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Gravitational wave memory effects arise from non-oscillatory components of gravitational wave
signals, and they are predictions of general relativity in the nonlinear regime that have close connec-
tions to the asymptotic properties of isolated gravitating systems. There are many types of memory
effects that have been studied in the literature. In this paper we focus on the “displacement” and
“spin” memories, which are expected to be the largest of these effects from sources such as the
binary black hole mergers which have already been detected by LIGO and Virgo. The displacement
memory is a change in the relative separation of two initially comoving observers due to a burst of
gravitational waves, whereas the spin memory is a portion of the change in relative separation of
observers with initial relative velocity. As both of these effects are small, LIGO, Virgo, and KAGRA
can only detect memory effects from individual events that are much louder (and thus rarer) than
those that have been detected so far. By combining data from multiple events, however, these effects
could be detected in a population of binary mergers. In this paper, we present new forecasts for
how long current and future detectors will need to operate in order to measure these effects from
populations of binary black hole systems that are consistent with the populations inferred from the
detections from LIGO and Virgo’s first three observing runs. We find that a second-generation
detector network of LIGO, Virgo, and KAGRA operating at the O4 (“design”) sensitivity for 1.5
years and then operating at the O5 (“plus”) sensitivity for an additional 1.5 years can detect the
displacement memory. For Cosmic Explorer, we find that displacement memory could be detected
for individual loud events, and that the spin memory could be detected in a population after 5 years
of observation time.

I. INTRODUCTION

Since the first detection of gravitational waves from
a binary black hole merger by LIGO [1], gravitational
waves from nearly one-hundred binaries have now been
detected in three observing runs (O1–O3) [2–4]. These
detections enabled general relativity to be tested through
many methods [5–7], and they provided constraints on
the astrophysical populations of such binaries [8–10]. The
gravitational-wave tests of general relativity are comple-
mentary to the constraints solar-system and pulsar mea-
surements provided (see, for example, [11] and references
therein), because the radiation emitted by the merger of
black holes probes into the dynamical and strong-field
regime that was not accessible to these earlier measure-
ments. The gravitational-wave features which were mea-
sured and used in the tests of general relativity primarily
arose from the dominant, quadrupolar waves. However,
some distinctive strong-field predictions of general rela-
tivity appear in subleading portions of the waveform. It
is then natural to ask what subdominant phenomena can
be measured by current (and future) gravitational wave
detectors, and when will it be possible?

In this paper, we aim to address these questions for
two nonlinear relativistic phenomena known as the dis-
placement [12] and spin [13] memory effects. These ef-
fects can be determined by sets of observers who measure
enduring changes in their separation before and after a
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burst of gravitational waves. The displacement mem-
ory arises for observers who are initially comoving, and
the spin memory (together with the related center-of-
mass memory [14]) arises for observers with initial rela-
tive velocities [15, 16]. For interferometric gravitational
wave detectors (such as LIGO), which measure gravita-
tional waves over a finite time with a limited frequency
bandwidth, these effects are encompassed in nonoscilla-
tory parts of the measured signal. For the displacement
memory, there is a distinctive part of the signal associ-
ated with the net change between early and late times,
while the spin memory has an analogous portion related
to the nonzero time integral of the signal.

Memory effects have close connections to the infrared
properties of gravity and gauge theories, including the
asymptotic field equations, symmetries, and conserved
charges (see, for example, [17]). In particular, the dis-
placement memory is related to the supertranslation
symmetries [18, 19], which are a subgroup of the Bondi-
Metzner-Sachs (BMS) group of symmetries for asymp-
totically flat spacetimes [20, 21], and they are closely
connected with the conserved charges conjugate to these
symmetries [18, 22]. BMS symmetry and memory effects
have implications for the quantization of gravity at null
infinity [18, 23, 24] which are under active investigation.
In addition, there are proposed extensions to the BMS
group [25, 26] which have conjugate charges that are re-
lated to the spin memory effect [13]. The relationship
between the spin memory and the generalized BMS sym-
metry is more involved, however [27]. Because the spin
memory effect can be described by and derived from the
asymptotic Einstein equations without the use of these
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symmetries and their charges (see, for example, [16]), the
effect exists independently of the particular proposal for
the extension of the BMS symmetry algebra (and its mea-
surement would not give evidence for or against a given
proposal).

Memory signals from binary black hole mergers are
also clear and distinctive probes of nonlinearities in Ein-
stein’s equations that are not as apparent in the oscilla-
tory parts of the signal. In the linear theory, the displace-
ment memory effect vanishes for gravitationally bound
systems (such as black hole binaries detected by LIGO),
as it arises only for unbound bodies and fields (for ex-
ample, in scattering [12] and in the radiated neutrinos in
supernovae [28, 29]). There is, however, a non-negligible
contribution in the nonlinear theory [30]. Thorne [31] in-
terpreted this as the nonlinear effective stress-energy ten-
sor of the gravitational waves acting as the “unbound”
material producing the memory. Because it is sourced
by the oscillatory waves, the displacement memory effect
(and, similarly, the spin memory effect) probes nonlin-
earities in the propagation of gravitational waves from
an isolated source.

As binary black hole mergers are some of the most
luminous sources in the universe (with luminosities ap-
proaching the Planck value), these systems enter the
regime in which nonlinearities in the propagation of grav-
itational waves are important; they are thus well suited
for producing the nonlinear displacement and spin mem-
ory effects. For the sources observed by LIGO and Virgo
to date, however, the signals were not sufficiently loud for
there to be evidence for the memory effect in any of the
individual detections [32]. This is consistent with earlier
forecasts [33, 34]. Even with KAGRA [35] and LIGO In-
dia [36] joining the network, our results show that it is
unlikely that the memory effects will be detected from
individual events even as the detectors reach their design
and their “plus” sensitivities.

The outlook for detecting the memory from individual
events is more promising with the space-based interfer-
ometer LISA [37]. It is has been estimated that LISA will
observe the displacement memory arising from mergers of
supermassive black-hole binaries [38]. Pulsar timing ar-
ray experiments (see, for example, [39]) have put upper
limits on the amplitude of gravitational-wave bursts with
memory [40], though Ref. [38] also suggests that it will
likely take longer for pulsar timing to detect the mem-
ory effect than LISA. Finally, there are forecasts that
show that next-generation ground-based detectors such
as Einstein Telescope [41] and Cosmic Explorer [42] will
be sensitive enough to measure the displacement memory
from individual events [34]. We give further evidence for
this in this paper.

While detecting the displacement memory effect from
individual events is unlikely, it it is possible to measure
the presence of the memory in the entire population of
mergers by combining the evidence for the effect over all
the observed events [43]. This procedure (often referred
to as “stacking” and described in more detail in Sec. II A

below) makes use of the fact that many low-significance
events below the threshold of detection can be coher-
ently combined to give a single higher-significance “ef-
fective event” that would exceed a threshold for detec-
tion. Stacking has also been proposed as a means of
measuring phenomena other than memory that are sim-
ilarly small (for example, to search for features in the
ringdown waves [44]). In [32, 45], this method was used
to determine the statistical evidence for the presence the
displacement memory effect in the first two gravitational-
wave transient catalogs. There was not significant evi-
dence for the memory in these events. This is consistent
with the results of [43], which determined that about 100
events similar to GW150914 would be necessary for de-
tection of the memory in a population of events.

The study in [43] was a proof-of-principle work, and
the subsequent works [32, 45] developed a more complete
detection pipeline and more accurate forecasts of the de-
tection prospects. For example, the analysis in [45] used
the events from the first gravitational-wave catalog and
the associated astrophysical population models from the
first two observing runs [8], and found that it would take
O(2000) events at the LIGO/Virgo design sensitivities
to reach a detection threshold. This would most likely
occur during the fifth observing run (O5) [46]. The meth-
ods used in [32, 45] were Bayesian, and they specifically
involved computing an evidence ratio between the hy-
potheses that each event did or did not include the dis-
placement memory. These evidence-ratio calculations are
computationally intensive, and having a faster method
for performing forecasts is useful. One such less compu-
tationally intensive approach was also discussed in [43].
The method is to add the signal-to-noise ratios (SNRs)
of the memory part of each signal in quadrature—while
excluding some lower-significance events where certain
parameters cannot be adequately measured (which we
discuss in detail in Sec. II C below)—to compute an “ef-
fective memory SNR” for the population of events. This
approach was performed in [47], which showed that a
detection with an effective SNR of 3 would be seen in
five years of LIGO and Virgo operation at their design
(O4) sensitivities. The results of [47] are consistent with
those of [45] in terms of the number of events which were
needed. In this paper, we adopt the approach of [43, 47],
although we also illustrate in Sec. II A a limit in which it
is equivalent to the Bayesian hypothesis test of [32, 45].

The goals of this paper are twofold. (i) We will up-
date the results of [47] to use a population model that
was informed by the second gravitational-wave catalog [9]
and to account for the updated observing scenarios of
the current ground-based detectors. Specifically, as out-
lined in [46], we allow for the detector sensitivities to
increase to those of O5 (the “plus” sensitivities) after 1.5
years, with LIGO India added after 2.25 years. These two
changes result in the effective SNR for the memory reach-
ing the threshold of 3 after about 3 years of total obser-
vation. (ii) We perform a similar type of forecast for the
detection prospects for the spin memory effect in a pop-
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ulation of binary black hole mergers. Previous estimates
had suggested that the spin memory is about 10 times
smaller than the displacement memory [48], which makes
it too weak to be detected by the current generation of
ground-based detectors, even in a population of events.
We thus perform the forecasts using next-generation de-
tectors, and find that the effective SNR of the spin mem-
ory could reach 3 in the Cosmic Explorer (CE) detector
network (assuming three detectors) after 5 years of ob-
servation. Furthermore, CE can detect the displacement
memory from individual loud events, as predicted in [34].

The outline of the remainder of the paper is as follows.
First, in Sec. II, we discuss various aspects of detecting
the memory: the stacking procedure outlined above, the
definition of the part of the waveform that gives rise to
the memory effect, and an issue (related to the “sign”
of a detector’s response to this part of the waveform)
that arises for certain events whose parameters are not
well constrained. In Sec. III we describe the methods we
use for forecasting the memory: how one generates event
parameters from a distribution of population parameters,
the models we use to generate waveforms, and the details
of how the SNR is then computed for a given detector
network. We then give our results in Sec. IV, predicting
the accumulated SNR as a function of time, and we dis-
cuss a subtlety due to the current lack of constraints on
the population of events at large redshift. We give our
conclusions and discuss future directions in Sec. V.

II. FORMALISM FOR DETECTION OF
MEMORY EFFECTS

In the three parts of this section, we discuss a few
topics needed for our procedure to forecast the detec-
tion prospects of the memory. These are the signal-
to-noise ratio, the Bayes factor, and the “stacking” of
events (Sec. II A); the memory signals used in the fore-
casts (Sec. II B); and a subtlety related to stacking as-
sociated with the “sign” of a detector’s response to the
memory effect’s signal (Sec. II C).

