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We present the results on the search for the coalescence of compact binary mergers with very
asymmetric mass configurations using convolutional neural networks and the LIGO/Virgo data
for the O3 observation period. Two-dimensional images in time and frequency are used as input.
Masses in the range between 0.01 M� and 20 M� are considered. We explore neural networks
trained with input information from a single interferometer, pairs of interferometers, or all three
interferometers together, indicating that the use of the maximum information available leads to an
improved performance. A scan over the O3 data set using the convolutional neural networks for
detection results into no significant excess from an only-noise hypothesis. The results are translated
into 90% confidence level upper limits on the merger rate as a function of the mass parameters of
the binary system.

PACS numbers: 95.85.Sz, 04.80.Nn, 95.55.Ym, 04.30-w, 04.30.Tv

I. INTRODUCTION

Since the discovery of Gravitational Waves (GW)
in 2015 [1], generated by a compact binary coales-
cence (CBC) of black holes (BH), the LIGO and Virgo
experiments have improved their sensitivity and ob-
served an increasing number of GW signals, includ-
ing also events attributed to the coalescence of neu-
tron stars (NS), as well as the coalescence of BH-
NS binary systems. The latest catalogue of events,
from O1, O2 and O3 observation runs, collects a to-
tal of 90 events, dominated by BH-BH candidates [2–
4]. The data indicate that the masses in the binary
systems range between 1.17 M�(GW191219 163120) and
105 M�(GW190426 190642), with a mass ratio q ≡
m1/m2, where m1 denotes the heaviest of the two ob-
jects, in the range between 1.1 (GW170817) and 26.5
(GW191219 163120). The LIGO and Virgo Collabo-
rations use matched-filtering techniques to extract the
events from the much larger background (for a com-
prehensive review of the experimental techniques see
Ref. [5]). The use of machine learning tools has been
extensively explored in LIGO and Virgo (for a compre-
hensive review see Refs. [6, 7]). In particular, the pres-
ence of a distinct chirp-like shape in the CBC events,
when represented in spectrograms showing the signal in
frequency-time domain, makes the use of a convolutional
neural network (CNN) a valid alternative suitable for
GW detection [8–17]. In addition, the use of CNNs has
been explored to distinguish between families of glitches
or cleaning the data [18–21].

In this paper, we explore the implementation of a CNN
for the identification of CBC events with very asymmet-
ric mass configurations with q < 2000, and m1 and m2

in range between 1 – 20 M� and 0.01 – 1 M�, respec-
tively. This is motivated by the search for CBC can-
didates with the presence of subsolar-mass (SSM) BHs.

Since there is no well-established astrophysical explana-
tion for the origin of SSM BHs, their discovery would
point to the presence of new physics. The presence of
SSM BHs are predicted by different models, including
primordial black holes (PBHs) from the the collapse of
overdensities in the early universe [22–25]; gravitational
collapse of dark matter halos [26–29]; the accumulation
of dark matter by neutron stars leading to SSM BHs [30];
or SSM boson stars [31–33]. As illustrated in Figure 1,
this study complements the phase space in mass consid-
ered by previous searches for SSM events using O3 data
and matched-filtering based selections [4, 34–36]. Previ-
ous results using other observational periods are included
in Refs. [37–40].

II. DATA PREPARATION

The study uses the O3 data from LIGO-Hanford (H1),
LIGO-Livingston (L1) and Virgo (V1) interferometers
with 4096 Hz sampling rate. After imposing quality
requirements, dealing with the understanding of the
interferometer stationary noise budget as well as the
identification and suppression of glitches and spectral
noise contributions (for a comprehensive discussion see
Refs. [41, 42]), the H1-L1-V1 combined samples have a
total duration of 155 days. The H1-L1-V1 O3 data is used
for constructing an image containing a spectrogram with
only background and background plus injected signal for
the purposes of the CNN training. Special precaution was
taken in the preparation of the background images to ex-
clude any of the identified GWs events in O3, as collected
in the GWTC-3 catalog [4]. A total of 142, 944 images
were used. The results obtained (see below) show that
this number of images is enough for an adequate training
and validation of the network. The images are divided
as follows: 115, 200 (80.6%) for training, 12, 800 (9.0%)
for validating and 14, 944 (10.4%) for testing, evenly dis-
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FIG. 1. Region of interest compared to other recent searches.
The blue region is the one searched by the LVK collaboration
as part of the GWTC-3 catalog [4], the magenta hatched re-
gion corresponds to the LVK subsolar mass targeted search
performed over O3 data [34, 36] while the green hatched re-
gion corresponds to the broad search performed by Nitz and
Wang over the O3 data [35].

tributed into background-only and background with a
signal injected.

