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We investigate the interaction of strong color fields in the glasma stage of high-energy nu-

clear collisions with the spins of quarks and antiquarks. We employ the perturbative solution

of the quantum kinetic theory for the spin transport of (massive) quarks in a background

color field governed by the linearized Yang-Mills equation and derive expressions for the

quark-spin polarization and quark-antiquark spin correlation at small momentum in terms

of field correlators. For the Golec-Biernat Wüsthoff dipole distribution the quark-spin polar-

ization vanishes, but the out-of-plane spin correlation of quarks and antiquarks is nonzero.

Our order-of-magnitude estimate of the correlation far exceeds that caused by vorticity ef-

fects, but does not fully explain the data for vector meson alignment. We identify possible

mechanisms that could further increase the predicted spin correlation.

I. INTRODUCTION

Recent observations of global and local spin polarization of hadrons in relativistic heavy ion

collisions [1–3] have motivated a number of theoretical studies to understand the origin of spin

polarization and spin transport of partons in quark gluons plasmas (QGP). It was originally pro-

posed that the large angular momentum created in peripheral collisions could lead to the spin

polarization of partons through the spin-orbit interaction and later inherited by the spin polariza-

tion of hadrons [4, 5]. In global thermal equilibrium, the spin polarization of hadrons is dictated

by thermal vorticity [6, 7]. This theoretical description remarkably matches the measurements of

global spin polarization of Λ hyperons [8–12]. Nevertheless, the contribution from solely thermal

vorticity [13, 14] disagrees with the later measured local spin polarization [2], which implies further

corrections beyond the global equilibrium condition need to be considered. Several corrections in

[15–22] and out of local equilibrium [15, 23–33] have been recently studied, while these contribu-

tions mostly come from gradients of hydrodynamic variables such as the thermal-shear correction

[15, 17, 19] or the chemical-potential gradient [15, 16]. See Ref. [34] for a recent review and more

references for the spin polarization in heavy ion collisions.

In addition to the observations of spin polarization of hadrons, there have been further mea-

surements for spin alignment of vector mesons characterized by the deviation of the longitudinal

(00) component of the spin density matrix ρ00 from 1/3 [35–37]. As inferred by the spin coales-

cence model [5, 38], the unexpectedly large deviation observed in experiments implies strong spin

polarization of the composite quark and antiquark or more precisely their spin correlation com-

pared with those extracted from the spin polarization of Λ hyperons. Moreover, there exist both

quantitative and qualitative differences for the spin alignment between distinct flavors and different

collision energies. For example, a value ρ00 < 1/3 is observed for both φ and K∗0 mesons with
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small transverse momenta at LHC energies [35], whereas ρ00 > 1/3 for φ and ρ00 ≈ 1/3 for K∗0

were found for global spin alignment at RHIC [36]. Various theoretical mechanisms [39–46],beyond

the contributions from hydrodynamic gradients, have been proposed as one may not expect that

the collision energy and flavor dependence could be simultaneously explained by a single effect. At

this time the puzzle remains unsolved.

In Refs. [42, 43], using quantum kinetic theory (QKT) for the coupled vector and axial vecotor

current evolution of spin-1/2 massless [47–50] and massive fermions [51–57] in phase space (see

also [58] for a recent review and references), two of us proposed that the turbulent color fields

from weakly coupled anisotropic QGP could potentially result in ρ00 < 1/3 for spin alignment. As

opposed to most studies focusing on late-time effects upon spin polarization, we also pointed out

that the dynamical source term in this framework could capture the early-time effects that results

in the spin polarization at freeze-out. In general, such early-time effects will be further affected

by collisions in late times, from which the spin polarization could be suppressed by relaxation or

enhanced by quantum corrections from gradient terms such as vorticity [26, 27, 55–57, 59–62].

However, the effect from strong background fields ∼ O(g2) with g the QCD coupling overwhelms

the collisional effect from scattering with hard partons ∼ O(g4) or ∼ O(g4 ln g) at weak coupling

[55, 60, 62] as a systematic analysis of the kinetic equations shows. Nevertheless, the magnitudes

of such turbulent color fields, originating from Weibel-type instabilities in expanding QGP [63–65],

remains unknown.

On the other hand, in the early stage of high-energy nuclear collisions before the formation

of QGP, the soft gluons with large densities sourced by the hard partons could be described by

dynamical color fields encoded in classical Yang-Mills equations and form the highly-dense matter

known as glasma [66, 67] in the color glass condensate (CGC) effective theory [68–70] (see also

[71, 72] for reviews). It is hence of interest to explore how the strong color fields in the glasma phase

could influence the spin polarization and correlation of quarks and antiquarks via the dynamical

source term obtained from the QKT [42, 43]. Some recent studies have shown a substantial effect

from these color fields in glasma on jet quenching of hard probes due to accumulating momentum

transfer from the soft gluons even though the glasma phase lasts for only a relatively short period

compared with QGP [73, 74]. There also exists the study of the glasma influence on angular

momentum fluctuations of heavy quarks [75]. One may analogously anticipate the accumulated

angular momentum transfer from these soft gluons yields the spin polarization and correlation of

quarks and antiquarks traveling through the glasma. In this paper, we investigate such effects by

studying the dynamical source term from QKT augmented by the color fields analytically solved

from linearized (Abelianized) Yang-Mills equations in Ref. [76], from which the spin polarization

and correlation of quarks and antiquarks at small momentum and central rapidity are derived in

the integral form of the gluon distribution in the glasma. By adopting the Golec-Biernat–Wusthoff

(GBW) dipole distribution [77], we numerically estimate the non-vanishing spin correlation out of

plane and manifest its enhancement at weak coupling and large collision energy.

The paper is organized as follows : In Sec. II, we briefly review how dynamical spin polarization

of quarks and the related spin correlation associated with spin alignment of vector mesons can

be induced by color fields in the framework of QKT. The simplified case at small momentum is
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further examined. In Sec. III, we then review the chromo-electric and -magnetic fields derived from

linearized Yang-Mills equations in the glasma. In Sec. IV, the dynamical spin polarization and spin

correlation induced by such color fields in the glasma are accordingly investigated. In Sec. V, we

further analyze these results with the GBW distribution and make a numerical estimation of the

spin correlation. Finally, in Sec. VI, we present our conclusions and outlook. Some details of

calculations and derivations are presented in appendices.

Throughout this paper, we use the signature ηµν = diag(1,−1,−1,−1) of the Minkowski metric

and the completely antisymmetric tensor εµνρλ with ε0123 = εtxyz = 1, where 0, 1, 2, 3 and t, x, y, z

will be used as the space-time indices interchangeably unless specified. We introduce the notations

A(µBν) ≡ AµBν + AνBµ and A[µBν] ≡ AµBν − AνBµ. We also define the dual field strength of

color fields via F̃ aµν ≡ εµναβF aαβ/2 with a being color indices.

II. DYNAMICAL SPIN POLARIZATION FROM QUANTUM KINETIC THEORY

In this section, we briefly summarize the spin polarization and correlation obtained from the

framework of QKT and Wigner functions of quarks under background color fields previously derived

in Refs. [42, 43]. We also review the connection between spin correlation and spin alignment of

vector mesons with an update on the coalescence model. The dynamical spin polarization led by

color fields at the small-momentum limit with a more generic form than those in Refs. [42, 43] are

presented, which will be later utilized to study the effects from glasma in subsequent sections.

A. From spin correlation to spin alignment by color fields

As shown in Refs. [42, 43], the spin-polarization spectrum of a quark is described by the spin

Cooper-Frye formula [6, 7],

Pµ(p) =

∫
dΣ · pJ sµ5 (p, X)

2m
∫
dΣµN sµ(p, X)

, (1)

where J sµ5 (p, X) and N sµ(p, X) with p being the quark momentum denote the onshell color-singlet

axial-charge-current density and number-current density in phase space, respectively. Here dΣµ is

the normal vector of a freeze-out hyper surface and m is the mass of quarks. Also, J sµ5 (p, X) and

N sµ(p, X) are associated with the axial-vector and vector components of the color-singlet Wigner

functions of quarks, which can be expressed in terms of the effective spin four-vector ãsµ(p,X) and

the vector-charge distribution function fsV (p,X), where the former delineates the dynamical spin

evolution and the later describes the energy and charge transport of quarks. Their dynamics are

governed by an axial kinetic equation and a scalar kinetic equation as the traditional Boltzmann

equation, while the collisional effects are neglected due to the suppression compared to relatively

strong background fields at weak coupling as our assumption. In this setup, the leading-order

J sµ5 (p, X) and N sµ(p, X) in the ~ expansion are given by [42, 43]

N sµ(p, X) =
(
pµfsV

)
p0=εp

, (2)

J sµ5 (p, X) =
(
ãsµ + ~C̃2AµQ

)
p0=εp

, (3)
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where εp =
√
|p|2 +m2 is the onshell energy and C̃2 = g2/(2Nc) with Nc the number of colors. The

~ is an expansion parameter characterizing the order of gradient expansion for Wigner functions

in phase space. Here the non-dynamical source term, AµQ, can be decomposed into 1

AµQ|p0=εp = AµQ1 +AµQ2 (4)

with the explicit form of AµQ1 and AµQ2 as

AµQ1 =

[
∂pκ
2

∫ p,X

k,X′
pβ
(
F̃ aµκ(X)F aαβ(X ′)

)
∂αp f

s
V (p,X ′)

]
p0=εp

, (5)

and

AµQ2 = −εp
2
∂p⊥κ

[ ∫ p,X

k,X′
p̂β
(
F̃ aµκ(X)F aαβ(X ′)

)
∂αp f

s
V (p,X ′)

]
p0=εp

=
1

2ε2p
(p⊥κ − ε2p∂p⊥κ)

[ ∫ p,X

k,X′
pβ
(
F̃ aµκ(X)F aαβ(X ′)

)
∂αp f

s
V (p,X ′)

]
p0=εp

, (6)

where F aαβ denotes the color gauge field in the glasma and p̂µ ≡ pµ/p0. Furthermore, we introduced

the abbreviation ∫ p,X

k,X′
≡
∫
d4k

∫
d4X ′

(2π)4
eik·(X

′−X)
(
πδ(p · k) + iPV (1/p · k)

)
. (7)

Throughout this section, V µ
⊥ represents the spatial component of any four-vector V µ. The notation

PV (x) denotes the principal value of x. Note that the integral
∫ p,X
k,X′ integrates over k and X ′ and

leads to a function depending on p and X. The notation
(
F aκν(X)F aαλ(X ′)

)
is understood to

implicitly incorporate a gauge link between X ′ and X for gauge invariance. We will neglect the

gauge link in perturbative calculations because it contributes at higher order in the gauge coupling.

F aκν(X) and F aαλ(X ′) here should be still regarded as field operators and thus Pµ(p) in Eq. (1) is

also a Fock space operator. This means that one has to further take the ensemble average of the

correlation function for color fields, 〈F aκν(X)F aαλ(X ′)〉, to evaluate the spin polarization spectrum

〈Pµ(p)〉 when comparing to the experimental observable.

On the other hand, we have to also include the contribution from ãsµ for dynamical spin

polarization. The dynamics of ãsµ is governed by the color-singlet axial kinetic equation,

0 = δ(p2 −m2)
(
p · ∂ãsµ(p,X)− ∂κpDκ[ãsµ] + ~∂κp

(
A µ
κ [f s

V ]
))
, (8)

where

Dκ[O] = C̃2

∫ p,X

k,X′
pλpρ

(
F aκλ(X)F aαρ(X

′)
)
∂αpO(p,X ′) (9)

and

A µ
κ [O] =

C̃2

2
εµνρσ

∫ p,X

k,X′
pλpρ

(
∂X′σ

(
F aκλ(X)F aαν(X ′)

)
+ ∂Xσ

(
F aκν(X)F aαλ(X ′)

))
∂αpO(p,X ′).(10)

1 The integration of ε−1
p AµQ|p0=εp over p contributes to an axial-charge current. Here ε−1

p AµQ2 is a total-derivative

term in momentum, which accordingly leads to a vanishing contribution to the axial-charge current. However, it

still gives rise to a non-vanishing contribution to the spin-polarization spectrum.
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At weak coupling, given no initial polarization, ãsµ has to be induced by the dynamical source

term ~∂κp
(
A µ
κ [f s

V ]
)

in Eq. (8), which yields ãsµ ∼ O(g2) and the diffusion term ∂κpDκ[ãsµ] is

accordingly of O(g4). Unless we consider the evolution for sufficiently long time, one may assume

p ·∂ãsµ(p,X)� ∂κpDκ[ãsµ]. To obtain the solution of ãsµ from the kinetic equation, we may utilize

the solution,

ãµ(p,X) =

∫ p,X

k,X′
Gµ(p,X ′)

=

∫
dδX0

2p0

(
1 + sgn(δX0)

)
Gµ(p,X ′)|δXx,y=0,δXz=pzδX0/p0

, (11)

for the differential equation,

p · ∂ãµ(p,X) = Gµ(p,X), (12)

with an arbitrary function Gµ(p,X) independent of ãµ(p,X), where δX = X −X ′. By neglecting

the diffusion term, one finds

ãsµ(p,X) = − ~
2p0

∫
dδX0

(
1 + sgn(δX0)

)
∂κp
(
A µ
κ [f s

V ](X ′)
)
|δXx,y=0,δXz=pzδX0/p0

. (13)

For notational convenience, we may write

ãsµ(p,X) = −~
∫ p,X

k,X′
∂κp
(
A µ
κ [f s

V ](X ′)
)

= −~C̃2

2
εµνρσ

∫ p,X

k,X′
∂κp

∫ p,X′

k′,X′′
pλpρ

(
∂X′′σ

(
F aκλ(X ′)F aαν(X ′′)

)
+ ∂X′σ

(
F aκν(X ′)F aαλ(X ′′)

))
×∂αp f s

V (p,X ′′). (14)

Similar to the non-dynamical source term, the field strengths above are also operators and the

ensemble average needs to be taken in the end.

