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We report on numerical simulations of critical phenomena near the threshold of black hole forma-
tion in the collapse of axisymmetric gravitational waves in vacuum. We discuss several new features
of our numerical treatment, and then compare results obtained from families of quadrupolar and
hexadecapolar initial data. Specifically, we construct (nonlinear) initial data from quadrupolar and
hexadecapolar, time-symmetric wavelike solutions to the linearized Einstein equations (often re-
ferred to as Teukolsky waves), and evolve these using a shock-avoiding slicing condition. While
our degree of fine-tuning to the onset of black-hole formation is rather modest, we identify several
features of the threshold solutions formed for the two families. Both threshold solutions appear to
display an at least approximate discrete self-similarity with an accumulation event at the center,
and the characteristics of the threshold solution for the quadrupolar data are consistent with those
found previously by other authors. The hexadecapolar threshold solution appears to be distinct
from the quadrupolar one, providing further support to the notion that there is no universal critical
solution for the collapse of vacuum gravitational waves.

I. INTRODUCTION

Critical phenomena in gravitational collapse, first re-
ported by Choptuik in his seminal paper [1], refer to
properties of solutions to Einstein’s equations close to the
onset of black-hole formation. Choptuik performed nu-
merical evolution calculations for a massless scalar field,
minimally coupled to Einstein’s equations, in spherical
symmetry. Considering different families of initial data,
parameterized by p, say, he noted the existence of a criti-
cal parameter p∗ that separates supercritical data, which
lead to the formation of a black hole, from subcritical
data, which leave behind flat space after the wave dis-
perses. Critical phenomena, with intriguing resemblance
to similar phenomena in other fields of physics, then
emerge in the vicinity of p∗.

Specifically, Choptuik observed that, for initial data
fine-tuned to p∗, the solution approaches a critical solu-
tion that contracts self-similarly. Moreover, for super-
critical data close to p∗, the mass M of black holes dis-
plays power-law scaling

M ' (p− p∗)γ , (1)

where the critical exponent γ is universal in the sense
that it does not depend on the family of initial data.

Triggered by Choptuik’s discovery, a number of differ-
ent groups and researchers have studied critical collapse
for different matter models, symmetries, number of di-
mensions, and asymptotics (see, e.g., [2] for a review and
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references). At least in spherical symmetry, the phenom-
ena observed by Choptuik can be understood in terms of
a self-similar critical solution that is universal for all fam-
ilies of initial data within a given matter model, and that
possesses exactly one unstable mode whose growth rate is
described by a Lyapunov exponent λ. Any quantity with
dimension of mass (or length) resulting from the dynam-
ical evolution is then described by a scaling law (1) with
the critical exponent given by the inverse of the Lyapunov
exponent, γ = 1/λ [3, 4]. Accordingly, γ is unique for a
given matter model, and scaling relations similar to (1)
apply to both supercritical (e.g. the black-hole mass) and
subcritical data (e.g. quantities formed from the maxi-
mum attained spacetime curvature, see [5]). The critical
solution can either be continuously self-similar, describ-
ing a continuous contraction (for example for perfect flu-
ids, see [6]), or it can be discretely self-similar (from now
on, DSS), describing an oscillation that is superimposed
on the contraction (for example for scalar fields). For a
DSS critical solution, scaling laws like (1) feature a pe-
riodic “wiggle” superimposed on the power-law scaling,
whose periodicity is related to that of the self-similar so-
lution (see [7, 8]).

Shortly after Choptuik’s announcement, Abrahams
and Evans reported very similar critical phenomena in
the collapse of axisymmetric vacuum gravitational waves
([9, 10], hereafter A&E). Even though the case for an
exact DSS in their remarkable simulations was less con-
vincing than in Choptuik’s calculations, the authors at-
tributed this to numerical error, which, given the absence
of spherical symmetry, was necessarily larger. Regard-
less of these issues, the findings of A&E seemed to sug-
gest that the characteristics of critical collapse in spher-
ical symmetry – self-similarity, scaling, and universality
– should similarly apply in the absence of spherical sym-
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metry.

While a number of authors have performed numerical
simulations of nonlinear gravitational waves (e.g. [11–15])
it has proven difficult to reproduce the results of A&E.
In the meantime, several authors studied critical collapse
for non-vacuum spacetimes in the absence of spherical
symmetry and observed qualitatively new features. In
the critical collapse of scalar fields in axisymmetry with
an additional reflection symmetry through the equato-
rial plane, for example, it was found that, for sufficiently
large departure from spherical symmetry and exquisite
fine-tuning, a “bifurcation” occurs, leading to the forma-
tion of two separate centers of collapse away from the
center of symmetry (see [16, 17]). Studying the grav-
itational collapse of dipolar electromagnetic waves, we
found that the critical solution is approximately, but not
exactly DSS (see [18]). Moreover, the authors of [19]
found that the critical solution found in the collapse of
quadrupolar electromagnetic waves is different from that
for dipolar waves, suggesting that the critical solution is
not universal. To emphasize this, we will refer to these
solutions as threshold solutions, and will reserve the term
critical solution for cases in which it is universal, i.e. in-
dependent of the family of initial data. Similar results
were found by [20] for critical collapse in an analytical
model problem. All the above suggests that, in the ab-
sence of spherical symmetry, critical phenomena are not
characterized by a universal, exactly self-similar critical
solution.

Significant progress in numerical simulations of the col-
lapse of gravitational waves has recently been reported by
([21–23]). The authors of [22], in particular, considered
different families of initial data, and found that they lead
to different critical exponents, suggesting that the corre-
sponding threshold solutions are also distinct. The au-
thors of all three papers also found that, while the maxi-
mum curvature attained in subcritical evolutions satisfies
approximate power-law scaling, wiggles superimposed on
these power laws are not strictly periodic, indicating that
the underlying threshold solutions are not exactly DSS.
All of these observations are in accordance with the find-
ings discussed above, and raise the question whether the
characteristics of critical phenomena observed in spheri-
cal symmetry also apply in the absence of spherical sym-
metry.

The purpose of this paper is to complement the re-
sults of [21–23] with independent simulations of vac-
uum critical collapse that differ from the above in sev-
eral ways. Specifically, we adopt families of initial data
that are based on time-symmetric Teukolsky waves, both
quadrupolar [24] and hexadecapolar [25], supplementing
the families considered by [21–23] (see Sect. II A below).
We also describe significant improvements that resulted
from replacing the much more common 1+log slicing con-
dition [26] (used, for example, in [18, 19]) with a shock-
avoiding slicing condition (see [27, 28]; Sect. II B). Fi-
nally, we use both scalar invariants of the Weyl tensor,
rather than just the Kretschmann tensor, as a diagnostic

tool (Sect. II C).
While the degree of fine-tuning to the threshold pa-

rameter that we achieve is more modest than in the
calculations of [9, 10, 21–23], our results, discussed in
Sect. III, provide independent support for our emerging
understanding of critical collapse of gravitational waves
(see also [29]). In particular, we provide further evidence
for the absence of a universal critical solution, while sug-
gesting there exist families of gravitational-wave initial
data for which the threshold solution is at least approxi-
mately DSS with a single accumulation point.