A. Signal-to-noise ratio and stacking

A common figure of merit used in assessing whether
an event can be measured in a given detector (or set of
detectors) is the so-called signal-to-noise ratio (SNR). In
the context of gravitational waves, the SNR is commonly
defined in the frequency domain. To give the expression
for the SNR, it is first helpful to define the noise-weighted
inner product of two (real) signals a(t) and b(t) by

〈a|b〉 ≡ 2

∫ ∞
−∞

ã(f)b̃(f)df

Sn(f)
. (2.1)

The tildes above denote the Fourier transforms of a and
b, and Sn(f) is the power spectral density of the noise,

a quantity which characterizes the (assumed) stationary
Gaussian noise in the detector (see, for example, Chap-
ter 2 of [49]). For a and b real and Sn(−f) = Sn(f), the
inner product 〈a|b〉 is also real. Then, the optimal SNR
ρh associated with a given signal h(t) is given by

ρh ≡
√
〈h|h〉. (2.2)

In [43], two approaches were used to forecast the detec-
tion prospects for the displacement memory effect. The
first directly involved the SNR. More specifically, an ef-
fective SNR was computed by adding in quadrature the
individual SNRs of the memory part of the signal in all
detectors for all events. The second method did not di-
rectly compute an SNR; rather, it performed Bayesian
model comparison by computing (the log of) an evidence
ratio for the hypotheses that the memory effect is present
versus absent in the simulated events (this will be de-
scribed more quantitatively below). We now summarize
the context in which the two approaches become equiva-
lent to one another.

We start by reviewing the evidence-ratio calculation,
which in the context of gravitational-wave memory de-
tection, aims to answer the following question: given a
set of data d(t), which model is more favored: a wave-
form hosc.(t) that has a vanishing memory effect, or
hosc.(t) + hmem.(t),

1 which has a nonvanishing memory
effect? The probability that a set of data d(t) is given by
s(t) + n(t), with n(t) being some realization of station-
ary, Gaussian noise characterized by the power spectral
density Sn(f), is given by (see, for example, [50, 51]):

L[d|s] ∝ exp

(
−1

2
ρ2
d−s

)
. (2.3)

In the language of Bayesian statistics, this is a likelihood.2

Assuming that each model is equally favored beforehand,
the Bayes factor, which assesses by how much the model
with memory is favored over the model without, is given
by

Bmem.
no mem.(d) =

∫
dθL[d|hosc.(θ) + hmem.(θ)]p(θ)∫

dθL[d|hosc.(θ)]p(θ)

, (2.4)

where p(θ) is the (prior) probability that the parameters
take on a particular value θ. Bayes’ theorem,

p[h(θ)|d]p(d) = L[d|h(θ)]p(θ), (2.5)

1 Note that, in this section, we do not define what “hmem.(t)” is,
other than to distinguish between a model with versus without
memory. See Sec. II B for a further discussion of the subtleties
in defining this quantity, which we call the “memory signal.”

2 In the gravitational-wave literature, this is often written as
L[d|θ], which implicitly assumes some signal model h(θ); this
will be written as L[d|h(θ)] in our notation.
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where p(d) is the evidence for the model h(θ) and
p[h(θ)|d] is the posterior probability of the parameters
θ given the data d, can be used to rewrite the Bayes fac-
tor in Eq. (2.4). First, one can see that the Bayes factor
is precisely the ratio of the evidences p(d) of the two sig-
nal models. Second, one can rewrite the Bayes factor in
Eq. (2.4) in the form

Bmem.
no mem.(d) =

∫
dθ
L[d|hosc.(θ) + hmem.(θ)]

L[d|hosc.(θ)]
p[hosc.(θ)|d],

(2.6)
where

L[d|hosc.(θ) + hmem.(θ)]

L[d|hosc.(θ)]

= exp

[
−1

2
ρ2
d−hosc.(θ)−hmem.(θ)

+
1

2
ρ2
d−hosc.(θ)

] (2.7)

is the ratio of the likelihoods of the two models and
p[hosc.(θ)|d] is the posterior for the parameters θ under
the assumption of a model containing just the oscillatory
signal and no memory signal. This posterior probability
is the one that is most commonly computed for the ob-
served events in the current gravitational-wave transient
catalogs [3, 4].

Next, we make two assumptions. First, we assume that
the signal contains the memory effect, so that the set of
data d is given by

d = hosc.(θ0) + hmem.(θ0) + n, (2.8)

where n is a realization of the noise and θ0 are some
“true” values of these parameters. The second assump-
tion is that we can approximate the posterior distribution
by a delta function: namely,

p[hosc.(θ)|d] = δ(θ − θ0). (2.9)

In this approximation, we are neglecting the spread in
p[hosc.(θ)|d] and biases from the true parameters that
would arise from a particular realization of the detector’s
noise, as well as any errors to the parameter estimation
that would arise from neglecting the memory part of the
signal. However, we focus on this approximation because
it results in an exact relationship between the two data-
analysis methods. Note that, for reasons discussed in
Sec. II C, this is not always a good approximation, as
p[hosc.(θ)|d] can have multiple peaks (and would not be
well represented by a single delta function).

It then follows that the Bayes factor is given by

Bmem.
no mem.(d) = exp

[
−1

2
ρ2
n +

1

2
ρ2
hmem.(θ0)+n

]
= exp

[
1

2
ρ2
hmem.(θ0) + 〈hmem.(θ0)|n〉

]
.

(2.10)

We now average Eq. (2.10) over the noise, which we de-
note by E (for “expectation value”). We apply the result

in Eq. (A3) to determine that

E {exp [〈hmem.(θ0)|n〉]} = exp

[
1

2
ρ2
hmem.(θ0)

]
, (2.11)

and then take the logarithm of the expectation value to
obtain

lnE[Bmem.
no mem.(d)] = ρ2

hmem.(θ0). (2.12)

The total Bayes factor for independent events is sim-
ply the product of the individual Bayes factors for each
individual event. Since the square of the SNR is the log
of the Bayes factor in this approximation, it is apparent
that the “effective” SNR squared of a series of indepen-
dent events, as well as a single event measured in multiple
detectors, is given simply by the sum:

ρ2
eff =

∑
i

ρ2
i . (2.13)

This is what allows for the “stacking” of multiple inde-
pendent events over time: even if the SNR of each indi-
vidual event is small, by adding up contributions from
each event, the total log of the Bayes factor can be large,
indicating that the evidence for the memory in a popu-
lation of events is strong. In this paper, we will use ρ2

eff
as a proxy for the Bayes factor to make our forecasts less
computationally intensive.

B. Memory signals

The calculation of the Bayes factor above relies on hav-
ing a procedure to split the model for the waveform into
“oscillatory” and “memory” components. However, what
characterizes the presence of memory (either displace-
ment or spin) in a waveform is the difference in a quantity
(respectively the strain or its time integral) before and af-
ter the passage of gravitational waves. For example, the
displacement memory is characterized by the difference
in the strain hij between early and late times, and there
is no unique way to determine a part of the waveform
that contributes to this final difference. In principle, any
function which interpolates between the initial and final
values of hij could be a choice for the “memory” part of
the signal. However, having a reasonable definition of the
memory signal is important, because in detectors such as
LIGO, it is the memory part of the signal (however one
might define it) that the detectors can measure directly,
rather than the finite offset between early and late times.
A similar issue arises for defining the spin memory signal.

However, there is a particularly well-motivated choice
that has been used frequently in both in numerical rela-
tivity (for example, [52]) and in the post-Newtonian and
post-Minkowskian approximations (see [48, 53]). It re-
lies on the fact that the strain hij obeys two “consis-
tency conditions” that can be derived from the asymp-
totic form of the Einstein equations in Bondi-Sachs coor-
dinates [20, 54] (see, for example, [22]). In vacuum, they
are given by
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D iDj∆hij(u, u0) =
1

r

[
4∆m(u, u0) +

r2

2

∫ u

u0

du1ḣij(u1)ḣij(u1)

]
, (2.14a)∫ u

u0

du1D
2D[iD

khj]k(u1) =
1

r

{
− 4D[i∆N̂j](u, u0)

+
r2

2

∫ u

u0

du1D[i|

[
ḣkl(u1)Dkhl|j](u1) + 3h|j]k(u1)Dlḣ

kl(u1)− (h←→ ḣ)
]}

, (2.14b)

where (as is customary) we use square brackets around
indices to denote antisymmetrization, with | to indicate
indices not antisymmetrized over [so that, for example,
T[a|b|c] ≡ 1

2 (Tabc − Tcba)]. Here, r is the distance to the
source, the indices i, j, etc. are indices on the two-sphere,
Di is the covariant derivative on the two-sphere, and m
and Ni are functions which appear in the metric called
the mass and angular momentum aspects. Finally, the
quantity N̂i is defined by

N̂i(u) ≡ Ni(u)− (u− u0)Dim(u)

− r2

4

{
hij(u)Dkh

jk(u) +
1

4
Di[hjk(u)hjk(u)]

}
,

(2.15)

and ∆Q(u, u0) ≡ Q(u) − Q(u0). The quantities m, N̂i,
and hij are also functions of the angular coordinates xj ,
but we suppress the additional functional dependence on
xj to simplify the notation.

For computing the displacement or spin memory ef-
fects, the limits of integration in Eq. (2.14a) or (2.14b)
should run from some u0 before the start of the gravita-
tional waves until some u1 after the gravitational waves
have passed by, as is the case in, for example, [16]. In that
context, the first terms (those involving ∆) on the right-
hand side are referred to as the charge contributions, and
the second terms the (nonlinear) flux contributions, to
the displacement or spin memory.

Both equalities in Eq. (2.14) are satisfied for any val-
ues of u0 and u, but in that case they are just a set of
expressions that relate the strain to the mass and angular
momentum aspects. When the mass and angular momen-
tum aspects are known as functions of time, Eq. (2.14)
can also be used as a consistency check of the waveform
(as described in [14, 55]). If the waveform is found to
be inconsistent with Eq. (2.14), then Eq. (2.14) can be
used to determine a correction to the gravitational-wave
strain needed to restore consistency. We use this ap-
proach, and the charge-flux-type split on the right-hand
sides of Eq. (2.14), to define the so-called “memory sig-
nals.”

First, for the displacement memory, we define the
memory signal to be the part of the strain related to
the second term on the right-hand side of Eq. (2.14a):

D iDjhdisp.
ij (u) ≡ r

2

∫ u

u0

du1ḣij(u1)ḣij(u1). (2.16)

This definition is motivated by the fact that this nonlin-
ear contribution dominates over the one from ∆m(u1, u0)
when the spacetime is asymptotically stationary before
and after the burst of gravitational waves (that is, outside
the interval [u0, u1]).3 Moreover, it has been confirmed
in numerical relativity simulations of binary black holes
that the contribution from ∆m(u1, u0) is much smaller
than the contribution from Eq. (2.16), at least for the
l = 2,m = 0 mode [52].

By analogy, we define the spin memory signal by the
integrand of the second term on the right-hand side of
Eq. (2.14b):

D2D[iD
khspin

j]k ≡
r

2
D[i|

[
ḣklDkhl|j] + 3h|j]kDlḣ

kl

− (h←→ ḣ)
]
.