Now, given an explicit expression of spin polarization for a quark Pµq (p) and for an antiquark

Pµq̄ (p), one could further compute the ensemble average of spin correlation,

〈Pµq (p)Pµq̄ (p)〉 =

∫
dΣX · p

∫
dΣY · p〈J sµ5 (p, X)J sµ5 (p, Y )〉

4m2
( ∫

dΣX · N s(p, X)
)2 . (15)

Note that 〈Pµq (p)Pµq̄ (p)〉 needs not be equal to 〈Pµq (p)〉〈Pµq̄ (p)〉. From the spin-dependent coa-

lescence model, one may evaluate the 00 component of the spin density matrix for spin-1 vector

mesons through [5, 38]

ρ00 =
1− 〈P iqP iq̄〉
3 + 〈P iqP iq̄〉

, (16)

where the superscript i is the assigned spin quantization axis determined by experimental setup,

which may be chosen as the y axis along the direction perpendicular to the reaction plane in heavy

ion collisions. The deviation of ρ00 from 1/3 thus implies non-vanishing spin correlation in QGP

even when the spin polarization of a quark or an antiquark vanishes. However, there exists a
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caveat for Eq. (16), which is in fact derived based on the assumption that the spin of a quark and

of an antiquark are fully polarized along the quantization axis. In a more generic case, as shown

in Ref. [78] (see also appendix A for a consistent derivation), Eq. (16) should be modified as

ρ00 ≈
1 +

∑
j=x,y,z〈P

j
qPjq̄ 〉 − 2〈P iqP iq̄〉

3 +
∑

j=x,y,z〈P
j
qPjq̄ 〉

, (17)

where i here again denotes the spin quantization axis yet the spin correlations for all other directions

need to be incorporated. The crucial difference is that ρ00 = 1/3 even when 〈PjqPjq̄ 〉 6= 0 is isotropic

(i.e. 〈Pxq Pxq̄ 〉 = 〈PyqPyq̄ 〉 = 〈PzqPzq̄ 〉). When evaluating ρ00 or 〈P iqP iq̄〉 in the glasma phase, instead

of simply taking the ensemble average of two chromo-electromagnetic fields from dynamical source

terms, we will consider the ensemble average of four field-strength operators therein.

Notably, when comparing the spin polarization led by the non-dynamical source term in Eq. (4)

and by the dynamical one in Eq. (14), it is found that the former depends on only the color-field

correlator at the late time when spin freezes out. On the contrary, the latter is contributed by

integrating the color-field correlator over a whole period before the spin freeze-out. Considering

the spin polarization from the strong color fields in the glasma phase in early times, which decay

shortly after collisions, the dynamical spin polarization should dominate over the non-dynamical

one. Accordingly, we shall evaluate the spin correlation via

〈P iqP iq̄〉 ∼ 〈ãsi(p,X)ãsi(p, Y )〉

=
〈∫ p,X

k,X′
∂κp
(
A i
κ [f s

V ](X ′)
) ∫ p,Y

k,Y ′
∂κp
(
A i
κ [f s

V ](Y ′)
)〉

=
C̃2

2

4
εiνρσεiν

′ρ′σ′
〈∫ p,X

k,X′
∂κp

∫ p,X′

k′,X′′
pλpρ

(
∂X′′σ

(
F aκλ(X ′)F aαν(X ′′)

)
+ ∂X′σ

(
F aκν(X ′)F aαλ(X ′′)

))
×∂αp f s

V (p,X ′′)

∫ p,Y

k̄,Y ′
∂κ
′
p

∫ p,Y ′

k̄′,Y ′′
pλ
′
pρ′
(
∂Y ′′σ′

(
F bκ′λ′(Y

′)F bα′ν′(Y
′′)
)

+ ∂Y ′σ′
(
F bκ′ν′(Y

′)F bα′λ′(Y
′′)
))

×∂α′p f s
V (p, Y ′′)

〉
(18)

from Eq. (14). Despite the generic ρ00 depends on 〈PjqPjq̄ 〉 for j = x, y, z, we will only focus on

〈PyqPyq̄ 〉 in this paper for simplicity.

B. Simplification in the small-momentum limit

For practical applications, one has to convert the field strengths into chromo-electric and -

magnetic fields, which are explicitly given by

F aµν = −εµναβBaαn̄β + Ea[µn̄ν], F̃ aµν = Ba[µn̄ν] + εµναβEaαn̄β, (19)

where n̄µ = (1,0) denotes the temporal direction. We will make further approximations to simplify

the dynamical source term. Nevertheless, unlike the derivation in Refs. [42, 43], we will not impose

the hierarchy between chromo-electric and -magnetic fields and keep the operator form of color-field
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correlations for generality. We first assume fsV = fV (p0) as a function only depending on p0 for

simplification. Considering

A µ
κ [fV (p0)] = − C̃2

2
εµνρσ

∫ p,X

k,X′
pλpρ

(
∂X′σ

(
F aκλ(X)Eaν (X ′)

)
+ ∂Xσ

(
F aκν(X)Eaλ(X ′)

) )
∂p0fV (p0),

(20)

where we omit the X dependence of A µ
κ [fV (p0)] for notational convenience, and using the relation

∂pκ

∫ p,X

k,X′
G(X, δX) = −δ

0
κ

p0

∫ p,X

k,X′
G(X, δX) +

∫ p,X

k,X′
∂pκG(X, δX)

+

∫ p,X

k,X′
δX0

∂G(X, δX)

∂δXµ
⊥

∂pκ

(
pµ⊥
p0

)
, (21)

we derive

∂κpA µ
κ [fV (p0)] = − 1

p0

∫ p,X

k,X′
Â µ

0 [fV (p0)] +

∫ p,X

k,X′
∂pκÂ

µ
κ [fV (p0)] +

∫ p,X

k,X′
(X0 −X ′0)

∂Â µ
κ [fV (p0)]

∂X ′ν⊥

× 1

p0
(ηνκ − p̂ν n̄κ). (22)

Here we introduce

Â µ
κ [fV (p0)] = − C̃2

2
εµνρσpλpρ

(
∂X′σ

(
F aκλ(X)Eaν (X ′)

)
+ ∂Xσ

(
F aκν(X)Eaλ(X ′)

) )
∂p0fV (p0) (23)

and hence

∂κp Â µ
κ [fV (p0)] = − C̃2

2
εµνρσ

(
ηκλpρ + pλδκρ + pλpρδ

κ
0∂p0

)(
∂X′σ

(
F aκλ(X)Eaν (X ′)

)
+∂Xσ

(
F aκν(X)Eaλ(X ′)

) )
∂p0fV (p0). (24)

To proceed, we postulate a semi-thermal distribution fV (p0) = 1/(ep0/Λ + 1) as the distribution

function for quarks or antiquarks created in early times of the glasma phase with Λ an effective

energy scale that should eventually evolve to temperature of the QGP after thermalization. For

simplicity, we will also ignore the time dependence of Λ. By considering low-energy particles with

p0 � Λ such that fV (p0) is less suppressed, one finds |∂p0fV (p0)| � |pµ||∂2
p0
fV (p0)|. Considering

the most relevant regime that substantial spin alignment is observed in experiments, we will further

focus on the small-momentum limit such that p̂µ⊥ ≡ pµ⊥/p0 � 1 for p0 = εp ≡
√
p2 +m2 being

onshell. Consequently, we can approximate

Â µ
κ [fV (p0)] ≈ C̃2

2
εµνρσp2

0n̄ρ∂X′σ
(
Eaκ(X)Eaν (X ′)

)
∂p0fV (p0), (25)

and

∂κp Â µ
κ [fV (p0)] ≈ − C̃2

2
p0

(
εµνρσ∂X′σ

(
Eaρ (X)Eaν (X ′)

)
+ ∂Xσ

(
Ba[µ(X)Eaσ](X ′)

))
∂p0fV (p0),(26)

by dropping the higher-order terms of O(|p̂µ⊥|). From Eq. (25), one also obtains Â µ
0 [fV (p0)]/p0 ≈ 0

and

∂Â µ
κ [fV (p0)]

p0∂X ′κ⊥
≈ C̃2

2
εµνρσp0n̄ρ∂

κ
X′∂X′σ

(
Eaκ(X)Eaν (X ′)

)
∂p0fV (p0). (27)
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It turns out that

∂κpA µ
κ [fV (p0)] ≈ − C̃2

2
p0

(
∂p0fV (p0)

) ∫ p,X

k,X′

[
εµνρσ∂X′σ

(
Eaρ (X)Eaν (X ′)

)
+ ∂Xσ

(
Ba[µ(X)Eaσ](X ′)

)
+(X ′0 −X0)εµνρσn̄ρ∂

κ
X′∂X′σ

(
Eaκ(X)Eaν (X ′)

) ]
(28)

as the leading-order contribution in the small-momentum limit. One thus arrives at

ãsµ(p,X) =
C̃2

2
p0

(
∂p0fV (p0)

) ∫ p,X

k,X′

∫ p,X′

k′,X′′

[
εµνρσ∂X′′σ

(
Eaρ (X ′)Eaν (X ′′)

)
+ ∂X′σ

(
Ba[µ(X ′)Eaσ](X ′′)

)
+(X ′′0 −X ′0)εµνρσn̄ρ∂

κ
X′′∂X′′σ

(
Eaκ(X ′)Eaν (X ′′)

) ]
. (29)

When choosing µ = x, y, z (or equivalently µ = 1, 2, 3 ), each component of ãsµ(p,X) explicitly

reads

ãsx(p,X) = −

(
C̃2

2
p0

(
∂p0fV (p0)

))∫ p,X

k,X′

∫ p,X′

k′,X′′

[
∂X′′0

(
Ea[3(X ′)Ea2](X

′′)
)

+ ∂νX′
(
Ba

[1(X ′)Eaν](X
′′)
)

+(X ′′0 −X ′0)∂νX′′∂X′′[2

(
Eaν (X ′)Ea3](X

′′)
) ]
, (30)

ãsy(p,X) = −

(
C̃2

2
p0

(
∂p0fV (p0)

))∫ p,X

k,X′

∫ p,X′

k′,X′′

[
∂X′′0

(
Ea[1(X ′)Ea3](X

′′)
)

+ ∂νX′
(
Ba

[2(X ′)Eaν](X
′′)
)

+(X ′′0 −X ′0)∂νX′′∂X′′[3

(
Eaν (X ′)Ea1](X

′′)
) ]
, (31)

and

ãsz(p,X) = −

(
C̃2

2
p0

(
∂p0fV (p0)

))∫ p,X

k,X′

∫ p,X′

k′,X′′

[
∂X′′0

(
Ea[2(X ′)Ea1](X

′′)
)

+ ∂νX′
(
Ba

[3(X ′)Eaν](X
′′)
)

+(X ′′0 −X ′0)∂νX′′∂X′′[1

(
Eaν (X ′)Ea2](X

′′)
) ]
, (32)

which are the building blocks of the follow-up computations.

III. COLOR FIELDS IN THE GLASMA

In the infinite-momentum frame for the parton content of a nucleus described by the CGC

framework [68–70], the dynamics of the soft modes (small-x) of gluons with large occupation

numbers follows the classical Yang-Mills equation,

[Dµ, F
µν ] = Jν , (33)

where Dµ is the covariant derivative augmented by the non-Abelian gauge field and Fµν is the

gluonic field strength. Here we omit the color indices for brevity. In addition, Jµ serves as a source

term coming from valence quarks as the hard modes, for which the explicit expressions in term

of color-source densities for collisions of two nuclei and further analyses can be found in Ref. [79].

Generically, Eq. (33) may only be solved numerically with prescribed initial conditions [80–85],
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while analytic approximations can be obtained in either the weak-field limit of the dilute-dense

system [79, 86–89] or the early-time limit via the perturbative expansion in an infinitesimal proper

time [90–93]. However, for our purpose to study the memory effect of dynamical spin polarization,

the inclusion of late-time dynamics for color fields is indispensable. As a result, we will instead

adopt the linearized (Abelianized) approximation in Ref. [76], from which the late-time dynamics

can be captured by sacrificing gauge invariance and presuming the nonlinear corrections upon

quantities of our interest are small. According to Ref. [76], based on the definitions Eη ≡ Fτη/τ ,

EiT ≡ Fτi, B
η ≡ −εijFij/2, and Bi ≡ −εijFjτ/τ in Milne coordinates with τ the proper time and

η spacetime rapidity, the chromo-electric and -magnetic fields in the glasma are found to be

Eη(τ, x⊥) = −igδij
∫
d2q⊥
(2π)2

∫
d2u⊥[αi1(u⊥), αj2(u⊥)]×J0(qτ)eiq⊥(x−u)⊥ , (34)

Bη(τ, x⊥) = −igεij
∫
d2q⊥
(2π)2

∫
d2u⊥[αi1(u⊥), αj2(u⊥)]×J0(qτ)eiq⊥(x−u)⊥ , (35)

EiT (τ, x⊥) = −gεijεkl
∫
d2q⊥
(2π)2

qj

q

∫
d2u⊥[αk1(u⊥), αl2(u⊥)]×J1(qτ)eiq⊥(x−u)⊥ , (36)

Bi
T (τ, x⊥) = −gεijδkl

∫
d2q⊥
(2π)2

qj

q

∫
d2u⊥[αk1(u⊥), αl2(u⊥)]×J1(qτ)eiq⊥(x−u)⊥ , (37)

which yield

Ecη(τ, x⊥) = gfabcδij
∫
d2q⊥
(2π)2

∫
d2u⊥α

i,a
1 (u⊥)αj,b2 (u⊥)×J0(qτ)eiq⊥(x−u)⊥ , (38)

Bcη(τ, x⊥) = gfabcεij
∫
d2q⊥
(2π)2

∫
d2u⊥α

i,a
1 (u⊥)αj,b2 (u⊥)×J0(qτ)eiq⊥(x−u)⊥ , (39)

EciT (τ, x⊥) = −igfabcεijεkl
∫
d2q⊥
(2π)2

qj

q

∫
d2u⊥α

k,a
1 (u⊥)αl,b2 (u⊥)×J1(qτ)eiq⊥(x−u)⊥ , (40)

Bci
T (τ, x⊥) = −igfabcεijδkl

∫
d2q⊥
(2π)2

qj

q

∫
d2u⊥α

k,a
1 (u⊥)αl,b2 (u⊥)×J1(qτ)eiq⊥(x−u)⊥ , (41)

where fabc represents the structure constant, Jα(x) denotes the Bessel function of the first kind,

and αi,a1,2 correspond to the transverse gauge fields sourced by the color-charge densities from nuclei

1, 2. Note that the indices i, j, k, l above are along the transverse direction with respect to the

light-cone orientations. Also, the subscript ⊥ is used to denotes the component perpendicular to

the light cones and q⊥x⊥ ≡
∑

i q
i
⊥x

i
⊥. That is, i = x, y. We will hereafter adopt this convention

for an arbitrary vector with the subscript ⊥ (not to confuse it with the convention used in the

previous section).