Waveforms for GW signals are generated using Py-
CBC [43–45] with the IMRPhenomD [46, 47] model and
combined with data segments from the different inter-
ferometers, after taking into account the proper relative
orientations, times of arrival and antenna factors. This
waveform family is not fully calibrated for the whole pa-
rameter space considered, and in particular for large q.
However, the use of very different waveform families re-
sults in a small impact on the spectrograms themselves,
as input to the neural network, which is able to detect
the event as long as the signal remains visible on the
two-dimensional image. The parameters considered are
uniformly sampled, as described in Table I, and zero spin
components are assumed. Masses in the range between 1
- 20 M� (0.01 - 1 M�) are considered for m1 (m2), and
the corresponding luminosity distance DL is limited to
nearby events in the range 1 - 100 Mpcs. Other parame-
ters related to the position in the sky and orientation of
the source are taken as homogeneously distributed.

m1 [M�] m2 [M�] DL [Mpc] ψ θJN α cos(δ)

[1, 20] [0.01, 1] [1, 100] [0, π/2] [0, π] [0, 2π] [−1, 1]

TABLE I. Range of the uniformly sampled variables for the
training set, being (m1,m2) the component masses, DL the
luminosity distance, ψ the inclination of the orbit with respect
to the line of sight, θJN the polarization of the gravitational
wave and (α, δ) the right ascension and declination, respec-
tively.

The injected signals are limited to a fixed maximum

duration of five seconds. The five-seconds window is
computed backward from the merger time to remove low-
amplitude monochromatic-like parts of the waveform and
avoid confusing the network during training. A low fre-
quency threshold of 45 Hz is applied in order to con-
trol the duration of the injected signal. Finally, the sig-
nals are randomly placed within the five-seconds win-
dow. Once the GW signals are injected in the different
H1, L1 and V1 background segments, the data is pro-
cessed. First, the time series are whitened following the
same prescription as in Refs. [5, 48]. Two-dimensional
arrays holding spectrogram data are then produced us-
ing Q-transforms [49–51] in order to arrive to the desired
images in terms of amplitude vs time vs frequency, with
400 bins in time and 100 bins in frequency. Figure 2
presents an example of spectograms corresponding to a
binary BH event with m1 = 2.6 M� and m2 = 0.35 M�
at a distance of 3.4 Mpcs. In the case of H1 and L1, the
characteristic chirp is clearly observed.

In order to account for the presence of glitches in the
data, not completely suppressed by the whitening pro-
cess and leading to instabilities in the CNN training [52],
the contents in each image are renormalized in such a
way that they have an average equal to zero and a vari-
ance equal to one, following the same prescription as in
Ref. [53].

FIG. 2. Spectrograms for a binary system with m1 = 2.6 M�
and m2 = 0.35 M� and a distance DL = 3.4 Mpcs, as seen in
H1, L1 and V1.
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III. NEURAL NETWORK DEFINITION AND
TRAINING

This study closely follows that of Ref. [53], using a
ResNet50 architecture [54, 55] (see Table II) with modi-
fications in the last layer, for which average pooling and
a fully connected dense layer (1-d fc) with a sigmoid ac-
tivation function are implemented. For the loss function,
a binary cross-entropy is employed. Finally, a learning
rate of 0.01 alongside an Adam optimizer [56–58] and a
batch size of 32 are used for a total of 10 epochs. With
all these parameters, different CNNs have been trained
using the GPU enhanced capabilities of Keras and Ten-
sorFlow [59].

