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Ultralight dark matter (ULDM) is usually taken to be a single scalar field. Here we explore the
possibility that ULDM consists of N light scalar fields with only gravitational interactions. This
configuration is more consistent with the underlying particle physics motivations for these scenarios
than a single ultralight field. ULDM halos have a characteristic granular structure that increases
stellar velocity dispersion and can be used as observational constraints on ULDM models. In multi-
field simulations, we find that inside a halo the amplitude of the total density fluctuations decreases
as 1/

√
N and that the fields do not become significantly correlated over cosmological timescales.

Smoother halos heat stellar orbits less efficiently, reducing the velocity dispersion relative to the
single field case and thus weakening the observational constraints on the field mass. Analytically,
we show that for N equal-mass fields with mass m the ULDM contribution to the stellar velocity
dispersion scales as 1/(Nm3). Lighter fields heat the most efficiently and if the smallest mass mL

is significantly below the other field masses the dispersion scales as 1/(N2m3
L).

I. INTRODUCTION

Axion Dark Matter is a promising dark matter candi-
date. Its ultralight limit (ULDM), also called fuzzy dark
matter (FDM), exhibits unique interference phenomena
on galactic scales, while still behaving like cold dark
matter (CDM) on scales much larger than the de Broglie
wavelength.

CDM has had spectacular success accounting for the
formation of structures in the Universe. In particular, it
predicts the features of the cosmic web [1, 2] revealed by
galaxy surveys and the properties of the anisotropies in
the microwave background [3]. However, at small scales
many details of galactic dynamics remain unclear. Spe-
cific issues include the missing satellites [4, 5], core-cusp
[6–8], and too-big-to-fail [9] problems associated with
small-scale structure formation in CDM, as reviewed in
Ref. [10]. It is possible that these problems will be
solved by improving survey sensitivity [11–13], bary-
onic physics [14] or even the breakdown of Newtonian
dynamics [15] at galactic scales. Another option is that
the dark matter has more complicated small-scale dy-
namics than predicted by CDM alone and ULDM is a
widely-studied scenario in this category. Various exten-
sions to this simple model have been considered, includ-
ing mixed dark matter scenarios [16] and self-interacting
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scalar fields [17–19].

Given that the characteristic signatures of ULDM re-
quire wavelike effects to be visible at subgalactic scales
but must not completely preclude the existence of small-
scale structure, a particle mass of 10−22 − 10−18 eV is
favored [20, 21]. However, recent studies have put lim-
its on much of this parameter space. A non-exhaustive
list of the phenomena that can provide constraints in-
cludes the Lyman-α forest [22–25], the galactic subhalo
mass function [11, 26], stellar dispersion of ultra-faint
dwarfs [27, 28], galactic density profiles [29–31], Milky
Way satellites [32], and superradiance [33, 34]. A recent
review is given in Ref. [35].

Critically, almost all treatments of ULDM assume the
presence of a single ultralight field. However, much of
the motivation for ULDM comes from string-theoretic
approaches to high-energy physics. These typically sup-
port many axion-like fields rather than just one, as the
axions are associated with (non-equivalent) closed 2-
cycles (two-dimensional submanifolds of a larger mani-
fold that cannot be smoothly contracted to a point) of
the Calabi-Yau manifold that sets the topology of the
compact dimensions. Calabi-Yau manifolds can con-
tain many closed cycles – numbers in the hundreds are
seen as typical [36]. From this perspective, multiple
axion-like fields are actually a more reasonable assump-
tion than a single ultralight field. It is expected that
their masses are distributed broadly uniformly on a log-
arithmic scale [33], so several axion-like species may
be expected per decade of mass between 10−33 eV and
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108 eV. However, the precise nature of the distribution
of masses is not tightly constrained, and it is possible
that it may be characterized by densely populated mass
ranges separated by larger gaps.

Single-field UDLM has rich dynamics on subgalactic
scales and multifield ULDM is potentially substantially
more complex. In this paper, we explore this scenario
with a specific focus on the heating of stellar orbits in
ULDM halos. ULDM halos have granular structures on
scales similar to the de Broglie length of the underlying
field. Orbiting stars are perturbed as they interact with
the gravitational potential of these structures, heating
them relative to their motion in a smooth background.
This effect is enhanced when the ULDM mass is small
– in this limit the granules are larger and more mas-
sive and the resulting kicks to stellar velocities are more
substantial. Consequently, the observed velocity disper-
sions of stars in dwarf halos leads to lower bounds on
the ULDM mass. However, when several uncorrelated
fields are present, their granules overlap leading to a
smoother density field which reduces the heating.

Previous studies of multifield scenarios include
treatments of large-scale structure [37] and rotation-
curve [38] constraints on two-field scenarios. Guo et
al. [39] consider the dynamics of two-field condensates
with possible nonlinear mutual and self-interactions,
while Luu et al. [40] consider the properties of nested
solitons in multifield scenarios and Davoudiasl et al. [41]
give constraints on scenarios with very large number of
fields, i.e. N ∼ 1030 and more. Very recently, Huang
et al. [42] have performed several two-field cosmological
simulations which showed that the central soliton can
be substantially modified in this scenario, potentially in
ways that better match observations. Amin et al. [43]
looked at the related case of ultralight vector dark mat-
ter which can mimic three equal-mass scalar fields in
the non-interacting case. They describe the consequent
reduction in stellar heating and estimate the size of this
suppression for fields of arbitrary spin s, which have
2s+ 1 components.