From the transformation of coordinates, τ =
√
t2 − z2 and η = 1

2 ln
(
t+z
t−z

)
, one finds

Ez ≡ F a0z = Fτη/τ ≡ Eη, Bz ≡ −ε
0zjk

2
Fjk = −εijF aij/2 ≡ Bη (42)

for the longitudinal fields, where εxy = −εyx = 1. For the transverse fields, it is defined that

EiT ≡ Fτi and Bi
T ≡ −εijFjη/τ . One hence derives

Ey ≡ F0y =
t

τ
Fτy −

z

τ2
Fηy = cosh ηEyT − sinh ηBx

T , Ex = cosh ηExT + sinh ηBy
T , (43)
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and

By = εxyFxz =
−εyx

τ2

(
tFxη − zFxτ

)
= cosh ηBy

T + sinh ηExT , Bx = cosh ηBx
T − sinh ηEyT . (44)

Here we have used

∂tτ =
t

τ
, ∂zτ = −z

τ
, ∂tη = − z

τ2
, ∂zη =

t

τ2
, (45)

and t = τ cosh η and z = τ sinh η.

From Ref. [76], it turns out that the following correlators vanish,

〈EaiT (X ′)Ba′j
T (X ′′)〉 = 0, 〈Eaη(X ′)Ba′η(X ′′)〉 = 0, (46)

〈EaiT (X ′)Ea
′η(X ′′)〉 = 0, 〈Bai

T (X ′)Ba′η(X ′′)〉 = 0, (47)

based on the correlation of gluon fields from the same nucleus,

〈αi,a1,2(u⊥)αj,b1,2(v⊥)〉 =
δab

2

[
δijG1,2(u⊥, v⊥) +

(
δij − 2

(u− v)i⊥(u− v)j⊥
|u⊥ − v⊥|2

)
h1,2(u⊥, v⊥)

]
, (48)

and 〈αi,a1 (u⊥)αj,b2 (v⊥)〉 = 〈αi,a2 (u⊥)αj,b1 (v⊥)〉 = 0. Here G1,2 and h1,2 correspond to the unpolarized

and linearly polarized gluon distribution functions of nuclei 1 and 2, respectively. The non-vanishing

correlators can be written as

〈EaiT (X ′)Ea
′j
T (X ′′)〉 = −N̄cδ

aa′εinεjm
∫ X′

⊥;q,u

∫ X′′

⊥;l,v
Ω−(u⊥, v⊥)

qnlm

ql
×J1(qX ′0)J1(lX ′′0 ), (49)

〈Bai
T (X ′)Ba′j

T (X ′′)〉 = −N̄cδ
aa′εinεjm

∫ X′

⊥;q,u

∫ X′′

⊥;l,v
Ω+(u⊥, v⊥)

qnlm

ql
×J1(qX ′0)J1(lX ′′0 ), (50)

〈EaiT (X ′)Ba′η(X ′′)〉 = −iN̄cδ
aa′εin

∫ X′

⊥;q,u

∫ X′′

⊥;l,v
Ω−(u⊥, v⊥)

qn

q
×J1(qX ′0)J0(lX ′′0 ), (51)

〈Bai
T (X ′)Ea

′η(X ′′)〉 = −iN̄cδ
aa′εin

∫ X′

⊥;q,u

∫ X′′

⊥;l,v
Ω+(u⊥, v⊥)

qn

q
×J1(qX ′0)J0(lX ′′0 ), (52)

〈Eaη(X ′)Ea′η(X ′′)〉 = N̄cδ
aa′
∫ X′

⊥;q,u

∫ X′′

⊥;l,v
Ω+(u⊥, v⊥)×J0(qX ′0)J0(lX ′′0 ), (53)

〈Baη(X ′)Ba′η(X ′′)〉 = N̄cδ
aa′
∫ X′

⊥;q,u

∫ X′′

⊥;l,v
Ω−(u⊥, v⊥)×J0(qX ′0)J0(lX ′′0 ), (54)

where

N̄c ≡
1

2
g2Nc, (55)

Ω∓(u⊥, v⊥) = [G1(u⊥, v⊥)G2(u⊥, v⊥)∓ h1(u⊥, v⊥)h2(u⊥, v⊥)] , (56)

and ∫ X′

⊥;q,u
≡
∫
d2q⊥
(2π)2

∫
d2u⊥e

iq⊥(X′−u)⊥ .

Note that we also have the useful relation such as

∂XiE
ai
T (X) = ∂XiB

ai
T (X) = 0 (57)

from Eqs. (34)-(37). The color-field correlators above will then be employed to evaluate the spin

polarization and correlation.



11

IV. DYNAMICAL SPIN POLARIZATION AND CORRELATION FROM GLASMA

This section is dedicated to the derivation of spin polarization and correlation coming from

effective spin four vectors in the compact integral form of color-field correlators from glasma or more

precisely gluon distribution functions of nuclei introduced in the previous section. The derivation

is rather technical and hence only critical steps are presented, while more detailed computations

can be found in appendices. In summary, 〈ãsx(p,X)〉 = 〈ãsy(p,X)〉 = 0 and 〈ãsz(p,X)〉 is shown

in Eq. (60) with non-vanishing components in Eq. (77) and Eq. (78) for spin polarization. For the

out-of-plane (perpendicular to the reaction plane) spin correlation, the primary result is shown in

Eq. (82) with the explicit expressions in Eqs. (100), (101), and (102).

A. Spin polarization

For simplicity and practical reasons, we will focus on the mid-rapidity region for η → 0 such

that Ex,y ≈ Ex,yT and Bx,y ≈ Bx,y
T , which allows us to conveniently compute the integrals of color-

field correlators in Minkowski coordinates. We may now first evaluate 〈Pyq 〉 ∼ 〈ãsy(p,X)〉. Given

Eq. (46), one obtains

〈ãsy(p,X)〉 = −

(
C̃2

2
p0

(
∂p0fV (p0)

))∫ p,X

k,X′

∫ p,X′

k′,X′′

[
∂X′′0

〈
Ea[1(X ′)Ea3](X

′′)
〉

−∂X′3
〈
Ba

[2(X ′)Ea3](X
′′)
〉

+ (X ′′0 −X ′0)∂kX′′∂X′′[3

〈
Eak(X ′)Ea1](X

′′)
〉 ]
, (58)

where we have assigned (x, y, z) = (x1, x2, x3). Since ∂X′3 ≈ τ−1∂η′ and ∂X′0 ≈ ∂τ ′ when η → 0

and the color fields are rapidity-independent, Eq. (58) reduces to

〈ãsy(p,X)〉 ≈ −

(
C̃2

2
p0

(
∂p0fV (p0)

))∫ p,X

k,X′

∫ p,X′

k′,X′′

[
∂X′′0

〈
Ea[1(X ′)Ea3](X

′′)
〉

+(X ′′0 −X ′0)
(
∂2
X′′1

〈
Ea1 (X ′)Ea3 (X ′′)

〉
+ ∂X′′2∂X′′1

〈
Ea2 (X ′)Ea3 (X ′′)

〉 )]
. (59)

According to Eq. (47), one consequently concludes 〈ãsy(p,X)〉 = 0 from Eq. (59). Similarly, it is

found 〈ãsx(p,X)〉 = 0 by symmetry, while this is not the case for 〈ãsz(p,X)〉.
The dynamical spin polarization now may be contributed by

〈ãsz(p,X)〉 ≈ −

(
C̃2

2
p0

(
∂p0fV (p0)

))(
Aa +Ab +Ac

)
, (60)

where

Aa =

∫ p,X

k,X′

∫ p,X′

k′,X′′
∂X′′0〈Ea[2(X ′)Ea1](X

′′)〉, (61)

Ab = +

∫ p,X

k,X′

∫ p,X′

k′,X′′

(
∂1
X′〈Ba

[3(X ′)Ea1](X
′′)〉+ ∂2

X′〈Ba
[3(X ′)Ea2](X

′′)〉
)
, (62)
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and

Ac =

∫ p,X

k,X′

∫ p,X′

k′,X′′
(X ′′0 −X ′0)

(
∂1
X′′∂X′′[1〈Ea1 (X ′)Ea2](X

′′)〉+ ∂2
X′′∂X′′[1〈Ea2 (X ′)Ea2](X

′′)〉
)
. (63)

By using Eq. (57), Ab reduces to

Ab = +

∫ p,X

k,X′

∫ p,X′

k′,X′′

(
∂1
X′〈Ba

3 (X ′)Ea1 (X ′′)〉+ ∂2
X′〈Ba

3 (X ′)Ea2 (X ′′)〉
)
. (64)

From Eq. (11), one finds

Aa =
N̄c(N

2
c − 1)

4p2
0

∫ X0

X′0

∫ X′0

X′′0

∫ X

⊥;q,u

∫ X

⊥;l,v
Ω−(u⊥, v⊥)

qxly

ql
∂X′′0

[(
J1(qX ′0)J1(lX ′′0 )− J1(qX ′′0 )J1(lX ′0)

)
×Θ(X ′0)Θ(X ′′0 )

]
, (65)

where we have further used∫ X0

X′0

≡
∫ ∞
−∞

dX ′0

(
1 + sgn(X0 −X ′0)

)
= 2

∫ ∞
−∞

dX ′0Θ(X0 −X ′0). (66)

Here we have implicitly multiplied the color-field correlators with the unit-step functions for X ′0
and X ′′0 , Θ(X ′0) and Θ(X ′′0 ), because of setting X ′0=X ′′0 = 0 as an initial time for the presence of

glamsa. It turns out that Aa = 0 due to the structure 〈Ea[2(X ′)Ea1](X
′′)〉 since∫ X′0

X′′0

∂X′′0J1(qX ′0)J1(lX ′′0 )Θ(X ′0)Θ(X ′′0 ) =

∫ X′0

X′′0

∂X′′0J1(qX ′′0 )J1(lX ′0)Θ(X ′0)Θ(X ′′0 )

= 2J1(qX ′0)J1(lX ′0)Θ(X ′0). (67)

On the other hand, it is found

Ab = − iN̄c(N
2
c − 1)

4p2
0

∫ X0

X′0

∫ X′0

X′′0

[
∂1
X′

∫ X′

⊥;q,u

∫ X′′

⊥;l,v
Ω−(u⊥, v⊥)

ly

l
J0(qX ′0)J1(lX ′′0 )

−∂2
X′

∫ X′

⊥;q,u

∫ X′′

⊥;l,v
Ω−(u⊥, v⊥)

lx

l
J0(qX ′0)J1(lX ′′0 )

]
X′′⊥=X′⊥=X⊥

Θ(X ′0)Θ(X ′′0 ). (68)

To handle the spatial derivative terms, we introduce the trick,

∂X′⊥j

∫ X′

⊥;q,u
G(u⊥) =

∫
d2q⊥
(2π)2

∫
d2u⊥(−iq⊥j)eiq⊥(X′−u)⊥G(u⊥)

= −
∫
d2q⊥
(2π)2

∫
d2u⊥

(
∂u⊥je

iq⊥(X′−u)⊥
)
G(u⊥), (69)

for an arbitrary function G(u⊥). When assuming G(u⊥)|ui⊥→±∞ → 0, we further obtain the useful

relation,

∂X′⊥j

∫ X′

⊥;q,u
G(u⊥) =

∫ X′

⊥;q,u
∂u⊥jG(u⊥). (70)

Assuming

Ω±(u⊥, v⊥)|ui⊥→±∞ → 0, Ω±(u⊥, v⊥)|vi⊥→±∞ → 0, (71)
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which are physical boundary conditions, we accordingly derive

Ab = − iN̄c(N
2
c − 1)

4p2
0

∫ X0

X′0

∫ X′0

X′′0

∫ X

⊥;q,u

∫ X

⊥;l,v

J0(qX ′0)J1(lX ′′0 )

l
l[y∂x]

u Ω−(u⊥, v⊥)Θ(X ′0)Θ(X ′′0 ) (72)

and similarly

Ac =
N̄c(N

2
c − 1)

4p2
0

∫ X0

X′0

∫ X′0

X′′0

(X ′′0 −X ′0)

∫ X

⊥;q,u

∫ X

⊥;l,v

J1(qX ′0)J1(lX ′′0 )

ql
Θ(X ′0)Θ(X ′′0 )

×
[
qylx∂xv ∂vx − qxly∂yv∂vy + (qyly − qxlx)∂xv ∂vy

]
Ω−(u⊥, v⊥). (73)