We train seven different CNNs. Three CNNs are
trained separately for H1, L1 and V1 data. In addition,
three CNNs are trained for H1-L1, H1-V1, and L1-V1
pairs of input data, and one CNN is trained for H1-L1-
V1 combined input data, where information from two or
three interferometers are input simultaneously to the cor-
responding CNNs. This means that the input matrix will
have dimensions (400, 100, x) where x = 1, 2, 3 depend-
ing on the number of interferometers used. By feeding
simultaneously the data from various interferometers to
the CNN, we allow it to learn about the possible corre-
lations present and the final discriminant outputted by
the CNN will already be aware of whether the signal is
visible in multiple detectors or not. As expected, the
performances of the CNNs improve by including the in-
formation of multiple interferometers during the training
process, since the CNN learns about correlations across
images in different channels when the signal is present.
Therefore, CNNs using single interferometer information
are discarded for the final scan over the O3 data.

Figure 3 shows, for the H1-L1-V1 case, the evolution
of the accuracy and loss as a function of epochs, demon-
strating stability after about eight to ten epochs, with
an accuracy above 0.8 and a loss below 0.4. In addi-
tion, the validation accuracy is presented, demonstrating
a healthy evolution of the training process. The final
CNN output for the H1-L1-V1 case is shown in Figure 4,
where a clear discrimination is obtained between signal
and background samples. Similar features in the training
process and the distribution of the final CNN discrimi-
nant are observed in the rest of CNNs.

The receiver operating characteristic (ROC) curves for
the separate CNNs, representing the true positive (TP)
versus the false positive (FP) rates are presented in Fig-
ure 5 for the H1-L1, H1-V1, L1-V1, and H1-L1-V1 CNNs.
For very low FP rates, the TP rates only reach val-
ues around 70%, indicating a limited efficiency for event
detection. The efficiency steadily increases at the cost
of much larger FP rates. The ROC curve, along with
a tolerable maximum false alarms rate (FAR) for de-
tection, determines the final operating point of a given
CNN. The computation of the FAR for each CNN fol-
lows the prescription in Ref. [60]. The FAR is defined
as FAR(η) = N(η)/T , where η ∈ [0, 1] is the CNN dis-

Layer name Output size Layer structure

conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2 1×1, 64

3×3, 64

1×1, 256

×3

conv3 x 28×28

 1×1, 128

3×3, 128

1×1, 512

×4

conv4 x 14×14

 1×1, 256

3×3, 256

1×1, 1024

×6

conv5 x 7×7

 1×1, 512

3×3, 512

1×1, 2048

×3

1×1 Global average pool, 1-d fc, sigmoid

Hyper parameters

Learning rate 0.01

Batch size 32

Number of epochs 10

Optimizer Adam

Loss function Binary-cross entropy

TABLE II. CNN architecture and the associated hyper pa-
rameters. Building blocks are shown in brackets, with the
numbers of blocks stacked. Downsampling is performed by
conv3 1, conv4 1, and conv5 1 with a stride of 2 (partially
taken from [54]).

FIG. 3. Accuracy, loss and validation accuracy during the
training epochs for the H1-L1-V1 CNN.

criminant output, N(η) is the number of events with a
CNN discriminant above or equal to η and T the period
of time analysed. In order to effectively increase the time
considered in the calculation, reaching very low FAR val-
ues, the time slide technique [60, 61] is used. This allows
accumulating O(109) images of 5 s duration each and
accessing FAR values down to 1/152.6 years−1.

We initially establish a CNN discriminant η0 corre-
sponding to a FAR(η0) value of 1 years−1. However, the
number of FP detected remains sizable when η0 → 1
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FIG. 4. CNN discriminating output corresponding to the H1-
L1-V1 case for background and signal images.

FIG. 5. ROC curves for the different CNNs.

and the CNNs never reach a discriminant capable of pro-
ducing only one false positive event per year. A fur-
ther improvement of the global sensitivity is achieved
by combining the outputs of the separate CNNs into a
global discriminant. Such combination provides an addi-
tional tool for suppressing glitches in the data affecting
independently the interferometers and in different time
stamps. A simple average of the H1-L1-V1, H1-L1, L1-
V1, and H1-V1 CNN outputs has been considered. Al-
ternatively, a number of algorithms, potentially giving
different weights to different CNNs, were explored lead-
ing to very similar or even worse results. The result-
ing discriminant is presented in Figure 6 demonstrating
an improved separation between background and signal,
leading to a higher significance for the events finally se-
lected as signal. Table III collects the corresponding de-

tection rates and the computed FAR upper limit in the
case of η0 = 1 for the separate CNNs and their combina-
tion, where only the latter shows FAR values less than 1
event per year.

