Kerr-

Schild time-slices by the x̃2 + ỹ2 + z̃2 = const level sets. Nevertheless, however

controversial it may sound, the coordinates (x̃, ỹ, z̃) do not form a suitable admissible

asymptotic system for the Kerr solution, which (as we shall see in the following

subsection) plays central role in setting up the precise formulation of asymptotic

flatness of the data specified on tKS = const Kerr-Schild time-slices.

For this purpose the spherical Kerr-Schild coordinates, introduced by Chen et

al. [22], turned out to be more appropriate. The spherical Kerr-Schild coordinates,

(x, y, z), are related to (x̃, ỹ, z̃) via the relations

x =
rx̃√
r2 + a2

, y =
rỹ√
r2 + a2

, z = z̃ . (25)

As noted in [22], while in the original Kerr-Schild coordinates (x̃, ỹ, z̃), and with

respect to the Euclidean metric, δab, the Boyer-Lindquist r = const level sets are, in

virtue of (24), oblate spheroids, the same level sets, at least in affine sense, are the

x2 + y2 + z2 = r2 spheres with respect to the spherical Kerr-Schild coordinates. Note

that the x̃2 + ỹ2 + z̃2 = const and x2 + y2 + z2 = const level sets do coincide in the

a→ 0 Schwarzschild limit.

The payback of using the spherical Kerr-Schild coordinates (x, y, z) is that they

form admissible coordinates on the tKS = const Kerr-Schild time-slices. This gets

more transparent when one is applying the spherical coordinates (r, ϑ, ϕ) defined via
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the (standard) implicit relations 5

x = r cosϕ sinϑ , y = r sinϕ sinϑ , z = r cosϑ . (27)

Utilizing these spherical coordinates (r, ϑ, ϕ) the data (N̂ ,N, a,b;κ,k,K,
◦
Kqq), rel-

evant for the considered Kerr spacetime on Σ, i.e., on the t = 0 Kerr-Schild time-slice,

foliated by the r = const level sets and with respect to the flow ρa = (∂r)
a, can be

given as

N̂ =

√
(1 + 2H)Υ

Ξ
, N = i

2aMr sinϑ

(a2 + r2) Ξ
, (28)

a = a2 + r2 − 1
2
a2(1− 2H) sin2 ϑ , b = −1

2
a2(1 + 2H) sin2 ϑ , (29)

κ =
2a2
√

1 + 2H sin2 ϑ ∂rH

Υ
− 2 (1 +H) Ξ ∂rH

Υ (1 + 2H)3/2

− 2a2H
√

1 + 2H sin2 ϑ (r + a2 sin2 ϑ ∂rH)

Υ Ξ
, (30)

k = −a
2 sin2 ϑ ∂ϑH√

Υ Ξ
+

√
Ξ

Υ

∂ϑH

1 + 2H

− i

(
a sinϑ

√
Ξ

Υ
∂rH −

2aH sinϑ (r + a2 sin2 ϑ ∂rH)√
Υ Ξ

)
, (31)

K = −H − r ∂rH
r
√

1 + 2H
− 2H(r + a2 sin2 ϑ ∂rH)√

1 + 2H Ξ
, (32)

◦
Kqq =

Υ + Ξ√
1 + 2H

(
H(r + a2 sin2 ϑ ∂rH)

Ξ
− H − r ∂rH

2r

)
+ i

2a sinϑ ∂ϑH√
1 + 2H

, (33)

5It is important to emphasize that the (x̃, ỹ, z̃) oblate spheroidal coordinates can be given in

terms of the Boyer-Lindquist coordinates (r, θ, φ) as

x̃ =
√
r2 + a2 cosφ sin θ , ỹ =

√
r2 + a2 sinφ sin θ , z̃ = r cos θ . (26)

Note that the Boyer-Lindquist angular coordinates (θ, φ) and those in (27) are related as θ = ϑ

and φ = ϕ− arctan(a/r). It is indeed the very last relation that explains why the (x, y, z) spherical

Kerr-Schild coordinates could be suitable, and, in contrast, the (x̃, ỹ, z̃) oblate spheroidal coordinates

cannot form asymptotically admissible coordinates on Kerr-Schild time slices.
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where Υ = r2 + a2 cos2 ϑ, H = Mr/Υ and Ξ = r2 + a2 + 2a2H sin2 ϑ.

Note that due to the symmetries of the Kerr spacetime, N is purely imaginary,

and b is real, although, in general, they are complex-valued functions. Note also that

in the a → 0 Schwarzschild limit N, b, k and
◦
Kqq all vanish, and that the variables

(N̂ ,N, a,b;κ,k,K,
◦
Kqq) reduce to the formulae applied in [14].

To avoid potential numerical inaccuracies in evaluating some of the more complex

geometric quantities, for instance, (3)R, it turned out to be rewarding to inspect if

sub-terms of the same magnitude with opposite signs are involved. In practice, it was

profitable to simplify the corresponding expressions using symbolic computer algebra

and evaluate the yielded formulae numerically, in accordance with similar experiences

reported in [12].