Implementing the decomposition in Eq. (B16) and integrals in Eq. (B19) to cope with the angular

parts of momentum integration, one finds

Ab =
N̄c(N

2
c − 1)

4p2
0

∫ X0

X′0

∫ X′0

X′′0

∫
dqdlql

(2π)2

∫
d2u⊥d

2v⊥J0(qX ′0)J1(lX ′′0 )Θ(X ′0)Θ(X ′′0 )

×J0(q|ū⊥|)J1(l|v̄⊥|)
v̄

[y
⊥∂

x]
u

|v̄⊥|
Ω−(u⊥, v⊥) (74)

and

Ac = −N̄c(N
2
c − 1)

4p2
0

∫ X0

X′0

∫ X′0

X′′0

(X ′′0 −X ′0)

∫
dqdlql

(2π)2

∫
d2u⊥d

2v⊥
J1(qX ′0)J1(lX ′′0 )

|ū⊥||v̄⊥|
Θ(X ′0)Θ(X ′′0 )

×J1(q|ū⊥|)J1(l|v̄⊥|)
[
ūy⊥v̄

x
⊥∂

x
v ∂vx − ūx⊥v̄

y
⊥∂

y
v∂vy + (ūy⊥v̄

y
⊥ − ū

x
⊥v̄

x
⊥)∂xv ∂vy

]
Ω−(u⊥, v⊥), (75)

where ū⊥ = X⊥ − u⊥ and v̄⊥ = X⊥ − v⊥. Further applying the orthogonal condition for Bessel

functions, ∫ ∞
0

drrJν(kr)Jν(sr) =
δ(k − s)

s
, (76)

Ab and Ac become

Ab =
g2Nc(N

2
c − 1)

2(2π)2p2
0

∫ ⊥
ū,v̄

Θ(X0 − |ū⊥|)Θ(|ū⊥| − |v̄⊥|)
|ū⊥||v̄⊥|

v̄
[y
⊥∂

x]
u

|v̄⊥|
Ω−(u⊥, v⊥) (77)

and

Ac =
−g2Nc(N

2
c − 1)

2(2π)2p2
0

∫ ⊥
ū,v̄

Θ(X0 − |ū⊥|)Θ(|ū⊥| − |v̄⊥|)
|ū⊥|2|v̄⊥|2

(|v̄⊥| − |ū⊥|)

×
[
ūy⊥v̄

x
⊥∂

x
v ∂vx − ūx⊥v̄

y
⊥∂

y
v∂vy + (ūy⊥v̄

y
⊥ − ū

x
⊥v̄

x
⊥)∂xv ∂vy

]
Ω−(u⊥, v⊥), (78)

where we have implicitly taken Θ(|ū⊥|)Θ(|v̄⊥|) = 1 and introduced∫ ⊥
u,v
≡
∫
d2u⊥d

2v⊥. (79)

Given an explicit expression of Ω−(u⊥, v⊥), Eqs. (77) and (78) can be evaluated numerically.
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B. Spin correlation

We may now evaluate the spin correlation 〈PyqPyq̄ 〉 dynamically generated by 〈ãsy(p,X)ãsy(p, Y )〉.
By symmetry, 〈ãsy(p,X)ãsy(p, Y )〉 = 〈ãsy(p, Y )ãsy(p,X)〉 because we will in the end integrate

over spatial X and Y on the freeze-out hyper-surface with X0 = Y0, the integrand in the mul-

tiple integrals involved is also invariant under (X ′ ↔ Y ′, X ′′ ↔ Y ′′). The explicit form of

〈ãsy(p,X)ãsy(p, Y )〉 can be written as

〈ãsy(p,X)ãsy(p, Y )〉 ≈

(
C̃2

2
p0

(
∂p0fV (p0)

))2 ∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′[
∂X′′0∂Y ′′0

〈
Ea[1(X ′)Ea3](X

′′)Eb[1(Y ′)Eb3](Y
′′)
〉

−2∂X′′0∂Y ′1

〈
Ea[1(X ′)Ea3](X

′′)Bb[2(Y ′)Eb1](Y ′′)
〉

+2(Y ′′0 − Y ′0)∂X′′0∂
2
Y ′′1

〈
Ea[1(X ′)Ea3](X

′′)Eb1(Y ′)Eb3(Y ′′)
〉

+2(Y ′′0 − Y ′0)∂X′′0∂Y ′′2∂Y ′′1

〈
Ea[1(X ′)Ea3](X

′′)Eb2(Y ′)Eb3(Y ′′)
〉

+∂X′1∂Y ′1

〈
Ba[2(X ′)Ea1](X ′′)Bb[2(Y ′)Eb1](Y ′′)

〉
−2(Y ′′0 − Y ′0)∂X′1∂

2
Y ′′1

〈
Ba[2(X ′)Ea1](X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
−2(Y ′′0 − Y ′0)∂X′1∂Y ′′2∂Y ′′1

〈
Ba[2(X ′)Ea1](X ′′)Eb2(Y ′)Eb3(Y ′′)

〉
+(X ′′0 −X ′0)(Y ′′0 − Y ′0)

(
∂2
X′′1∂

2
Y ′′1

〈
Ea1 (X ′)Ea3 (X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
+2∂2

X′′1∂Y ′′2∂Y ′′1

〈
Ea1 (X ′)Ea3 (X ′′)Eb2(Y ′)Eb3(Y ′′)

〉
+∂X′′2∂X′′1∂Y ′′2∂Y ′′1

〈
Ea2 (X ′)Ea3 (X ′′)Eb2(Y ′)Eb3(Y ′′)

〉)]
. (80)

Nonetheless, one has to derive a more concise form for the multi-dimensional integral with the

input of color-field correlators. Such an analytic expression for each term above could be derived

in light of the procedure shown in appendix B, where we take 〈Ea1 (X ′)Ea3 (X ′′)Eb1(Y ′)Eb3(Y ′′)〉 as

an example. It turns out that all the terms associated with ∂X0′′E
a
[1(X ′)Ea3](X

′′) in Eq. (80) vanish

since such terms involve the integral∫ X′0

X′′0

∂X0′′J1(qX ′′0 )J0(lX ′0)Θ(X ′0)Θ(X ′′0 )−
∫ X′0

X′′0

∂X0′′J1(qX ′0)J0(lX ′′0 )Θ(X ′0)Θ(X ′′0 ) = 0, (81)

which is similar to the reason causing Aa = 0. One may refer to appendix C for an explicit

calculation showing that e.g. the contribution from the second line of Eq. (80) vanishes. Eventually,

Eq. (80) reduces to

〈ãsy(p,X)ãsy(p, Y )〉 ≈

(
C̃2

2
p0

(
∂p0fV (p0)

))2(
I1 + I2 + I3

)
, (82)

where

I1 =

∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
∂X′1∂Y ′1

〈
Ba[2(X ′)Ea1](X ′′)Bb[2(Y ′)Eb1](Y ′′)

〉
, (83)
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I2 = −2

∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
(Y ′′0 − Y ′0)

(
∂X′1∂

2
Y ′′1

〈
Ba[2(X ′)Ea1](X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
+∂X′1∂Y ′′2∂Y ′′1

〈
Ba[2(X ′)Ea1](X ′′)Eb2(Y ′)Eb3(Y ′′)

〉)
, (84)

and

I3 =

∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
(X ′′0 −X ′0)(Y ′′0 − Y ′0)

(
∂2
X′′1∂

2
Y ′′1

〈
Ea1 (X ′)Ea3 (X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
+2∂2

X′′1∂Y ′′2∂Y ′′1

〈
Ea1 (X ′)Ea3 (X ′′)Eb2(Y ′)Eb3(Y ′′)

〉
+∂X′′2∂X′′1∂Y ′′2∂Y ′′1

〈
Ea2 (X ′)Ea3 (X ′′)Eb2(Y ′)Eb3(Y ′′)

〉)
. (85)

It is found that the non-vanishing spin correlation stems from the transverse spatial derivatives

upon color-field correlators.

We will compute I1 as an example, while the other terms in Eq. (82) can be derived in a similar

manner. By symmetry, the integrand of I1 can be written as

∂X′1∂Y ′1

〈
Ba[2(X ′)Ea1](X ′′)Bb[2(Y ′)Eb1](Y ′′)

〉
= ∂X′1∂Y ′1

( 〈
Ba2(X ′)Bb2(Y ′)

〉〈
Ea1(X ′′)Eb1(Y ′′)

〉
+
〈
Ba1(X ′)Bb1(Y ′)

〉〈
Ea2(X ′′)Eb2(Y ′′)

〉
−2
〈
Ba2(X ′)Bb1(Y ′)

〉〈
Ea1(X ′′)Eb2(Y ′′)

〉 )
, (86)

where we have applied the Wick-theorem like decomposition to decompose a four-field correlator

in terms of the products of two-field correlators, e.g.〈
Ba2(X ′)Ea1(X ′′)Bb2(Y ′)Eb1(Y ′′)

〉
=
〈
Ba2(X ′)Ea1(X ′′)

〉 〈
Bb2(Y ′)Eb1(Y ′′)

〉
+
〈
Ba2(X ′)Bb2(Y ′)

〉〈
Ea1(X ′′)Eb1(Y ′′)

〉
+
〈
Ba2(X ′)Eb1(Y ′′)

〉〈
Ea1(X ′′)Bb2(Y ′)

〉
. (87)

We then make the further decomposition, I1 = I1a + I1b − 2I1c, where

I1a ≡
∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
∂X′1∂Y ′1

〈
Ba2(X ′)Bb2(Y ′)

〉〈
Ea1(X ′′)Eb1(Y ′′)

〉
, (88)

I1b ≡
∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
∂X′1∂Y ′1

〈
Ba1(X ′)Bb1(Y ′)

〉〈
Ea2(X ′′)Eb2(Y ′′)

〉
, (89)

and

I1c ≡
∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
∂X′1∂Y ′1

〈
Ba2(X ′)Bb1(Y ′)

〉〈
Ea1(X ′′)Eb2(Y ′′)

〉
. (90)

To evaluate I1, we shall apply the same tricks in Eq. (11) and Eq. (70), which yield

I1a(p,X, Y ) ≈ g4N2
c (N2

c − 1)

64p4
0

∫ X

⊥;q,u

∫ Y

⊥;l,v

∫ X

⊥;q′,u′

∫ Y

⊥;l′,v′

(
qxlx

ql

)(
q′yl′y

q′l′

)
×∂ux∂vxΩ+(u⊥, v⊥)Ω−(u′⊥, v

′
⊥)Y1a(X0, Y0, q, l, q

′, l′), (91)
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I1b(p,X, Y ) ≈ g4N2
c (N2

c − 1)

64p4
0

∫ X

⊥;q,u

∫ Y

⊥;l,v

∫ X

⊥;q′,u′

∫ Y

⊥;l′,v′

(
qyly

ql

)(
q′xl′x

q′l′

)
×∂ux∂vxΩ+(u⊥, v⊥)Ω−(u′⊥, v

′
⊥)Y1a(X0, Y0, q, l, q

′, l′), (92)

and

I1c(p,X, Y ) ≈ g4N2
c (N2

c − 1)

64p4
0

∫ X

⊥;q,u

∫ Y

⊥;l,v

∫ X

⊥;q′,u′

∫ Y

⊥;l′,v′

(
qxly

ql

)(
q′yl′x

q′l′

)
×∂ux∂vxΩ+(u⊥, v⊥)Ω−(u′⊥, v

′
⊥)Y1a(X0, Y0, q, l, q

′, l′), (93)

where we introduced several shorthand notations,∫ X′

⊥;q,u
≡
∫
d2q⊥
(2π)2

∫
d2u⊥e

iq⊥(X′−u)⊥ , (94)

Y1a(X0, Y0, q, l, q
′, l′)

≡
∫ X0

X′0

∫ Y0

Y ′0

∫ X′0

X′′0

∫ Y ′0

Y ′′0

J1(qX ′0)J1(lY ′0)Θ(X ′0)Θ(Y ′0)J1(q′X ′′0 )J1(l′Y ′′0 )Θ(X ′′0 )Θ(Y ′′0 ), (95)

and

s⊥ = X⊥ − u⊥, s′⊥ = X⊥ − u′⊥ t⊥ = Y⊥ − v⊥ t′⊥ = Y⊥ − v′⊥. (96)

One hence obtains

I1 ≈
g4N2

c (N2
c − 1)

64p4
0

∫ X

⊥;q,u

∫ Y

⊥;l,v

∫ X

⊥;q′,u′

∫ Y

⊥;l′,v′
∂ux∂vxΩ+(u⊥, v⊥)Ω−(u′⊥, v

′
⊥)Y1a(X0, Y0, q, l, q

′, l′)

× 1

qlq′l′
[
qxlxq′yl′y + qylyq′xl′x − 2qxlyq′yl′x

]
. (97)

Utilizing Eq. (B16) and Eq. (B19) again to integrate over the angular parts of momentum integrals,

I1 becomes

I1 ≈
g4N2

c (N2
c − 1)

4p4
0

∫
dq

∫
dl

∫
dq′

(2π)2

∫
dl′

(2π)2

∫ ⊥
u,v,u′,v′

qlq′l′

×
[
ŝx⊥t̂

x
⊥ŝ
′y
⊥ t̂
′y
⊥ + ŝy⊥t̂

y
⊥ŝ
′x
⊥ t̂
′x
⊥ − 2ŝx⊥t̂

y
⊥ŝ
′y
⊥ t̂
′x
⊥
]
J1(q|s⊥|)J1(l|t⊥|)J1(q′|s′⊥|)J1(l′|t′⊥|)