(2.17)

The reason why we consider the integrand in Eq. (2.14b)
is that while the displacement memory is related to (dif-
ferences in the value of) the strain hij , the spin memory
is related to its integral. In contrast, the spin memory
signal should be the part of the strain that contributes
to this integral and hence is given by the integrand. Sim-
ilarly to the case of the displacement memory, the contri-
bution to the total integral of waveform from ∆N̂i(u1, u0)
has been confirmed to be smaller than the contribution
from Eq. (2.17) in numerical relativity simulations of bi-
nary black holes, at least for the l = 3,m = 0 mode [52].

In principle, the strain and news on the right-hand

sides of Eqs. (2.16) and (2.17) contain hdisp
ij and hspin

ij ,
respectively, thereby making these equations partial
integro-differential equations. However, because it has
been determined empirically, for example, in [52] or [56],
that the oscillatory contribution to hij is the dominant
one, we will use the approximation that the terms on the
right-hand sides of Eqs. (2.16) and (2.17) only contain
hosc.
ij .

In this paper, we will often write the strain hij in terms
of spin-weighted spherical harmonics. Using the plus-

3 This follows from the fact that the mass aspect m becomes a
constant on the sphere and so cannot contribute to DiDj∆hij ,
which only contains l ≥ 2 spherical harmonics [22].
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and cross-polarization tensors (e+,×)ij , we can write

hij [(e+)ij − i(e×)ij ] ≡ h+ − ih×
≡
∑
l≥2,
|m|≤l

hlm (−2)Ylm. (2.18)

The formula for the displacement memory signal in terms
of these coefficients of the multipolar expansion of the
strain is then

hdisp.
lm (u) =

∑
l′≥2,
|m′|≤l′

∑
l′′∈ 2Ill′mm′ ,
m′′=m−m′

(−1)m
′′

(−2)2Cll′l′′m′m′′√
(l + 2)(l + 1)l(l − 1)

∫ u

u0

du′ḣosc.
l′m′(u′)ḣosc.

l′′(−m′′)(u
′), (2.19)

where

sIll′mm′ = {max(|s|, |l − l′|, |m−m′|), · · · , l + l′}, (2.20)

and ss′Cll′l′′m′m′′ are coefficients determined by the overlaps of the spin-weighted spherical harmonics:

sYlm s′Yl′m′ =
∑
l′′

ss′Cl
′′

ll′mm′ (s+s′)Yl′′(m+m′). (2.21)

These coefficients can be written in terms of Clebsch-Gordan coefficients (as was done in [48]4), or (equivalently) in
terms of Wigner 3-j symbols:

ss′Cl
′′

ll′mm′ = (−1)s+s
′+m+m′

√
(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

(
l l′ l′′

m m′ −(m+m′)

)(
l l′ l′′

−s −s′ s+ s′

)
. (2.22)

We compute the Wigner 3-j symbols using the software package py3nj [57].
The spin memory signal is described in terms of a similar, although somewhat more complicated, equation:

hspin
lm =

∑
l′≥2,
|m′|≤l′

∑
l′′∈ 2Ill′mm′ ,
m′′=m−m′

ξll′l′′m′m′′ + (−1)l+l
′+l′′ξll′′l′m′′m′

l(l + 1)
√

(l + 2)(l − 1)
ωl′m′l′′m′′ , (2.23)

where5

ξll′l′′m′m′′ ≡ 1

4

[√
(l′ − 2)(l′ + 3) (−3)2Cll′l′′m′m′′ + 3

√
(l′′ + 2)(l′′ − 1) (−2)1Cll′l′′m′m′′

]
(2.24)

and

ωlml′m′ ≡ (−1)m
′
(
hosc.
lm ḣosc.

l′(−m′) − ḣosc.
lm hosc.

l′(−m′)

)
. (2.25)

The available waveform models for the oscillatory part
of the waveform include only a handful of lm modes, so

4 The coefficients ss′Cl
′′
ll′mm′ are equal to the the coefficients

Cl′′ (s, l,m; s′, l′,m′) in [48].
5 The coefficients ξl

l′l′′m′m′′ are related to the coefficients

cl
l′,m′;l′′,m′′ in [14] by cl

l′,m′;l′′,m′′ = 4(−1)l+l′+l′′ξl
l′′l′m′′m′ .

when we compute the memory effects with these wave-
forms, the infinite sums will reduce to a sum over a few
terms. We illustrate this with the leading quadrupole
approximation for the waveforms in the next part.
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1. Leading quadrupole-order results

We now consider an (often-used) approximation, where
the only nonzero hosc.

lm ’s are those given by l = 2, m = ±2,
and that

hosc.
2m = hosc.

2(−m). (2.26)

For equal-mass, non-precessing compact binaries, these
modes are notably larger than all other multipoles, and
thus these modes also contribute the most to the dis-
placement and spin memory signals. Note that we do
not use this approximation, and the results of this sec-
tion, in the main results of this paper. We only consider
this approximation because it shows that certain parts
of the oscillatory and memory parts of the waveform are
dominant, which is relevant for discussing an issue known
as the “sign of the memory” in Sec. II C.

Using this approximation, we find that in both
Eqs. (2.19) and (2.23), m′,m′′ = ±2, which requires that
m = 0 or m = ±4. Since l′′ ∈ sIll′mm′ , it follows that
|l − l′| ≤ 2, and so 2 ≤ l ≤ 4. In order to narrow down
the value of l, note that, assuming that Eq. (2.26) holds,

ḣosc.
2m′ ḣosc.

2(−m′′) = ḣosc.
2m′ ḣosc.

2m′′ , (2.27)

which is of even parity under m′ ←→ m′′, while

ω2m′2m′′ = (−1)m
′′
(
hosc.

2m′ ḣosc.
2m′′ − ḣosc.

2m′hosc.
2m′′

)
(2.28)

is of odd parity under this transformation, for m′ and m′′

are both even (as they are in this case). Moreover, the
properties of the Wigner 3-j symbols imply that

ss′Cl22m′m′′ = (−1)l ss′Cl22m′′m′

= (−1)l ss′Cl22(−m′)(−m′′),
(2.29)

which implies that

ξl22m′m′′ = (−1)lξl22m′′m′

= (−1)lξl22(−m′)(−m′′).
(2.30)

The first line of Eq. (2.29) implies that the only values
of l for which the displacement memory signal does not
vanish are l = 2, 4 (as found in, for example, [58]). The
first line of Eq. (2.30) shows that the only values of l
where the spin memory signal does not vanish is l =
3 [48]. Similarly, the second lines of Eqs. (2.29) and (2.30)
imply that

h
disp./spin
lm = (−1)lh

disp./spin
l(−m) , (2.31)

which (since −2Yl0 is real) implies that the spin memory
signal only has cross polarization, as was found in [48].

C. “Sign” of the memory signals

One of the assumptions made above in Sec. II A to jus-
tify adding the SNRs of the memory signals in quadra-
ture was that the parameters of the binary could be de-
termined precisely from just the oscillatory part of the
signal. However, this will not always be the case, even in
the high signal-to-noise limit, when there are transforma-
tions of the parameters of the oscillatory waveform model
that leave the waveform invariant (in other words, there
are “degeneracies” of the waveform model). More specif-
ically, we will be most concerned with cases in which
there are different values of the parameters of the model,
θ and θ′, such that hosc.(θ) and hosc.(θ

′) are very close,
whereas hmem.(θ) and hmem.(θ

′) are very different. The
case which we will consider in this section will be where
hmem.(θ

′) ≈ −hmem.(θ);
6 namely, there is a parameter

degeneracy in the oscillatory waveform model that pre-
vents the sign of the memory signal from being deter-
mined. This degeneracy and its effect on the sign of the
memory signal was noted previously in [43]. We also
discuss how this degeneracy can be broken using an ap-
proach similar to that in [43, 47].

1. Transformations of oscillatory and memory signals

We now discuss one such transformation θ → θ′ here
and will discuss a different degeneracy in Appendix C.
The relevant set of parameters which we consider is

θ ≡ (φref., ψ), (2.32)

where φref. is the azimuthal coordinate of the detector
on the sky (relative to the binary) and ψ (the polariza-
tion angle) gives additional information about the ori-
entation of the binary relative to the detector (see, for
example, [59]) at a given reference time. These param-
eters are discussed in more detail in Sec. III A; see [60]
for a diagram showing the definitions of these quantities
(where φref. in our notation is denoted by φ, and ψ in
our notation is the observable quantity ψ + Ω). The im-
portant relation for this section is the fact that the signal
measured by the detector will be

h(θ) =
∑
l≥2,
|m|≤l

h(lm)(θ), (2.33)

where (see [47])

h(lm)(θ) ≡ F+(ψ) Re[hlm −2Ylm(ι, φref.)]

− F×(ψ) Im[hlm −2Ylm(ι, φref.)],
(2.34)

6 For nonprecessing binaries, then the transformation we discuss
in Sec. II C 1 has the property hmem.(θ′) = −hmem.(θ) as noted
in [43, 47], but for precessing binaries the relationship between
the memory signals at different parameters is approximate, not
exact.
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and where ι is the inclination, or the polar angle of the
detector on the sky relative to the binary. Here, the
antenna-pattern functions F+,× are defined by (see, for
example, [61])

F+,× = Dij(e+,×)ij , (2.35)

where Dij is a matrix that only depends on the location
and orientation of the detector on the earth, and is inde-
pendent of ψ. All dependence of F+,× on this parameter
arises through (e+,×)ij , which are given by

(e+)ij = XiXj−YiYj , (e×)ij = XiYj+YiXj , (2.36)

with

X = [sin(α− ωT ) cosψ − cos(α− ωT ) sinψ sin δ]i

+ [− cos(α− ωT ) cosψ − sin(α− ωT ) sinψ sin δ]j

+ sinψ cos δ k, (2.37a)

Y = [− sin(α− ωT ) sinψ − cos(α− ωT ) cosψ sin δ]i

+ [cos(α− ωT ) sinψ − sin(α− ωT ) cosψ sin δ]j

+ cosψ cos δ k. (2.37b)

Here, α and δ are the right ascension and declination of
the binary on the sky (in equatorial coordinates), ω is
the angular frequency of Earth’s rotation, and T is the
time of detection; the vectors i, j, and k are unit vectors
in a fixed, inertial, Earth-centered reference frame [61].

The specific transformation θ → θ′ which we consider
is given by

φref. → φref. + π/2, ψ → ψ + π/2. (2.38)

Due to the transformation of ψ, we find that

X → Y , Y → −X, (2.39)

and thus F+,× → −F+,×. Since the spin-weighted har-
monics satisfy

sYlm(ι, φref. + π/2) = im sYlm(ι, φref.), (2.40)

we find that, for even m (which is the case we are con-
cerned with here)

h(lm) → −(−1)m/2h(lm). (2.41)

In the case where hosc. is given by only the l = 2,m = ±2
modes and Eq. (2.26) holds, it follows that hosc. is even
under this transformation, while hdisp. and hspin are both
odd.