2.6 Asymptotic flatness

An initial data set (Σ, hab, Kab) is considered to be strongly asymptotically flat if the

complement of a compact set in Σ can be mapped by an admissible coordinate system

(x, y, z) diffeomorphically onto the complement of a closed ball in R3 such that in

these coordinates

hαβ =
(
1 + C

r

)
δαβ +O(r−2), (34)

Kαβ ∼ O(r−2) , (35)

holds as r =
√
x2 + y2 + y2 goes to infinity [23], where δαβ denotes the components

of the flat three-metric in the admissible Cartesian coordinates (x, y, z). These con-

ditions guarantee that the ADM mass, momentum, and angular momentum of the

initial data set are well defined.

A weaker notion of asymptotic flatness is also frequently used. An initial data

set (Σ, hab, Kab) will be referred to as weakly asymptotically flat if the milder fall-off
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conditions

hαβ =
(
1 + C

r

)
δαβ +O(r−3/2−ε), (36)

Kαβ ∼ O(r−3/2−ε) (37)

hold, for some small positive number ε. Note that these weaker conditions guarantee

that the ADM mass and linear momentum are well-defined [24].

It was shown in [14] that by transforming an admissible coordinate system (x, z, y)

to spherical coordinates (r, ϑ, ϕ), by applying the relation in (27), one can reformulate

the fall-off conditions (34) and (36) to those introduced in section 2.1. The corres-

ponding fall-off conditions for the metric components in the case of strong asymptotic

flatness are [14]

N̂ − 1 ∼ O(r−1) , N̂a ∼ O(r−3) , γ̂ab ∼ r2qab +O(r0). (38)

Since the dyadic components are independent of r, the spin-weighted variables

inherit the fall-off conditions of the tensor quantities from which they are derived.

Thus we have N ∼ O(r−3), a ∼ O(r2), and b ∼ O(r2). Looking at (8), however, we

can derive a stronger condition on b by realizing that the part of γ̂ab proportional to

qab is entirely represented by a, so b must satisfy b ∼ O(r0). Similarly, in the case

of strong asymptotic flatness, the components of the extrinsic curvature must satisfy

the fall-off conditions [14].

◦
Kab ∼ O(r0) , K ∼ O(r−2) , ka ∼ O(r−1) , κ ∼ O(r−2), (39)

which results in
◦
Kqq ∼ O(r0) and k ∼ O(r−1).

The background variables (28)-(33) have the asymptotic behavior

N̂ ∼ 1 + M
r

+O(r−2) , N ∼ 2iaM sinϑ
r3 +O(r−4) , (40)

a ∼ r2 +O(r0) , b ∼ −1
2
a2 sin2 ϑ+O(r−1) , (41)

κ ∼ 2M
r2 +O(r−3) , k ∼ 3iaM sinϑ

r2 +O(r−3) , (42)
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K ∼ −4M
r2 +O(r−3) ,

◦
Kqq ∼ −2a2M sin2 ϑ

r2 +O(r−3) (43)

which correspond to the derived fall-off conditions.

Since this work is concerned by their asymptotic behavior, we recall that the

fall-off properties of the constrained spin-weighted variables read as

N̂ − 1 ∼ O(r−1), κ ∼ O(r−2), k ∼ O(r−1), K ∼ O(r−2) (44)

for strongly asymptotically flat initial data, while as

N̂ − 1 ∼ O(r−1), κ ∼ O(r−3/2−ε), k ∼ O(r−1/2−ε), K ∼ O(r−3/2−ε) (45)

for weakly asymptotically flat data.

3 The main results: applying the new method

This section introduces the new method that allows us to control the fall-off properties

of the solutions to the evolutionary forms of the constraint equations. In doing so, all

the variables are expanded using spin-weighted spherical harmonics, as done in [14].

The replacement of a spin-weight s variable (s)V by the expansion

(s)V(r, ϑ, ϕ) =
`max∑
`=|s|

∑̀
m=−`

V`
m(r) · sY`m(ϑ, ϕ) , (46)

where sY`
m denote the spin-weight s spherical harmonics, allows us to evaluate its

angular derivatives analytically as they can always be related to the ð and ð operators.

3.1 The outline of the applied numerical scheme

In this study, we utilize the same numerical solver as applied in [14], which is based

on spin-weighted spherical harmonics expansion in the angular sector and a 4th-order
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accurate adaptive Runge-Kutta-Fehlberg (RKF) method in solving the resulting or-

dinary differential equations for the expansion coefficients.6 To ensure higher accuracy

for our numerical solver, in each case, instead of solving (9)-(10) and (16)-(18), we

solve the equations which can be deduced from them for the non-linear perturbations

(∆)N̂ = N̂ − (0)N̂ , (∆)K = K − (0)K, and (∆)k = k − (0)k, in the parabolic-hyperbolic case,

and for (∆)K and (∆)k, in the algebraic-hyperbolic case. Here (0)N̂ , (0)k and (0)K signify

the background quantities given by equations (28), (31) and (32), respectively. The

main payback of using the formulation based on deviations is that the corresponding

dominant background fields do not hide the asymptotic behavior of the higher modes

of the constraint fields. Note that the derivation of the equations governing the evol-

ution of the non-linear perturbations is straightforward. As they are slightly altered

versions of the equations provided in Appendix A of [14], they will be omitted here.

