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We present results from the new Dendro-GR code. These include simulations of binary black
hole mergers for mass ratios up to q = 16. Dendro-GR uses Wavelet Adaptive Multi-Resolution
(WAMR) to generate an unstructured grid adapted to the spacetime geometry together with an
octree based data structure. We demonstrate good scaling, improved convergence properties and
efficient use of computational resources. We validate the code with comparisons to LazEv.

I. INTRODUCTION

The gravitational wave detectors LIGO/Virgo have
made a number of epochal discoveries [1, 2]. These have
given us a dramatically broader conception and under-
standing of the high-energy universe and some of its com-
pact object constituents [3–5] As these detectors contin-
ually improve [6–8] and are added to by new detectors,
such as KAGRA [9], we can confidently expect an ongo-
ing parade of additional discoveries.

The detection and analysis of gravitational waves uses
a library of modeled waveforms for comparison with the
detector output signal. Numerical relativity waveforms
are computed using the full nonlinear, Einstein equa-
tions, and these waveforms span the evolution of the bi-
nary system from inspiral, through merger, and finally
to ringdown. These waveforms may be used directly in
the analysis of gravitational waves [10, 11], or to inform
and validate faster, approximate methods for generating
waveforms, such as semi-analytical and phenomenologi-
cal methods (see, e.g., [12–19]). Numerical relativity can
also probe certain astrophysical scenarios that are diffi-
cult to model with approximate methods. Examples of
such scenarios include non-vacuum spacetimes, such as
systems with neutron stars, accretion disks, and/or mag-
netic fields. Even some vacuum binary black hole systems
can be difficult to model with approximate techniques,
such as binaries with large eccentricity, high spins, or
large mass ratios. We use the mass ratio q = m1/m2,
where m1 is the mass of the primary with m1 ≥ m2.

While there are advantages to using numerical rela-
tivity waveforms directly in gravitational wave analysis,
there are significant challenges in calculating waveforms
of sufficient quality. The waveforms must be sufficiently
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long, have errors bounded within known tolerances, and
they must span a large region of the binary parameter
space. The development of newer, more sensitive gravi-
tational wave detectors significantly complicates the chal-
lenge. For example, recent work on requirements for
third generation detectors [20–22] and LISA [23] estimate
that errors in numerical relativity waveforms need to be
reduced by an order of magnitude [24]. Another study
found that numerical resolutions of BBH spacetimes will
need to be increased by almost a factor of ten in some
cases [25]. Reducing the error in numerical waveforms
to the level required by 3G detectors will require new
algorithms and methods in numerical relativity.

The challenge of producing waveforms for future grav-
itational wave detectors will require highly scalable nu-
merical relativity codes that are able to efficiently run
on exascale supercomputers. Dendro-GR is a new code
for relativistic astrophysics that is designed to meet some
of the next-generation challenges in numerical relativ-
ity. Dendro-GR scales well on massively parallel super-
computers, and it uses fast, responsive adaptive multi-
resolution based on wavelets (WAMR). Importantly,
Dendro-GR easily accommodates many well-tested nu-
merical methods that have been developed in the relativ-
ity community, such as the evolution of Einstein equa-
tions in the BSSN formalism and high-resolution shock-
capturing methods for relativistic fluid dynamics.

Several projects are currently being developed in the
community that use modern adaptive-mesh infrastruc-
tures and sophisticated numerical algorithms to meet
this computational challenge. Among these are GR-
Athena++ [26], which uses the highly-efficient oc-
tree AMR infrastructure of Athena++ for full nu-
merical relativity simulations coupled to GRMHD, GR-
Chombo [27], a fully modern AMR numerical rela-
tivity code allowing for complex grid configurations,
and CarpetX, which is a new AMR driver for the
Einstein Toolkit [28, 29] that is built on the AM-
ReX toolkit [30]. Pseudospectral and discontinuous
Galerkin methods promise some advantages for mas-
sively parallel computing. Spectre [31] uses discon-
tinuous Galerkin methods and a task-based paralleliza-
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tion scheme. Nmesh [32, 33] and bamps [34] are other
codes using DG methods. Simflowny [35] has a domain
specific language and a web-based development environ-
ment and graphical user interface. Simflowny can gen-
erate code for multiple platforms, such as SAMRAI [36].
Dendro-GR uses an efficient octree structure to store
the grid elements similar in spirit to that used in GR-
Athena++. While Dendro-GR’s wavelet decompo-
sition with an unstructured grid is similar in spirit to
Spectre.