FIG. 6. CNN global discriminating output corresponding to
the average of the H1-L1-V1, H1-L1, L1-V1, and H1-V1 CNN
outputs for background and signal images.

CNN Threshold TP rate FP rate FAR(η0 = 1) [yrs−1]

H1 – L1 1.0 0.46 ≤ 2 · 10−4 ∼ 102

L1 – V1 1.0 0.47 ≤ 2 · 10−4 ∼ 103

H1 – V1 1.0 0.44 ≤ 2 · 10−4 ∼ 102

H1 – L1 – V1 1.0 0.58 ≤ 2 · 10−4 ∼ 103

Combined 0.998 0.50 ≤ 2 · 10−4 ∼ 10−2

TABLE III. Anticipated TP and FP rates and FAR for the
different CNNs and a discriminant η0 = 1. The FP rates
represent a 95% confidence level upper limits according to a
null observation of FP in the testing set assuming Poisson
statistics.

Signal injection studies are performed to establish the
sensitivity of the different CNNs to the presence of a
GW signal. For each GW signal, the signal-to-noise ra-
tio (SNR), ρ, is computed following the prescription in
Ref. [8] solving the integral

ρ2 = 4

∫ fmax

fmin

df
|h̃(f)|2

Sn(f)
, (1)

in the frequency domain (f), where h̃(f) denotes the sig-
nal in the frequency domain and Sn(f) the power spec-
tral density of the background. A Tukey window with
α = 1/9 is considered for the Fourier transform. The
SNR defined above refers to each of the interferometers
separately. Following the work in Refs. [62, 63], when
appropriate we define a network SNR, ρnet, as

ρ2net =
∑
i

ρ2i , (2)
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where i denotes the different interferometers. Figure 7
shows the fraction of GW signals identified by the CNNs
as a function of ρnet in the different cases. As expected,
the efficiency for signal detection increases rapidly with
increasing SNR, becoming more efficient for large ρnet
values and improving with the inclusion of information
from multiple interferometers. The best results are ob-
tained by the H1-L1-V1 CNN. The results from the com-
bination of CNNs is a compromise between the H1-L1-V1
CNN and the rest. Events with ρnet ≥ 25 would be de-
tected with an efficiency above 95% in the case of the
H1-L1-V1 CNN. Table IV collects the values of ρnet at
given detection efficiencies for the different CNNs.

FIG. 7. Signal detection efficiency as a function of ρnet for
the different CNNs and their combination.

CNN ρnet(80%) ρnet(90%) ρnet(95%)

H1 – L1 24.4 30.5 42.0

L1 – V1 23.7 29.0 41.2

H1 – V1 26.8 21.1 25.8

H1 – L1 – V1 17.3 21.1 25.8

Combined 22.4 28.0 40.1

TABLE IV. Values of ρnet at given detection efficiencies for
the different CNNs and the combination of outputs.

IV. RESULTS

We performed a scan of the full O3 data set, using the
H1-L1-V1 combined sample, for which a slicing window
of five seconds duration was used in steps of 2.5 seconds
(leading to a 50% overlap between consecutive images)
in each of the interferometers. This translates into more
than eighty million images to be tested for the presence
of potential signals. The CNN global discriminating out-
put, defined as the average of the H1-L1-V1, H1-L1, L1-
V1, and H1-V1 CNN outputs, is used to search for sig-
nal of SSM events. A scan over the data using different
global discriminating values in the range between 0 and

1 is performed. In each case, the corresponding FAR is
computed. The computation time for the entire O3 scan
has been of the order of 2, 000 CPU-hours (on an Intel®

Xeon® CPU E5-2680 v4 @ 2.40GHz). This represents a
major improvement compared with the typically required
CPU-time for known matched filtering pipelines.

FIG. 8. Observed cumulative event count as a function of the
inverse false alarm rate for the O3 scan (dots). The data is
compared to foreground predictions (dashed line) and includ-
ing 1σ, 2σ, and 3σ bands (shadowed areas).