The input parameters in our numerical simulations are as follows: The integration

of the deviation equations starts at r = 1, that is, inside the black hole region. The

non-negligible initial data there is

(∆)K|r=1 = −Y20 , (47)

which is the same order of magnitude as the dominant monopole part (0)K0
0|r=1 =

−5.7581 of the background (0)K at r = 1. As both the initial data in (47) and the

background fields are axially symmetric, only the m = 0 axisymmetric modes of the

constrained fields get excited. Furthermore due to the parity symmetry of Kerr and

the functional form of the dyad components, (47) excites only even ` modes of (∆)K,

(∆)N̂ , κ, Re[(∆)k], and only odd ` modes of Im[(∆)k].

The integration of the deviation equations goes out until reaching r = 109, with

a single exception (see Fig. 4 below), where it goes out to r = 1012. The mass and

rotation parameters of the Kerr background take the values M = 1 and a = 1/2.

Starting from the strong field region necessitates angular resolution with minimal

6Although the code itself is not yet open source, its documentation is available to the public [25].
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cut-off `max = 10. This resolution allows us to compute the square roots with desired

relative accuracy of 5 ·10−18, which is the same accuracy as we demand in performing

division by using Neumann series expansion. The error tolerance of RKF for each

mode of a variable f is set to (f`
m + ∂rf`

m)ε with ε = 10−5.

Note also that the use of the wigxjpf library of Johansson and Forssén [26] yielded

notable improvements in the performance of our code. All the analytic calculations

were derived or verified using Mathematica 12.3. In particular, the notebook we used

to determine the background variables (28)-(33) (which serve as the main input to

our code) is available as supplementary material [URL to be inserted by publisher].

3.2 Asymptotics of strictly near-Kerr initial data sets

As mentioned in the introduction in the strictly near-Schwarzschild setup, neither

the algebraic-hyperbolic formulation in the single Schwarzschild case [12] nor the

parabolic-hyperbolic formulation in the single and binary Schwarzschild black hole

case [13] allow suitable fall-off for K.

For instance, using the parabolic-hyperbolic formulation, Beyer et al. [13] reported

that besides that the lapse, N̂ , does not tend to the desired asymptotic value 1, in

general, the fall-off rate of K isO(r−1) that is also far too slow. In our follow-up mode-

by-mode investigations, both of these observations were confirmed. Nevertheless, we

also found that apart from the limiting value of N̂ and the ` = 0,m = 0 monopole

mode of K, all the other modes of the involved variables fall-off with a rate compatible

with conditions in strong asymptotic flatness [14].

Analogously, in the algebraic-hyperbolic case, Beyer et al. [12] found that the

fall-off rate for K is O(r−3/2) which is now strictly at the borderline not to allow

weak asymptotic flatness. Surprisingly, the mode-by-mode investigations of similar

strictly near-Schwarzschild initial data sets demonstrated that all the other modes

of the involved variables fall-off with a rate compatible with conditions in strong
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asymptotic flatness [14].

Though in light of the results summarized above, one does not expect better

asymptotic behavior of the constraint variables in case of strictly near-Kerr initial

data sets, we devote this section to a short inspection of these configurations that

still appears to be beneficial.

It is rewarding to first glance at the asymptotic behavior of the background fields

(0)N̂ , (0)K, and (0)k. Compatible with the strong asymptotic flatness of the Kerr solution,

(0)N̂0
0 tends to the value 1 with the rate O(r−1) while all the higher ` modes fall-off

as O(r−`−1). Analogously, all the (0)k`
0 modes fall-off with the rate O(r−`−1), whereas

the (0)K`
0 modes as O(r−`−2).

In proceeding, note first that on all of the figures included in this paper, to be

able to use log-log scales and thereby demonstrate the claimed fall-off rates, we plot

the absolute values of the non-linear perturbations, along with some auxiliary lines

helping the comparison with the expected rates. Specifically, in Fig. 1, various modes

of the constrained fields, obtained by integrating the parabolic-hyperbolic equations,

in the strictly near-Kerr case are plotted. While the monopole part (∆)K0
0 of (∆)K

decay as O(r−1), all the higher `-modes fall-off as O(r−2). The modes comprising

the real part of (∆)k fall-off as O(r−1), whereas the modes in the imaginary part of

(∆)k decay with the rate O(r−2). On Panel 1d it is transparent that instead of its

proper limit value 0, the monopole part (∆)N̂0
0 tends to 3.4114 · 10−6. By contrast,

all the other modes of (∆)N̂ fall-off as O(r−1). These observations underline that

likewise, it occurred in the strictly near-Schwarzschild case, the asymptotic behavior

of either (∆)K0
0 or (∆)N̂0

0, respectively, prevents even the weak asymptotic flatness of

the corresponding strictly near-Kerr initial data set.
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Figure 1: The fall-off rates of the only non-trivial modes of the constrained variables obtained

by integrating the parabolic-hyperbolic system for strictly near-Kerr initial data are depicted. It is

transparent that the fall-off rate of (∆)K0
0 or that of (∆)N̂0

0, individually, are capable of excluding the

conditions of even the weak asymptotic flatness to hold.