In this work, we use the superposition of eigenstates
to construct self-consistent ULDM halos. We then nu-
merically evolve these halos in order to analyze how the
granularity in the outer regions depends upon the num-
ber of distinct ULDM fields present. We consider up
to four ULDM fields, in both equal-mass and mixed-
mass scenarios. Visually, halos appear smoother with
increasing numbers of fields and we explicitly confirm
this by calculating the two-point correlation function.
The granules in each field are effectively a system of os-
cillators, coupled through the gravitational potential so
there is the possibility for their motion to become cor-
related over time. If this happened, it would undermine
the suppression of the heating in multifield models and
we find that while a small correlation arises it does not
grow with time over 5 Gyr for typical axion masses.

We combine the results of these simulations with the
analytic approximations of multifield stellar heating. In
particular, the predicted stellar dispersion decreases as
1/(Nm3) for N fields in the equal-mass case of field
with mass m. In the multi-mass case, the lightest field
dominates the heating since the strength of the heating
decreases with the third power of the particle mass. If
the lightest field with mass mL is sufficiently light com-
pared to the second lightest field the resulting dispersion
scales as 1/(N2m3

L).
The paper is organized as follows. In Section II we

outline our conventions and methodology, describe how
initial conditions are set up, and define statistical pa-
rameters used to analyze the results. In Section III we
discuss the results of multifield simulations with both
equal or different particle masses. In Section IV we
present an analytic estimate of how the velocity dis-
persion induced by multifield ULDM scales with the
number of fields. We discuss our results in Section V.

II. METHODOLOGY

We assume that dark matter is composed of N inde-
pendent classical, real scalar fields which only interact
gravitationally with each other. In general, the evolu-
tion of these fields is governed by the Klein-Gordon-
Einstein equations. Considering the nonrelativistic
limit of the Klein-Gordon equation relevant for struc-
ture formation, the evolution equation in an expand-
ing Friedmann-Lemâıtre-Robertson-Walker universe re-
duces to the Schrödinger equation [44, 45]

i~
∂

∂t
Ψi = − ~2

2mia2
∇2Ψi +miΨiΦ (1)

where mi is the mass of the i-th field and a is the cosmo-
logical scale factor. In this limit, the N scalar fields are
represented by their corresponding complex wavefunc-
tions Ψi. This wavelike matter responds to the total
gravitational potential Φ, which is the solution to the
Poisson equation. In comoving units,

∇2Φ =
4πG

a
(ρ− ρ̄) , with ρ =

N∑

i=1

mi|Ψi|2 , (2)

where the source term for the field is the difference be-
tween the total local density ρ and the average density
ρ̄. As usual, Planck’s constant is represented by ~ and
Newton’s constant by G.

We can set a = 1 since we focus on individual halos
that are decoupled from the Hubble flow. In the ul-
tralight limit, the particle mass m is often expressed as
m = m22 × 10−22 eV, and we adopt this notation. The
fraction of the total mass contained in the i-th field is
denoted by ci, with

∑N
i ci = 1. Since the fields do
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not exchange mass ci are constants and we work with
ci = 1/N in our simulations. We consider cases with
N fields with identical masses and multi-mass scenarios
where the masses are distinct.

Single-field ULDM halos have an excited central soli-
ton [16, 46–48] that oscillates with a frequency given by
its quasi-normal modes [49]. This soliton is surrounded
by a halo composed of interfering excited states which
yield approximately spherical density fluctuations, usu-
ally called halo granules. The size of these granules is
roughly given by the de Broglie wavelength

λdB =
~
mv

, (3)

where v denotes the local velocity of the field inside the
halo. This length is of course different for each field if
the fields have different particle masses.

We perform numerical simulations with a version of
AxioNyx [16] modified to evolve N fields. AxioNyx
features adaptive mesh refinement (AMR) which allows
computing power to be focused on regions of interest
– in this case the halo center – while the outer regions
are evolved at lower resolution. In the multi-mass case,
the density-based refinement condition is taken from the
heaviest field in the simulation which has the smallest
de Broglie wavelength. All fields are evolved on the
same grid structure. In the equal-mass cases, the re-
finement criterion is evaluated with respect to a single,
arbitrarily chosen field.

The Schrödinger equation is solved with a spectral
method on the root grid with periodic boundaries. In
refined regions we use finite differencing with aperi-
odic boundary conditions and an appropriately subcy-
cled timestep. The Poisson equation is solved using
the multigrid Gauss-Seidel redblack solver implemented
within Nyx [50]. All simulations are initialized on a
(100 kpc)3 box and have a 1283 root grid resolution and
three levels of refinement in the center. Spatial resolu-
tion is increased by a factor of two on each refinement
level.

A. Halo Construction

We generate multifield halos directly by adapting the
eigenmode method described in Ref. [51] in which the
initial configuration is constructed by decomposing the
halo density profile into radial eigenfunctions (see also
Ref. [52]) and multiplying each of them with a random
phase. We extend this to the multifield case by using
the same radial eigenfunctions for the density (appropri-
ately scaled by ci), but a different set of random phases
for each field. See Appendix A for more details.

We assume that each field has a central soliton and a

surrounding NFW halo with a combined density profile

ρ(r) =

{
ρsol(r) if ρsol > ρNFW

ρNFW(r) e[−(r/rvir)
2/2] otherwise.

(4)

The exponential term suppresses the density outside the
virial radius rvir to minimize interactions at the periodic
boundaries of the box.

The NFW profile is given by [6]

ρNFW(r) =
ρ0

r/rs (1 + r/rs)
2 (5)

where rs is the scale radius. According to convention,
we define the virial radius as the radius at which the
average density in the enclosed sphere is 200 times the
critical density of the Universe, which also sets the virial
mass inside this sphere, Mvir. Finally, ρ0 is determined
by integrating this profile up to the virial radius.