II. NUMERICAL METHODS

All numerical results presented in this paper were ob-
tained with a code that solves the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation [30–32] of Ein-
stein’s equations in spherical polar coordinates. In par-
ticular, our implementation adopts a reference-metric
formulation (e.g. [33–37]) together with a proper rescal-
ing of all tensor components to handle the coordinate sin-
gularities at the origin and on the coordinate axis. Gen-
eral features of this code are discussed in [38]; more recent
improvements include the replacement of the partially-
implicit Runge-Kutta method with a fourth-order Runge-
Kutta method of lines for the time evolution (see [18]),
the implementation of an asymptotically logarithmic ra-
dial grid (following the prescription of [39]), and the abil-
ity to regrid the radial grid in order to achieve higher
resolution close to the origin later in the evolution (see
[40]). Our current implementation also uses eighth-order
finite-difference stencils to evaluate all spatial derivatives.

Since most features of our code have been discussed
elsewhere already, we focus here on aspects and improve-
ments that are relevant for simulations of critical phe-
nomena in the collapse of gravitational waves.

A. Initial Data

Two different approaches are commonly adopted to
construct initial data describing vacuum gravitational
waves.

In one approach, leading to Brill waves (see [41]), the
spacetime is assumed to be axisymmetric and to admit a
moment of time symmetry. Departures from flatness can
then be described in terms of a seed function in such a
way that the Hamiltonian constraint reduces to a linear
elliptic equation whose solution provides nonlinear ini-
tial data at the moment of time symmetry. Brill data
have been adopted in numerous simulations of gravita-
tional waves, including in some recent studies of critical
phenomena in their collapse (see [21–23]).

In this paper we adopt an alternative approach that is
based on analytical wave solutions to the linearized Ein-
stein equations in transverse-traceless (TT) gauge, often
referred to as Teukolsky waves. Quadrupolar solutions
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are presented in [24], while generalizations for higher mul-
tipole moments are provided in [25]. In this paper we will
consider both quadrupolar (` = 2) and hexadecapolar
(` = 4) waves.

Recall that the general spherically symmetric solution
of the scalar wave equation in flat spacetimes is given by
[F−(u) + F+(v)]/r, where F− and F+ are arbitrary seed
functions of the dimensionless null coordinates

u ≡ (r − t)/λ, v ≡ (r + t)/λ. (2)

Choosing the two functions to be equal, F+ = F−, yields
a superposition of in- and outgoing waves that features a
moment of time symmetry at t = 0. If the functions are
regular and odd, the solution remains regular at r = 0 at
all times. The construction of scalar waves with spherical
harmonic angular dependence of order ` involves ` deriva-
tives of the seed functions F±. Teukolsky waves are con-
structed very similarly. For even-parity modes, one com-
putes from the seed functions F± and their derivatives
the functions A`(t, r), B`(t, r), and C`(t, r) (see Eqs. A2
and A4 in Appendix A), whose products with angular
functions (see Eqs. A3 and A5) then describe the com-
ponents of the spatial metric γij (see A1) in TT gauge.

For our numerical experiments we choose the seed func-
tions

F−(u) =
Aλ3+`

2
u
(
e−u

2
+ + e−u

2
−

)
(3)

and F+ = F−, where A is the dimensionless amplitude
and λ parameterizes the wavelength. We have also de-
fined the shifted dimensionless null coordinates

u± ≡ (r − t± r0)/λ, v± ≡ (r + t± r0)/λ, (4)

where r0 parameterizes the location of the resulting
wave package at the moment of time symmetry t = 0.
Throughout this paper we adopt λ as our “code unit”, so
that all dimensional results are given in units of λ. For
all simulations presented in this paper we adopt r0 = 2.

In order to obtain nonlinear solutions to Einstein’s con-
straint equations we follow the above prescription to con-
struct a linear combination of ingoing and outgoing waves
of a given multipole moment ` so that the instant t = 0
corresponds to a moment of time symmetry. Accordingly,
the extrinsic curvature Kij vanishes at this moment and
the data satisfy the momentum constraints identically.
We then identify the conformally related metric γ̄ij with
the linear wave metric as constructed above and solve the
Hamiltonian constraint for the conformal factor ψ iter-
atively in order to reduce its violation by several orders
of magnitude. Given ψ, the physical metric γij = ψ4γ̄ij
together with Kij = 0 then provide nonlinear solutions
to the constraint equations describing gravitational-wave
initial data. Because of nonlinear coupling, these solu-
tions no longer represent a single multipole moment, but
we will refer to them by the multipole moment of the
underlying linear solution regardless.

One important improvement in our code over our pre-
vious implementations is related to the computation of
the functions A`(t, r), B`(t, r), and C`(t, r) from the seed
function F . Specifically, these functions, see Eqs. (A3)
and (A4) for ` = 2 and ` = 4, involve multiple terms that
are divided by high powers of r. For small values of r, the
individual terms in these functions can evidently become
very large. If the functions were implemented as writ-
ten, round-off error would lead to imperfect cancellation
between the individual terms, and result in large numer-
ical error in the functions A`(t, r), B`(t, r), and C`(t, r)
in the vicinity of the origin. In order to avoid this error,
it is important to take advantage of these cancellations
analytically. In our implementation here we use a Taylor
expansion up to order r6 (for ` = 2) or r8 (for ` = 4)
about the origin r = 0 and match this expansion to a
direct implementation at a suitable cut-off radius.1

We also comment on the initialization of the confor-
mal connection functions in the BSSN formalism, often
denoted Γ̄i ≡ γ̄jkΓ̄ijk = −∂j γ̄ij in the context of Carte-

sian coordinates, or Λ̄i = γ̄jk∆Γijk in the context of
a reference-metric formalism. To reduce numerical er-
ror, the conformal connection functions are initialized us-
ing analytical expressions involving the above functions
A`(t, r), B`(t, r), and C`(t, r) (see Eqs. A2 and A4), the
angular functions (A3) and (A5), as well as their deriva-
tives. Inside the cut-off radius for the Taylor expansion
we evaluate the radial derivatives of A`(t, r), B`(t, r), and
C`(t, r) analytically from the power-law expansion, and
outside we compute them numerically but with a stencil
that is much finer than that used in the evolution code,
resulting in smaller errors. The angular derivatives of the
angular functions (A3) and (A5) are easy to compute an-
alytically everywhere.

In this paper we focus on axisymmetric data (i.e. m =
0) and even-order multipoles, for which the solutions are
also symmetric across the equator. The origin r = 0
therefore represents the geodesic worldline of a preferred
observer in our simulations, and we may restrict our nu-
merical grid to one hemisphere. We present results for
quadrupolar data with ` = 2 in Sect. III A and for hex-
adecapolar data with ` = 4 in Sect. III B. As an illustra-
tion of these initial data we show in Fig. 1 the curvature
invariants I and J (see Sect. II C) for both quadrupolar
and hexadecapolar, near-critical Teukolsky waves at the
initial moment of time symmetry.