Analogously, in Fig. 2, various modes of the constrained variables, obtained by

integrating the algebraic-hyperbolic system, in the strictly near-Kerr case are shown.

It is transparent that (∆)K0
0 decays with the rate O(r−3/2). Notably, all the K`

0 higher

`-modes fall-off somewhat faster than O(r−2), with a rate close to O(r−2.2). Similarly,

all the modes comprising the real part of (∆)k also decays faster than O(r−1), with a
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rate close to O(r−1.2), whereas the modes in the imaginary part of (∆)k fall-off with

the rate O(r−2). As a consequence of the slow decay rate of (∆)K, the solution to the

algebraic Hamiltonian constraint, κ, also has the slow O(r−3/2) decay rate for the

monopole, κ0
0, with ` > 0 modes decaying slightly faster than O(r−2). Accordingly,

likewise in the strictly near-Schwarzschild case, the only modes violating both strong

and weak asymptotic flatness are (∆)K0
0 and κ0

0.
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Figure 2: The fall-off rates of the only non-trivial modes of the constrained variables yielded by

the algebraic-hyperbolic equations for strictly near-Kerr initial data are shown. It is visible that

apart from the monopole part (∆)K0
0 of (∆)K and κ0

0 of κ, each of the other modes falls off at a rate

that is even faster than required by conditions of strong asymptotic flatness.
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Our investigation reported on the panels of Figs. 1 and 2 confirm that, in the case

of the strictly near-Kerr initial data sets, apart from the monopole parts of (∆)K and

(∆)N̂ , in case of the parabolic-hyperbolic equations, and apart from the monopole parts

of (∆)K and κ in case of the algebraic-hyperbolic equations, respectively, all the other

modes decay with a rate that would allow even strong asymptotic flatness.

3.3 Applying the new method to the parabolic-hyperbolic

system

As mentioned in the introduction, Beyer et al. [15] invented a method that applies to

the constraints’ parabolic-hyperbolic formulation, allowing them to produce strongly

asymptotically flat near-Schwarzschild initial data sets. This was done by setting

the freely specifiable variable κ to be proportional to K. Though using the relation

κ = RK allows producing strongly asymptotically flat near-Schwarzschild initial

data sets, it also affects the principal part of the parabolic-hyperbolic system as it

also contains tangential derivatives of κ. To ensure the well-posedness of the yielded

system, the inequality R > −1
2

needed to be imposed on the factor of proportionality

[15].

It was also mentioned earlier that one of our aims is to introduce a method that can

be applied on equal footing to the parabolic-hyperbolic and the algebraic-hyperbolic

systems such that no change in the principal parts occurs. This idea was motivated

by our observations in [14] concerning strictly near-Schwarzschild initial data sets

and by the results covered in the previous section relevant to strictly near-Kerr initial

data sets. Both of these mode-by-mode investigations pointed to the fact that they

are indeed the monopole parts of (∆)K and (∆)N̂ in the case of the parabolic-hyperbolic

equations, and it is the monopole part of (∆)K in the case of the algebraic-hyperbolic

equations, that are needed to be adjusted. This immediately raises the question if

it is possible to get the desired fall of rates by restricting only the monopole parts
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of some of the freely specifiable variables such that for both the parabolic-hyperbolic

and the algebraic-hyperbolic systems, we can get asymptotically flat near-Kerr initial

data configurations.

It turned out that essentially by demanding the simple variant of the choice of

Beyer et al. [15] given below helps not only in getting strongly asymptotically flat

solutions to both of the alternative evolutionary form of the constraints but we can

have a more flexible control on the fall-off rates, and, in particular, we can produce

weakly asymptotically flat initial data with any desired decay rate.

In the parabolic hyperbolic case we restrict only the monopole part of the freely

specifiable field κ by setting

κ0
0 = α [R K]0

0 , with R = (0)κ/(0)K , (48)

where α is a positive real number. As we shall see below, the role of the parameter α

is to fine-tune the fall-off rate of the monopole part of K. Note also that the choice

R = (0)κ/(0)K guarantee the recovering of the Kerr-Schild data on Σ with choosing

α = 1 and trivial initial data for the non-linear perturbations of the constrained

variables.

In the parabolic-hyperbolic case, we also assume that, apart from the monopole

part of κ, all the other modes remain intact, i.e.,

κ`
0
∣∣
`>0

= (0)κ`
0 . (49)

One of our primary motivations for controlling only the monopole part of the freely

specifiable variable κ by using (48) was that for the tangential derivatives of κ the

relation ðκ = ð(0)κ holds. Accordingly, the principal part of the parabolic-hyperbolic

equations, (9), (10) and (11), remains intact, so it is reasonable to argue, that the

local well-posedness of the system follows from results covered in [9].
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3.3.1 Outline in the spherically symmetric setup