×∂ux∂vxΩ+(u⊥, v⊥)Ω−(u′⊥, v
′
⊥)J1(qX ′0)J1(lY ′0)J1(q′X ′′0 )J1(l′Y ′′0 ), (98)

where ŝi⊥ = si⊥/|s⊥| and ∫ ⊥
u,v,u′v′

≡
∫
d2u⊥

∫
d2v⊥

∫
d2u′⊥

∫
d2v′⊥. (99)

Further using Eq. (76), we arrive at

I1 ≈
g4N2

c (N2
c − 1)

4(2π)4p4
0

∫ ⊥
s,t,s′,t′

Θ(X0 − |s⊥|)Θ(Y0 − |t⊥|)Θ(|s⊥| − |s′⊥|)Θ(|t⊥| − |t′⊥|)
|s⊥||t⊥||s′⊥||t′⊥|

×
[
ŝx⊥t̂

x
⊥ŝ
′y
⊥ t̂
′y
⊥ + ŝy⊥t̂

y
⊥ŝ
′x
⊥ t̂
′x
⊥ − 2ŝx⊥t̂

y
⊥ŝ
′y
⊥ t̂
′x
⊥
]
∂ux∂vxΩ+(u⊥, v⊥)Ω−(u′⊥, v

′
⊥), (100)
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which could be evaluated numerically with given Ω±. Following the same procedure, one can also

derive similar expressions for the remaining terms in Eq. (82). As shown in appendix. D, it is found

I2 ≈
g4N2

c (N2
c − 1)

2(2π)4p4
0

∫ ⊥
s,t,s′,t′

Θ(X0 − |s⊥|)Θ(Y0 − |t⊥|)Θ(|s⊥| − |s′⊥|)Θ(|t′⊥| − |t⊥|)
|s⊥||t⊥||s′⊥||t′⊥|

×
(
|t⊥| − |t′⊥|

)
ŝ

[x
⊥ ŝ
′y]
⊥
(
t̂′y⊥∂vx − t̂

′x
⊥∂vy

)
∂ux∂vxΩ−(v′⊥, u

′
⊥)Ω+(u⊥, v⊥) (101)

and

I3 ≈ −
g4N2

c (N2
c − 1)

4(2π)4p4
0

∫ ⊥
s,t,s′,t′

Θ(X0 − |s⊥|)Θ(Y0 − |t⊥|)Θ(|s⊥| − |s′⊥|)Θ(|t⊥| − |t′⊥|)
|s⊥||t⊥||s′⊥||t′⊥|

×
(
|s′⊥| − |s⊥|

)(
|t′⊥| − |t⊥|

)[
ŝy⊥t̂

y
⊥∂

2
u′x∂

2
v′x − 2ŝy⊥t̂

x
⊥∂

2
u′x∂v′y∂v′x

+ŝx⊥t̂
x
⊥∂u′x∂u′y∂v′x∂v′y

]
Ω−(u⊥, v⊥)Ω+(u′⊥, v

′
⊥). (102)

The major difference is that the terms (Y ′′0 − Y ′0) and (X ′′0 − X ′0) give rise to
(
|t′⊥| − |t⊥|

)
and(

|s′⊥| − |s⊥|
)

in the remaing integrands after integrating over Y ′0 , Y ′′0 , X ′0, and X ′′0 .

V. ANALYSIS WITH THE GBW DISTRIBUTION

Following Ref. [76], we adopt the GBW distribution such that h1,2 = 0 and

Ω±(u⊥, v⊥) = Ω(u⊥, v⊥) =
Q4
s

g4N2
c

(
1− e−Q2

s|u⊥−v⊥|2/4

Q2
s|u⊥ − v⊥|2/4

)2

=
Q4
s

g4N2
c

(
1− e−Q2

s|s⊥−t⊥−r⊥|2/4

Q2
s|s⊥ − t⊥ − r⊥|2/4

)2

,

(103)

where r⊥ ≡ X⊥ − Y⊥ and Qs denotes the saturation momentum. One finds Ab = 0 and Ac = 0

after conducting the numerical calculations with the GBW distribution and hence 〈ãsz(p,X)〉=0.

It turns out that the spin polarization from glasma vanishes in all directions. We may analytically

show Ab = 0 as an example in the following. From the GBW distribution, it is found

v̄[y∂
x]
u

|v̄⊥|
Ω(u⊥, v⊥) = F(|ū⊥|, |v̄⊥|, cos(θv̄ − θū)) sin(θv̄ − θū) (104)

where θū and θv̄ are the polar angles of ū⊥ and v̄⊥ and the explicit form of F is unimportant here.

By making the change of coordinates, θ̄ū,v̄ = θū + θv̄ and Θū,v̄ = θv̄ − θū, for arbitrary integrand

G(Θū,v̄) only depending on Θū,v̄, it can be shown∫ 2π

0
dθū

∫ 2π

0
dθv̄G(Θū,v̄)

= 2π

∫ 2π

−2π
dΘū,v̄G(Θū,v̄)−

∫ 2π

0
dΘū,v̄Θū,v̄

(
G(Θū,v̄) +G(−Θū,v̄)

)
. (105)

It is then clear to see ∫ 2π

0
dθū

∫ 2π

0
dθv̄F(|ū⊥|, |v̄⊥|, cos Θū,v̄) sin Θū,v̄ = 0, (106)

since F(|ū⊥|, |v̄⊥|, cos Θū,v̄) sin Θū,v̄ is an odd function under Θū,v̄ → −Θū,v̄.
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For spin correlation, it turns out that I = I1 + I2 + I3 only depends on p0, X0 = Y0, and r⊥,

which is easier to be computed in the polar coordinate. Accordingly, I can be factorized as

I(p0, QsX0, Qs|r⊥|, θr) =
g4N2

c (N2
c − 1)

4(2π)4p4
0

Q8
s

g8N4
c

Î(QsX0, Qs|r⊥|, θr)
Q2
s

, (107)

where θr ≡ cos−1(rx⊥/|r⊥|) and Î(QsX0, Qs|r⊥|, θr) is the eight-dimensional integral as an dimen-

sionless quantity to be evaluated. Here the first prefactor associated with 1/p4
0 comes from the

simplified integral form in Eqs. (100), (101), and (102), while Q8
s/(g

8N4
c ) stems from the square of

GBW distribution and the extra 1/Q2
s is introduced to make Î(QsX0, Qs|r⊥|, θr) dimensionless.

In addition, we will consider isochronous freeze-out in proper time τ = const, where Σµ
x =

(τ cosh η, x1, x2, τ sinh η) [94]. In our case, we focus on the small-rapidity region such that −ηm ≤
η ≤ ηm with ηm � 1. We will also approximate that the space-time rapidity is equal to the

momentum rapidity. Then the normal vector dΣµ gives

dΣX · p ≈ X0

√
m2 + |p2

⊥|d
2X⊥dη, (108)

which yields

〈P iq(p)P iq̄(p)〉 ≈
∫
d2X⊥

∫
d2Y⊥〈ãi(p, X)ãi(p, Y )〉

4m2
( ∫

d2X⊥fV (p0)
)2

∣∣∣∣∣
p0=εp

. (109)

For computational convenience, one may further make the change of coordinates,∫
d2X⊥

∫
d2Y⊥ =

∫
d2r⊥

∫
d2R⊥, R⊥ ≡ (X⊥ + Y⊥)/2. (110)

Note that 〈P iq(p)P iq̄(p)〉 depends on X0, which can be chosen as the freeze-out time after which the

correlation no longer varies, while the evolution of the numerator and the denominator in Eq. (109)

are different. The subtlety of choosing the freeze-out time will be elaborated below.

It is important to note that 〈ãi(p, X)ãi(p, Y )〉 will stop evolving much earlier than the freeze-

out time close to chemical equilibrium in the QGP phase. Furthermore, we have neglected the time

dependence of fV (p0) as the quark distribution function in early times, which should eventually

reach thermal equilibrium in the QGP phase. For practical purposes, we should consider different

freeze-out hypersurfaces in the numerator and denominator of Eq. (109), where the freeze-out time

in the numerator is chosen to be at thermalization time X0 = Xth
0 that roughly characterizes the

end of the glasma phase, at which the spin no longer evolves, while the one in the numerator is at

chemical equilibrium X0 = Xeq
0 . Consequently, from Eq. (109), the out-of-plane spin correlation

may be approximated as

〈Pyq (p)Pyq̄ (p)〉 ≈
C̃2

2p
2
0(∂p0fV )2

∫ gl
d2r⊥

∫ gl
d2R⊥I(p0, QsX0, Qs|r⊥|, θr)

16m2A2
Tfeq(p0)2

∣∣∣∣∣
p0=εp

, (111)

where
∫ gl

d2r⊥
∫ gl

d2R⊥ corresponds to the integrals over the transverse plane of glasma (around the

transverse size of collided nuclei) and AT denotes the transverse area of the QGP (around chemical

freeze-out). Here feq(p0) = 1/(ep0/T + 1) corresponds to the thermal distribution function with T
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being the freeze-out temperature and m may be approximated as the constituent quark mass. We

may further make an order-of-magnitude estimation of the spin correlation based on Eq. (107).

Although the exact form of Î(QsX0, Qs|r⊥|, θr) can only be obtained from sophisticated multi-

dimensional integral, it is physically expected that the dominant contribution should be around

|r⊥| ∼ 0 with short-range correlation as will be also verified numerically. We accordingly estimate∫ gl

d2r⊥I(p0, QsX0, Qs|r⊥|, θr) ∼ πQ−2
s I(p0, QsX0, 0, 0) (112)

by postulating I(p0, QsX0, Qs|r⊥|, θr) ∼ I(p0, QsX0, 0, 0)e−|r⊥|
2Q2

s as a Gaussian form with the

correlation length of O(Q−1
s ) and without angular dependence. Taking Λ ∼ Qs � m � |p| such

that ∂p0fV ≈ −1/(4Qs) and
∫ gl

d2R⊥ ≈ AN with AN being the transverse area of nuclei, from

Eq. (107), Eq. (111) can be further approximated as

〈Pyq (p)Pyq̄ (p)〉 ∼ (N2
c − 1)(em/T + 1)2

N4
c (16π)4

πQ2
sAN

m4A2
T

Î(QsX
th
0 , 0, 0) (113)

at small momentum. Despite the actual value of Î(QsX
th
0 , 0, 0), the correlation could be enhanced

by the factor Q2
s/m

2 at higher collision energy. Conversely, this effect will be suppressed in low-

energy collisions, where the glasma stage does not exist.

To evaluate Î(QsX0, Qs|r⊥|, θr) numerically2, we utilized the local adaptive method built into

Mathematica. As shown in Fig. 1, it is found that Î3 dominates over Î1 and Î2 particularly at late

times QsX0 > 2 and we may approximate Î ≈ Î3, where Î1,2,3 correspond to the dimensionless

quantities coming from I1,2,3 with the factorization in Eq. (107). The rapid increase of Î3(QsX0)

is predominantly led by the factor
(
|s′⊥| − |s⊥|

)(
|t′⊥| − |t⊥|

)
originating from (X ′′0 −X ′0)(Y ′′0 − Y ′0)

in the integrand, which can be observed in Fig. 2 when comparing with the result by removing

this factor. In addition, we have confirmed Î3(QsX0, Qs|r⊥|, π/2) is maximized at Qs|r⊥| = 0

as shown in Fig. 3 with also very mild θr dependence illustrated in Fig. 4 at small Qs|r⊥|. One

could further verify the same scenario for Î1(QsX0, Qs|r⊥|, θr) and Î2(QsX0, Qs|r⊥|, θr). Some

qualitative features of Î1,2,3 are further analyzed in appendix E.

For convenience, we adopt the approximation in Eq. (113) for conducting numerical estimation.

We take the values Qs = 2 GeV, Nc = 3, AN ∼ AT ≈ 100 fm2, m ≈ 500 MeV as the constituent

quark mass for strange quarks, and T ≈ 150 MeV as the freeze-out temperature. By setting

Xth
0 ≈ 0.5 fm and correspondingly QsX

th
0 ≈ 5, which yields Î ≈ 6100 (see Fig. 2), we obtain

the result 〈Pyq (p)Pyq̄ (p)〉 ≈ 0.006. When choosing a larger saturation scale such as Qs = 3 GeV

without changing the other parameters, for which now QsX
th
0 ≈ 7.5 at Xth

0 ≈ 0.5 fm, we obtain

Î ≈ 20000 and 〈Pyq (p)Pyq̄ (p)〉 ≈ 0.05. Notably, except for the magnification from the prefactor Q2
s,

the numerical value of Î(QsX
th
0 ) also increases with larger Qs at a fixed thermalization time.

We stress that this estimate is based on rather crude approximations and thus has large un-

certainties coming from multiple corrections. Most importantly, we have neglected the spin re-

laxation in QGP after thermalization and also the distinction between the dressed quark mass

2 In principle, we may directly evaluate
∫ gl

d2r⊥I(p0, QsX0, Qs|r⊥|) numerically. However, to get a rough estimate,

we instead adopt the approximation in Eq. (112) for computational efficiency.
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FIG. 1. Numerical results for Î1,2,3(QsX0) at

Qs|r⊥| = 0.05 and θr = π/2. The same be-

havior is found for other parameter values.
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FIG. 4. The θr dependence of Î3 at small

Qs|r⊥|.

in glasma, which should be encoded in 〈ãsy(p,X)ãsy(p, Y )〉, and the constituent quark mass for

on-shell feq(p0). In this scenario, it might be also debatable whether the explicit 1/m2 factor in

Eq. (109) for normalization should be set as the constituent quark mass. Both, the spin relax-

ation time in the strongly coupled QGP and the dressed quark mass in the glasma, are unknown.

Fortuitously, the mass-dependent factor (em/T + 1)2/m4 changes by less than a factor 3 over the

range 1 < m/T < 4. Despite these uncertainties, we emphasize that these estimated values for

spin correlation are substantially larger than the expected vorticity contribution3.