1 For r0 = 0 and t = 0 the functions A`(t, r), B`(t, r), and C`(t, r)
can also be simplified analytically, resulting in expressions that
no longer include divisions by r; see Eqs. (A3) of [42] for an
example.
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FIG. 1. The curvature invariants I (top row) and J (bottom row; see Eqs. (11) below) at the initial moment of time symmetry
t = 0 for near-critical axisymmetric Teukolsky waves. In the left column we show quadrupolar (` = 2) initial data with an
amplitude A = 0.00495634, and in the right column hexadecapolar (` = 4) data with an amplitude of A = 0.00004251. We
construct the Cartesian coordinates x = r sin θ and z = r cos θ from the spherical polar coordinates adopted in our code in the
usual way; in particular, the z-axis is the axis of symmetry, while the x-axis lies in the equatorial plane.

B. Slicing condition

During the dynamical evolution of our initial data we
impose a Bona-Massó slicing condition

αna∂aα = (∂t − βi∂i)α = −α2f(α)K, (5)

where α is the lapse function, βi the shift vector, na =
α−1(1, βi) the spacetime normal on spatial slices (of con-
stant coordinate time t), K is the mean curvature, and
the Bona-Massó function f(α) is a yet-to-be-determined
function of the lapse (see [26]). A very common choice
for f(α) is

f(α) =
2

α
. (6)

In the absence of a shift and up to a constant of in-
tegration, Eq. (5) can then be integrated to yield α =
1 + log(det(γij)), which lends this condition its name
1+log slicing. 1+log slicing has been used in numerous

simulations, including in the first successful BSSN simu-
lations of binary black holes (see [43, 44]) as well as many
follow-up simulations.

However, 1+log slicing is also known to develop coor-
dinate shocks in some situations, even in flat spacetimes
(see [27, 28, 45]). When this happens, the lapse typically
develops increasingly steep gradients, and the mean cur-
vature K increasingly large spikes, ultimately leading to
the code crashing (see also Fig. 1 of [46] for a recent
numerical example). Similar behavior was reported by
[15] for simulations of the collapse of gravitational waves
with 1+log slicing, where it prevented a study of critical
phenomena close to the black-hole threshold.

As an alternative to 1+log slicing, Alcubierre therefore
suggested a shock-avoiding slicing condition with

f(α) = 1 +
κ

α2
, (7)

where κ > 0 is a constant (see [27, 28]). Even though
this condition has the unusual property that it allows the
lapse to become negative during dynamical simulations
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FIG. 2. Comparison of the evolution of a near-critical ` = 2
Teukolsky wave (with amplitude A = 0.004955) with 1+log
versus shock-avoiding slicing. In the top panel we show the
lapse α at the origin as a function of coordinate time t; in
the bottom panel we show the mean curvature K along the
symmetry axis at coordinate time t ' 7.83, shortly before
the evolution with 1+log slicing crashes. We note that the
shock-avoiding slicing condition results in the lapse becoming
negative during short intervals of time.

(which may explain why it has not been adopted widely),
it has recently been shown to perform similarly to 1+log
slicing in terms of accuracy and stability for a number of
test cases (see [46]). Analytical results on static black-
hole trumpet slices of the Schwarzschild spacetime satis-
fying the shock-avoiding slicing condition have been pre-
sented in [47], and dynamical perturbations of such slices
have been explored in [48]. Shock-avoiding slicing has
also been used in the critical collapse simulations of [49].

Replacing the 1+log slicing condition has been crucial
for our simulations here. As a demonstration, in Fig. 2
we compare results from the evolution of identical initial
data with 1+log and shock-avoiding slices. Specifically,
we evolve a near- but subcritical ` = 2 wave with ampli-
tude A = 0.004955. In the top panel we show the lapse α
at the origin r = 0 as a function of coordinate time t. At
early times both conditions lead to quite similar behav-
ior, but, while the shock-avoiding slicing allows the lapse
to perform multiple oscillations (taking negative values
some of the time) before asymptoting to unity as the
wave disperses to infinity, the 1+log slicing leads to the
code crashing at around t ' 8.2. In the bottom panel we
show profiles of the mean curvature along the symmetry
axis at time t ' 7.83, shortly before the evolution with
1+log slicing crashes. For 1+log slicing, the mean curva-
ture shows a spike developing at around z ' 0.1, which
keeps growing and ultimately causes the calculation to
fail. For shock-avoiding slicing, on the other hand, the
mean curvature does not develop such a spike, and in-
stead remains smooth.

While using shock-avoiding slicing rather than 1+log
slicing has led to a dramatic improvement in our simula-

tions here, this is not the only option, of course. Maximal
slicing (which was adopted by [9, 10]) or an approximate
maximal slicing condition (see [22, 50]) have also been
used successfully in simulations of the collapse of gravi-
tational waves, as have been other gauge conditions im-
posed via gauge source functions in the context of the
generalized harmonic system (see [21, 23]). As an attrac-
tive feature of shock-avoiding slicing we point out that
it is very easy to implement, especially in codes that use
1+log slicing already.

C. Diagnostics

We diagnose the geometry in our dynamical simula-
tions by evaluating scalar curvature invariants I and J
of the Weyl tensor Cabcd, which, for the vacuum space-
times considered here, is equal to the spacetime Riemann
tensor (4)Rabcd.

We compute the invariants from the electric and mag-
netic parts of the Weyl tensor (see, e.g., [51], as well as
[52] for examples). The electric part Eij can be computed
from

Eij = Rij +KKij −KikK
k
j , (8)

where Rij is the spatial Ricci tensor, Kij the extrinsic
curvature, and its trace K = γijK

ij the mean curvature.
The magnetic part Bij is

Bij = ε kl(i|∇kK|j)l, (9)

where εijk is the spatial Levi-Civita tensor, and where
the parantheses denote symmetrization of the indices i
and j. Both Eij and Bij are symmetric and tracefree.
We then form the complex tensor

Cij ≡ E ij + iBij (10)

and compute

I ≡ 1

2
CijC

j
i (11a)

and

J ≡ 1

6
CijC

j
kC

k
i. (11b)

The four invariants of the Weyl tensor are then given
by the real and imaginary parts of I and J . We note
that I has units of λ−4, while J has units of λ−6. For
algebraically special spacetimes the invariants are related
by

I3 = 27J 2 (12)

(see [51]). We also note that the Kretschmann scalar

K ≡ (4)Rabcd (4)Rabcd (13)

is related to the real part of I by K = 16 Re(I).
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For our axisymmetric and twist-free spacetimes, the
only non-zero components of Bij are the (rϕ) and (θϕ)
components, while, for Eij , these components vanish
identically. As a result, both I and J are real. We
furthermore observe that the relation (12) holds for our
spacetimes on the symmetry axis, but not, in general,
elsewhere. As an example we show the two curvature
scalars for our initial data in Fig. 1.