In spherical symmetry7, using Schwarzschild background, the parabolic-hyperbolic

equations (9) and (11) simplify to the system

2
r
dN̂
dr

= 1
r2 N̂ − 1

2
N̂3
(

2
r2 + 2κK + 1

2
K2
)
, (50)

dK
dr

= 2
r

(
κ− 1

2
K
)
. (51)

Substituting (48), with R = −(r +M)/(2 (r + 2M)) (relevant for the Schwarzschild

background), immediately gives the solution to (51) as

K =
C1

r1+α(1 + 2M/r)α/2
, (52)

possessing the asymptotic expansion

K ∼ C1

r1+α
− C1Mα

r2+α
+O

(
r−(3+α)

)
, (53)

where C1 is a constant of integration. By virtue (53) the parameter α, applied (48),

allows a straightforward fine-tuning of the asymptotic fall-off rate of K. To guarantee

K to fit the requirements in weak asymptotic flatness, α > 1/2 should hold. If α = 1,

the fall-off rate in (53) is compatible with the requirements in strong asymptotic

flatness. In the spherically symmetric case, we could also choose faster fall-off rates

by setting α > 1. Note, however, that such a rapid decay does not occur in the non-

spherically symmetric case because there are intimate couplings of (∆)K0
0 and many

of the background fields with fall-off rate O(r−2). Thereby, in the generic case, one

should not expect faster than O(r−2) fall-off rate for (∆)K0
0.

Substituting (52) into (50) we get

N̂ =
[
1 + C2

r
+ C1

2

4
r−2α

(
1 + 2M

r

)]−1/2
(54)

7As in the spherically symmetric case, the variables have only monopole parts, the `,m indices

are suppressed.
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with the desired asymptotic value 1, where C2 is another constant of integration. It is

transparent that if α was smaller than 1/2, then the term − C1
2

8r2α could dominate, and

whence N̂ would fail to fall-off with the rate O(r−1) that is required by the weak and

strong forms of asymptotic flatness in (45) and (44), respectively. While the choice

of the borderline value α = 1/2 would fit N̂ , it is only the interval α > 1/2 that

ensures the decay rates are, simultaneously for K and N̂ , compatible with the weak

and strong forms of asymptotic flatness in (45) and (44), respectively.

3.3.2 Strongly asymptotically flat numerical solution

On Fig. 3 the fall-off rates of the constraint fields (∆)K, (∆)k and (∆)N̂ , yielded by in-

tegrating the parabolic-hyperbolic equations (9), (10) and (11) for near-Kerr initial

data, and applying (48) with α = 1, are depicted. This case each of the (∆)K`
0 modes

falls off as O(r−2), Re[(∆)k`
0] as O(r−1) with Im[(∆)k`

0] going as O(r−2). Finally, as

it is desired, (∆)N̂0
0 tends to 0 with the rate O(r−1), whereas all the higher ` modes

decay as O(r−2). Note that all of these fall-off rates, apart from that of (∆)k, are

the same as reported in [14], relevant for near-Schwarzschild initial data using the

method proposed in [15]. In that case (∆)k was purely real and each mode decayed

at the rate O(r−2). In contrast, in the present case only the imaginary part retains

this fast decay rate, whereas the decay of the real part is slower in consequence of

using (48) instead of the proposal in [15]. Note however that each of the fall-off rates

indicated on Fig. 3 are compatible with the conditions of strong asymptotic flatness

in (44) as we desired to show.
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Figure 3: The fall-off rates of the only non-trivial modes of the constrained variables yielded by the

parabolic-hyperbolic equations for near-Kerr initial data, and applying (48) with α = 1, are plotted.

Note that each mode falls off in accordance with the conditions in strong asymptotic flatness.

3.3.3 Weakly asymptotically flat numerical solution

In order to demonstrate that weakly asymptotically flat initial data can also be pro-

duced by integrating the parabolic-hyperbolic equations in the near-Kerr case, we

determined the fall-off rates of various modes of the constrained variables using (48)

with α = 0.7. These are depicted in Fig. 4. The monopole mode (∆)K0
0 falls off, as ex-
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pected, with the rate O(r−1.7), whereas all the other (∆)K`
0|`>0 modes decay with the

rate O(r−2). The fall-off behavior of the (∆)k`
0 modes follow the rule observed in the

α = 1 case. As (∆)N̂0
0 changed its sign close to r = 105 to determine the fall-off rate’s

precise value, we integrated the parabolic-hyperbolic equations on a longer interval.

The observed fall-off rate of (∆)N̂0
0 is, as expected, O(r−1). Note that changing the

sign of (∆)N̂0
0 does not affect the sign of the ADM mass since (0)N̂0

0 − 1, also plotted

on panel 4d, is always larger, so the sign of N̂0
0 − 1 does not change. Note also

that all the higher ` modes of (∆)N̂`
0 fall-off with the rate O(r−1.7). It is important to

emphasize that all the reported fall-off rates are compatible with conditions of weak

asymptotic flatness in (45).
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Figure 4: The fall-off rates of the only non-trivial modes of the constrained variables yielded by

the parabolic-hyperbolic equations for near-Kerr initial data, and applying (48) with α = 0.7, are

plotted. As (∆)N̂0
0 changed its sign close to r = 105 to determine the precise value of the fall-off

rate, we integrated the parabolic-hyperbolic equations of a longer interval. Note that changing the

sign of (∆)N̂0
0 does not affect the sign of the ADM mass since (0)N̂0

0 − 1, also plotted on panel 4d, is

always larger, so the sign of N̂0
0 − 1 does not change. Note that each mode falls off according to

the conditions in weak asymptotic flatness.