A key point is that the transformation (2.38) is only a
degeneracy of the oscillatory part of the signal when it is
given by the l = 2, m = ±2 modes and obeys Eq. (2.26).
For all compact binaries, there will be additional modes
present in the oscillatory signal that are not degenerate;
furthermore, if the orbital plane of the binary precesses,
Eq. (2.26) (and its generalization to higher values of l) is
also no longer true, which implies that the l = 2, m = ±2

modes are not degenerate under this transformation ei-
ther. As we will now show, the SNR of the part of the
signal that is “odd” under such transformations is the
part which determines how well θ0 and θ′0 can be distin-
guished. As we argue in Appendix B, if the parameters
cannot be distinguished for a given event, then on average
(over different noise realizations) that event contributes
much less to the overall Bayes factor Bmem.

no mem.(d).

2. Criteria for breaking the degeneracy

To write the criteria for breaking the degeneracy be-
tween the parameters, we first write the waveform as

h = heven + hodd, (2.42)

where

heven(θ′0) = heven(θ0), (2.43a)

hodd(θ′0) = −hodd(θ0). (2.43b)

The decomposition of h into even and odd parts applies
for the entire waveform (namely, both the oscillatory and
memory signals). Consider now the Bayes factor between
the two hypotheses that a set of data d is given by an
event with parameters θ0 and an event with parameters
θ′0:

B(d; θ0, θ
′
0) =

exp
[
− 1

2ρ
2
d−h(θ0)

]
exp

[
− 1

2ρ
2
d−h(θ′0)

]
= exp [2〈d− heven(θ0)|hodd(θ0)〉] .

(2.44)

We assume here that the prior probabilities satisfy
p(θ0) = p(θ′0). Note that, unlike in Eq. (2.4), there is not
an integral over the different parameters, as the particu-
lar values of the parameters are part of the hypothesis.
Using the fact that d = h(θ0)+n, we find [upon averaging
over the noise using Eq. (A3)] that

lnE[B(d; θ0, θ
′
0)] = 4ρ2

hodd(θ0). (2.45)

This shows that the SNR of the odd part of the signal
is what determines how well this degeneracy can be bro-
ken. Moreover, since the Bayes factor for independent
measurements is multiplicative, this means that the ef-
fective SNR2 is additive, just as it was in the case of the
detection of the memory. This justifies adding together
the SNR2 for the measurements of the same event by
multiple detectors, which makes this degeneracy easier
to break. In this paper, we assume that an SNR2 of 2
in the odd part of the oscillatory signal, computed for
the entire detector network, is sufficient to break the de-
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generacy.7 Using hodd
osc. rather than the full hodd to break

the degeneracy does not make much difference, because
SNR of the memory component hodd

mem. is typically a small
correction relative to the SNR of the oscillatory compo-
nent, and the memory and oscillatory waveforms have a
negligible overlap (noise-weighted inner product).

Finally, we note that having a large value for the SNR
for the odd part of the oscillatory signal does not just
break this degeneracy. The result that the displacement
and spin memory signals are entirely odd under the trans-
formation in Eq. (2.38) relies on the oscillatory part of the
signal entirely being in the l = 2,m = ±2 modes and the
fact that Eq. (2.26) holds. If there were a case in which
the odd part of the oscillatory signal is large, then the
displacement and spin memory signals could also have a
large even part compared with their odd parts. We did
not note any binaries in our simulated populations that
had this property, however.

III. FORECASTING METHODS

We outline several different aspects of our forecasting
procedure in this section. We begin by describing the
population models and how we draw realizations of these
populations from these models in Sec. III A. We then
discuss in Sec. III B the signal-to-noise ratio calculations,
in particular the factors that influence it, such as the
detector networks, the waveform families, and the signal
processing methods used.

A. Populations and events

To forecast the prospects for detecting gravitational
wave memory effects, we first must generate simulated
populations of events that are consistent with the binary
black hole mergers that have been detected so far. Each
event is characterized by a set of 15 parameters. The
intrinsic parameters (that is, those which do not depend
on the location of the detector) are

(i) the mass m1 of the primary;

(ii) the mass ratio q ≡ m2/m1;

(iii) the (dimensionless) spin magnitudes χ1 and χ2;

7 In [43], the definition of hodd was twice that of our definition,
so their threshold of 2 for the SNR would be equivalent to a
threshold of 1 by our definition of hodd. Note, however, that
their hodd contained just l = 2 and l = 3 modes, whereas ours
includes all the available (l,m) modes in the waveform models
that we use. In [47], only the odd m modes were used in the
definition of the higher-order-mode waveform hHOM, which was
used to compute an SNR threshold. A short calculation shows
that ρ2hodd

' ρ2hHOM
/2; thus, the threshold chosen in [47] of

ρhHOM
= 2 is approximately equivalent to the choice that we

have made of ρ2hodd
= 2.

(iv) z1 and z2, the cosines of the angle of each spin
vector relative to the orbital plane; and

(v) φ1 and φ2, the angles of each spin vector in the or-
bital plane relative to some arbitrarily chosen axis.

Because the spins and the orbital plane precess, z1,2 and
φ1,2 need to specified at some time. By convention, this
is when the l = 2,m = ±2 modes (in the co-precessing
frame) have a “reference frequency” fref., which is often
related to the low-frequency cut-off of the detector. The
remaining extrinsic parameters are

(i) the location of the detector on the sky, relative to
the plane of the orbit, determined by the polar an-
gle ι and axial angle φref.;

(ii) the location of the binary on the sky, relative to
the detector, as determined by the right-ascension
α and the declination δ;

(iii) the polarization angle ψ, determining the orienta-
tion of the binary on the sky relative to a fixed
polarization frame defined on Earth;

(iv) the redshift8 z; and

(v) the time difference ∆T between each event, which
can be summed to determine the absolute (GPS)
time T that is frequently used by ground-based de-
tectors.

Note, again, that the orbital plane used to define ι and
φref. is the orbital plane at fref.. Moreover, φref. is the
axial angle that is relative to the vector pointing towards
the primary black hole from the secondary, again at fref..

1. Population model

To generate simulated populations of events, we need a
model for the distributions of these parameters. Several
parameters, by assumptions of isotropy, will have either
uniform distributions (φ1, φ2, φref., α, and ψ), or effec-
tively uniform distributions (cos ι and sin δ are uniformly
distributed). The distributions of the remaining event
parameters are determined by the particular population
model in question. The population model that we use to
generate events in this paper is the so-called “Power Law
+ Peak” (PLPP) model [62], which is the model that was
most favored by the events during the O1, O2, and O3a
observing runs of LIGO and Virgo, which form the sec-
ond gravitational wave transient catalog (GWTC-2) [9].

8 More precisely, it is the luminosity distance DL and redshifted
masses that appear in the amplitude of the gravitational wave-
form; the redshift is then inferred from the from the luminosity
distance assuming a given cosmological model. However, Ref. [9]
parametrizes the distances in terms of the redshift z.
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This population model is characterized by a set of pop-
ulation parameters, and the observed events were used
to determine posterior distributions for these parameters
using a hierarchical Bayesian analysis [9].

We now consider the various pieces of this model. The
PLPP model describes the distribution of the primary
mass and mass-ratio of the merging binary black holes,
and it is characterized by 9 population parameters:9

(i) mmin, which is the minimum value of the mass of
either black hole in the binary;

(ii) mmax, which is the maximum mass of either black
hole for the power-law component of the mass dis-
tribution;

(iii) δm, which characterizes the width of the transition

of the mass distribution at low masses to zero;

(iv) α and β, which are power law exponents charac-
terizing the power law component of the primary
mass distribution and the mass-ratio distribution,
respectively;

(v) µm and σm, which give the mean and width of the
Gaussian component of the primary mass distribu-
tion;

(vi) mgauss.max, which determines the upper mass of
the Gaussian component, and also determines the
Gaussian’s normalization;10 and

(vii) λpeak, which determines fraction of systems in the
Gaussian component of the primary mass distribu-
tion.

The form of the joint m1-q probability distribution is

π(m1, q) ∝ P (q;β,mmin/m1, 1) [(1− λpeak)P (m1;−α,mmin,mmax) + λpeakG(m1;µm, σm,mmin,mgauss.max)]

× S(m1;mmin, δm)S(qm1;mmin, δm),
(3.1)

where

P (x; γ, x0, x1) ≡ γ + 1

xγ+1
1 − xγ+1

0

{
xγ x0 ≤ x ≤ x1

0 otherwise
(3.2)

is a power law distribution with exponent γ, normalized on the domain [x0, x1];

G(x;µ, σ, x0, x1) ≡ 1

σ
√

π
2

[
erf
(
x1−µ
σ
√

2

)
− erf

(
x0−µ
σ
√

2

)]
exp

[
− (x− µ)2

2σ2

]
x0 ≤ x ≤ x1

0 otherwise

(3.3)

is a truncated Gaussian normalized on the domain [x0, x1] {and erf(y) is the error function; see, for example, Eq. (7.2.1)
of [64]}; and

S(x;x0, δ) ≡


0 x ≤ x0{

1 + exp

[
δ

x− (x0 + δ)
+

δ

x− x0

]}−1

x0 ≤ x ≤ x0 + δ

1 x ≥ x0 + δ

(3.4)

9 The paper [9] describes the PLPP model as depending on only 8
parameters, because one of the 9 parameters is fixed to a constant
value and not inferred from the observed black hole mergers; see
Footnote 10.

10 Note that we did not see this value specified explicitly in either
of the references [9, 62]. The source code of the gwpopulation

package [63] (mentioned as being used by [9]) indicates that the
Gaussian component is normalized over [mmin, 100M�]. In a
private communication, Colm Talbot confirmed this choice of
normalization. We therefore fix mgauss.max = 100M� in our
analysis.

is a smooth transition function between 0 and 1 from x0

to x0 + δ.
Next, we consider distributions for the parameters re-

lated to the spin (ignoring φ1 and φ2, which are sampled
from a uniform distribution). We use the so-called “de-
fault” spin model in [9], in which the spin magnitudes
χ1 and χ2 are drawn from beta distributions and the pa-
rameters z1 and z2 are drawn from a sum of a uniform
distribution and a product of Gaussians [65, 66]. The
population parameters are

(i) µχ and σχ, the mean and standard deviation of the
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spin magnitude distributions, which are the same
for both spins;

(ii) σt, the standard deviation of the Gaussian compo-
nent of the z1 and z2 distribution; and

(iii) ζ, the fraction of the distribution for z1 and z2 that
is in the Gaussian component.

Explicitly,

π(χi) ∝ χαχ−1
i (1− χi)βχ−1, (3.5)

where αχ and βχ are defined by

αχ ≡
(1− µχ)

σ2
χ

− 1

µχ
, βχ ≡ αχ

(
1

µχ
− 1

)
. (3.6)

The distribution for z1 and z2 is given by

πz1,2(z1, z2) ∝ ζG(z1; 1, σt,−1, 1)G(z2; 1, σt,−1, 1)

+
1− ζ

4
.