In addition to evaluating the curvature scalars locally
in space and time, it is also useful to consider measures
of the curvature that depend on time only. One option
are the values of I and J at the center, which, as we
discussed above, represents a preferred observer. How-
ever, the innermost grid points (i.e. those for the small-
est value of the radius) in our code using spherical polar
coordinates are the ones that are most strongly affected
by numerical error, which leads to noticeable artifacts in
I and J at late times. We therefore consider two differ-
ent alternatives that, as an added benefit, provide global
information about the curvature invariants. Specifically,
we compute the local-in-time maximum magnitudes of
the invariants, i.e.

Imax(t) ≡ max
Σ
|I(t, r, θ)|, (14)

and similarly for J . Here the maximum is taken over
the current spatial slice Σ of constant coordinate time t,
except that we disregard the grid points for the small-
est values of the radius r in order to reduce the effects
of numerical error near the origin. At late times, how-
ever, when numerical error affects more than just the
innermost grid points, this measure becomes unreliable
as well. As an alternative we also consider the spatial
proper integrals over all space

Iint(t) ≡
∫

Σ

|I|dV, (15)

and similar for J . Unlike for the maxima in (14), we do
include the innermost grid points in the integrals (15).
We also note that Iint has units of λ−1, while Jint has
units of λ−3.

III. RESULTS

A. Quadrupolar waves: ` = 2

We start our discussion with quadrupolar (` = 2)
waves, constructed from the expressions in Appendix A 1,
and adopt a number of different wave amplitudes A in
the seed function (3). All simulations shown in this sec-
tion were performed with Nr = 384 (non-uniform) radial
gridpoints that, initially, extend to the outer boundary
at rinit

out = 64. We allow regridding during these evolu-
tions with a maximum ten-fold increase of resolution, in
which case rfinal

out = 6.4. We also use Nθ = 96 uniform,
azimuthal angular grid points, covering one hemisphere.

FIG. 3. The maxima (14) (top panel) and integrals (15)
(bottom panel) of I as a function of proper time τ (as mea-
sured at the center) for ` = 2 waves with different amplitudes
A. In addition to our highest-amplitude subcritical data (for
A = 0.00495634) we selected amplitudes A for which a newly
emerging peak in the curvature is approximately as high as
the previous peak. The dots and squares mark the times and
values of the first three curvature peaks.

1. Fine-tuning to the threshold solution

For sufficiently small amplitudes, the wave is subcrit-
ical, meaning that it disperses and leaves behind flat
space, while, for sufficiently large amplitudes, it is super-
critical, meaning that it collapses to form a black hole.2

For the former, the maximum values of the curvature in-
variants I and J decay after attaining some extremum
over the course of the evolution, while, for the latter, they
diverge and approach infinity. We also observe that, at
late times, the minimum value of the lapse function α ap-

2 While we refer to the limiting solution as the threshold solution,
rather than the critical solution, in order to emphasise that it
is not universal, we continue to use the terms supercritical, sub-
critical, and near-critical to describe whether or not a black hole
is formed.
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proaches unity for subcritical waves, but drops to small
values and then performs oscillations around zero for su-
percritical waves (see [48] for a discussion of the origins
of the oscillations). A similar “collapse of the lapse” has
been observed for a number of other slicing conditions
(see, e.g., [53] for an analytical study of maximal slic-
ing), but a priori it is not clear that the shock-avoiding
slicing condition employed here would display a similar
behavior.

As an example we show in Fig. 3 the maxima (14)
and integrals (15) of the curvature scalar I as a function
of proper time τ for selected subcritical values of the
amplitude A. Note that an increasing number of peaks
emerges at late time as A is fine-tuned to its critical
value. Fine-tuning the amplitude A to the onset of black-
hole formation we bracket the critical amplitude A∗ to
approximately 0.00495634 < A∗ < 0.00495637. While
our computational methods and resources limit us to a
more modest fine-tuning than some other recent studies
of critical collapse of gravitational waves (see [22, 23]),
it did allow us to observe several properties of critical
Teukolsky waves, as we will discuss in the following.

2. The threshold solution: maxima

We start by observing that, after about τ ' 2.5, the
graphs in Fig. 3 show patterns that repeat with increasing
frequency and increasing amplitude, as is expected for
a DSS solution. We can follow these repeated patterns
for about two or three periods, after which neither our
fine-tuning nor our grid resolution is sufficient to reliably
model the threshold solution.

In order to analyze the properties of the threshold so-
lution quantitatively we introduce two new similarity co-
ordinates adapted to self-similarity, namely a new time
coordinate

T ≡ − ln(τ∗ − τ), (16)

which we will refer to as “slow time”, and a dimensionless
rescaled radial coordinate

ξ ≡ R/(τ∗ − τ), (17)

where R is the proper distance from the center mea-
sured along the time slice of constant t. In both (16)
and (17) τ∗ denotes the proper time of the accumulation
event as measured by the observer at the center. Note
also that (17) assumes that the accumulation event is
located at the center. A dimensionless quantity describ-
ing a continuously self-similar contracting solution is a
function of ξ only; this means that a spatial feature will
appear at distance R from the origin that is proportional
to τ∗ − τ . Similarly, a quantity with dimension λn will
scale with Rn ' (τ∗ − τ)n. For some matter models
the self-similarity is discrete rather than continuous. An
exact DSS has been observed, for example, in the spher-
ically symmetric collapse of scalar fields [1, 7], while an

approximate DSS has been reported for the gravitational
collapse of electromagnetic wave [18, 19]. Here we argue
that such an approximate DSS exists for the collapse of
gravitational waves as well. The periodicity of a DSS so-
lution is described by the echoing period ∆ in the slow
time T .

The accumulation time τ∗ and the period ∆ can be
determined in a number of different ways that, for an
exact DSS, for perfect fine-tuning, and in the absence of
numerical error would all result in identical values. First
note that the period ∆ can be written as

∆ = − ln
τ∗ − τi+1

τ∗ − τi
= − ln

τ∗ − τi
τ∗ − τi−1

, (18)

where τi+1, τi,and τi−1 are the proper times of three sub-
sequent maxima. These two equations can be solved for

τ∗ =
τi−1τi+1 − τ2

i

τi−1 − 2τi + τi+1
, (19)

and

∆ = ln
τi − τi−1

τi+1 − τi
(20)

in terms of the three observed maxima.
Alternatively, we can consider a quantity, say Q, with

dimension λn. Since such a quantity should be propor-
tional to (τ∗ − τ)n, the ratio of its values at two subse-
quent maxima should satisfy

Qi+1

Qi
=

(
τ∗ − τi+1

τ∗ − τi

)n
= e−n∆ (21)

where we have used (20) in the last step, or

∆ = − 1

n
ln (Qi+1/Qi) . (22)

We see that (22) provides an estimate of ∆ that is based
on the values of the maxima alone. Inserting this value
of ∆ back into the first equality in (18), together with
the corresponding times τi and τi+1, then yields

τ∗ =
Q1/n
i+1τi −Q

1/n
i τi+1

Q1/n
i+1 −Q

1/n
i

(23)

as another estimate for τ∗.
Adopting the values marked by the dots in the top

panel of Fig. 3, i.e. for the curvature scalar Imax, we find
τ∗ ' 4.8 and ∆ ' 0.42 from the times τi of the maxima,
using (19) and (20). Using (22) for the values of the max-
ima, on the other hand, we find ∆ ' 0.68 and 0.74 for the
first and second pair, corresponding to τ∗ ' 4.3 and 4.0
from (23). We obtain similar values for the maxima of
Jmax as well as Jint. There are several possible reasons
for the two approaches yielding somewhat different val-
ues, including our modest fine-tuning. More importantly,
however, we would expect to obtain the exact same val-
ues only for an exact DSS, which we do not believe is the
case here.
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FIG. 4. Curvature measures as a function of slow time T =
− log(τ∗ − τ) for the near-critical ` = 2 wave with amplitude
A = 0.00495634 and assuming τ∗ = 4.6.