As the plots on Figs. 3 and 4 demonstrate, the choice we made for the monopole

part of κ imposing (48) allowed us to produce both weakly and strongly asymptotic-
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ally flat near-Kerr initial data configurations. Another preferable consequence of this

choice was that it left intact the principal part of the parabolic-hyperbolic equations.

Although the implicit averaging used to determine the monopole part of κ may raise

doubts about the nature of the system, the results in [9] on the principal symbol of

the equations, together with the observed convergence properties, support our belief

in the well-posedness of the corresponding initial value problem.

3.4 Applying the new method to the algebraic-hyperbolic

system

In this section, using the algebraic-hyperbolic form of the constraint equations, we

impose a condition only on the monopole part of the lapse N̂ . In contrast, all the

higher ` modes N̂ retain their background form. In particular, N̂0
0 is subject to the

ODE derived from (9), which is as follows

dN̂0
0

dr
=
[
(∂rN̂) +

?
K−1

{
B̃ − B

}
N̂3
]
0
0 . (55)

Here (∂rN̂) denotes the right hand side of the equation obtained by solving (9) for

∂rN̂ , whereas

N̂ = N̂0
0 + [(0)N̂ − (0)N̂0

0] , (56)

i.e., N̂ differs from (0)N̂ only in its monopole part, implying ðN̂ = ð(0)N̂ . Note also

that the monopole part of the right-hand side (55) is taken, B̃ is obtained from B, as

given in (13), by replacing 8 κ with

α [R K]0
0 + [(0)κ− (0)κ0

0] , with R = (0)κ/(0)K . (57)

Note that this choice of κ only affects the monopole part of N̂ via (55). Note also

that the true physical value of κ is determined (as it should be) by the algebraic

8Note that this step is exactly the same procedure as in section 3.3.

31



form of the Hamiltonian constraint (18). As we will see below, the use of the positive

parameter α in (55) allows fine-tuning of the decay rate of the monopole part of

K. Note also that (55) is able to reproduce the Kerr limit by choosing α = 1 and

trivial excitations for the fields K,k at r = 1. It is also straightforward to derive the

spherical limit by applying the relations N̂ = (0)N̂ = N̂0
0.

3.4.1 Outline in the spherically symmetric setup

Note that there are not too much earned by restricting considerations to the spher-

ically symmetric case as the algebraic-hyperbolic system is essentially the same as

it was in the parabolic-hyperbolic case. More concretely, the algebraic form of the

Hamiltonian constraint is nothing but solving (50) for κ or 2κK, whereas equation

(51) for K remains intact. Accordingly, the corresponding spherical symmetric system

with Schwarzschild background reads as

2κK = − 2
r2 − 1

2
K2 + 2

r2N̂2
− 4

rN̂3

dN̂
dr
, (58)

dK

dr
= 2

r

(
κ− 1

2
K
)
. (59)

Note that by eliminating the r-derivative of N̂ from (58) by applying the spherical

symmetric form of (55) one recovers (48). In virtue of this observation, the analytic

solutions to (59) must possess the form (52) with asymptotic behavior as given in (53).

Accordingly, the parameter α, applied (55), allows a straightforward fine-tuning of the

asymptotic fall-off rate of K. As previously, in the spherically symmetric parabolic-

hyperbolic case, to guarantee K to fit the requirements in weak asymptotic flatness,

the inequality, α > 1/2 must hold. In the α = 1 case, the fall-off rate in (53) allows

the spherically symmetric solution to be strongly asymptotically flat.
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3.4.2 Strongly asymptotically flat numerical solution

On Fig. 5 the fall-off rates of the constraint fields (∆)K, (∆)k, and κ, yielded by the

integration of the algebraic-hyperbolic equations, (16)-(17), for near-Kerr initial data,

and applying (55) with α = 1, are depicted. This case each of the (∆)K`
0 modes falls

off as O(r−2), Re[(∆)k`
0] as O(r−1) with Im[(∆)k`

0] going as O(r−2). Note that using

the algebraic-hyperbolic equations, we had to perform several divisions by K, which,

because of the uniform decay rate of all the (∆)K`
0 modes, ` = 0, 2, 4, 6, 8, 10, required

a careful application of the division scheme based on the Neumann series expansion.

Note also the fall-off of the modes of (∆)k follow the same pattern observed in section

3.3. Since all modes of κ also fall-off with the rate O(r−2), the initial data obtained

is asymptotically flat in the strong sense. Note that although N̂0
0 also deviates from

its background form, it falls at the rate O(r−1) to 1 as expected, so we do not include

its graph here.