3 From the naive extraction of vorticity contribution to global spin polarization of Λ hyperons such that Pyq ∼ PyΛ ∼
ω/T . 10−3 at high-energy nuclear collisions above 200 GeV [1, 95] (PyΛ ∼ 10−4 at 2.76 TeV [3]), where ω is the

global vorticity, the spin correlation will be approximately . 10−6.
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VI. CONCLUSIONS AND OUTLOOK

In this paper, we derived the dynamical spin polarization and out-of-plane correlation of massive

quarks at small momentum and central rapidity from color fields in the glasma phase in terms of the

gluon density. Our formalism is based on quantum kinetic theory (QKT) in the Wigner function

formalism. For the GBW distribution, the spin polarization is found to vanish, whereas the out-

of-plane spin correlation is non-vanishing and enhanced by Q2
s/m

2 at weak coupling. We have also

numerically estimated the magnitude of out-of-plane spin correlation, which is found to be around

0.006 ∼ 0.05 at Qs = 2 ∼ 3 GeV and by orders of magnitude larger than the correlation from

vorticity for high-energy nuclear collisions.

As already mentioned in Sec. II, the updated spin coalescence model incorporates both the in-

plane (parallel to the reaction plane) and out-of-plane correlations. By symmetry of the color fields

from glasma, we may expect 〈Pxq (p)Pxq̄ (p)〉 ∼ 〈Pyq (p)Pyq̄ (p)〉 at small momenta, while 〈Pzq (p)Pzq̄ (p)〉
has to be evaluated separately, which remains to be explored for making an estimation of the impact

on spin alignment of vector mesons. In addition, it is also important to obtain the momentum

dependence for spin correlation and the corresponding spin alignment. Furthermore, the present

study only considers the spin correlation between a quark and an antiquark with the same flavor,

which is applicable to the case of φ mesons. For the K∗0 vector meson, comprising a strange quark

and an anti-down quark, further generalization of our formalism for spin correlation is needed.

Here we used the GBW distribution to evaluate the spin polarization and correlation. Alter-

natively, we may also apply the gluon distribution [76] based on the dipole amplitude from the

McLerran-Venugopalan model [68–70], which contains a non-vanishing linearly polarized gluon dis-

tribution function. It is intriguing to calculate the dynamical spin polarization and correlation with

both the unpolarized and linearly polarized gluon distribution functions in such a model using our

framework. It is also worth noting that the QKT derived from the ~ expansion applied to the

weak-field limit due to the gradient expansion in phase space. This approximation is similar to the

linearization of the Yang-Mills equations by neglecting higher-order effects. Future studies will be

required to construct a self-consistent theory incorporating non-perturbative effects of strong color

fields on spin transport. Fortuitously, the nonlinear corrections are more prominent at early times

of order X0 ≤ Q−1
s , while the spin correlation is predominantly sensitive to late times. Thus, these

higher-order effects may be suppressed.
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Appendix A: Spin density matrix

We generalize the derivation in Ref. [38] (as the generalization to incorporate spin degrees

of freedom for the coalescence model [96, 97]) to obtain the spin density matrix when the spin

quantization axis does not match the direction for spin polarization of the comprised quark and

antiquark in spin-1 vector mesons. To construct the spin density matrix of a vector meson from

the pair of a quark and an anti-quark through the coalescence model, we may first introduce the

density operator of a quark q,

ρq = V

∫
d3p

(2π)3

∑
i

∑
si

wq,si |q; si;p〉〈q; si;p|, (A1)

where V is the spatial volume and p and si denote the spatial momentum and spin, respectively.

Here we have to sum over i = x, y, z and si = ±1/2. The spin-dependent weight functions wq,si

explicitly read

wq,si(p) =
1

6
+ siPq,i(p), (A2)

where Pq,i(p) corresponds to the spin polarization of the quark along i direction. Note that the

normalization condition ∑
i

∑
si

wq,si = 1 (A3)

is satisfied. Accordingly, we can write down the density operator for the pair of a quark and an

antiquark via ρ = ρq ⊗ ρq̄, which takes the form

ρ = V 2

∫
d3p

(2π)3

∫
d3p̄

(2π)3

∑
i,j

∑
si,s̄j

wq,siwq,s̄j |q, q̄; si, s̄j ;p, p̄〉〈q, q̄; si, s̄j ;p, p̄|, (A4)

where

|q, q̄; si, s̄j ;p, p̄〉 = |q; si;p〉 ⊗ |q̄; s̄j ; p̄〉. (A5)

For convenience, one could decompose the state of the quark-antiquark pair into the momentum-

and spin-dependent parts,

|q, q̄; si, s̄j ;p, p̄〉 = |p, p̄〉|si, s̄j〉, (A6)

where we omit the quark and antiquark notations for brevity. Also, we take

〈x, x̄|p, p̄〉 = V −1eip·x+ip̄·x̄. (A7)

Next, we introduce the meson state,

|M;S, Sz;P 〉 = |P 〉|S, Sz〉, (A8)

where we have fixed the spin quantization axis along the z direction, which is determined by the

experimental setup. Now, Sz = 0 for S = 0 and Sz = ±1, 0 for S = 1. We also take

〈x, x̄|P 〉 = V −1/2eiP ·RφM (y), (A9)
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where R = (x + x̄)/2, y = x − x̄, and φM (y) is the normalized meson wave function satis-

fying
∫
d3y|φM (y)|2 = 1. After choosing the spin quantization axis, one could write down the

quark/antiquark spin states explicitly; e.g.,

|sx = ±1/2〉 =
1√
2

(|+〉 ± |−〉), |sy = ±1/2〉 =
1√
2

(|+〉 ± i|−〉), (A10)

where |+〉 = |sz = 1/2〉 and |−〉 = |sz = −1/2〉 and similarly for |s̄i〉. The density operator of a

quark is accordingly given by

ρq =
V

2

∫
d3p

(2π)3
|p〉〈p|

(
1 + Pq,z Pq,x − iPq,y

Pq,x + iPq,y 1− Pq,z

)
. (A11)

For ρq̄, one simply has to replace p by p̄ and Pq,i by Pq̄,i in ρq. We shall now express the spin

states of vector mesons in terms of the bases of the quark-antiquark pair,

|S = 0, Sz = 0〉 =
1√
2

(
|+−〉 − | −+〉

)
, |S = 1, Sz = 0〉 =

1√
2

(
|+−〉+ | −+〉

)
,

|S = 1, Sz = 1〉 = |+ +〉, |S = 1, Sz = −1〉 = | − −〉. (A12)

Given Eqs. (A11) and (A12), we can now directly evaluate

ρSSzSz ≡ 〈M;S, Sz; P|ρ|M;S, Sz; P〉 (A13)

and the normalized spin density matrix for S = 1,

ρSzSz ≡
ρS=1
SzSz∑

Sz=±1,0 ρ
S=1
SzSz

. (A14)

Following the calculations in Ref. [38] for handling the states in momentum space, we arrive at

ρ00(P ) =

∫
d3q
[
1 +

∑
j P

j
q(P /2 + q)Pjq̄(P /2− q)− 2n · Pq(P /2 + q)n · Pq̄(P /2− q)

]
|φ̃M(q)|2∫

d3q
[
3 +

∑
j P

j
q(P /2 + q)Pjq̄(P /2− q)

]
|φ̃M(q)|2

,

(A15)

where the unit vector nµ represents the spin quantization axis and

φ̃M(q) ≡
∫
d3ye−iq·yφM(y). (A16)

When assuming |q| � |P |, ρ00(P ) reduces to

ρ00 =
1 +

∑
j P

j
q(P /2)Pjq̄(P /2)− 2n · Pq(P /2)n · Pq̄(P /2)

3 +
∑

j P
j
q(P /2)Pjq̄(P /2)

. (A17)
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Appendix B: Technical details for the computation of spin correlation

Considering the mid-rapidity region and small-momentum limit, we shall find

〈P yq (p,X)P yq (p, Y )〉 ≈

(
C̃2

2
p0

(
∂p0fV (p0)

))2 ∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′[
∂X′′0∂Y ′′0

〈
Ea[1(X ′)Ea3](X

′′)Eb[1(Y ′)Eb3](Y
′′)
〉

+ · · ·
]

(B1)

with the complete expression in Eq. (80). Here we simply take one of the terms above as an

example. One may apply the Wick-theorem like decomposition to obtain

〈Ea1 (X ′)Ea3 (X ′′)Eb1(Y ′)Eb3(Y ′′)〉

≈ 〈Ea1 (X ′)Ea3 (X ′′)〉〈Eb1(Y ′)Eb3(Y ′′)〉+ 〈Ea1 (X ′)Eb1(Y ′)〉〈Ea3 (X ′′)Eb3(Y ′′)〉

+〈Ea1 (X ′)Eb3(Y ′′)〉〈Eb1(Y ′)Ea3 (X ′′)〉

= 〈Ea1 (X ′)Eb1(Y ′)〉〈Ea3 (X ′′)Eb3(Y ′′)〉. (B2)

To evaluate the multiple integral such as

I0(p,X, Y ) ≡
∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
∂X′′0∂Y ′′0〈Ea1 (X ′)Eb1(Y ′)〉〈Ea3 (X ′′)Eb3(Y ′′)〉, (B3)

we will use the relation∫ p,X

k,X′
G(X,X ′) ≈ 1

2p0

∫ ∞
−∞

dX ′0

(
1 + sgn(X0 −X ′0)

)
G(X,X ′)|X′1,2,3=X1,2,3

(B4)

in the small-momentum limit according to Eq. (11). We now have

〈Eai(X ′)Ebj(Y ′)〉 ≈ 1

2
g2Ncδ

ab

∫
d2q⊥
(2π)2

∫
d2l⊥
(2π)2

∫
d2u⊥

∫
d2v⊥

×Πij
T (X ′0, Y

′
0 , u⊥, v⊥, q, l)e

iq⊥(X′−u)⊥eil⊥(Y ′−v)⊥ , (B5)

at small rapidity (t ≈ τ), where

Πij
T (X ′0, Y

′
0 , u⊥, v⊥, q, l) = −εinεjm [G1(u⊥, v⊥)G2(u⊥, v⊥)− h1(u⊥, v⊥)h2(u⊥, v⊥)]

qnlm

ql

×J1(qX ′0)J1(lY ′0)Θ(X ′0)Θ(Y ′0)

=
qjli − δijq · l

ql
[G1(u⊥, v⊥)G2(u⊥, v⊥)− h1(u⊥, v⊥)h2(u⊥, v⊥)]

×J1(qX ′0)J1(lY ′0)Θ(X ′0)Θ(Y ′0). (B6)

Similarly, we have

〈Ea3 (X ′′)Eb3(Y ′′)〉 ≈ 1

2
g2Ncδ

ab

∫
d2q⊥
(2π)2

∫
d2l⊥
(2π)2

∫
d2u⊥

∫
d2v⊥

×ΠL(X ′′0 , Y
′′

0 , u⊥, v⊥, q, l)e
iq⊥(X′−u)⊥eil⊥(Y ′−v)⊥ , (B7)
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where

ΠL(X ′0, Y
′

0 , u⊥, v⊥, q, l) = [G1(u⊥, v⊥)G2(u⊥, v⊥) + h1(u⊥, v⊥)h2(u⊥, v⊥)]

×J0(qX ′′0 )J0(lY ′′0 )Θ(X ′′0 )Θ(Y ′′0 ). (B8)

It turns out that

I0(p,X, Y ) ≈ g4N2
c (N2

c − 1)

4

(
1

2p0

)4 ∫ X0

X′0

∫ Y0

Y ′0

∫ X′0

X′′0

∫ Y ′0

Y ′′0∫
d2q⊥
(2π)2

∫
d2l⊥
(2π)2

∫
d2u⊥

∫
d2v⊥

∫
d2q′⊥
(2π)2

∫
d2l′⊥
(2π)2

∫
d2u′⊥

∫
d2v′⊥

×eiq⊥(X−u)⊥eil⊥(Y−v)⊥eiq
′
⊥(X−u′)⊥eil

′
⊥(Y−v′)⊥

×Πxx
T (X ′0, Y

′
0 , u⊥, v⊥, q, l)∂X′′0∂Y ′′0ΠL(X ′′0 , Y

′′
0 , u

′
⊥, v

′
⊥, q

′, l′) (B9)

by using Eq. (B4), where ∫ X0

X′0

≡
∫ ∞
−∞

dX ′0

(
1 + sgn(X0 −X ′0)

)
. (B10)

On can rewrite Eq. (B9) into a more compact form as

I0(p,X, Y ) ≈ g4N2
c (N2

c − 1)

64p4
0

∫
d2q⊥
(2π)2

∫
d2l⊥
(2π)2

∫
d2u⊥

∫
d2v⊥

∫
d2q′⊥
(2π)2

∫
d2l′⊥
(2π)2

∫
d2u′⊥

∫
d2v′⊥

×eiq⊥(X−u)⊥eil⊥(Y−v)⊥eiq
′
⊥(X−u′)⊥eil

′
⊥(Y−v′)⊥

×
(
−qyly

ql

)
Ω−(u⊥, v⊥)Ω+(u′⊥, v

′
⊥)Y(X0, Y0, q, l, q

′, l′), (B11)

where

Y(X0, Y0, q, l, q
′, l′) (B12)

≡
∫ X0

X′0

∫ Y0

Y ′0

∫ X′0

X′′0

∫ Y ′0

Y ′′0

J1(qX ′0)J1(lY ′0)Θ(X ′0)Θ(Y ′0)∂X′′0∂Y ′′0J0(q′X ′′0 )J0(l′Y ′′0 )Θ(X ′′0 )Θ(Y ′′0 ).