This paper presents results from some of the first bi-
nary black hole mergers performed with Dendro-GR.
We study gravitational waves from binary black hole sys-
tems with mass ratios up to q = 16. We compare results
with the well-known LazEv [37, 38] code in some cases,
and find that the solutions match in the convergence
limit. We also present performance data for Dendro-
GR.

II. METHODS

Dendro-GR has been built with the intention of tack-
ling relativistic astrophysics problems involving merging
compact objects. Its development uses and accommo-
dates a number of standard techniques within numeri-
cal relativity as well as including some new approaches;
all with an eye to improving the efficiency, scalabil-
ity and time to solution for still challenging problems
such as large mass ratio binary black holes. Among
the conventional and well-tested numerical methods used
in Dendro-GR we solve the Einstein equations us-
ing the BSSN formulation together with typical coordi-
nate conditions, initial data, and finite differencing al-
gorithms. Newer approaches used within Dendro-GR
include some of the following and are discussed at greater
length subsequently in this section. The code uses a dy-
namic grid which is constructed via an expansion of the
grid functions in an interpolating wavelet basis. In this
basis, terms in the wavelet expansion can be mapped to
individual grid points. The resulting unstructured grid is
naturally represented computationally as an octree. On
integrating the equations of motion in time, each node
of this octree is separately unzipped (decompressed) into
a local point representation on a uniform Cartesian grid.
The integrated functions are then zipped (compressed)
back to a sparse representation by thresholding the co-
efficients of the wavelet expansion. This sparse repre-
sentation is compact and computationally efficient as it
conserves computer memory and reduces parallel com-
munication. This section describes some of these key
components of Dendro-GR in more detail. We begin
with a brief description of our formalism for solving the
Einstein equations and setting initial data. We then de-
scribe the generation of the grid using WAMR and the
process for integrating the equations.

A. Formalism

There is an extensive literature on solving the BSSN
equations in general relativity, including monographs
such as [39–42]. This section briefly outlines our partic-
ular choices for solving the BSSN equations. We write
the BSSN equations in terms of the conformal factor [38]

χ−1 = det(γij). (1)

For gauge conditions, we use the “1 + log” slicing condi-
tion and the Γ-driver shift as used in [43]

∂tα = βi∂iα− 2αK (2)

∂tβ
i = βj∂jβ

i +
3

4
Bi (3)

∂tB
i = βj∂jB

i + ∂tΓ̃
i − βj∂jΓ̃i − ηBi. (4)

Spatial derivatives are calculated using centered finite
difference operators that are O(h6) in the grid spacing,
h.

The semi-discrete Einstein equations are integrated in
time using explicit fourth-order Runge-Kutta and a CFL
of 0.25. Kreiss-Oliger dissipation is added to the equa-
tions using a fifth-order operator

∆6
xu

n
m =

(
−unm+3 + 6unm+2 − 15unm+1 + 20unm

−15unm+1 + 6unm−2 − unm−3
)
/ (644x) , (5)

with a tunable amplitude parameter σ, 0 ≤ σ < 1, which
allows one to adjust the amount of dissipation [39]. As
discussed below in Section IV A, we found best results
with σ = 0.4. We make the common choice to enforce
certain algebraic constraints and derivative definitions
as described, for example, in [44]. Outgoing radiative
boundary conditions are applied to the dynamical vari-
ables.