(3.7)

Finally, we use a model for redshift and time ∆T
between events where the event rate evolves with red-
shift [67]. This model is characterized by the following
parameters:

(i) R0, the local (z = 0) event rate (with respect to
detector time), per comoving volume;

(ii) κ, the power law exponent for the event rate per
comoving volume; and

(iii) zmax, the maximum value of redshift for binary
black hole mergers allowed for in this model.

Unless otherwise specified, we take zmax = 1, and do
not draw any events at higher redshifts. While astro-
physical events will occur at higher redshifts, this par-
ticular population model is only well-constrained up to
z = 1 [9]. Note that systems may be detected at greater
values of redshift during the O4 and O5 observing runs,
and will be detected at much larger redshifts by Cosmic
Explorer [68]. However, since the star formation rate
peaks at z ' 1.9 [69], simply extending these models
may not correctly estimate the number of events at red-
shifts higher than one. In an attempt to be conservative
in our forecasts, we do not extrapolate these models and
simply use zmax = 1.

The explicit distribution for redshift is given by a
power law

π(z) ∝

(1 + z)κ−1 dVc
dz

0 ≤ z ≤ zmax

0 otherwise
, (3.8)

where dVc/dz is the differential comoving volume. The
distribution for ∆T is that given by a Poisson process:

π(∆T ) ∝ exp

[
− ∆T

R0

∫ zmax

0
(1 + z)κ−1 dVc

dz dz

]
. (3.9)

Note that dVc/dz, as a function of redshift, depends on
the cosmological model which we are using; here, we
use the software package astropy [70, 71], using their
Planck15 model based on Planck 2015 cosmological pa-
rameters [72].

2. Drawing population parameters and events

With the population model now defined, we turn to
discussing how we draw the population parameters from
the posterior distributions given in the public data release
of [9], available at [73]. These distributions are given as
a set of samples which represent a fair draw from the full
posterior distribution. We do not want to be restricted
to this specific draw from the distribution, so we instead
use the software package kombine to draw from an esti-
mate of the full distribution that was constructed from
a Gaussian kernel density estimation [74]. Once we have
generated a set of parameters for a population, we draw
event parameters in order to generate a set of events.
For m1, q, and z, there are no simple analytic methods
to draw from their distributions, so we use Markov chain
Monte Carlo (MCMC) sampling as implemented in the
emcee software package [75]. Note that there are only
two separate distributions that need to be sampled: the
joint distribution for m1 and q and the distribution for
z. The remaining parameters can all be drawn “exactly,”
as there exist efficient methods to draw from their distri-
butions using random number generators. 11

Finally, the parameters which characterize events in
the population model described above are not those
which most naturally arise when generating waveforms.
We must transform these parameters into the following
parameters, which can be computed as functions of the
event parameters given above:

(i) the redshifted total mass M ≡ (1 + q)(1 + z)m1,

(ii) the luminosity distance DL(z),12

(iii) the Cartesian spin vectors ~χ1,2, which are con-
structed from the magnitudes and angles using the
transformations from spherical polar to Cartesian
coordinates, and

(iv) the GPS time T of the event relative to some ref-
erence time, determined by adding up the ∆T of
each previous event.

These “waveform parameters” allow us to compute the
signal-to-noise ratio of each event.

11 That the joint distribution for z1 and z2 can be sampled exactly
follows from the fact that it is the sum of two distributions, each
of which can also be sampled exactly. That this is the case was
pointed out to us by an anonymous referee.

12 This function is dependent on the cosmological model in ques-
tion; as we did with dVc/dz above, we use the Planck15 model
of astropy [70, 71].
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B. Signal-to-noise ratio of single events

In this section, we describe the computation of the
SNR of each event. As described above, for each event
we compute the SNR of the “odd” part of the waveform
under the transformation in Sec. II C (to determine the
sign of the memory), and then we use that as a threshold
for whether or not to compute the SNR of the displace-
ment or spin memory signal. Events for which the SNR2

of the odd part of the waveform exceeds the threshold
of two also have a sufficiently high SNR that they would
pass the threshold of detection for the total signal. We
therefore do not impose a minimum SNR for the total
signal.

1. Detector networks

Here, we describe the various parameters which we use
in order to model the (network of) detectors used to mea-
sure these signals. We summarize these parameters in
Table I.

As described above Eq. (2.33), the signal measured by
a single detector depends on the antenna pattern func-
tions F+ and F×. In the frequency domain, we have that

h̃(f) = F+h̃+(f) + F×h̃×(f), (3.10)

where we have assumed that the time-dependence in the
antenna pattern functions can be ignored; this approxi-
mation is only valid for sufficiently short signals (signif-
icantly shorter than a day). With the frequency-domain
signal, we estimate the SNR (squared) by its optimal
value, which is given by the integral:

ρ2
h = 4

∫ fhigh

flow

df
|h̃(f)|2
Sn(f)

, (3.11)

integrating only between flow and fhigh.
For a given event, multiple SNRs from a collection of

detectors can be added in quadrature, as described in
Sec. II A. Each individual detector has a “duty cycle,”
which reflects the fraction of time that the detector is
operational. As a pessimistic estimate based upon O3,
we pick a duty cycle for O4 and O5 of 75% [80], which we
also use for Cosmic Explorer. Moreover, for each event,
we consider the total SNR to be zero if only one detector
is operating when it occurs. This prescription is how
we compute the total SNR for an event in a particular
network of detectors.

Detector networks improve in sensitivity over time,
and by using different networks, we can show how im-
provements in detector sensitivity will affect the detec-
tion prospects for the different memory effects. The de-
tector upgrade timescale is best estimated for second-
generation detectors, and the projected detector sensi-
tivity will have an important impact on the memory de-
tection forecasts. The particular choice of run times for

O4 and O5 (with and without LIGO India) are given by
the observation scenarios in [46]. Note, however, that [46]
does not give observing scenarios after two years of oper-
ation of O5. We nevertheless run the full, final network
(O5 with LIGO India) for a longer period of time than
this so that our forecasts extend for 5 years of O4 and
O5 operations. This duration was chosen to allow for a
direct comparison with the results [47] (and it will prove
long enough to have a good chance of detecting the dis-
placement memory effect). For Cosmic Explorer, we also
use 5 years, which is a sufficiently long period of time to
potentially detect the spin memory effect, and it is on the
order of the expected run time of Cosmic Explorer [42].

2. Waveform generation

We now discuss the waveform families and approx-
imations that we use for the oscillatory and memory
signals that enter into the signal-to-noise ratio calcula-
tions. Since the population described in Sec. III A in-
cludes spins, the model used to generate these waveforms
needs to be able to account for nonzero spins and, in gen-
eral, spins that are not aligned with the orbital angular
momentum. Such spins result in a precession of the or-
bital plane; this results in a significant contribution to the
“odd” part of the waveform, the SNR of which is used
as a threshold for determining the sign of the memory
effect.

In this paper, we make use of three different oscillatory
waveform models:

(i) an effective one-body (EOB) model
SEOBNRv4PHM [81], which is available as part
of the lalsimulation software package [77];

(ii) a numerical relativity surrogate model
NRSur7dq4 [82], available through the gwsurrogate
software package [83]; and

(iii) a hybridized numerical relativity surrogate
model NRHybSur3dq8 [84], also available through
gwsurrogate.

Each of these models has advantageous and disadvanta-
geous features, which we summarize in Table II.

For the analysis of this paper, except outside of the
range of mass-ratios in which it is valid, we use the (non-
hybridized) surrogate model NRSur7dq4; for q < 1/4, we
use SEOBNRv4PHM. This is motivated first by considering
a collection of zero-spin events where we fix the values
of all the parameters except for the mass M of the pri-
mary.13 The non-hybridized surrogate model NRSur7dq4
will have some fixed length which, for masses smaller

13 The particular values which we use are q = 0.8, ι = 7π/9, DL =
410 Mpc, with all of the remaining parameters (except for M ,
which varies) set to zero.
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TABLE I. A summary of the detector networks considered in this paper. “HLVK” refers to the second-generation detector
network of LIGO (Hanford and Livingston), Virgo, and KAGRA; “HLVKI” denotes HLVK plus LIGO India. “2CE” and
“3CE”, respectively, refer to networks with two and three Cosmic Explorer detectors, where 2CE has detectors in the United
States and Australia, and 3CE has an additional detector in Europe. We also give the references that we use to compute the
amplitude spectral densities

√
Sn(f) and the antenna response functions F+/×. See the main text for a justification for the

run time for each detector network.

Detector network Frequency range (Hz)
√

Sn(f) F+,× Run time (yrs)

HLVK O4 [10, 4096] [76]a [77] 1.5

HLVK O5 " "b " 0.75

HLVKI O5 " "c "d 2.75

2CE/3CE [5, 4096] [78]e [79] 5

a Uses the “high” sensitivity for KAGRA in O4
b Uses the “high” sensitivity for Virgo in O5
c LIGO India is considered here to be a copy of LIGO Livingston or Hanford
d Location for LIGO India in [77] is only a hypothetical example
e Sensitivity is for the “default” mode and an arm length of 40 km, comparable to the Stage 2 sensitivity of [42]

TABLE II. A summary of the waveform models considered in this paper. In particular, it shows that there are trade offs
between allowing for arbitrary spins, including the early inspiral, and being able to be evaluated as rapidly as possible. After
a comparison described in more detail in the text, we settled upon using NRSur7dq4 for all calculations with mass ratios with
q > 1/4 and SEOBNRv4PHM otherwise.

Waveform model Arbitrary spins? Early inspiral? Run time (s)a

SEOBNRv4PHM Yes Yes ∼ 4.2

NRSur7dq4 Yes No ∼ 0.091

NRHybSur3dq8 No Yes ∼ 0.26

a Computed for an event with the same parameters as in Footnote 13, with a total mass M = 65M� and a starting frequency of 10 Hz
(for SEOBNRv4PHM and NRHybSur3dq8)

than ∼ 100M�, is shorter than the hybridized surro-
gate model NRHybSur3dq8. In Fig. 1, we compare the
SNRs (as computed in the HLVKI network of detectors
at its O5 sensitivity) of the odd part of the waveform,
the displacement memory signal, and the spin mem-
ory signal, computed first using the full waveform from
NRHybSur3dq8, and then using a truncated waveform of
the same length as the NRSur7dq4 waveform. This fig-
ure shows that for the masses considered, the length of
the waveform affects the SNR of the displacement mem-
ory signal by at most a hundredth of a percent, and spin
memory signal by at most a few tenths of a percent. Note
that this result is somewhat surprising, as the amplitude
of the final displacement memory does depend strongly
on the length of the waveform; however, the SNR does
not. The SNR of the odd part of the waveform depends
much more strongly on the length of the waveform; how-
ever, as computing the SNR of this part of the waveform
is performed for every event, using SEOBNRv4PHM would
be prohibitively expensive. As such, we use NRSur7dq4
for all calculations in this paper, only using SEOBNRv4PHM
when q < 1/4. From Fig. 1 we anticipate that using dif-
ferent waveform models will affect the results of these
forecasts by at most 20%, but a thorough investigation
of these effects is outside the scope of the current work.