For a single field, the central solitonic core is well-
described by a fitting formula [53]

ρsol(r) =
ρs(

1 + 0.091 (r/rc)
2
)8 , (6)

where rc denotes the core radius where the den-
sity is half of its central value and ρs = 1.9 ×
109m22

−2 (rc/kpc)−4 M� kpc−3.
We use the virial halo massMvir to determine the core

radius rc of the soliton applying the core-halo relation
introduced in [53],

rc = 1.6× 1

m22

(
Mvir

109M�

)−1/3

kpc. (7)

This relation has become contested with several works
producing different scaling relationships showing the
sensitivity of results on numerical methods rather than
physics, or even arguing against a universal core-halo
mass relation (see Refs. [54–58] and works discussed
therein). Nevertheless, we assume that it is a sensi-
ble estimate of core size in the multifield case. Finally,
we are free to choose the NFW scale radius in the range
between rc and the virial radius and this choice does
not significantly affect the dynamics of the halo.

For the sake of definiteness, we choose the dwarf
galaxy Eridanus II as a template for the halo as it
has been widely used to test ULDM. Eridanus II has
a half-light radius r1/2 = 300 pc [59] and half-light mass

M1/2 = 1.2 × 107M� [60]. According to Ref. [61], the
half-light radius and the virial radius are related by
r1/2 ' 0.015 rvir, corresponding to rvir = 20 kpc and

Mvir = 4π/3× 200 ρ̄ r3
vir ' 3× 108M�. This results in

the core radius rc ' 0.5 kpc and we choose rs = 2 kpc
for the scale radius.
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FIG. 1. Total density around the center of the halo for the simulations involving one field, two fields, and four fields. The
total density becomes progressively smoother as the number of fields increases.

B. Fluctuation Statistics

We define the two-point correlation function

ξ(d) = 〈δ(x)δ(x + d)〉

=
1

V

∫
δ(x)δ(x + d) d3x

(8)

to quantify the smoothness of the density field. We first
obtain the spherically-averaged density profiles ρ̄(x)
around the highest-density point which only depends on
the distance x from that point. The overdensity field is

δ(x) =
ρ(x)− ρ̄(x)

ρ̄(x)
. (9)

This quantity is sampled at n random points with co-
ordinates x inside a spherical domain with radius rmax.

We multiply the overdensity in all n(n − 1)/2 pairs
of points where two points are separated by a vector d
and bin them according to the distance d = |d| between
the pair,

ξ(dk) =
1

nk

n∑

i=0

n∑

j=i+1

δ(xi)δ(xj)Wk(|xi − xj |) , (10)

where nk is the number of pairs of points in each bin,
and we take the mean value to give the result for the
bin. The window function Wk(|xi − xj |) = 1 if the
distance between xi and xj falls into the dk bin, and
zero otherwise. We verify that the sample size n is large
enough to ensure convergence.

The fields are initialized to be completely uncorre-
lated, but correlation can in principle grow as the sys-
tem evolves. In particular, an overdensity in one field
induces a local gravitational well which influences the
dynamics of the other fields. This could in principle cre-
ate a correlation between the fields which would grow

over time. To assess this possibility we introduce the
reduced one-point covariance or correlation parameter

ζ(x) =
〈δ1(x)δ2(x)〉√
〈δ1(x)2〉

√
〈δ2(x)2〉

, (11)

where 〈· · · 〉 again denotes a spatial average. For com-
pletely correlated fields ζ = 1, for anti-correlated fields
ζ = −1, and ζ = 0 for entirely uncorrelated fields.

III. SIMULATIONS

A. Equal-mass

We performed simulations with ULDM mass m22 = 5
and one, two, and four ULDM fields. Each field in the
multifield simulations is initialized with the same radial
eigenfunctions, but different random phases. The gran-
ules of the different fields are thus initially uncorrelated.
We evolve this system through O(30) oscillation peri-
ods, or roughly 5 Gyr. Transients associated with the
relaxation of the initial state decay over the first two or
three oscillation times.

The density on a slice through the center of the sim-
ulations is shown in Fig. 1, at a representative time
(1.6 Gyr). As the number of fields increases, the soli-
tonic core retains its shape because there is a central
overdensity in each of the constituent fields. At the
same time, the granular overdensities in the surround-
ing halo are visibly smoothed out.

Fig. 2 shows the evolution of the maximum density,
which corresponds to the central density of the soliton,
as a function of time. In all cases we see oscillations in
the solitonic core [46, 49], along with an initial transient.
In the multifield scenarios, the central oscillations in
constituent fields are synchronized. While they initially
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FIG. 3. Two-point correlation function of the total over-
density for the three equal-mass simulations at an arbitrary
time. We see that ξ ∼ 1/N and that the fields are fully un-
correlated at scales much larger than the de Broglie length.

overlap owing to our choice of initial conditions, there
is also a clear synchronization over time, presumably
maintained by their mutual gravitational coupling.

The two-point correlation function for the equal-mass
simulations is shown in Fig. 3. It is calculated at an ar-
bitrary time during the simulations. The value of ξ(r) is
close to zero for scales much larger than the de Broglie
wavelength. Critically, ξ(r) is consistent with a 1/N
dependence, from which we can infer that the ampli-
tude of the overdensity decreases in proportion to

√
N ,

i.e. in the multifield case δ(x) → δ(x)/
√
N . This scal-

ing is also consistent with simulations of vector dark
matter [43] which, with no self-interactions, has three
independent components and interference is suppressed
by 1/

√
3, relative to the scalar case. To compute ξ we

sampled the overdensity in random points from a spheri-

cal domain centered on the center of the simulation box
with a radius of rmax = 10 kpc. While the solitons
undergo a random walk [62, 63] around their initial po-
sition, they are rarely found more than 1.0 kpc from
the center of the box, and usually within 0.5 kpc. This
permits us to center our spherical domain on the box
rather than the location of the soliton.