The resulting inverse FAR distribution (IFAR), in
units of years, is presented in Figure 8 compared to the
expected yield of noise events following a Poisson prob-
ability distribution. No significant deviation from the
expected noise is observed and no claim of SSM event de-
tection can be made. For illustration purposes, Figure 9
shows the H1, L1 and V1 spectrograms for the most sig-
nificant event having a FAR of 1.9 years−1, a combined
CNN value equal to 0.9635, and CNN values equal to
0.9848, 0.9172, 0.9774 and 0.9747 for the H1-L1-V1, H1-
L1, L1-V1, and H1-V1 neural networks, respectively.

The results are translated into 90% confidence level
(CL) upper limits of the merger rate of binary systems
in the range of masses and q values considered. Since
the sensitivity for detection mostly depends on the chirp

mass of the binary system, defined asMc ≡ (m1m2)
3/5

(m1+m2)1/5
,

the computed merger rates are binned in Mc instead of
in the single masses of the binary system. The 90% CL
upper limits are calculated using the loudest event statis-
tics approach [34–36, 64, 65] in terms of the surveyed
time-volume 〈V T 〉, following the expression

R90 =
2.3

〈V T 〉
, 〈V T 〉 = T

∫
dz

1

1 + z

dVc
dz

ε(z), (3)

where T is the total observation time, z denotes the red-
shift, Vc is the comoving volume and ε is the efficiency for
detection. In this study T is limited to 155 days when
H1, L1 and V1 interferometers were all taking data si-
multaneously. Figure 10 presents the detection efficiency
of the combined CNN discriminant as a function of z in
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FIG. 9. Spectrogram of the most significant image. Corre-
sponds to a FAR = 1.9 yrs−1

several Mc bins. The efficiency is computed using in-
jected signals and it vanishes for z > 0.06. The integral
above is marginalized over the rest of parameters of the
binary system (see Table I), which are considered homo-
geneously distributed in comoving volume.

FIG. 10. Detection efficiency for the combined CNN discrim-
inant as a function of z for different values of the chirp mass.

Figures 11 and 12 presents the 90% CL upper limits
on the merging rate as a function of the chirp mass and
as a function of m2 in different m1 regions, respectively.
The results are compared to similar ones obtained with
matched-filtering techniques. Our result provides 90%
CL upper limits in the range between 3×106 Gpc−3yrs−1

and 560 Gpc−3yrs−1 with increasing chirp mass, extend-
ing previous results to chirp masses up to 3 M�. At lower
chirp mass, our constrains are weaker than previous re-
sults. This is partially attributed to the effective reduc-
tion of the observation time, by a factor of about two,
from limiting the data to simultaneous H1-L1-V1 con-
figurations, as a way to obtain manageable false alarm
rates. As shown in Figure 12, the constrains from our
analysis are more stringent with increasing mass differ-
ence m1 − m2, as expected for a CNN trained on very
asymmetric configurations.

FIG. 11. The 90% confidence level upper limit on R90 as a
function of the chirp mass. Our result (solid line) is com-
pared with matched-filtering based results from [35] (dashed
line) and from [36] (dotted line). The curve in [36] presents a
sudden increase in the last chirp mass bin, as the component
masses contained in this bin are beyond the ones covered by
their template bank.

FIG. 12. The 90% confidence level upper limit on R90 as
function of m2 in different m1 regions. Our result (solid lines)
is compared with Nitz et al. results [35] (dashed line).
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V. CONCLUSIONS

We present the results on a search for compact binary
coalescence events with asymmetric mass configurations
with masses in the range 0.01 M� and 1 M� for the
lighter object and between 1 M� and 20 M� for the heav-
ier, using LIGO-Virgo O3 data and dedicated convoluted
neural networks based on the analysis of frequency-time
spectrograms. Different neural networks and combina-
tion of them are explored, involving the simultaneous
use of several interferometers data. The scan over the
O3 data results into no significant signal events found.
The CNN approach for scanning the data is found to
be much faster than traditional matched-filtering based
pipelines. The CNN results are translated into 90% con-
fidence level upper limits on the merger rates as a func-
tion of the mass parameters of the binary system for
events within z < 0.06 and for the trained range. Al-
though the results do not improve other bounds using
matched-filtering techniques, partially due to the limited
observation time considered, the CNN approach allows
for effectively extending the search towards larger chirp
masses.
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