Finally, we choose a sampling frequency for these wave-
forms of fsamp. = 2fhigh, which in all cases is 8192 Hz.
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FIG. 1. A plot comparing the relative error in the SNR com-
puted either from the full waveform or a waveform truncated
in length. The specific SNRs that are computed are from the
parts of the waveform that are odd under the transformation
in Sec. II C, the displacement memory signal, and the spin
memory signal.

Moreover, for the “reference frequency” remarked upon
above, we use fref. = 0.03/M . Note that this is not the
same as the starting frequency for any of the waveforms
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which we use: as remarked above, it is used to determine
the time at which the orbital plane, the components of
the spins, etc., are defined. We choose a specific value of
fref., instead of defining these quantities at the starting
frequency, since the starting frequencies vary.14

3. Windowing of waveform time series

The waveforms discussed above are all generated in the
time domain, whereas the SNR is computed in the fre-
quency domain. It is therefore necessary to compute the
Fourier transform of all of the time-domain signals. The
Fourier transform is estimated using an implementation
(in NumPy [85]) of the Fast Fourier Transform (FFT) algo-
rithm. Since the FFT estimates from a finite-length time
series the Fourier transform of a formally infinite-length
time series, it is necessary to ensure that any finite-time
effects do not influence the estimate of the Fourier trans-
form in the frequency bandwidth of the detector. Some
methods for mitigating these finite-time effects are dis-
cussed in [86]. We will briefly describe a few issues here
that are most pertinent for our memory forecasts.

Since the signals which we consider are nonzero at the
boundaries of the domain (either the start of the wave-
form, for the odd part of the waveform, or at the end
of the waveform for the displacement memory signal),
the periodicity inherent in the FFT treats this nonzero
value as a discontinuity and leads to “edge effects.” The
known way to diminish the effects of this discontinuity
is to apply a time-domain window function that smooths
out this discontinuity (and thus avoids spurious 1/f fea-
tures in the Fourier transform).

In Fig. 2, we show the effects of windowing on the SNR
of the displacement and spin memory signals. This win-
dowing is performed by first padding both the beginning
and end of the waveform (using the values at the begin-
ning or end, in order to preserve continuity), and then
applying a window over both of the padded portions of
the waveform. An explicit example of the windowing ap-
plied to the memory signal is given in Fig. 3. Throughout
this paper, we use the Planck window [87], which uses the
same smoothing function as in Eq. (3.4) at the start of
the window (and a similar function at the end of the win-
dow). As one would expect that an infinitely long win-
dow is closest to the true Fourier transform of the signal,
we compute in Fig. 2 the error in the SNR, relative to
a window of length 10s. This figure shows that padding
and windowing over 1s is sufficient for the range of masses
which will be important for this paper, and as that is less
computationally expensive, we use this window length for
the results of this paper. It also demonstrates that not

14 Note that the analysis used to generate the distribution of pa-
rameters for the populations in [9] may not have used such a
uniform value of this reference frequency, but we suspect that
this difference should not significantly affect our results.
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FIG. 2. The relative error in the SNR vs. window length, for
just the displacement and spin memory signals, using a win-
dow that pads both the beginning and end of the waveform.
The error is computed by comparing against a window with a
length of 10s. The SNR is computed in the HLVKI detector
at its O5 sensitivity, and for a range of masses between 10
and 102.5M�; the remaining parameters are the same as in
Footnote 13.
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FIG. 3. The displacement memory signal, as a function
of time, showing the method of padding and windowing de-
scribed in the text. For this particular case, we only show the
+-polarized component of the displacement memory signal at
the location of the detector. The mass of the system is 65M�,
and the remaining parameters are the same as in Footnote 13.

windowing the displacement memory signal results in a
significant relative error.

We now turn to the windowing of the odd part of the
waveform, the effects of which are shown in Fig. 4. Here,
since padding the beginning of the signal would result
in a signal with a large discontinuity in its first deriva-
tive, we instead only pad the end of the waveform by
some fraction of the waveform’s length. We then apply
a window with the same length as this padded portion
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FIG. 4. The relative error in the SNR, as a function of the
length of the window (as a fraction of the length of the un-
windowed waveform), for the odd part of the waveform. The
window is applied over both the beginning of the waveform
and a padded region at the end of the waveform of the same
length. The error is computed by comparing with a window
length of 0. As in Fig. 2, the SNR is computed in the HLVKI
detector at its O5 sensitivity, for a range of masses between 10
and 102.5M�; the parameters are the same as in Footnote 13.

of the waveform, so that the beginning of the waveform
is also windowed over. This plot computes the error in
the SNR as a function of the fraction of the waveform’s
length over which the window is applied, relative to a
window of length zero (so no windowing at all). Since
the effects of windowing have a very small effect, in this
paper we do not window the odd part of the waveform
when computing its SNR to speed up our computation.

IV. FORECAST RESULTS

In this section, we present the main results of this pa-
per, which are contained in Figs. 5 and 6. Figure 5 shows
the accumulated SNR in second-generation HLVK and
HLVKI detector networks for the displacement memory
signals; Fig. 6 shows the signal-to-noise ratio for the spin
memory signal in two and three Cosmic Explorer (CE)
detectors at their full sensitivities. To generate these
forecasts, 300 realizations of populations of events were
used, as in [47]. We then compute the median values and
credible regions for the accumulated SNR as a function
of time by computing these statistics over the different
realizations of the populations. The solid lines indicate
the median values, and the shaded regions indicate the
symmetric 68% confidence intervals. Since the events in
each population occur at different times, these are com-
puted by first interpolating the SNR for each population
as a function of time at evenly spaced points, and then
computing these statistics at each of these points.
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FIG. 5. The median accumulated SNR and 68% symmet-
ric credible region for the displacement memory in second-
generation detector networks as a function of run time for
different realizations of binary-black-hole populations. The
blue region corresponds to the O4 HLVK network at design
sensitivity for all four detectors, which can be compared with
the results of [47]. The orange region instead accounts for
an upgrade to the O5 sensitivity of the HLVKI network af-
ter 1.5 years, as is currently planned [46], and the green re-
gion accounts for the addition of LIGO India after 2.25 years.
The red dashed line is an SNR of 3, which corresponds via
Eq. (2.12) to a log Bayes factor of 9, which would indicate
strong evidence for the hypothesis that there is displacement
memory in the population of black-hole mergers.

A. Discussion of displacement and spin memory
results

We can compare Fig. 5 to Fig. 4 of [47], which used the
O4 sensitivity for LIGO and Virgo (HLV) and the power-
law population model from the first gravitational-wave
transient catalog (GWTC-1). The comparison illustrates
that the population model from GWTC-2 [9] produces an
estimate for the detection prospects of the gravitational
wave memory effect that is somewhat less optimistic than
that of the GWTC-1 populations. By allowing the net-
work to upgrade from O4 to O5 sensitivity, we find that
detection prospects are more optimistic: after only ∼ 3
years of total run time, the displacement memory will
likely be measured with an accumulated SNR ρeff. = 3,
with the median reaching this threshold after ∼ 2.4 years.
According to timeline in [46], LIGO India will start 0.75
years into O5, and so its contribution to the time of the
initial detection of the memory is minimal. However, af-
ter a total run time of 5 years, including LIGO India
will increase the accumulated SNR from ρeff. ' 5.5 to
ρeff. ' 6.5, so it will help increase the significance of the
detection.

From Fig. 6, we can similarly see that, after five years
of run time for the Cosmic Explorer network, the ac-
cumulated SNR in the spin memory signal will be just
over ρeff. = 3 for the median population, assuming that
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FIG. 6. The median accumulated SNR and 68% symmetric
credible region for the spin memory in the third-generation
Cosmic Explorer detectors as a function of run time for dif-
ferent realizations of binary-black-hole populations. The blue
and orange regions correspond to two- and three-detector net-
works, respectively. The green dashed line corresponds to an
accumulated SNR of 3 and is almost reached by the median
of the populations for Cosmic Explorer for a three-detector
network.

there are three Cosmic Explorer detectors in Europe, the
United States, and Australia (3CE). If there are only
two detectors, it is less likely that the spin memory will
be detected in this time. However, as we discuss in
Sec. III A 1, limiting to zmax = 1 is very likely underes-
timating the effective SNR, and so the results will most
likely be more optimistic than those illustrated in Fig. 6.
A feature that stands out in this plot is that the median
and boundaries of the credible region appear smoother
than those in Fig. 5. The main reason for this is that
many more events exceed the threshold of ρ2

hodd
> 2 in

Cosmic Explorer. Events then are detected at a much
higher rate, which leads to a shorter time between events
and a smoother appearance of the curves. This also im-
plies that while measurements of displacement memory in
second-generation detectors will involve a smaller number
of the loudest events, the measurement of spin memory in
third-generation detectors will be dominated by a large
number of more average SNR events for the detector net-
work.

Finally, we show in Fig. 7 a cumulative histogram of
the median rate of individual events which have an SNR
greater than 3 in the displacement memory for Cosmic
Explorer. This histogram is computed from 5 years of
data, and (to speed up the calculation) we restricted to
zmax = 0.3, as we did not find many loud events at higher
redshifts. For the median population, this histogram
shows that two Cosmic Explorer detectors are expected
to see around 3-4 events with an SNR greater than 3
per year, while three Cosmic Explorer detectors would
see around 7. These detectors may even see a handful of

3 4 5 6 7 8
ρ

100

101

M
ed

ia
n

ra
te

of
ev

en
ts

w
it

h
ρ

d
is

p
.
>
ρ

(y
r−

1
)

3CE

2CE

FIG. 7. The median rate of events with an SNR in the dis-
placement memory higher than some given amount, in Cosmic
Explorer with either a two- (orange) or three- (blue) detector
network. Error bars correspond to the symmetric 68% confi-
dence interval. The green line corresponds to seeing a single
event over 5 years.

events with an SNR in the displacement memory greater
than 7, over the span of 5 years.

B. Dependence of the results on maximum redshift

As we noted above in Sec. III A 1, the maximum red-
shift to which Ref. [9] recommends using its population
model is zmax = 1. Because the SNR falls off with the in-
verse of the luminosity distance, but the number of events
increases with the volume of space surveyed, it is not ob-
vious a priori whether the fewer louder and closer-by
events contribute more to the SNR than the quieter and
more distant events do (assuming these events pass the
threshold for the SNR in the odd part of the waveform).
For second-generation detectors, empirical checks found
that it was the nearest-by events that were most impor-
tant. For example, [47] noted that it did not see much
difference in the effective SNR when applying a distance
cutoff of 2 Gpc and when including more distant events.
Placing a cutoff in distance has the benefit of saving com-
putational time by only considering the subset of events
that contribute to the effective SNR.