We may first evaluate Y(X0, Y0, q, l, q
′, l′). Using the integration by part and ∂xsgn(x) = 2δ(x), we

obtain ∫ Y ′0

Y ′′0

∂Y ′′0J0(l′Y ′′0 )Θ(Y ′′0 ) = (1 + sgn(Y ′0 − Y ′′0 ))J0(l′Y ′′0 )Θ(Y ′′0 )
∣∣Y ′0=∞
Y ′0=−∞

+2

∫ ∞
∞

δ(Y ′0 − Y ′′0 )J0(l′Y ′′0 )Θ(Y ′′0 )

= 2J0(l′Y ′0)Θ(Y ′0). (B13)

It is hence found∫ X′0

X′′0

∫ Y ′0

Y ′′0

∂X′′0∂Y ′′0J0(q′X ′′0 )J0(l′Y ′′0 )Θ(X ′′0 )Θ(Y ′′0 ) = 4J0(q′X ′0)Θ(X ′0)J0(l′Y ′0)Θ(Y ′0) (B14)

and accordingly

Y(X0, Y0, q, l, q
′, l′) = 16

∫ ∞
−∞

dX ′0

∫ ∞
−∞

dY ′0J1(qX ′0)J1(lY ′0)J0(q′X ′0)J0(l′Y ′0)

×Θ(X0 −X ′0)Θ(Y0 − Y ′0)Θ(X ′0)Θ(Y ′0), (B15)
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where we have utilized Θ(x)sgn(x) = Θ(x) and (1 + sgn(x0 − x))Θ(x) = 2Θ(x0 − x)Θ(x).

Next, we will consider the integration over q′ and l′. It will be more convenient to make the

decomposition,

qi =
(X − u)i⊥
|X⊥ − u⊥|

q cos θq + Θij
X−uqj sin θq, li =

(Y − v)i⊥
|Y⊥ − v⊥|

l cos θl + Θij
Y−vlj sin θl, (B16)

where Θij
V ≡ ηij⊥ + V i

⊥V
j
⊥/|V⊥|

2. Here θq and θl should appear in
∫
d2q⊥ =

∫
dqqdθq and

∫
d2l⊥ =∫

dlldθl. We can accordingly evaluate the related integral∫
dθq

∫
dθle

iq⊥(X′−u)⊥eil⊥(Y ′−v)⊥ = (2π)2J0(q|X⊥ − u⊥|)J0(l|Y⊥ − v⊥|), (B17)∫
dθq

∫
dθl

qjli − δijq · l
ql

eiq⊥(X′−u)⊥eil⊥(Y ′−v)⊥

= (2π)2 δ
ij(X − u)⊥ · (Y − v)⊥ − (X − u)i⊥(Y − v)j⊥

|X⊥ − u⊥||Y⊥ − v⊥|
J1(q|X⊥ − u⊥|)J1(l|Y⊥ − v⊥|), (B18)

by using ∫ 2π

0
dθeia cos θ = 2πJ0(|a|),

∫ 2π

0
dθeia cos θ cos(θ + b) = 2iπJ1(a) cos b,∫ 2π

0
dθeia cos θ sin(θ + b) = 2iπJ1(a) sin b. (B19)

Note that (X − u)⊥ · (X − v)⊥ can be written as (X − u)⊥ · (X − v)⊥ = |X⊥ − u⊥||X⊥ −
v⊥| cos(θX−u − θX−v).

One then obtains

I0(p,X, Y ) ≈ g4N2
c (N2

c − 1)

64p4
0

∫
dqq

(2π)2

∫
dll

∫
d2u⊥

∫
d2v⊥

∫
dq′q′

(2π)2

∫
dl′l′
∫
d2u′⊥

∫
d2v′⊥

×J1(q|X⊥ − u⊥|)J1(l|Y⊥ − v⊥|)J0(q′|X⊥ − u′⊥|)J0(l′|Y⊥ − v′⊥|)

×
(

(X − u)x⊥(Y − v)x⊥
|X⊥ − u⊥||Y⊥ − v⊥|

)
Ω−(u⊥, v⊥)Ω+(u′⊥, v

′
⊥)Y(X0, Y0, q, l, q

′, l′). (B20)

Using Eq. (76), we acquire∫
dq′q′

(2π)2

∫
dl′l′Y(X0, Y0, q, l, q

′, l′)J0(q′|X⊥ − u′⊥|)J0(l′|Y⊥ − v′⊥|)

=
16

(2π)2

∫ ∞
−∞

dX ′0

∫ ∞
−∞

dY ′0J1(qX ′0)J1(lY ′0)Θ(X0 −X ′0)Θ(Y0 − Y ′0)Θ(X ′0)Θ(Y ′0)

×
δ(X ′0 − |X⊥ − u′⊥|)
|X⊥ − u′⊥|

δ(Y ′0 − |Y⊥ − v′⊥|)
|Y⊥ − v′⊥|

=
16J1(q|X⊥ − u′⊥|)J1(l|Y⊥ − v′⊥|)

(2π)2|X⊥ − u′⊥||Y⊥ − v′⊥|
Θ(X0 − |X⊥ − u′⊥|)Θ(Y0 − |Y⊥ − v′⊥|). (B21)

Subsequently, taking for example∫
dqqJ1(q|X⊥ − u⊥|)J1(q|X⊥ − u′⊥|) =

δ(|X⊥ − u⊥| − |X⊥ − u′⊥|)
|X⊥ − u⊥|

, (B22)
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one finds

I0(p,X, Y ) ≈ g4N2
c (N2

c − 1)

4(2π)4p4
0

∫ ⊥
u,v,u′v′

(
(X − u)x⊥(Y − v)x⊥
|X⊥ − u⊥||Y⊥ − v⊥|

)
Ω−(u⊥, v⊥)Ω+(u′⊥, v

′
⊥)

×
δ(|X⊥ − u⊥| − |X⊥ − u′⊥|)

|X⊥ − u⊥|2
δ(|Y⊥ − v⊥| − |Y⊥ − v′⊥|)

|Y⊥ − v⊥|2
×Θ(X0 − |X⊥ − u⊥|)Θ(Y0 − |Y⊥ − v⊥|). (B23)

Given explicit expressions of Ω± from Ref. [76], one can evaluate I0(p,X, Y ) numerically.

Appendix C: Detailed proof for the vanishing term

Considering the first term in (80), by symmetry, on finds∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
∂X′′0∂Y ′′0

〈
Ea[1(X ′)Ea3](X

′′)Eb[1(Y ′)Eb3](Y
′′)
〉

=

∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
∂X′′0∂Y ′′0

(〈
Ea1 (X ′)Ea3 (X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
+
〈
Ea3 (X ′)Ea1 (X ′′)Eb3(Y ′)Eb1(Y ′′)

〉
− 2

〈
Ea1 (X ′)Ea3 (X ′′)Eb3(Y ′)Eb1(Y ′′)

〉)
. (C1)

Since 〈
Ea3 (X ′)Ea1 (X ′′)Eb3(Y ′)Eb1(Y ′′)

〉
=
〈
Ea1 (X ′)Ea3 (X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
|X′↔X′′,Y ′↔Y ′′ , (C2)〈

Ea1 (X ′)Ea3 (X ′′)Eb3(Y ′)Eb1(Y ′′)
〉

=
〈
Ea1 (X ′)Ea3 (X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
|Y ′↔Y ′′ , (C3)

when X ′1,2,3 = X ′′1,2,3 = X1,2,3 and Y ′1,2,3 = Y ′′1,2,3 = Y1,2,3, based on Eq. (B20), one immediately

finds ∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
∂X′′0

〈
Ea3 (X ′)Ea1 (X ′′)Eb3(Y ′)Eb1(Y ′′)

〉
≈ g4N2

c (N2
c − 1)

64p4
0

∫
dqq

(2π)2

∫
dll

∫
d2u⊥

∫
d2v⊥

∫
dq′q′

(2π)2

∫
dl′l′
∫
d2u′⊥

∫
d2v′⊥

×J1(q|X⊥ − u⊥|)J1(l|Y⊥ − v⊥|)J0(q′|X⊥ − u′⊥|)J0(l′|Y⊥ − v′⊥|)

×
(

(X − u)x⊥(Y − v)x⊥
|X⊥ − u⊥||Y⊥ − v⊥|

)
Ω−(u⊥, v⊥)Ω+(u′⊥, v

′
⊥)Y1(X0, Y0, q, l, q

′, l′), (C4)

where

Y1(X0, Y0, q, l, q
′, l′)

=

∫ X0

X′0

∫ Y0

Y ′0

∫ X′0

X′′0

∫ Y ′0

Y ′′0

∂X′′0∂Y ′′0J1(qX ′′0 )J1(lY ′′0 )J0(q′X ′0)J0(l′Y ′0)Θ(X ′0)Θ(Y ′0)Θ(X ′′0 )Θ(Y ′′0 )

= 16

∫ X0

0
dX ′0

∫ Y0

0
dY ′0J1(qX ′0)J1(lY ′0)J0(q′X ′0)J0(l′Y ′0)

= Y(X0, Y0, q, l, q
′, l′). (C5)
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Similarly, it is found∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
∂X′′0

〈
Ea1 (X ′)Ea3 (X ′′)Eb3(Y ′)Eb1(Y ′′)

〉
≈ g4N2

c (N2
c − 1)

64p4
0

∫
dqq

(2π)2

∫
dll

∫
d2u⊥

∫
d2v⊥

∫
dq′q′

(2π)2

∫
dl′l′
∫
d2u′⊥

∫
d2v′⊥

×J1(q|X⊥ − u⊥|)J1(l|Y⊥ − v⊥|)J0(q′|X⊥ − u′⊥|)J0(l′|Y⊥ − v′⊥|)

×
(

(X − u)x⊥(Y − v)x⊥
|X⊥ − u⊥||Y⊥ − v⊥|

)
Ω−(u⊥, v⊥)Ω+(u′⊥, v

′
⊥)Y2(X0, Y0, q, l, q

′, l′), (C6)

where

Y2(X0, Y0, q, l, q
′, l′)

=

∫ X0

X′0

∫ Y0

Y ′0

∫ X′0

X′′0

∫ Y ′0

Y ′′0

∂X′′0∂Y ′′0J1(qX ′0)J1(lY ′′0 )J0(q′X ′′0 )J0(l′Y ′0)Θ(X ′0)Θ(Y ′0)Θ(X ′′0 )Θ(Y ′′0 )

= 16

∫ X0

0
dX ′0

∫ Y0

0
dY ′0J1(qX ′0)J1(lY ′0)J0(q′X ′0)J0(l′Y ′0)

= Y(X0, Y0, q, l, q
′, l′). (C7)

It turns out that∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
∂X′′0∂Y ′′0

〈
Ea[1(X ′)Ea3](X

′′)Eb[1(Y ′)Eb3](Y
′′)
〉

= 0. (C8)

In light of the same approach, all the terms associated with ∂X0′′E
a
[1(X ′)Ea3](X

′′) in Eq. (80) vanish

simply due to∫ X′0

X′′0

∂X0′′J1(qX ′′0 )J0(lX ′0)Θ(X ′0)Θ(X ′′0 ) =

∫ X′0

X′′0

∂X0′′J1(qX ′0)J0(lX ′′0 )Θ(X ′0)Θ(X ′′0 ). (C9)

.

Appendix D: Remaining terms

We may now consider

I2 ≡ −2

∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
(Y ′′0 − Y ′0)

[
∂X′1∂

2
Y ′′1

〈
Ba[2(X ′)Ea1](X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
+∂X′1∂Y ′′2∂Y ′′1

〈
Ba[2(X ′)Ea1](X ′′)Eb2(Y ′)Eb3(Y ′′)

〉 ]
≈ −1

8p4
0

∫ X0

X′0

∫ X′0

X′′0

∫ Y0

Y ′0

∫ Y ′0

Y ′′0

(Y ′′0 − Y ′0)
[
∂X′1∂

2
Y ′′1

〈
Ba[2(X ′)Ea1](X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
+∂X′1∂Y ′′2∂Y ′′1

〈
Ba[2(X ′)Ea1](X ′′)Eb2(Y ′)Eb3(Y ′′)

〉 ]
(D1)

with X⊥ = X ′⊥ = X ′′⊥ and Y⊥ = Y ′⊥ = Y ′′⊥ . By using〈
Ba[2(X ′)Ea1](X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
= 〈Eb1(Y ′)Ea[1(X ′′)〉〈Ba2](X ′)Eb3(Y ′′)〉

= −iN̄2
c (N2

c − 1)

∫ X′

⊥;q,u

∫ Y ′

⊥;l,v

∫ X′′

⊥;q′,u′

∫ Y ′′

⊥;l′,v′
Ω−(v⊥, u

′
⊥)Ω+(u⊥, v

′
⊥)

×q
[xq′y]ly

qq′l
J1(lY ′0)J1(q′X ′′0 )J1(qX ′0)J0(l′Y ′′0 ) (D2)
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and〈
Ba[2(X ′)Ea1](X ′′)Eb2(Y ′)Eb3(Y ′′)

〉
= 〈Eb2(Y ′)Ea[1(X ′′)〉〈Ba2](X ′)Eb3(Y ′′)〉

= iN̄2
c (N2

c − 1)

∫ X′

⊥;q,u

∫ Y ′

⊥;l,v

∫ X′′

⊥;q′,u′

∫ Y ′′

⊥;l′,v′
Ω−(v⊥, u

′
⊥)Ω+(u⊥, v

′
⊥)

×q
[xq′y]lx

qq′l
J1(lY ′0)J1(q′X ′′0 )J1(qX ′0)J0(l′Y ′′0 ), (D3)

one obtains

I2 ≈
iN̄2

c (N2
c − 1)