Using the maxima of Iint (marked by the dots in the
lower panel of Fig. 3), the differences in the values of
∆ and τ∗ obtained from the two approaches differ even
more. Using (18) we find τ∗ = 5.8 and ∆ = 0.21, while
from (22) we obtain ∆ ' 1.06 and 1.05 for the two pairs,
corresponding to τ∗ ' 3.9 and 4.4. We take these in-
consistencies as indication that, at least in the regime
considered here, Iint is less a reliable measure than the
maximum values of the curvature. One possible reason
for this is that Iint is not, or not yet, dominated by the
threshold solution inside the past light-cone of the accu-
mulation event. Furthermore, for ` = 2 the maxima of
Imax occur at the center, so that its values and times
have a gauge-independent meaning, while the values of
Iint depend on the slicing.

As a compromise we now adopt τ∗ = 4.6 in the follow-
ing analysis. In particular, we show in Fig. 4 the maxima
(14) and integrals (15) of the curvature invariants I and
J as a function of slow time T . We take an appropriate
root of each measure to obtain a quantity with units of
λ−1, and then multiply with τ∗ − τ so that, for exact
self-similarity, the resulting curve would be exactly pe-
riodic. As in the previous figures the plot is dominated
by the initial data at early times, and by a decrease in
the curvature at late times, when the (sub-critical) wave
disperses. At intermediate times, however, all our curva-
ture measures display an approximate periodicity with a
period of about ∆ ' 0.5, as expected from our discussion
above, consistent with an approximate self-similarity of
the threshold solution. Interestingly, this value of ∆ is
consistent with those reported by A&E (see Table I in
[10]), who also considered Teukolsky-wave initial data,
albeit not time-symmetric ones.

FIG. 5. The Weyl curvature scalar I for a near-critical ` = 2
wave with amplitude A = 0.00495634 on the symmetry axis
(corresponding to the z-axis in Fig. 1). The top panel shows

I1/4 as a function of proper distance R from the origin and
of proper time τ as measured by an observer at the origin.
In the bottom panel we show (τ∗ − τ)I1/4 as a function of
the similarity coordinates ξ and T assuming τ∗ = 4.6 (see
Eqs. 16 and 17). We include the red crosses as guidance in
identifying corresponding features in the two plots. The red
line in the top panel marks the outer boundary at ξ = 4 in
the lower panel. (The left, lower, and upper boundaries of
the two plots correspond to each other.)

3. The threshold solution: spacetime diagrams

It is also useful to study the behavior of the thresh-
old solution in the entire spacetime, rather than only its
maxima or integrals. We therefore show in Figs. 5 and 6
the curvature invariants for A = 0.00495634, i.e. for our
highest-amplitude subcritical wave.

In Fig. 5 we plot I on the symmetry axis, i.e. in the
direction of the z-axis as shown in Fig. 1. We only show
I in this figure, because our data satisfy (12) on the axis,
so that I and J are not independent there. We display
the data in two different ways, however. In the top panel
we show (the logarithm of) I1/4 (with units of λ−1) as a
function of proper radius R from the origin (along a slice



9

FIG. 6. The Weyl curvature scalars I (left column) and J (right column) for a near-critical ` = 2 wave with amplitude
A = 0.00495634 in the equatorial plane (corresponding to the x-axis in Fig. 1). As in Fig. 5 we show the data as functions
of R and τ in the top row, and as functions of the similarity coordinates ξ and T in the bottom row, we include red crosses
to identify similar patterns, and the red lines in the top panels mark the outer boundaries of the bottom panels (see text for
details and discussion).

of constant coordinate time), and of proper time τ as
measured at the center. As expected from our previous
discussion we observe, after τ ' 2.5, features that ap-
pear to repeat with increasing frequency and on shorter
length scales, again suggesting an approximate DSS with
an accumulation event at the center. We include the red
crosses in the figures to help the reader identify these fea-
tures; we will discuss the choice of the location of these
crosses in more detail at the end of this subsection (they
are placed at values of Tnull spaced by ∆ = 0.53 and
constant values of λ).

In the bottom panel of Fig. 5 we show (the logarithm
of) the dimensionless combination (τ∗−τ) I1/4 as a func-
tion of the similarity coordinates ξ and T . We observe
that the solution indeed features similar patterns that
repeat in slow time with a periodicity ∆ ' 0.53.

We also note an artifact in the figures that appears
to suggest that the curvature invariants change discon-
tinuously at certain specific times, for example around
τ = 2.7. This effect is a consequence of the lapse func-
tion dipping below zero at the center at certain times

(see Fig. 2), so that the proper time advances backwards
at the center, while, at sufficient distance away from the
center where the lapse is still positive, proper time still
advances forward. Displaying the data as a function of
proper time as measured by an observer at the center
therefore leads to discontinuities away from the center.
Another artifact appears in the bottom panel of Fig. 5
and similar figures below for large values of T and small
values of ξ; these artifacts result from insufficient resolu-
tion for the increasingly fine structures that form at late
times for near-critical solutions.

As it turns out, for quadrupolar waves the curvature
invariants show significantly more structure in the equa-
torial plane than along the axis, as shown in Fig. 6. Since,
away from the axis, I and J do not generally satisfy (12),
we now show I in the left column and J in the right col-
umn. As in Fig. 5 we also show the scalars in terms of
R and τ in the top row, and in terms of the similarity
coordinates ξ and T in the bottom row.

At early times τ . 2, and when plotted in terms
of R and τ , the curvature scalar I displays a diagonal
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FIG. 7. The curvature scalar I for a near-critical ` = 2 wave
along the symmetry axis, as in Fig. 5, but with I as observed
along outgoing null geodesics (see text for details).

chess-board pattern, which is a consequence of the initial
data representing a superposition of ingoing and outgo-
ing waves. At later times, τ & 2.5, we again observe
the emergence of repeated patterns that occur with in-
creasing frequency and on smaller length scales, before
the wave disperses at late times. The scalar J shows
a similar but slightly more complicated behavior, which
is perhaps not surprising given that even for the initial
data, as shown in Fig. 1, it appears somewhat more com-
plicated.