If the granules developed spatial correlation over
time, the suppression of the overdensity observed in
Fig. 3 would diminish. We use the correlation param-
eter ζ (see Eq. (11)) to test whether such correlation
develops, and show ζ for the two-field and four-field sim-
ulations in the top two panels of Fig. 4. At the start of
each simulation, constituent fields are initialized with
uncorrelated fluctuations which manifests as ζ(t = 0)
being around zero. We present results for cut-off radii of
rmax = 5, 10, and 15 kpc. A small centrally-positioned
sphere of radius 3 rc was excised from the sampling in
order to exclude the solitonic core where a positive cor-
relation is to be expected. In practice, however, since
the volume of this sphere is tiny compared to the rest of
the sampling domain, including this region would not
significantly change our results.

In each of the multifield runs ζ is initially close to
zero, but a small, positive correlation between the fields
develops in the first 0.5 billion years of simulated evo-
lution. However, this growth does not continue and
the correlation remains small on timescales akin to the
present age of the Universe. Moreover, while we have
not made an exhaustive study we do see that the cor-
relation is roughly similar in both two- and four-field
scenarios.

For comparison, we show the correlation between two
separate single-field simulations in the bottom panel of
Fig. 4. In this case, as expected, ζ fluctuates around
zero, demonstrating that the small positive value of ζ(t)
shown for the two- and four-field runs is indeed physical,
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FIG. 4. The value of the correlation parameter for a com-
bination of two constituent fields in simulations with two
(top panel) and four (middle panel) fields. In the four-field
case, we show only the correlation between two arbitrarily
selected fields; other combinations give very similar results.
For reference, we show the same statistical measure for two
unrelated one-field simulations (bottom panel). The uncer-
tainty of ζ at each time is captured by the standard error
which is shown as the shaded area around each line.

rather than a computational artefact.
Fig. 4 shows a weak dependence on the radius from

which points are sampled. To investigate this depen-
dence, we plot ζ in Fig. 5 as a function of radius
at the initial time and at 1.62 and 4.87 billion years.
We observe that initially ζ is close to zero between
10 kpc < r < 15 kpc but it increases as the simulation
runs. This is due to the fact that halos are initialized
with eigenfunctions up to 20 kpc and have a smooth ra-
dially symmetric profile beyond this radius. This means
that ζ = 1 outside this region (see also Appendix A). As
time progresses, some of this “smoothness” leaks from
the region outside 20 kpc into the inner parts of the
halo.

B. Multi-mass case

To investigate the smoothing of the granular struc-
ture with unequal masses we examine a representa-
tive two-field scenario, with m22 = 10 and m22 = 5.
Fig. 6 shows the density for both constituent fields and
the total density at a representative time. The dif-
ferent de Broglie wavelengths of the fields are clearly

2.5 5.0 7.5 10.0 12.5 15.0
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−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ζ
(r

)

time = 0.00 Gyr

time = 1.62 Gyr

time = 4.87 Gyr

FIG. 5. The correlation parameter as a function of radius
at three times for a pair of fields in a four-field simulation.

visible and the combined density is again qualitatively
smoother than either of the individual fields. This is
made quantitative by the two-point correlation func-
tion which is again suppressed relative to that of the
individual fields, as shown in Fig. 7. In addition, the
granules in the heavy field are smaller so the two-point
correlation function for this field is steeper and reaches
zero at a smaller distance than that of the light field.

This simulation verifies that the suppression of small-
scale structure seen in the equal-mass case carries over
to the multi-mass scenario. Clearly, this may break
down in the limit of an extreme mass ratio – if one field
has a de Broglie wavelength much larger than the oth-
ers, it constitutes a smooth background relative to the
structure present in the more massive fields. However,
for mass differences of O(1), the qualitative dynamics
do not appear to depend on whether we have strictly
equal or merely similar masses.

IV. STELLAR DISPERSION CONSTRAINTS

The O(1) density fluctuations resulting from the in-
terference between different velocity streams in phase
space can have an impact on the stellar dispersion of
ultra-faint dwarf galaxies [27, 28]. This is a result of
stars experiencing an effective headwind of granules as
they orbit in the galactic potential which provides ran-
dom kicks that increase stellar velocity dispersion. Re-
cently, this effect has been used to derive strong con-
straints on the ULDM mass for single-field scenarios.
However, this effect is quadratically dependent on the
amplitude of overdensities, i.e. ∆σ2 ∼ δρ2 (see Ap-
pendix B) so it is suppressed in a multifield ULDM sce-
nario.
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FIG. 7. Two-point correlation function for the simulation
of two fields with different masses. The combined density is
smoother than each density separately.

A. Equal-mass case

We start by looking at scenarios with N ultralight
fields which all have approximately the same mass. We
assume that the overdensities are fully uncorrelated, ig-
noring the small but non-zero alignments found in our
numerical simulations in the previous section. As a star
orbits in a halo it encounters granules from each of the
constituent fields. Accelerations due to each granule
add linearly, and we treat the acceleration due to the
granules in each field as independent encounters. The
de Broglie wavelength of each field is given by the collec-
tive macroscopic potential which is mostly unchanged
relative to the single-field case. Therefore, we now have
N uncorrelated copies of the same granular density field.

This increases the number of encounters in the lifetime
of the star, n, by a factor of N , i.e. n→ nN .

The total mass fraction in each field, indexed by i, is
now ci = Mi/M . The granule mass, therefore, decreases
by the same factor, i.e. δM → δM(Mi/M), and as a
result, the velocity kick from a granule encounter goes
as δv → δv(Mi/M). Assuming that all fields contribute
to the total mass equally, we can further deduce δM →
δM/N and δv → δv/N .