8p4
0

∫ X0

X′0

∫ X′0

X′′0

∫ Y0

Y ′0

∫ Y ′0

Y ′′0

∫ X

⊥;q,u

∫ Y

⊥;l,v

∫ X

⊥;q′,u′

∫ Y

⊥;l′,v′
J1(lY ′0)J1(q′X ′′0 )J1(qX ′0)J0(l′Y ′′0 )

×(Y ′′0 − Y ′0)
q[xq′y](ly∂v′x − lx∂v′y)

qq′l
∂ux∂v′xΩ−(v⊥, u

′
⊥)Ω+(u⊥, v

′
⊥). (D4)

Then, implementing Eq. (B16), Eq. (B19), and Eq. (76) yields

I2 ≈
g4N2

c (N2
c − 1)

2(2π)4p4
0

∫ ⊥
s,t,s′,t′

Θ(X0 − |s⊥|)Θ(Y0 − |t⊥|)Θ(|s⊥| − |s′⊥|)Θ(|t⊥| − |t′⊥|)
|s⊥||t⊥||s′⊥||t′⊥|

×
(
|t′⊥| − |t⊥|

)
ŝ

[x
⊥ ŝ
′y]
⊥
(
t̂y⊥∂v′x − t̂

x
⊥∂v′y

)
∂ux∂v′xΩ−(v⊥, u

′
⊥)Ω+(u⊥, v

′
⊥). (D5)

For convenience, one may adopt the change of variables, v⊥ ↔ v′⊥, which yields

I2 ≈
g4N2

c (N2
c − 1)

2(2π)4p4
0

∫ ⊥
s,t,s′,t′

Θ(X0 − |s⊥|)Θ(Y0 − |t⊥|)Θ(|s⊥| − |s′⊥|)Θ(|t′⊥| − |t⊥|)
|s⊥||t⊥||s′⊥||t′⊥|

×
(
|t⊥| − |t′⊥|

)
ŝ

[x
⊥ ŝ
′y]
⊥
(
t̂′y⊥∂vx − t̂

′x
⊥∂vy

)
∂ux∂vxΩ−(v′⊥, u

′
⊥)Ω+(u⊥, v⊥). (D6)

Finally, we would like to evaluate

I3 ≡
∫ p,X

k,X′

∫ p,X′

k′,X′′

∫ p,Y

k̄,Y ′

∫ p,Y ′

k̄′,Y ′′
(X ′′0 −X ′0)(Y ′′0 − Y ′0)

(
∂2
X′′1∂

2
Y ′′1

〈
Ea1 (X ′)Ea3 (X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
+2∂2

X′′1∂Y ′′2∂Y ′′1

〈
Ea1 (X ′)Ea3 (X ′′)Eb2(Y ′)Eb3(Y ′′)

〉
+∂X′′2∂X′′1∂Y ′′2∂Y ′′1

〈
Ea2 (X ′)Ea3 (X ′′)Eb2(Y ′)Eb3(Y ′′)

〉)
≈ 1

16p4
0

∫ X0

X′0

∫ X′0

X′′0

∫ Y0

Y ′0

∫ Y ′0

Y ′′0

(X ′′0 −X ′0)(Y ′′0 − Y ′0)
(
∂2
X′′1∂

2
Y ′′1

〈
Ea1 (X ′)Ea3 (X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
+2∂2

X′′1∂Y ′′2∂Y ′′1

〈
Ea1 (X ′)Ea3 (X ′′)Eb2(Y ′)Eb3(Y ′′)

〉
+∂X′′2∂X′′1∂Y ′′2∂Y ′′1

〈
Ea2 (X ′)Ea3 (X ′′)Eb2(Y ′)Eb3(Y ′′)

〉)
(D7)

with X⊥ = X ′⊥ = X ′′⊥ and Y⊥ = Y ′⊥ = Y ′′⊥ . Using〈
Ea1 (X ′)Ea3 (X ′′)Eb1(Y ′)Eb3(Y ′′)

〉
= 〈Ea1 (X ′)Eb1(Y ′)〉〈Ea3 (X ′′)Eb3(Y ′′)〉

= −N̄2
c (N2

c − 1)

∫ X′

⊥;q,u

∫ Y ′

⊥;l,v

∫ X′′

⊥;q′,u′

∫ Y ′′

⊥;l′,v′
Ω−(u⊥, v⊥)Ω+(u′⊥, v

′
⊥)

×q
yly

ql
J1(qX ′0)J1(lY ′0)J0(q′X ′′0 )J0(l′Y ′′0 ), (D8)
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〈
Ea1 (X ′)Ea3 (X ′′)Eb2(Y ′)Eb3(Y ′′)

〉
= 〈Ea1 (X ′)Eb2(Y ′)〉〈Ea3 (X ′′)Eb3(Y ′′)〉

= N̄2
c (N2

c − 1)

∫ X′

⊥;q,u

∫ Y ′

⊥;l,v

∫ X′′

⊥;q′,u′

∫ Y ′′

⊥;l′,v′
Ω−(u⊥, v⊥)Ω+(u′⊥, v

′
⊥)

×q
ylx

ql
J1(qX ′0)J1(lY ′0)J0(q′X ′′0 )J0(l′Y ′′0 ), (D9)

and〈
Ea2 (X ′)Ea3 (X ′′)Eb2(Y ′)Eb3(Y ′′)

〉
= 〈Ea2 (X ′)Eb2(Y ′)〉〈Ea3 (X ′′)Eb3(Y ′′)〉

= −N̄2
c (N2

c − 1)

∫ X′

⊥;q,u

∫ Y ′

⊥;l,v

∫ X′′

⊥;q′,u′

∫ Y ′′

⊥;l′,v′
Ω−(u⊥, v⊥)Ω+(u′⊥, v

′
⊥)

×q
xlx

ql
J1(qX ′0)J1(lY ′0)J0(q′X ′′0 )J0(l′Y ′′0 ), (D10)

and following the same procedure, it is found

I3 ≈ −
g4N2

c (N2
c − 1)

4(2π)4p4
0

∫ ⊥
s,t,s′,t′

Θ(X0 − |s⊥|)Θ(Y0 − |t⊥|)Θ(|s⊥| − |s′⊥|)Θ(|t⊥| − |t′⊥|)
|s⊥||t⊥||s′⊥||t′⊥|

×
(
|u′⊥| − |u⊥|

)(
|t′⊥| − |t⊥|

)[
ŝy⊥t̂

y
⊥∂

2
u′x∂

2
v′x − 2ŝy⊥t̂

x
⊥∂

2
u′x∂v′y∂v′x

+ŝx⊥t̂
x
⊥∂u′x∂u′y∂v′x∂v′y

]
Ω−(u⊥, v⊥)Ω+(u′⊥, v

′
⊥). (D11)

Appendix E: Semi-analytical analysis of the integrals I1, I2, I3

We now analyse the behavior of different integrals. We first introduce ρ = Q2
s|u⊥ − v⊥|2 and

accordingly write GBW distribution

Ω±(u⊥, v⊥) = Ω(ρ) =
Q4
s

g4N2
c

(
1− e−ρ/4

ρ/4

)2

, (E1)

similarly Ω±(u′⊥, v
′
⊥) = Ω(ρ′) with ρ′ = Q2

s|u′⊥ − v′⊥|2. Using Eq. (E1) we can obtain

∂uiΩ±(ρ) = (∂uiρ)Ω′±(ρ′) = 2Qsw
iΩ′±(ρ) = −∂viΩ±(ρ), (E2)

∂vj∂uiΩ±(ρ) = −2Q2
s

(
δjiΩ′±(ρ) + 2wiwjΩ′′±(ρ)

)
, (E3)

∂uk∂vj∂uiΩ±(ρ) = −∂vk∂vj∂uiΩ±(ρ)

= −4Q3
s

[(
δjiwk + δkjwi + δkiwj

)
Ω′′±(ρ) + 2wiwjwkΩ′′′±(ρ)

]
, (E4)

and

∂vl∂uk∂vj∂uiΩ±(ρ) = ∂ul∂uk∂uj∂uiΩ±(ρ)

= 4Q4
s

[(
δjiδkl + δkjδil + δkiδjl

)
Ω′′±(ρ) + 2

(
wi(wjδkl + wkδjl + wlδjk)

+wk(wlδij + wjδil) + δikwjwl
)
Ω′′′±(ρ) + 4wiwjwkwlΩ′′′′± (ρ)

]
, (E5)

where wi = Qs(u
i
⊥ − vi⊥).
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The above equations can be utilized to obtain

∂vx∂uxΩ±(ρ) = −2Q2
s

(
Ω′±(ρ) + 2(wx)2Ω′′±(ρ)

)
, (E6)

∂vy∂
2
uxΩ±(ρ) = −4Q3

s

[
ωyΩ′′±(ρ) + 2(wx)2wyΩ′′′±(ρ)

]
, (E7)

∂vx∂
2
uxΩ±(ρ) = −∂ux∂2

vxΩ±(ρ) = −4Q3
s

[
3wxΩ′′±(ρ) + 2(wx)3Ω′′′±(ρ)

]
, (E8)

∂vy∂vx∂uxΩ±(ρ) = 4Q3
s

[
wyΩ′′±(ρ) + 2wy(wx)2Ω′′′±(ρ)

]
, (E9)

∂vy(∂ux)3Ω±(ρ) = −∂vy∂vx(∂ux)2Ω±(ρ) = 4Q4
s

[
6wxwyΩ′′′±(ρ) + 4(wx)3wyΩ′′′′± (ρ)

]
, (E10)

∂vx∂ux∂vy∂uyΩ±(ρ) = 4Q4
s

[
Ω′′±(ρ) + 2

(
(wx)2 + (wy)2

)
Ω′′′±(ρ) + 4(wy)2(wx)2Ω′′′′± (ρ)

]
, (E11)

and

(∂vx)2(∂ux)2Ω±(ρ) = 4Q4
s

[
3Ω′′±(ρ) + 12(wx)2Ω′′′±(ρ) + 4(wx)4Ω′′′′± (ρ)

]
. (E12)

Finally, one can find

I1 ≈ −2Q2
s

g4N2
c (N2

c − 1)

4(2π)4p4
0

∫ ⊥
s,t,s′,t′

Θ(X0 − |s⊥|)Θ(Y0 − |t⊥|)Θ(|s⊥| − |s′⊥|)Θ(|t⊥| − |t′⊥|)
|s⊥||t⊥||s′⊥||t′⊥|

×
[
ŝx⊥t̂

x
⊥ŝ
′y
⊥ t̂
′y
⊥ + ŝy⊥t̂

y
⊥ŝ
′x
⊥ t̂
′x
⊥ − 2ŝx⊥t̂

y
⊥ŝ
′y
⊥ t̂
′x
⊥
](

Ω′(ρ) + 2(wx)2Ω′′(ρ)
)
Ω(ρ′), (E13)

I2 ≈ 4Q3
s

g4N2
c (N2

c − 1)

2(2π)4p4
0

∫ ⊥
s,t,s′,t′

Θ(X0 − |s⊥|)Θ(Y0 − |t⊥|)Θ(|s⊥| − |s′⊥|)Θ(|t′⊥| − |t⊥|)
|s⊥||t⊥||s′⊥||t′⊥|

×
(
|t⊥| − |t′⊥|

)
ŝ

[x
⊥ ŝ
′y]
⊥
[
t̂′y⊥
(
3wxΩ′′(ρ) + 2(wx)3Ω′′′(ρ)

)
− t̂′x⊥

(
wyΩ′′(ρ) + 2wy(wx)2Ω′′′(ρ)

)]
Ω(ρ′).

(E14)

and

I3 ≈ −4Q4
s

g4N2
c (N2

c − 1)

4(2π)4p4
0

∫ ⊥
s,t,s′,t′

Θ(X0 − |s⊥|)Θ(Y0 − |t⊥|)Θ(|s⊥| − |s′⊥|)Θ(|t⊥| − |t′⊥|)
|s⊥||t⊥||s′⊥||t′⊥|

×
(
|u′⊥| − |u⊥|

)(
|t′⊥| − |t⊥|

)[
ŝy⊥t̂

y
⊥
(
3Ω′′(ρ′) + 12(w′x)2Ω′′′(ρ′) + 4(w′x)4Ω′′′′(ρ′)

)
+2ŝy⊥t̂

x
⊥
(
6w′xw′yΩ′′′(ρ′) + 4(w′x)3w′yΩ′′′′(ρ′)

)
+ŝx⊥t̂

x
⊥
(
Ω′′(ρ′) + 2

(
(w′x)2 + (w′y)2

)
Ω′′′(ρ′) + 4(w′y)2(w′x)2Ω′′′′(ρ′)

)]
Ω(ρ). (E15)

where w′i = Qs(u
′i
⊥ − v′i⊥). Recall that (ui⊥ − vi⊥) = (ti⊥ − si⊥) and (u′i⊥ − v′i⊥) = (t′i⊥ − s′i⊥)

when r⊥ = 0. Here Ω′(ρ) ≡ ∂ρΩ(ρ) and similar notations are applied to higher derivatives.

Noticeably, a derivative acting on Ω flips the overall sign even though the magnitudes of Ω(ρ)

and its higher derivatives monotonically decrease with ρ. However, the prefactors with different

orders of wi could qualitatively convert the monotonically decreasing (or increasing) function into

an approximate pulse form with a shift of the maximum to larger ρ. One can see this behavior
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ρΩ′′(ρ) normalized by
Q4

s
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, respectively.

in Fig. 5. Consequently, despite the angular dependence, when having larger X0 and hence larger

phase space for the integrals, I1,2,3 may not monotonically increase due to the combination of

terms with different derivatives and accompanied prefactors with distinct orders of ωi (or ω′i). As

illustrated in Fig. 1, we have observed the turnover of Î2, while the non-monotonic behaviors of

Î1,3 occurs at much larger QsX0.
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