Plotting I and J in terms of the similarity coordinates
ξ and T , as shown in the bottom row of Fig. 6, reveals
that that repeating patterns at late times are again nearly
periodic in T with a period of about ∆ ' 0.53, suggesting
the existence of an at least approximate discrete self-
similarity with an accumulation event at the center.

In twist-free axisymmetry with an additional equato-
rial symmetry, within any time slice compatible with that
symmetry, the world sheets of the x and z axes are al-
ready geometrically unique. However, there still is a
gauge-dependence of the plots shown in Figs. 5 and 6
through the time slicing: the value of τ assigned to an
event is the value on the slice through it, and its proper
distance R is integrated along the slice. The fact that
these figures display any periodic behavior away from the
center at all suggests that the shock-avoiding slicing con-
dition leads to coordinates that reflect the self-similarity
to some degree.

As an alternative, we can also construct null coordi-
nates on the x and z-axis world sheets that have a com-
pletely gauge-invariant meaning. Specifically, we con-
sider families of null geodesics emitted from the center
at selected times t, both in the axial and the equatorial
direction. We label the null geodesics by the slow time
Tnull at which they are emitted from the center, and an
affine parameter λ along the geodesics, normalized by
λ = 0 and (dλ/dτ)Tnull

= dT/dτ = (τ∗ − τ)−1 at the

FIG. 8. The curvature scalars I (top panel) and J (bottom
panel) for a near-critical ` = 2 wave in the equatorial plane,
as in Fig. 6, but with I and J as observed along outgoing
null geodesics.

center (so that, initially, λ advances at the same rate as
T ). At selected coordinate times we then record, for each
geodesic, values of the curvature invariants at their cur-
rent locations. In Figs. 7 and 8 we show plots of these
invariants on the axis and on the equator as a function
of λ and Tnull. Again, these plots show approximately
periodic features at intermediate times, i.e. after the ini-
tial data have evolved toward a threshold solution, and
before the latter disperses to infinity.

In order to highlight this self-similarity we again in-
clude red crosses in these figures. Specifically, we pick
λ = 0.35 for the plots on the axis and λ = 0.15 for
those on the equator, and choose values of Tnull = −0.67,
−0.14, and 0.39, which differ by multiples of ∆ = 0.53
and correspond to similar phases in the oscillations. The
crosses in Figs. 5 and 6 correspond to the same spacetime
events as those in Figs. 7 and 8. For an exact DSS, for
the exact values of τ∗ and ∆, log(τ∗ − τ)I1/4 would be
exactly periodic in Tnull at constant λ, and similarly for
J .

If our time slicing were also compatible with an exact
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FIG. 9. Global measures of the maximum curvature attained
for quadrupolar ` = 2 waves as a function of amplitude A,
assuming A∗ = 0.00495635. The filled symbols correspond
to the amplitudes shown in Fig. 3 for which a new peak in
the curvature emerges and starts dominating over a previous
peak; these amplitudes therefore correspond to a “kink” in
the scaling plot shown here. Results for near-critical ampli-
tudes, for which we believe that numerical error close to the
origin leads to an overestimate in our values of the curvature
maxima, are included as shaded symbols only.

DSS, the same would be true for our earlier similarity
coordinates T and ξ. In particular, the crosses would ap-
pear at the same values of ξ in the lower panels of Figs. 5
and 6. The fact that they do indeed appear at similar
locations suggests that all three of the above conditions
are met approximately.

4. Scaling with distance from the black hole threshold

We now change focus, from our most fine-tuned sub-
critical solution (as an approximation to the threshold
solution) to the scaling of the curvature measures for sub-
critical solutions as a function of distance A∗ − A from
the black hole threshold. Specifically, we now compute
the (global) maxima of the curvature measures (14) and
(15) over time, e.g.

IMAX ≡ max
t
Imax(t), (24)

and similar for J as well as their integrals (15). We
use capital letters in the subscript in order to distinguish
the global maxima from the local-in-time maxima, de-
noted with lower-case subscripts. In Fig. 9 we show these
global curvature maxima, properly rescaled so that all
have units of λ−1, as a function of the wave amplitude
A, assuming A∗ = 0.00495635. Because of our limited
numerical resolution we found that several of our curva-
ture measures become quite noisy at late times when A
is too close to its critical value, and we therefore shaded
the corresponding data in Fig. 9. We also marked the

simulations for the amplitudes shown in Fig. 3 as filled
symbols. Since, for these amplitudes, a newly emerging
curvature peak starts to dominate over previous peaks,
these amplitudes correspond to the “kinks” in the scaling
plot of Fig. 9.

For a unique critical solution with continuous self-
similarity and a single unstable mode one would expect a
curvature measure with units of λ−1, say C, to scale with

C ' |A∗ −A|−γ , (25)

where γ is the inverse of the mode’s Lyapunov exponent
(see, e.g., [3–5]). For a DSS critical solution one expects
a periodic “wiggle” with period of

P ≡
∣∣∣∣ln(A∗ −Ai+1

A∗ −Ai

)∣∣∣∣ =
∆

γ
(26)

in ln |A∗−A| to be superimposed on the power-law scal-
ing (25) (see [7, 8]).

If we were to estimate γ as the slope of the straight line
connecting two neighbouring kinks (the full blue dots or
full green squares) in Fig. 9 and substitute this value into
Eq. (26), we would by obtain a value of ∆ very similar to
(22) – the only difference being that, in Fig. 3, we iden-
tified the maxima from the threshold solution, while, in
Fig. 9, the kinks are the maxima of subcritical solutions.
However, if we estimate γ independently as a best fit
line through the observed wiggly scaling laws, Eq. (26)
provides other estimates of ∆.

In the absence of an exact DSS, and given our modest
fine-tuning, it is difficult to determine the critical ex-
ponent γ precisely. Focusing on the curvature maxima,
which we have previously identified as being a more re-
liable diagnostics than the integral of I, we see that the
data are reasonably well fitted by γ = 0.25. This value is
slightly smaller than those found by [22], who estimate
γ = 0.33 for their (positive-amplitude) Teukolsky data,
and A&E, who report γ ' 0.36, but the initial data of
both [22] and A&E are also different from ours in that
they are not time-symmetric.

Measuring the distance between the “kinks” in the
data for IMAX in Fig. 9 we estimate P ' 3. Using
γ ' 0.25, we then obtain ∆ ' 0.75 from (26), which is
consistent with our earlier estimate from the maximum
values of I in (22).

B. Hexadecapolar waves: ` = 4

We now turn to hexadecapolar waves (` = 4), which we
construct from the expressions in Appendix A 2. Given
the more complicated angular structure of these data in
comparison to the quadrupolar data (see Fig. 1) we use
Nθ = 128 angular grid points for these simulations, but
reduce the number of radial grid points to Nr = 256 in
order to shorten the runtime of the simulations. As we
will discuss in more detail below, we also find that re-
gridding is less helpful in these simulations than in those
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FIG. 10. Curvature measures as a function of slow time T =
− log(τ∗ − τ) for the near-critical ` = 4 wave with amplitude
A = 4.251× 10−4 and assuming τ∗ = 14.

for quadrupolar data, and therefore keep the radial grid
fixed during these evolutions.