3.4.3 Weakly asymptotically flat numerical solution

In order to demonstrate that weakly asymptotically flat initial data can also be pro-

duced by integrating the algebraic-hyperbolic equations in the near-Kerr case, we

determined the fall-off rates of various modes of the constrained variables using (55)

with α = 0.7. These are depicted in Fig. 6. The monopole mode (∆)K0
0 falls off,

as expected, with the rate O(r−1.7), whereas all the other (∆)K`
0|`>0 modes decay —

likewise it happened in the strictly near-Kerr case in section 3.2— somewhat slower

than O(r−2.2), but noticeably faster than O(r−2). As for the asymptotic behavior of

the modes Re[(∆)k`
0] also somewhat slower than O(r−1.2), but noticeably faster than

O(r−1) fall-off rate is observed. The fall-off rate for the Im[(∆)k`
0] modes is as usual

O(r−2). Similar to (∆)K, κ0
0 decays as O(r−1.7), while slightly faster than O(r−2)

decay rates are observed for ` > 0 modes of κ. It is important to emphasize that all

the observed fall-off rates are compatible with conditions of weak asymptotic flatness
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Figure 5: The fall-off rates of the only non-trivial modes of the constrained variables yielded by the

algebraic-hyperbolic equations for near-Kerr initial data, and applying (55) with α = 1, are plotted.

Note that each mode falls off in accordance with the conditions in strong asymptotic flatness.
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in (45), i.e., the resulted initial data is asymptotically flat in the weaker sense.

The plots on Figs. 5 and 6 demonstrate that the choice we made for the monopole

part of N̂ imposing (55) allowed us to produce both weakly and strongly asymptotic-

ally flat near-Kerr initial data configurations by integrating the algebraic-hyperbolic

system. As it was emphasized several times, restricting the monopole part of N̂ using

(55) has the preferable consequence that it does not affect the principal part of the

algebraic-hyperbolic equations. Note also that the parameter α in (55) could be used

to control the fall-off rate of (∆)K0
0 in the desired way.

As expected, the solutions to the evolutionary form of the constraints significantly

depend on whether (48) or (55) is applied. To demonstrate this, it is rewarding to

compare the fall-off behavior of the corresponding variables yielded by using the

same initial excitation as specified in (47). The fall-off rates of the ` > 0,m =

0 modes of the variables K,Re[k], Im[k], N̂ ,κ are collected in Table 2 relevant for

the weakly asymptotically flat solutions to the parabolic-hyperbolic and algebraic-

hyperbolic systems corresponding to the choice α = 0.7.

α = 0.7; ` > 0,m = 0 K`
0 Re[k`

0] Im[k`
0] N̂`

0 κ`
0

parabolic-hyperbolic O(r−2) O(r−1) O(r−2) O(r−1.7) O(r−`−2)

algebraic-hyperbolic O(r−2.2+ε) O(r−1.2+ε) O(r−2) O(r−`−1) O(r−2.2+ε)

Table 2: The fall-off rates of the ` > 0,m = 0 modes of K, Re[k], Im[k], N̂ , κ for the

weakly asymptotically flat solutions to the parabolic-hyperbolic and algebraic-hyperbolic

systems with α = 0.7, and for some small ε > 0.

4 Summary

As mentioned earlier, one of the preferable aspects of using the elliptic (or conformal)

method is that one may set up a boundary value problem by implementing suitable
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Figure 6: The fall-off rates of the only non-trivial modes of the constrained variables yielded by

integrating the algebraic-hyperbolic equations for near-Kerr initial data, and applying (55) with

α = 0.7, are plotted. Note that each mode falls off according to the conditions in weak asymptotic

flatness.
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fall-off requirements at infinity. This cannot be done while solving the evolutionary

form of the constraints. Nevertheless, in the latter case, a delicate compensation

arises. While one has to fix once and for all throughout Σ each of the freely specifiable

variables in advance of solving the elliptic problem, one has the freedom of specifying

in the interim of the ‘time integration’ process the freely specifiable fields while solving

either of the evolutionary forms of the constraints. The only limitation is that this in-

flight setting of the freely specifiable fields should preserve the well-posedness of the

system. Our novel proposal to relate only the monopole part of a freely specifiable

variable and a constrained field, leaves the principal symbol of the system intact.

Due to the non-locality, introduced by the averaging in the proposed treatment of

the monopole part, the well-posedness of the system is not self-evident. Nevertheless,

since the principal parts of the evolutionary systems remain intact, the observed

convergence rates suggest that the proposed method leads to well-posed problems in

both evolutionary formulations of the constraints. Note, however, that a rigorous

verification of this conjecture is beyond the scope of the present paper.