To investigate the effects of a cutoff in redshift, in Fig. 8
we plot the accumulated SNR of the displacement mem-
ory signal after 0.1 years for different redshift cutoffs.
We show both second-generation detector sensitivities for
O4 and O5, as well as the accumulated SNR of the spin
memory signal after the same amount of time for Cosmic
Explorer. These plots show that a redshift of 0.8 is suffi-
cient for both O4 and O5, which we used in Fig. 5. Note
that this redshift, which corresponds to a luminosity dis-
tance cutoff of ∼ 5 Gpc, is larger than that in [47], but
comparable to that of [45].
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FIG. 8. A plot of the final accumulated SNR after 0.1 years
for a given memory signal in a particular detector network,
as a function of redshift cutoff zmax, as a fraction of the SNR
computed using a redshift cutoff of zmax = 2.3.

For Cosmic explorer, however, Fig. 8 show that we
should not use a redshift cutoff at all: even up to a red-
shift of 2.3 (which is a limit from [9] as to the maximum
redshift at which an event could possibly have been seen
so far), the accumulated SNR after 0.1 years is still grow-
ing with increasing redshift. Therefore, while we use the
redshift cutoff of z = 1 for Fig. 6, this comes with the
caveat that this is very likely underestimating the effec-
tive SNR.

V. CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper, we have estimated the detection
prospects for the displacement and spin memory effects
using simulated populations of binary black hole mergers
based on the most favored model inferred from the de-
tections in LIGO and Virgo’s second gravitational-wave
transient catalog. Based on a detection criteria of an ef-
fective signal-to-noise ratio of 3 in a population and a
signal-to-noise ratio of 5 for an individual event, we have
found that

(i) the LIGO, Virgo, and KAGRA detectors can de-
tect the displacement memory in the population of
binary mergers after 3 years when operating at de-
sign sensitivity (1.5 years) and “plus” sensitivity
(1.5 years) (an observing scenario consistent with
that in [46]);

(ii) Cosmic Explorer can measure the spin memory ef-
fect in the median population of events if it operates
for 5 years; and

(iii) Cosmic Explorer will, on average, have 3-4 events
per year for which the displacement memory can
be measured for a single event.

The assumptions that go into these forecasts are enumer-
ated throughout the text and will not be repeated here.

For the displacement memory, this work updates the
results of [43, 45, 47] to use populations consistent with
the detections from the first two and a half observing
runs [9] and to account for the updated observing scenar-
ios including the O5 observing run (upgrades to “plus”
sensitivities). Updating the population model changed
the time needed to detect the memory, since our results
were less optimistic than those of [47] when we used a
similar observing scenario, although our results are con-
sistent (the 68% confidence intervals for our results over-
lap). The shorter time to detection found in this pa-
per over the five-year frame given in [47] is, however,
primarily determined by the increased sensitivity of the
detectors during the O5 observing run. We have also
performed an initial check that using the most recent
distributions for population parameters from the third
catalog [10] does not make any significant difference from
using just the second catalog [9] as we did in this paper.
A more systematic comparison of the forecasts from dif-
ferent mass models (our forecasts for both only use the
“Power Law + Peak” model) is certainly one possible fu-
ture direction. Another direction could be to refine the
forecasts once O4 data is analyzed, since detection only
becomes likely after the O5 run progresses for a few years.

The forecasts for the spin memory presented in this pa-
per were new (as far as we are aware). They were more
computationally intensive, because of the large number
of events detected by third-generation detectors, and, as
a result, they could be refined in a few ways. As with the
displacement memory, further detections during O4 and
O5 will improve our knowledge of the population, allow-
ing for more accurate forecasts. In particular, with the
increased detection horizon during these runs, we expect
to learn more about the population of distant (mean-
ing z > 1) binaries, which are important for the spin
memory—since the total SNR is dominated by a large
number of events with small SNR in the spin memory—
but are not well constrained by the current population
models. That these events contribute the most to the
total SNR also yields two further issues: first, one may
need to disentangle overlapping events, and second the
spin memory may be small enough to be affected more
by the detectors’ calibration and gravitational waveform
model uncertainties. Gaining a better understanding of
these potential systematic effects is beyond the scope of
this initial study.

Finally, the displacement and spin memory effects
are examples of so-called “persistent observables” [15],
which are effects that a set of observers can measure
by comparing measurements before and after a burst
of gravitational waves. These persistent observables in
general arise from different nonoscillatory features of a
gravitational wave signal which would manifest as last-
ing offsets in different numbers of time integrals of the
gravitational-wave strain. For example, observers with
constant, nonzero relative acceleration would measure
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a persistent observable related to two time integrals of
the gravitational-wave strain. The simplest of these per-
sistent observables, the “curve deviation,” arises from a
lasting displacement measured by observers with an ini-
tial relative separation, velocity, and acceleration. The
piece of the lasting displacement that depends on initial
separation is related to the displacement memory; the
piece depending on initial relative velocity contains both
the spin memory and the center-of-mass memory [14].
The pieces which depend on the initial acceleration (and
higher derivatives such as the initial jerk), however, are
distinct from these better-studied effects, and their re-
lated gravitational-wave signals have not yet been com-
puted for binary mergers. These higher-order observables
were analyzed in general asymptotically flat spacetimes
in [16], and it was found that each higher-order effect
probes distinct nonlinear aspects of the propagation of
gravitational waves [each piece of it obeys equations sim-
ilar to Eq. (2.14)]. Once the phenomenology of these
new observables are studied for compact binary sources
in more detail, and in particular once a useful definition
of a “memory signal” (as in Sec. II B) is established, we
will investigate the detection prospects in future work.
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Appendix A: Averages over Gaussian noise

In this section, we compute averages of noise-weighted
inner products over realizations of zero-mean Gaussian
noise n. We use them in Sec. II A, for example, to deter-
mine expected values of the Bayes factor. Our main re-
sult is the following: for any real, deterministic function
a, the expected value of a power of the noise-weighted
inner product of a with Gaussian noise n is given by

E[〈a|n〉m] =

{
(m− 1)!!〈a|a〉m/2 m even

0 m odd
, (A1)

where the double factorial satisfies

(2k − 1)!! =
(2k)!

2kk!
. (A2)

An immediate consequence of these two equations which
we use throughout this paper is that

E[eβ〈a|n〉] =

∞∑
k=0

(2k − 1)!!

(2k)!
(β2〈a|a〉)k

=

∞∑
k=0

1

k!

(
β2

2
〈a|a〉

)k
= eβ

2〈a|a〉/2,

(A3)

for any constant β.
In order to derive Eq. (A1), we only need to compute

the expectation value of a product of the noise evaluated
at different times. This follows from the linearity of the
noise-weighted inner product and the Fourier transform.
To compute this expectation value, we start by introduc-
ing the characteristic function Θm for a collection of m
random variables ξ1, . . . , ξm:

Θm(u1, . . . , um; ξ1, . . . , ξm) ≡ E

[
exp

(
i

m∑
i=1

uiξi

)]
.

(A4)
This equation implies the following useful expression for
the following expectation value:

E[ξ1 · · · ξm]

=
1

im
∂mΘ(u1, . . . , um; ξ1, . . . ξm)

∂u1 · · · ∂um

∣∣∣∣
u1=···=um=0

.

(A5)

The noise n is a stationary Gaussian process with zero
mean, and so the characteristic function for n evaluated
at the times t1, . . . , tm is given by (see, for example,
Chapter 3 of [49])

Θm[u1, . . . , um;n(t1), . . . , n(tm)]

= exp

−1

2

m∑
i,j=1

uiujk2(ti − tj ;n)

 , (A6)

where k2 is the correlation function of the noise. The cor-
relation function is related to the power spectral density
Sn(f) by a Fourier transform:

k̃2(f ;n) =
1

2
Sn(f). (A7)

Note that k2 and k̃2 are even. As Eq. (A6) has only
even powers of each ui in its power series, it follows from
Eq. (A5) that

E[n1(t1) · · ·n2k+1(t2k+1)] = 0. (A8)

This immediately proves the odd m case of Eq. (A1).
For the remainder of this section, we restrict to even

m and write m = 2k. Next, the fact that in Eq. (A5) the
right-hand side is evaluated at u1 = · · · = u2k = 0 implies
that the contributing terms in this expression must have
exactly 2k distinct ui’s. Thus, the collection of indices
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which appear must be a permutation of {1, . . . , 2k}; we
denote this set of permutations by P2k. Note, moreover,
that each permutation occurs in the expansion of the
exponential in Eq. (A6) exactly once, so we find

E[n(t1) · · ·n(t2k)] =
1

k!2k

∑
π∈P2k

k∏
i=1

k2[tπ(2i−1) − tπ(2i);n],

(A9)
where the factor if i2k = (−1)k cancels the same factor in
the expansion of the exponential. The notation π(i) de-
notes the ith element of the permutation π of {1, . . . , 2k}.
Now, note that certain of these permutations give exactly
the same term in the sum: since k2 is even, if two per-
mutations π and π′ are equal, except that

π(2i− 1) = π′(2i), π(2i) = π′(2i− 1), (A10)

for all i in some subset of {1, . . . , k}, then these permuta-
tions yield the same contribution to the sum. Similarly,
if π and π′ agree up to

π(2i− 1) = π′(2j − 1), π(2i) = π′(2j), (A11)

for all (i, j) in some subset in {1, . . . , k} × {1, . . . , k},
then these permutations give the same term in the sum,
since they simply differ by the order in which each k2

appears. Since there are 2k permutations which are re-
lated by Eq. (A10) and k! permutations which are re-
lated by Eq. (A11), we can cancel the factor of 1/(2kk!)

in Eq. (A9) by considering only a subset, denoted P̃2k,
containing permutations π such that

π(2i− 1) > π(2i), (A12)

for all i, and

π(1) > π(3) > · · · > π(2k − 1). (A13)

The final result is that

E[n(t1) · · ·n(t2k)] =
∑
π∈P̃2k

k∏
i=1

k2[tπ(2i−1) − tπ(2i);n].

(A14)
Denoting the number of elements in a set S by |S|, note
that, while |P2k| = (2k)!, we find that Eq. (A2) implies
that

|P̃2k| = (2k − 1)!!. (A15)

We next use Eq. (A14) to compute the average of the
Fourier transforms of the noise:

E[ñ(f1) · · · ñ(f2k)] =
∑
π∈P̃2k

∫ k∏
i=1

dtπ(2i−1)dtπ(2i) exp
{

2πi
[
fπ(2i−1)tπ(2i−1) + fπ(2i)tπ(2i)

]}
k2[tπ(2i−1) − tπ(2i);n].

(A16)
Te simplify the integrals, we define the variables

τπ,i ≡ tπ(2i−1) − tπ(2i), Tπ,i ≡
1

2
[tπ(2i−1) + tπ(2i)], (A17)

so that

tπ(2i−1) = Tπ,i +
1

2
τπ,i, tπ(2i) = Tπ,i −

1

2
τπ,i. (A18)

The Jacobian determinant of the transformation is given by∣∣∣∣∣∣∣∣
∂tπ(2i−1)

∂Tπ,i

∂tπ(2i−1)

∂τπ,i
∂tπ(2i)

∂Tπ,i

∂tπ(2i)

∂τπ,i

∣∣∣∣∣∣∣∣ = −1. (A19)

We therefore have that

E[ñ(f1) · · · ñ(f2k)] =
∑
π∈P̃2k

∫ k∏
i=1

dτπ,idTπ,i exp
{
πi
[
fπ(2i−1) − fπ(2i)

]
τπ,i + 2πi

[
fπ(2i−1) + fπ(2i)

]
Tπ,i

}
k2[τπ,i;n].