The variances add linearly and so we can now write
our constraint for the stellar dispersion as (see Ap-
pendix B for details)

∆σ2
obs ≥

n δv2

N
∝ 1

Nm3
, (12)

where ∆σobs is the observed stellar dispersion. Conse-
quently, for N ultralight fields with the same mass and
the same mass fraction, the impact of ULDM on stellar
dispersions is relaxed by a factor of N at a given mass.
This is equivalent to the result found for non-interacting
fields with arbitrary spin s [43] with the identification
2s+ 1 = N .

If the mass is not evenly distributed we obtain

∆σ2
obs ≥ n δv2

N∑

i

(
Mi

M

)2

∝ 1

m3

N∑

i

(
Mi

M

)2

. (13)

B. Multi-mass case

We calculate the more general multi-mass bound by
noting that the variances again add linearly. The num-
ber of encounters ni with i-field granules and the am-
plitude of the gravitational kicks depends on the field
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masses, so we have

∆σ2
obs ≥

N∑

i

ni δv
2
i

(
Mi

M

)2

∝
N∑

i

1

m3
i

(
Mi

M

)2

. (14)

If the overall mass is evenly divided between the fields
this simplifies to

∆σ2
obs ≥

∑N
i ni δv

2
i

N2
∝ 1

N2

N∑

i

1

m3
i

. (15)

The resulting stellar dispersion is a strong function of
the mass spectrum. If the masses vary significantly, the
term in the above sum corresponding to the lightest
mass field, mL, dominates the contribution to the ve-

locity dispersion. Therefore, in the limit
(
ML

M

)2
/m3

L �(
Mi

M

)2
/m3

i , for all i 6= L, we find

∆σ2
obs ≥

1

m3
L

(
ML

M

)2

. (16)

If, for example, each field has a roughly equal share
of the total mass and the lightest mass is at least a
few times lighter than the mass of any other field,
i.e. 1/m3

L � 1/m3
i , stellar dispersion now scales as

1/(N2m3
L). In contrast to the equal-mass, equal-mass-

ratio case we now have an additional factor of 1/N be-
cause the lightest field has a dominant effect on the
heating but only comprises 1/N of the total mass.

V. CONCLUSIONS AND DISCUSSION

We present simulations of multifield ULDM halos
with a particular focus on how stellar heating con-
straints from ultrafaint dwarf galaxies are altered in the
presence of more than one ULDM field. We show that
multifield models have smoother halos which reduce the
extent to which orbiting stars are kicked by encounters
with granules relative to the single-field case. We nu-
merically evolve multifield halos and compare our re-
sults to analytic approximation for the heating dynam-
ics. We perform the simulations with a modified version
of AxioNyx, for up to four scalar gravitationally cou-
pled fields. We examine one, two, or four equal-mass
fields and two fields with masses varying by a factor of
two.

As the number of constituent fields increases, the to-
tal density field in the halo becomes smoother and the
granular structure is washed out, even though each con-
stituent field has the same amount of granular struc-
tures as the single-field case. We observe this for both
the equal-mass and multi-mass cases. In the equal-mass
case, the 2-point correlation function in the halo is pro-
portional to 1/N and a consistent pattern is seen in the

multi-mass case. This corresponds to the amplitude of
the overdensity decreasing as 1/

√
N .

Importantly, we verify that the suppression of fluctu-
ations persists over time. The granules are effectively
weakly-coupled oscillators, so it is conceivable that their
motion could become synchronized, particularly in the
equal-mass case. However, the correlation parameter ζ
between the constituent fields remains small over cos-
mological timescales.

While we demonstrate the 1/
√
N dependence of over-

density on N only based on simulations of 1, 2, and 4
fields, this dependence can be extrapolated to higher
numbers of fields. Since we observe that very little cor-
relation between fields develops, it is evident that the
observed suppression of fluctuations comes from adding
spatially uncorrelated densities and should therefore
persist for a larger number of fields.

Using analytic approximations we find that the ex-
pected stellar dispersion from gravitational heating of
stars in ultra-faint dwarf galaxies scales as 1/(Nm3) for
the equal-mass case, where m is the mass of the ultra-
light particle. Consequently, roughly 10 fields would be
needed to relax a bound on the mass by a factor of two.
In the multi-mass case, the heating strongly depends on
how particle masses are distributed. In particular, it is
dominated by the lowest-mass field if its particle mass
mL is at least a few times lighter than that of any other
field and N is not very large. If all fields contain the
same amount of the total mass, stellar dispersion then
scales as 1/(N2m3

L).

Formal observational bounds would require a more
detailed analysis. Moreover, we note that many of the
tightest bounds that have been proposed based on stel-
lar dispersion rely on measurements of a small num-
ber of potentially idiosyncratic objects and the available
dataset is likely to improve substantially in the coming
years.

Our work is based on halos constructed with eigen-
modes and as the recent analysis by Huang et
al. [42] demonstrates, in realistic cosmological multi-
field ULDM scenarios, not all of the constituent fields
may form their own solitons. Moreover, in the limit
that N becomes large, it is conceivable that none of the
fields may form solitons and that the granule dynamics
may also differ from the few-field case. This will be a
worthwhile topic for future inquiry.

Beyond the stellar dynamics, the central region of
post-merger halos is of critical importance to the anal-
yses of supermassive black hole merger dynamics. A
single soliton undergoes both density oscillations and a
random walk [62, 63], potentially reheating an inspiral-
ing supermassive black hole binary pair. We will ad-
dress how the presence of multiple fields affects these
phenomena in future studies.

It has been argued that the condensation of solitons
is driven by the two-body relaxation of granular over-
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densities [36]. Therefore, it is possible the multifield
picture would affect this timescale in a way similar to
its impact on stellar dispersion. However, it has yet to
be verified that this is the relevant timescale for soliton
formation in realistic halo formation settings [35]. Fu-
ture studies of multifield structure formation, building
on the recent work of Huang et al. [42] would allow this
possibility to be assessed. Effects of multiple fields on
the filaments or voids [64] present another possible re-
search avenue. Separately, there is also a strong analogy
between ULDM dynamics and the gravitational frag-
mentation of the inflaton condensate in the very early
universe [65–69] and the dynamics of N -field ULDM
may be mirrored in the primordial universe if inflation
is driven by multiple fields [70–72].