1. Fine-tuning to the threshold solution, and its maxima

As for the quadrupolar waves of Section III A, we per-
form simulations for different amplitudes A in the seed
function (3), and bracket the threshold amplitude to ap-
proximately 4.251 × 10−4 < A∗ < 4.252 × 10−4. Cor-
responding to our (relatively) poorer resolution of the
hexadecapolar waves, our fine-tuning is also worse than
for the quadrupolar data. We nevertheless include some
results here in order to highlight some the qualitative dif-
ferences between the threshold solutions for quadrupolar
and hexadecapolar waves.

Fig. 10 is the same as Fig. 4, except for hexadecapolar
waves. We again show curvature measures as a function
of slow time T for a near-critical solution. Because our
fine-tuning is even more modest than for the quadrupolar
waves, it is even harder to determine the accumulation
time τ∗. Here and in the following we will adopt τ∗ = 14
as a crude estimate. Using this value of τ∗ we see that,
at intermediate times, the curvature measures show an
approximate periodic behavior with a period of approxi-
mately ∆ ' 0.1, which is significantly shorter than that
found for quadrupolar waves. This behavior is similar
to that of electromagnetic waves, for which [19] reported
that the quadrupolar threshold solution has a shorter pe-
riod than the dipolar threshold solution.

2. The threshold solution

In Figs. 11 and 12, which mirror Figs. 5 and 6 for
quadrupolar waves, we show the curvature scalars I
and J on the axis and in the equatorial plane. As

FIG. 11. The Weyl curvature scalar I for a near-critical hex-
adecapolar ` = 4 wave with amplitude A = 4.251 × 10−4

on the symmetry axis (compare with Fig. 5 for quadrupolar

waves). The top panel shows I1/4 as a function of proper
distance R from the origin and of proper time τ as measured
by an observer at the origin. In the bottom panel we show
(τ∗ − τ)I1/4 as a function of the similarity coordinates ξ and
T assuming τ∗ = 14 (see Eqs. 16 and 17). As in Fig. 5 and
6 we include the red crosses as guidance in identifying corre-
sponding features in the two plots, and the red line in the top
panel marks the outer boundary at ξ = 1 in the lower panel.

an initial qualitative observation we note that, unlike
the quadrupolar waves, which showed significantly more
structure in the equatorial plane than on the axis, the
hexadecapolar waves display rather complicated struc-
ture on the axis as well. Also, while for quadrupolar
waves the maximum values of the curvature scalars are
typically found at the center, for the hexadecapolar waves
they are typically away from the center, but on the sym-
metry axis.

It is again intriguing to compare with results for the
gravitational collapse of electromagnetic waves. While
[18] found that the threshold solution for dipolar initial
data features maximum density at the center, [19] re-
ported that, for quadrupolar initial data, the threshold
solution develops maximum densities on the symmetry
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FIG. 12. The Weyl curvature scalars I (left column) and J (right column) for a near-critical ` = 4 wave with amplitude
A = 4.251 × 10−4 in the equatorial plane (compare with Fig. 6 for quadrupolar waves). As in Fig. 11 we show the data as
functions of R and τ in the top row, and as functions of the similarity coordinates ξ and T in the bottom row (see text for
details and discussion).

axis, away from the center (see, e.g., Fig. 6 in [19]). This
qualitative difference between the threshold solutions for
data with different multipoles is very similar to our find-
ings for gravitational-wave data here.

Unfortunately, the increasingly sharp spikes away from
the center make it increasingly difficult to resolve them
with the spherical polar coordinates used in our code.
While the regridding option in our code helps to zoom
into center, is less effective for resolving features away
from the center, as we discussed above. We therefore do
not attempt to examine the hexadecapolar waves more
carefully here, and instead focus on qualitative differ-
ences from quadrupolar waves.

In order to analyze whether the threshold solution for
hexadecapolar waves features an approximate DSS (with
an accumulation event at the center) we display the data
as functions of the similarity coordinates (16) and (17)
(see the bottom panels in Figs. 11 and 12), again with
τ∗ ' 14. While any DSS is certainly not exact, Figs. 11
and 12 do suggest that there is an approximate DSS. As
before we include red crosses, constructed from the cor-

responding crosses in Figs. 13 and 14 below, in order to
help identify similar and repeated patterns. Note that,
despite the spikes forming away from the center, they ap-
pear to be features of an approximately DSS threshold
solution with a single accumulation event at the center,
rather than two separate centers of collapse – similar to
the threshold solution for quadrupolar electromagnetic
waves discussed in [19]. We again observe that the pe-
riodicity for these hexadecapolar waves is significantly
shorter than that for the quadrupolar waves. In fact,
we were able to observe one more echo for the hexado-
capolar waves than for the quadrupolar waves, despite
the less accurate fine-tuning, precisely because the echo-
ing period is shorter. From Figs. 11 and 12 see see that
∆ ' 0.1, as previously identified from Fig. 10, but we
again caution that this value is affected by the estimate
for τ∗ and hence a crude estimate only. Note that peri-
odicity in τ , rather than T , formally corresponds to the
limit τ∗ → ∞ and ∆ → 0. We can therefore estimate a
small value of ∆ less accurately than a large one. Here,
we cannot distinguish ∆ ' 0.1 from a periodicity in τ



14

FIG. 13. The curvature scalar I for a near-critical hexade-
capolar ` = 4 wave along the symmetry axis, as in Fig. 11,
but with I as observed along outgoing null geodesics (com-
pare with Fig. 7 for quadrupolar data).

with certainty. We are confident, however, that ∆ ' 0.5
is not a good fit to the l = 4 threshold solution.

As for the quadrupolar waves, we also display the cur-
vature scalars in terms of the gauge-invariant coordinates
Tnull and λ constructed from outgoing null geodesics.
Specifically, we show the data along the symmetry axis
in Fig. 13, and in the equatorial plane in Fig. 14. While
any DSS is certainly not exact, it is again easy to identify
repeated patterns that suggest an approximate DSS.

Because of our poor fine-tuning for hexadecapolar
waves, and because we have not sampled the subcriti-
cal regime with enough simulations to resolve kinks as in
Fig. 9, we do not explore the scaling with distance from
the black hole threshold in more detail, and do not at-
tempt to estimate the critical exponent γ for these data.

IV. SUMMARY AND DISCUSSION

The purpose of this paper is twofold: we discuss some
new numerical features that we have successfully adopted
in our study of critical collapse of gravitational waves,
and we report on new results that complement the inde-
pendent findings of A&E and [21–23] and that support
our emerging understanding of these critical phenomena
(see also [29]).