(A20)
Doing the integral over each Tπ,i gives delta functions δ[fπ(2i−1)+fπ(2i)]. Because this will then require that fπ(2i−1) =
−fπ(2i), we can impose this condition and perform the integral over each τπ,i. This gives the Fourier transform of k2,
and the resulting expression can be written as

E[ñ(f1) · · · ñ(f2k)] =
∑
π∈P̃2k

k∏
i=1

δ[fπ(2i−1) + fπ(2i)]k̃2[fπ(2i−1);n]. (A21)



20

With Eq. (A7), the noise-weighted inner product can be written as

〈a|b〉 =

∫ ∞
−∞

df
ã(f)b̃(f)

k̃2(f ;n)
, (A22)

for real a and b. Therefore, assuming that a1, . . . , a2k are real and deterministic, we have that

E[〈n|a1〉 · · · 〈n|a2k〉] =

∫
d2kf

E[ñ(−f1) · · · ñ(−f2k)]ã1(f1) · · · ã2k(f2k)

k̃2(f1;n) · · · k̃2(f2n;n)

=
∑
π∈P̃2k

∫ k∏
i=1

dfπ(2i−1)dfπ(2i)

δ(fπ(2i−1) + fπ(2i))ãπ(2i−1)(fπ(2i−1))ãπ(2i)(fπ(2i))

k̃2[fπ(2i);n]

=
∑
π∈P̃2k

k∏
i=1

〈aπ(2i−1)|aπ(2i)〉,

(A23)

where we have used the fact that ãi(f) = ai(−f) and

k̃2(f ;n) = k̃2(−f ;n). Finally, using Eq. (A15) and set-
ting a1 = · · · = a2k = a, the even case of Eq. (A1)
follows.

Appendix B: Unknown sign of the memory

In the analysis in this paper, we ignored the events for
which the sign of the memory could not be determined
(specifically, by rejecting events for which the SNR in the
odd part of the oscillatory waveform was less than two
in the detector network). However, the analysis in [45]
does not ignore such events, and it is argued there that
such events contribute much less to the overall Bayes
factor (or “effective” SNR) in a population of events. In

this section, we provide an argument for why this is the
case by using the same toy model which we considered
in Sec. II A.

We begin our calculation of the Bayes factor by start-
ing with Eq. (2.6), but instead of using a posterior for a
model without memory that is peaked around the true
value of the parameters θ0, we use

p[hosc(θ)|d] = (1− α)δ(θ − θ0) + αδ(θ − θ′0). (B1)

As in Sec. II C, θ′0 are the approximately degenerate val-
ues of the parameters that give the incorrect sign of the
memory. The factor of α in the posterior p[hosc(θ)|d]
describes how well the degeneracy is broken; α = 0 is
the case where the degeneracy is completely broken, and
α = 1/2 is the case were it is completely unbroken. Sub-
stituting this posterior into the expression for the Bayes
factor in Eq. (2.6) we obtain after some calculation

Bmem.
no mem.(d) = (1− α) exp

[
1

2
ρ2
hmem.(θ0) + 〈hmem.(θ0)|n〉

]
+ α exp

[
1

2
ρ2
hmem.(θ′0) + 〈hmem.(θ

′
0)|2hodd(θ0) + n〉

]
. (B2)

Note that hodd in the expression above includes both the odd part of the oscillatory and memory signals. Using
Eq. (A3) and assuming, for simplicity, the same value of α for all noise realizations, we find after some additional
calculations that

E[Bmem.
no mem.(d)] = (1− α) exp

[
ρ2
hmem.(θ0)

]
+ α exp

{
−ρ2

hmem.(θ0) + 2[〈hmem.(θ0)|heven
mem.(θ0)〉+ 〈hmem.(θ

′
0)|hodd

osc.(θ0)〉]
}
.

(B3)

From this general expression, it is not clear whether,
on average, the memory hypothesis is favored (that is
E[Bmem.

no mem.(d)] ≥ 1). However, we now argue that we
can reasonably neglect the last two terms in the second
exponential. The first of these terms we expect to be
smaller in magnitude than ρ2

hmem.(θ0) since the even part

of the memory signal is subdominant. The second term is
also likely small, as the subdominant oscillatory and the

nonoscillatory parts of the signal are not morphologically
similar and would thus not have a significant overlap.
When we neglect these terms, we find that

E[Bmem.
no mem.(d)] = coshα ρ

2
hmem.(θ0), (B4)
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where we have defined

coshα x ≡ (1− α)ex + αe−x, (B5a)

sinhα x ≡ (1− α)ex − αe−x, (B5b)

as generalizations of the hyperbolic trigonometric func-
tions cosh ξ and sinh ξ (which are cosh1/2 x and sinh1/2 x,
respectively). In what follows, we will simply assume
that Eq. (B4) holds, keeping in mind that this is just
an estimate for the average Bayes factor. This esti-
mate holds exactly when hosc. is purely even and hmem.

is purely odd (for example, for nonprecessing binaries),
as the two terms which we have neglected are linear in
hodd

osc. and heven
mem., respectively; in this case, since hosc. is

purely even, the degeneracy is also completely unbroken
(namely, α = 1/2).

Given Eq. (B4), we now investigate the bounds on
E[Bmem.

no mem.(d)]. First, one can show that coshα x and
sinhα x satisfy the identities

cosh2
α x− sinh2

α x = 4(1− α)α, (B6)

d

dx
coshα x = sinhα x,

d

dx
sinhα x = coshα x. (B7)

These equations can be used to show that

coshα x ≥ 1 (B8)

if x ≥ 0 and α ≤ 1/2. Because the SNR is not imaginary
and because we do not consider systematic biases that
could make the posterior favor the parameters θ′0, this
will be sufficient for our calculations. To prove Eq. (B8),
note that

coshα 0 = 1, sinhα 0 = 1− 2α ≥ 0, (B9)

and the only root of sinhα x is at ln
√
α/(1− α), which

is not positive when α ≤ 1/2. As a result, if follows that
sinhα x ≥ 0 for x ≥ 0 and that coshα x is increasing,
which proves Eq. (B8). Using Eq. (B4), we therefore find
that

1 ≤ E[Bmem.
no mem.(d)]. (B10)

This lower bound implies that, even though the degener-
acy is not broken, on average this signal will still increase
the evidence for memory in the population.

We now discuss an upper bound on E[Bmem.
no mem.(d)].

First, note that

d

dx
ln coshα x = tanhα x, (B11a)

d2

dx2
ln coshα x = 4α(1− α) sech2

α x

≤ 4α(1− α), (B11b)

where tanhα x = sinhα x/ coshα x and sechα x =
1/ coshα x. Using Taylor’s theorem (see, for example,
Theorem 5.15 of [88]), which states that

f(x) =

N∑
n=0

f (n)(a)

n!
(x− a)n +RN (x), (B12)

where

RN (x) =
fN+1(xL)

(N + 1)!
(x− a)N+1, (B13)

for some xL ∈ [a, x], we can use Eq. (B11) to give bounds
on ln coshα x:

ln coshα x ≤ (1− 2α)x+ 2α(1− α)x2. (B14)

Applying the estimate in Eq. (B4) then yields

E[Bmem.
no mem.(d)] ≤ exp

[
(1− 2α)ρ2

hmem.(θ0)

+ 2α(1− α)ρ4
hmem.(θ0)

]
.

(B15)

The upper bound shows that the expected value of the
Bayes factor grows more slowly than in the case where
the degeneracy is completely broken (α = 0). When the
degeneracy is completely unbroken (α = 1/2), the Bayes
factor’s log grows with the SNR of the memory to the
fourth power, as stated in [45]. For SNRs much less than
one, this grows much more slowly than the case where
the sign of the memory is known. However, for α even
slightly above 1/2, the growth becomes much faster due
to its dependence on the square, instead of the fourth
power, of the SNR.

Although this argument suggests that on average it
would be beneficial to include all events and not just
those for which the degeneracy is broken with strong con-
fidence, for any individual noise realization, the Bayes
factor could be less than one. To aid with comparisons
to prior literature [43, 47] and to help make the forecasts
more computationally efficient, we use only the events
that satisfy the criteria described in Sec. II C 2.

Appendix C: Another degeneracy of the dominant
quadrupolar mode

In this Appendix, we discuss another transformation,
separate from that in Eq. (2.38), that is considered in
Sec. V.A.3 of [48]:

ι→ π − ι. (C1)

Since the spin-weighted spherical harmonics transform as

sYlm(π − ι, φref.) = (−1)l+s sYl(−m)(ι, φref.), (C2)

it was noted in Ref. [48] that the spin-memory mode
would also flip sign under this transformation. Thus, it
was mentioned in [48] that one would need to addition-
ally need to distinguish the binary’s inclination between
ι and π − ι to stack the SNR for the spin memory mode
to compute the effective SNR. While this is true, the
transformation (C1) is not a degeneracy of the dominant
quadrupole mode, so distinguishing between ι and π − ι
will not present an additional challenge. This can be
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shown by computing the transformation of h(lm) under
Eq. (C1). The result that we find is

∑
|m|≤l

h(lm) → (−1)l
∑
|m|≤l

{
F+ Re

[
hl(−m) −2Ylm

]
+ F× Im

[
hl(−m) −2Ylm

]}
.

(C3)

Note that, relative to Eq. (2.34), there is a sign differ-
ence in the second line coming from Im[z̄] = − Im[z].
This transformation therefore treats plus and cross po-
larizations differently, with the cross polarization gaining
an additional relative sign. Using Eq. (2.31), and the fact
that (in the quadrupole approximation) the displacement
memory is purely plus polarized and the spin memory
purely cross polarized, we therefore find that this trans-
formation is a degeneracy of the displacement memory
and flips the sign of the spin memory. This transforma-
tion, however, is not a degeneracy of the oscillatory part
of the signal, as this part of the signal has nonzero plus-

and cross-polarized components. Thus, it does not result
in the same “sign-of-the-memory” issue as the transfor-
mation in Eq. (2.38).

However, if in addition to Eq. (C1), one were to simul-
taneously perform the transformation15

ψ → −ψ, δ → −δ, α→ α+ π, (C4)

this induces a transformation

X → −X, Y → Y , (C5)

so that the antenna patterns undergo F+ → F+, F× →
−F×. This changes the sign of second line of Eq. (C3),
which implies that that this transformation now is effec-
tively the same as

hlm → (−1)lhl(−m). (C6)

However, by Eqs. (2.26) and (2.31), we find that hosc.

(for even l), hdisp., and even hspin are all even under this
transformation. Therefore, once again, this transforma-
tion does not result in any sign-of-the-memory issue.
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