In summary, extending the single-field ULDM to mul-
tiple fields significantly alters the resulting cosmologi-
cal dynamics. In particular, it reduces the amount of
granularity in a dark matter halo which will in turn
relaxes key observational constraints that are sensitive
to the amplitudes of granules around the soliton, e.g.
the heating of stellar orbits in ultrafaint dwarf galax-
ies. This possibility is actually more consistent with
stringy arguments for the existence of very light axions
– given that they suggest the existence of many such
fields rather than an isolated singlet – and it has rich
cosmological possibilities that are as-yet unexplored.

ACKNOWLEDGMENTS

We would like to thank Piotr T. Chruściel, Oliver
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Appendix A: Eigenmodes for initial conditions

Here, we summarize the eigenfunction method for the
construction of stable halos from Refs. [51, 52]. We
decompose the wavefunction of each field Ψ into its
orthogonal eigenmodes ψj(r) which satisfy the time-
independent Schrödinger equation,

(
− ~

2m
∇2 +mΦ

)
ψj = Ejψj , (A1)

where Ej is the eigenenergy of that state. The total
wavefunction is composed as

Ψ(r, t) =
∑

j

ajψj(r)e−iEjt/~ , (A2)

where aj is the amplitude of each eigenmode. In our
case, the time-dependent exponential factor can be
omitted because we only construct the initial conditions
and can therefore use t = 0. This sum is truncated at
the eigenmode whose energy corresponds to the energy
of a particle on a circular orbit at the virial radius rvir.

We then factorize eigenfunctions into their radial and
angular components,

ψj(r) = ψn`m(r, θ, φ) = Rn`(r)Y
m
` (θ, φ) , (A3)

where Y m
` (θ, φ) are the spherical harmonics and the ra-

dial part Rn` is obtained by solving

− ~2

2m

d2u

dr2
+

(
~2

2m

`(`+ 1)

r2
+mΦ(r)

)
u = Eu (A4)

with the new variable un`(r) = rRn`(r).
We use the profile defined in Eq. (4) to solve the Pois-

son equation and determine Φ(r) which can then be
used to solve Eq. (A4) and to obtain the radial part of
the eigenmodes. This is done by discretizing the radial
domain and rewriting Eq. (A4) in a matrix form. We
find the eigenfunctions of this matrix with a tridiagonal
matrix solver from scipy.linalg.

Once we have the eigenmodes, we can create a con-
structed density using ρcon(r) = m|Ψ(r)|2. Combining
Eqs. (A2) and (A3), as well as using

∑
m |Y m

` (θ, φ)|2 =
(2`+1)/4π, the radial profile of the constructed density
becomes

ρcon(r) =
1

4π

∑

n`

(2`+ 1)|an`|2|Rn`(r)|2 . (A5)

The coefficients an` which determine the amplitudes of
each eigenmode are independent of the magnetic num-
ber m. To determine their value we need to minimize
the cost function

C(ρtar, ρcon) =
1

rfit

∫ rfit

0

dr

(
ρcon − ρtar

ρtar

)2

. (A6)
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This is done numerically using the optimization meth-
ods from scipy. Once the amplitudes of each eigen-
mode are determined, the three-dimensional realization
of a ULDM halo is obtained by performing the sum

Ψ(r, θ, φ) =
∑

n`

an`Rn`(r)Y
m
` (θ, φ) eifn`m (A7)

in each point (r, θ, φ). Furthermore, each eigenmode
is multiplied by a random phase fn`m whose value is
between 0 and 2π. This ensures that the constructed
wave function has an imaginary as well as a real part
and that the halo is stable.

To speed up this construction, we use the so-called
isotropic fit described in Ref. [51] which means that the
eigenfunctions are binned by similar energy eigenvalues
and all eigenfunctions in the same bin have the same
an`.

We initialize the halo up to the virial radius rvir =
20 kpc. Outside of this radius, the halo has a smooth
suppressed radially-symmetric NFW profile which en-
sures that periodic boundary conditions do not affect
the dynamics of the halo. There is, however, quite
a sharp transition between the eigenfunctions region
and the smooth region which can produce some spu-
rious effects. This method could be further improved
by smoothing this sharp transition in some way, but for
our purpose, we avoid spurious effects by analyzing a
spherical region within only ∼ 3/4 of rvir.

Appendix B: Stellar dispersion constraints in the
one field case

Here we discuss the central argument of stellar heat-
ing for a single classical field. Interference between
streams results in the density field being broken into
granules with O(1) oscillations in the density. On the de
Broglie scale, the fluctuations in the density are propor-
tional to the average density at any given point δρ ∼ ρ,

when sufficiently far from the central soliton that gravi-
tational heating is dominated by particles encountering
granules rather than the dynamics of the soliton.

The density field of the dark matter is composed of
a collection of such granules. As a star travels in the
vicinity of one of these granules it receives an accelera-
tion due to the potential gradient of the overdensity. In
the weak deflection limit, this alters the velocity as [73]

δv =
2GδM

r σDM
, (B1)

where r is the impact parameter and assumed to be ap-
proximately the de Broglie wavelength associated with
the granule of size r ∼ λ = ~/σDM/m, δM is the total
mass of the dark matter granule δM ∼ δρ r3, and σDM

is the dark matter velocity dispersion.
The number of encounters in the lifetime of the star,

n, is given by comparing the granule crossing time
r/σDM to the total integration time t, resulting in
n ∼ σDMt/r. As each encounter kicks the star ran-
domly, we can add the variance of the kicks linearly
and interpret the sum as the predicted impact of gran-
ules on the velocity dispersion of stars due to the dark
matter for a specific model, i.e.