In terms of numerical features, we emphasize the im-
portance of avoiding numerical error in the evaluation
of the coefficients A`, B`, and C` (and their derivatives)
that appear in the construction of Teukolsky wave initial
data (see Sect. II A). We also discuss using both scalar
invariants I and J of the Weyl curvature tensor as di-
agnostics of the spacetime geometry (Sect. II C). Most
importantly, however, we demonstrate the dramatic im-
provements that result from using a shock-avoiding slic-
ing condition (see [27]) rather than the much more com-

FIG. 14. The curvature scalars I (top panel) and J (bot-
tom panel) for a near-critical hexadecapolar ` = 4 wave in
the equatorial plane, as in Fig. 12, but with I and J as ob-
served along outgoing null geodesics (compare with Fig. 8 for
quadrupolar data).

mon 1+log slicing condition (Sect. II B; see also [49]).
While our fine-tuning to the onset of black-hole for-

mation is more modest than in the simulations of A&E
and [21–23], we have been able to identify, at least qual-
itatively, several features of the threshold solutions for
both quadrupolar (` = 2) and hexadecapolar (` = 4) ini-
tial data. For quadrupolar data we crudely estimate the
critical exponent to be about γ ' 0.25, which is some-
what smaller than that reported by [22] for their (positive
amplitude) Teukolsky waves, as well as that reported by
A&E (even though neither [22] nor A&E adopt time-
symmetric initial data).

For both quadrupolar and hexadecapolar waves we find
that the threshold solutions are consistent with featuring
an approximate DSS with an accumulation event at the
center. For the quadrupolar data the period of this DSS
is approximately ∆ ' 0.5, which is consistent with the
value reported by [10], while for hexadecapolar data the
period is significantly shorter, ∆ ' 0.1. This difference
in periodicity for different multipoles is consistent with
that reported by [19] for the critical gravitational collapse
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of dipolar and quadrupolar electromagnetic waves, and
demonstrates the absence of a universal critical solution:
different multipoles lead to different threshold solutions.

A further qualitative difference of the threshold solu-
tion for the hexadecapolar gravitational-wave data from
that for quadrupolar data is that the periodic curvature
peaks appear as pairs on the symmetry axis, on oppo-
site sides from the center, similar to the observations
of [21–23]. At least for the time-symmetric Teukolsky
waves considered here, we believe that these peaks are
features of a single self-similar solution with an accumu-
lation event at the center, reminiscent of similar obser-
vations for quadrupolar electromagnetic waves [19]. It
remains to be investigated what would happen for fami-
lies of initial data that do not have a reflection symmetry,
and so contain both even and odd l spherical harmonics.

Contrary to our longstanding expectation, our results
together with those of [21–23] suggest that there does
not exist a universal critical solution for the collapse of
vacuum gravitational waves. However, it appears that
specific families of initial data may lead to threshold so-
lutions that feature an at least approximately DSS region
with an accumulation point at the center. Determining
just how accurate this DSS is, and whether it holds up
under better fine-tuning, will require future simulations
with higher numerical accuracy. In the meantime, we will
discuss the implications of our findings, combined with
those of [21–23], on our understanding of critical phe-
nomena in the collapse of vacuum gravitational waves in
a forthcoming joint article (see [29]).
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Appendix A: Linear gravitational waves

In this appendix we list, as a reference, all expressions
necessary to construct the linear gravitational waves in
TT gauge that we use as a starting point for our initial
data. We adopt the convention and notation of Rinne

[25], who generalized Teukolsky’s analysis for quadrupo-
lar waves (see [24]) to higher multipole moments.

We consider even-parity waves, for which the space-
time line element can be written as

ds2 =− dt2 + (1 +A`Ŷ
`m)dr2 + 2B`Ŷ

`m
θ rdrdθ

+ 2B`Ŷ
`m
ϕ r sin θdrdϕ

+ (1−A`Ŷ `m/2 + C`Ŷ
`m
θθ ) r2dθ2

+ 2C`Ŷ
`m
θϕ r

2 sin θdθdϕ

+ (1−A`Ŷ `m/2 + C`Ŷ
`m
θθ ) r2 sin2 θdϕ2 (A1)

(see Eq. 4 in [25]). In (A1) the functions A`, B`, and
C` (see Eqs. A2 and A4 below) depend on time t and
radius r in the combinations x ≡ r ± t corresponding to
ingoing and outgoing waves, and are computed from a
seed function F = F (x) (e.g. 3) and its derivatives, while

the functions Ŷ `m, Ŷ `mθ , Ŷ `mϕ , Ŷ `mθθ , and Ŷ `mθϕ (see A3 and

A5 below) depend on the angles θ and ϕ. We specialize
to axisymmetric solutions with m = 0, for which the
functions Ŷ `0ϕ and Ŷ `0θϕ vanish identically. The specific
expressions for ` = 2 and ` = 4, which we list below for
convenience, are taken from Appendix A of [25].3

1. Quadrupolar waves: ` = 2

For quadrupolar waves with ` = 2 the functions A2,
B2, and C2 are given by

A2 = 24

(
−F

(2)

r3
+

3F (1)

r4
− 3F

r5

)
, (A2a)

B2 = 4

(
−F

(3)

r2
+

3F (2)

r3
− 6F (1)

r4
+

6F

r5

)
, (A2b)

C2 = 2

(
−F

(4)

r
+

2F (3)

r2
− 3F (2)

r3
+

3F (1)

r4
− 3F

r5

)
,

(A2c)

where F (n)(x) ≡ dnF (x)/dxn denotes the n-th derivative
of the seed function F with respect to its argument. The
non-vanishing angular functions are

Ŷ 20 = 2− 3 sin2 θ, (A3a)

Ŷ 20
θ = −6 cos θ sin θ, (A3b)

Ŷ 20
θθ = 3 sin2 θ. (A3c)

2. Hexadecapolar waves: ` = 4

For hexadecapolar waves with ` = 4, the functions A4,
B4, and C4 are given by

3 We note a small typo in Appendix A of [25], where the last entry for Ŷθθ for ` = 3 should be 15 cos θ sin2 θ rather than 15 cos θ sin θ.
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A4 = 360

(
−F

(4)

r3
+

10F (3)

r4
− 45F (2)

r5
+

105F (1)

r6
− 105F

r7

)
, (A4a)

B4 = 18

(
−F

(5)

r2
+

10F (4)

r3
− 55F (3)

r4
+

195F (2)

r5
− 420F (1)

r6
+

420F

r7

)
, (A4b)

C4 = 2

(
−F

(6)

r
+

9F (5)

r2
− 45F (4)

r3
+

150F (3)

r4
− 360F (2)

r5
+

630F (1)

r6
− 630F

r7

)
, (A4c)

while the non-vanishing angular functions are

Ŷ 40 = 35 sin4 θ − 40 sin2 θ + 8, (A5a)

Ŷ 40
θ = 20 cos θ sin θ (7 sin2 θ − 4), (A5b)

Ŷ 40
θθ = 30 sin2 θ (6− 7 sin2 θ). (A5c)
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