Concerning the question raised by the title and some others raised in the intro-

duction, the results reported in this paper allow us to answer them in the following

way. Yes, it is possible to construct asymptotically flat initial data by applying either

of the evolutionary forms of the constraints. Above this, we could introduce a novel

method that allows us to explore the asymptotic behavior of initial data sets located

in a neighborhood of the data that can be deduced on a Kerr-Schild time slice of a

rotating Kerr black hole spacetime. In applying our new method, we modify only the

monopole part of the freely specifiable variables κ or N̂ in the parabolic-hyperbolic

or algebraic-hyperbolic form of the constraint, respectively. On the one hand, this

left the principal parts of the evolutionary forms of the constraints intact. Thus, the

well-posedness of evolutionary systems seems to be plausible in line with the results

in [9].
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On the other hand, our proposal can be applied to the alternative evolutionary

systems on an equal footing. In contrast, the method proposed in [15] applies only to

the parabolic-hyperbolic system with the additional cost of modifying the principal

part of the pertinent PDEs. Another favorable aspect of the novel method proposed

in this paper, which applies to both of the evolutionary forms of the constraints, is

that we have direct control of the fall-off rate of the monopole part of the constrained

variable K. This allows us to generate weakly and strongly asymptotically flat ini-

tial data configurations with any desired fall-off rate. The viability of the proposed

methods was demonstrated by integrating both of the alternative evolutionary forms

of the constraint equations numerically. As the applied initial data deformations at

r = 1 were significant, the time evolution of the yielded near-Kerr initial data con-

figurations could be suitable to study the gravitational wave output of highly excited

Kerr black holes.

To indicate the notable differences between applying (48) and the choice made in

[15], it is rewarding to compare the solutions to the relevant evolutionary forms of

the constraint equations with setting α = 1.5. As for R = α ·R = α · (0)κ0
0/(0)K0

0 the

inequality R > −1/2 fails to hold, and, thereby, the hyperbolicity condition relevant

for “modified parabolic-hyperbolic equations” in [15] is violated, the corresponding

solution blows-up. In contrast, integrating the parabolic-hyperbolic equations by

applying our proposal (48) with setting α = 1.5, yields —due to the fact that the

principal part was retained, and also to the intimate coupling of various modes of

the involved variables— a completely regular strongly asymptotically flat initial data

such that (∆)K0
0 decays with the rate O(r−2).

Note also that there is a significant conceptual difference between using the con-

straints’ parabolic-hyperbolic and algebraic-hyperbolic forms. Whereas the parabolic-

hyperbolic system can only be solved in general only on that side of the % = %0 initial

data surface where
?
K is guaranteed to be positive, the algebraic-hyperbolic form of
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the constraints can always be solved on both sides of the initial data surface, provided

that κK < 0. From this point of view, it is notable that (55) is deduced from the

parabolic form of the Hamiltonian constraint (9). Despite its parabolic origin, (55) is

an ordinary differential equation for N̂0
0. Thereby, it can be integrated on both sides

of the % = %0 initial data surface if it was aimed to solve the algebraic-hyperbolic

system on both sides of S%0 . Since, in this paper, the integration starts at r = 1, and

it always happens towards infinity, the above-mentioned favorable aspects of the use

of (55) remain to economize in future investigations.

The results covered by the present paper provide significant credit to the investiga-

tions in [27]. It was argued there that in advance of solving the constraints, one could

determine each of the ADM charges, the mass, center of mass, and the linear and an-

gular momentum of initial data sets relevant for binary black hole systems. This could

be done as the values of the ADM charges are not affected by the particular functional

form of the constrained variables. However, we made two critical assumptions in [27].

First, even though the explicit form of the constrained variables was irrelevant, their

fall-off behavior —making them compatible with the strong asymptotic flatness of

the yielded complete data (hab, Kab)— was assumed in deriving the ADM charges.

Second, it was also presumed that the original form of the parabolic-hyperbolic form

of the constraints holds. Given these points, it is transparent that the results covered

by the present paper provide a significant verification of the assumptions made in

[27], thus, also to the determination of the ADM charges of initial data sets of binary

black hole systems.

At this point, we remind the reader that although the main concern of the present

paper is the near-Kerr initial data of a single black hole, there are parallel studies

that verify that the evolutionary formulation of the constraints is capable of producing

binary black hole initial data [13, 15, 17, 18]. We believe that the methods presented

in this paper are very useful for generating initial data for binary black holes with
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appropriate asymptotics. However, the verification of the latter claim is left to future

studies.

Finally, it would be good to know that the novel method introduced in this paper

will find its way to be adopted in analytic investigations. It may provide stimulating

munition to prove the global existence of solutions to the evolutionary forms of the

constraints or derive exact decay rates for various asymptotically flat near-Kerr initial

data sets. Applying our new proposal to other more challenging asymptotically flat

configurations would also deserve further investigation.
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14. Csukás, K. & Rácz, I. Numerical investigations of the asymptotics of solutions

to the evolutionary form of the constraints. Class. Quant. Grav. 37, 155006.

arXiv: 1911.02900 [gr-qc] (2020) (cit. on pp. 4, 5, 8, 13, 16–21, 24, 27).

15. Beyer, F., Frauendiener, J. & Ritchie, J. Asymptotically flat vacuum initial data

sets from a modified parabolic-hyperbolic formulation of the Einstein vacuum

constraint equations. Phys. Rev. D 101, 084013. arXiv: 2002.06759 [gr-qc]

(2020) (cit. on pp. 4–6, 13, 24, 25, 27, 38, 39).

16. Beyer, F. & Ritchie, J. Asymptotically hyperboloidal initial data sets from a

parabolic–hyperbolic formulation of the Einstein vacuum constraints. Class.

Quant. Grav. 39, 145012. arXiv: 2104.10290 [gr-qc] (2022) (cit. on pp. 5,

13).
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