∆σ2
pred ∼ n δv2 . (B2)

If this is larger than the observed stellar dispersion rela-
tion ∆σ2

obs then the considered dark matter model can
be ruled out. Using that the stellar dispersion σ∗ can
be related to the enclosed mass at the half-light radius
r1/2 by M1/2 ≈ 3σ2

∗r1/2/G and that the density is ap-

proximately ρ = M1/2/r
3
1/2, we can rewrite the bounds

on the dark matter mass as

∆σ2
obs ≥ n δv2 = 9

(
σ∗
σDM

)4( ~
m

)3
t

r4
1/2

, (B3)

recovering the result in Ref. [28].
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[59] D. Crnojević, D. J. Sand, D. Zaritsky, K. Spekkens,
B. Willman, and J. R. Hargis, ApJ 824, L14 (2016),
arXiv:1604.08590 [astro-ph.GA].

[60] T. S. Li et al. (DES), Astrophys. J. 838, 8 (2017),
arXiv:1611.05052 [astro-ph.GA].

[61] A. V. Kravtsov, Astrophys. J. Lett. 764, L31 (2013),
arXiv:1212.2980 [astro-ph.CO].

[62] H.-Y. Schive, T. Chiueh, and T. Broadhurst, Phys.
Rev. Lett. 124, 201301 (2020), arXiv:1912.09483 [astro-
ph.GA].

[63] X. Li, L. Hui, and T. D. Yavetz, Phys. Rev. D 103,

https://doi.org/10.1103/physrevlett.121.211302
https://doi.org/10.1103/physrevlett.121.211302
https://doi.org/10.1088/0004-637x/709/2/1138
https://doi.org/10.1103/PhysRevLett.127.161302
https://doi.org/10.1103/PhysRevLett.127.161302
http://arxiv.org/abs/2007.00082
https://doi.org/ 10.1103/PhysRevD.102.083518
http://arxiv.org/abs/2007.08256
https://doi.org/10.1103/PhysRevD.83.043525
https://doi.org/10.1103/PhysRevD.83.043525
http://arxiv.org/abs/1001.1769
https://doi.org/10.1093/mnras/stab2884
http://arxiv.org/abs/2106.13244
https://doi.org/ 10.1103/PhysRevD.105.123540
https://doi.org/ 10.1103/PhysRevD.105.123540
http://arxiv.org/abs/2205.10336
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevLett.85.1158
http://arxiv.org/abs/astro-ph/0003365
https://doi.org/10.1093/mnras/stx449
https://doi.org/10.1093/mnras/stx449
http://arxiv.org/abs/1606.09030
http://arxiv.org/abs/1606.09030
https://doi.org/10.1093/mnras/stx1870
https://doi.org/10.1093/mnras/stx1870
http://arxiv.org/abs/1703.09126
https://doi.org/ 10.1103/PhysRevLett.119.031302
http://arxiv.org/abs/1703.04683
https://doi.org/ 10.1093/mnras/sty2888
http://arxiv.org/abs/1809.09619
https://doi.org/10.1103/physrevlett.126.071302
https://doi.org/10.1103/physrevlett.126.071302
https://doi.org/10.1103/PhysRevD.101.123026
https://doi.org/10.1103/PhysRevLett.123.051103
https://doi.org/10.1103/PhysRevLett.123.051103
http://arxiv.org/abs/1810.08543
https://doi.org/10.1103/PhysRevD.106.063517
https://doi.org/10.1103/PhysRevD.106.063517
http://arxiv.org/abs/2203.05750
https://doi.org/ 10.1103/PhysRevD.98.083027
https://doi.org/ 10.1103/PhysRevD.98.083027
https://doi.org/ 10.1103/physrevd.105.083015
https://doi.org/ 10.1103/physrevd.105.083015
https://doi.org/ 10.1051/0004-6361/202040239
http://arxiv.org/abs/2101.00253
https://doi.org/10.3847/1538-4357/ab7db2
https://doi.org/10.3847/1538-4357/ab7db2
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.81.123530
http://arxiv.org/abs/0905.4720
https://doi.org/10.1103/PhysRevLett.123.021102
https://doi.org/10.1103/PhysRevLett.123.021102
http://arxiv.org/abs/1904.09242
https://doi.org/10.1146/annurev-astro-120920-010024
https://doi.org/10.1146/annurev-astro-120920-010024
https://doi.org/10.1103/PhysRevD.95.043541
http://arxiv.org/abs/1610.08297
http://arxiv.org/abs/1610.08297
https://doi.org/10.1103/PhysRevD.106.123501
https://doi.org/10.1103/PhysRevD.106.123501
http://arxiv.org/abs/2112.09337
http://arxiv.org/abs/2112.09337
https://doi.org/10.1103/PhysRevD.106.043007
http://arxiv.org/abs/2204.01871
http://arxiv.org/abs/2204.01871
https://doi.org/ 10.1088/1475-7516/2021/10/028
http://arxiv.org/abs/2010.15977
https://doi.org/10.1016/j.dark.2020.100636
https://doi.org/10.1016/j.dark.2020.100636
http://arxiv.org/abs/1811.03771
http://arxiv.org/abs/1811.03771
https://doi.org/10.1103/PhysRevD.103.055014
https://doi.org/10.1103/PhysRevD.103.055014
http://arxiv.org/abs/2008.06505
http://arxiv.org/abs/2212.14288
https://doi.org/ 10.1088/1475-7516/2022/08/014
https://doi.org/ 10.1088/1475-7516/2022/08/014
http://arxiv.org/abs/2203.11935
https://doi.org/10.1103/PhysRev.187.1767
https://doi.org/10.1103/PhysRev.187.1767
https://doi.org/10.1103/PhysRevD.42.3918
https://doi.org/10.1103/physrevd.98.043509
https://doi.org/10.1103/physrevd.98.043509
https://doi.org/10.1103/PhysRevD.100.063528
https://doi.org/10.1103/PhysRevD.100.063528
http://arxiv.org/abs/1906.01348
https://doi.org/10.1103/PhysRevD.101.083518
https://doi.org/10.1103/PhysRevD.101.083518
http://arxiv.org/abs/1911.09614
http://arxiv.org/abs/1911.09614
https://doi.org/10.1103/physrevd.69.124033
https://doi.org/10.1103/physrevd.69.124033
https://doi.org/ 10.1088/0004-637X/765/1/39
https://doi.org/ 10.1103/PhysRevD.105.023512
https://doi.org/ 10.1103/PhysRevD.105.023512
http://arxiv.org/abs/2109.06125
https://doi.org/10.1103/PhysRevD.105.103506
http://arxiv.org/abs/2109.01920
http://arxiv.org/abs/2109.01920
https://doi.org/ 10.1103/physrevlett.113.261302
https://doi.org/ 10.1103/physrevlett.113.261302
https://doi.org/10.1017/pasa.2020.3
http://arxiv.org/abs/1908.02508
https://doi.org/10.1093/mnras/stac063
http://arxiv.org/abs/2110.11882
https://doi.org/10.1103/PhysRevD.106.103532
https://doi.org/10.1103/PhysRevD.106.103532
http://arxiv.org/abs/2208.06562
http://arxiv.org/abs/2212.09349
https://doi.org/10.3847/1538-4357/ac54b9
https://doi.org/10.3847/1538-4357/ac54b9
http://arxiv.org/abs/2206.01997
https://doi.org/ 10.3847/2041-8205/824/1/L14
http://arxiv.org/abs/1604.08590
https://doi.org/ 10.3847/1538-4357/aa6113
http://arxiv.org/abs/1611.05052
https://doi.org/10.1088/2041-8205/764/2/L31
http://arxiv.org/abs/1212.2980
https://doi.org/10.1103/PhysRevLett.124.201301
https://doi.org/10.1103/PhysRevLett.124.201301
http://arxiv.org/abs/1912.09483
http://arxiv.org/abs/1912.09483
https://doi.org/10.1103/PhysRevD.103.023508


12

023508 (2021), arXiv:2011.11416 [astro-ph.CO].
[64] A. Gallagher and P. Coles, The Open Journal of Astro-

physics (2022), 10.21105/astro.2208.13851.
[65] N. Musoke, S. Hotchkiss, and R. Easther, Phys.

Rev. Lett. 124, 061301 (2020), arXiv:1909.11678 [astro-
ph.CO].

[66] J. C. Niemeyer and R. Easther, JCAP 07, 030 (2020),
arXiv:1911.01661 [astro-ph.CO].

[67] B. Eggemeier, J. C. Niemeyer, and R. Easther, Phys.
Rev. D 103, 063525 (2021), arXiv:2011.13333 [astro-
ph.CO].

[68] B. Eggemeier, B. Schwabe, J. C. Niemeyer, and

R. Easther, Phys. Rev. D 105, 023516 (2022),
arXiv:2110.15109 [astro-ph.CO].

[69] B. Eggemeier, J. C. Niemeyer, K. Jedamzik, and
R. Easther, (2022), arXiv:2212.00425 [astro-ph.CO].

[70] S. Dimopoulos, S. Kachru, J. McGreevy, and J. G.
Wacker, JCAP 08, 003 (2008), arXiv:hep-th/0507205.

[71] R. Easther and L. McAllister, JCAP 05, 018 (2006),
arXiv:hep-th/0512102.

[72] M. Dias, J. Frazer, and D. Seery, JCAP 12, 030 (2015),
arXiv:1502.03125 [astro-ph.CO].

[73] J. Binney and S. Tremaine, Galactic Dynamics: Second
Edition (Princeton University Press, 2008).

https://doi.org/10.1103/PhysRevD.103.023508
http://arxiv.org/abs/2011.11416
https://doi.org/10.21105/astro.2208.13851
https://doi.org/10.21105/astro.2208.13851
https://doi.org/10.1103/PhysRevLett.124.061301
https://doi.org/10.1103/PhysRevLett.124.061301
http://arxiv.org/abs/1909.11678
http://arxiv.org/abs/1909.11678
https://doi.org/10.1088/1475-7516/2020/07/030
http://arxiv.org/abs/1911.01661
https://doi.org/10.1103/PhysRevD.103.063525
https://doi.org/10.1103/PhysRevD.103.063525
http://arxiv.org/abs/2011.13333
http://arxiv.org/abs/2011.13333
https://doi.org/10.1103/PhysRevD.105.023516
http://arxiv.org/abs/2110.15109
http://arxiv.org/abs/2212.00425
https://doi.org/10.1088/1475-7516/2008/08/003
http://arxiv.org/abs/hep-th/0507205
https://doi.org/10.1088/1475-7516/2006/05/018
http://arxiv.org/abs/hep-th/0512102
https://doi.org/10.1088/1475-7516/2015/12/030
http://arxiv.org/abs/1502.03125

	Multifield Ultralight Dark Matter
	Abstract
	Introduction
	Methodology
	Halo Construction
	Fluctuation Statistics

	Simulations
	Equal-mass
	Multi-mass case

	Stellar dispersion constraints
	Equal-mass case
	Multi-mass case

	Conclusions and Discussion
	Acknowledgments
	Eigenmodes for initial conditions
	Stellar dispersion constraints in the one field case
	References