We extract gravitational waves from our simulations
at five radii between 50 M ≤ r ≤ 100 M using the Pen-
rose scalar, ψ4 [39, 45]. Here M is the sum of the local
masses of each black hole, M = m1+m2, and m1 and m2

are the ADM masses computed in the asymptotically flat
region at each puncture [48]. Their decomposition with
respect to spin weighted spherical harmonics (SWSH) is
performed using Lebedev quadrature [46]. To evaluate
ψ4 at each of the quadrature points on each 2-sphere,
we perform an efficient search operation on the underly-
ing grid, and SWSH projection coefficients are computed
with a parallel reduction operation [47].

B. Initial Data

Initial data for both Dendro-GR and LazEv are set
using the TwoPunctures code [48] from the Einstein-
Toolkit [28, 29]. For the initial values of shift, both
codes set βi(t = 0) = 0. Initial values of the lapse in

Dendro-GR use the ad-hoc function α(t = 0) = ψ̃−2,
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where ψ̃ = 1 + mp1/(2r1) + mp2/(2r2), ri is the coordi-
nate distance to the ith BH, and mpi is the bare mass
parameter of the ith BH. In LazEv the initial lapse is
ψ̃ = 1 + 1/(4r1) + 1/(4r2).

In this paper, we evolve non-spinning black hole bi-
naries with mass ratios q = 1, 2, 4, 8, and 16. We place
the black holes initially on the x-axis, with the binary’s
center of mass at the origin. The smaller black hole with
mass m2 is placed on the positive x-axis, and the ini-
tial coordinate separation is fixed to x2 − x1 = 8 M .
Again, M is the sum of the local ADM masses of each
black hole, computed in the asymptotically flat region
at each puncture. Initial data parameters for the q = 1
binary are ad-hoc quasi-circular parameters, chosen to
match previous work [50]. Parameters for all other cases
were found using the low eccentricity post-Newtonian ex-
pressions reported in [49]. To simplify comparisons with
LazEv, we set the TwoPunctures code to use the bare
puncture masses and other parameters shown in Table I
directly. Finally, we ran the q = 1, 2, and 4 cases with
both Dendro-GR and LazEv, while the higher mass
ratio simulations were only run with Dendro-GR.

C. Symbolic code generation

The evaluation of the BSSN equations at a given grid
point is computationally expensive and can be challeng-
ing due to the large number of terms associated with
the equations. Manually writing code to evaluate these
equations can be prone to error, difficult to debug, and
challenging to perform architecture specific optimiza-
tions. To address some of these issues, we have de-
veloped a SymPy-based code generation framework for
Dendro-GR. This tool has some of the same capabil-
ities as NrPy+ [51, 52], but is more limited in scope.
Using our symbolic framework, we compute the directed
acyclic graph representing the underlying computations
for the BSSN equations. We perform optimizations to re-
duce the overall number of operations as well as architec-
ture specific optimizations that improve our code’s per-
formance portability. The current implementation of the
symbolic framework supports CPUs and GPUs [47, 53].

D. Grid generation with WAMR

The computational complexity of the Einstein equa-
tions, together with the requirement of high accuracy
across multiple spatial and temporal scales, motivates
the use of grid adaptivity. Dendro-GR uses a wavelet-
based approach which results in a representation of the
underlying field variables on a sparse, adaptive mesh.
We describe briefly here the fundamental aspects of this
sparse representation. More complete details can be
found in [47, 53–55]. While we use the coefficients in
a wavelet expansion to generate the computational grid,
we store the grid functions only in the point represen-
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FIG. 1. This shows the fundamental solution of the iterated
interpolation, φ(x) (solid), and a basis element attached to
the grid V1 called φ1,1(x) (dashed). All the basis functions
are scaled, translated versions of the fundamental solution.

tation. Thus, the wavelet coefficients are not used to
integrate the equations of motion.

Two essential ingredients in our approach are the no-
tion of iterative interpolation [56] and the wavelet repre-
sentation itself [57, 58]. We demonstrate both of these in
one dimension. The extension to multiple dimensions is
straightforward and is accomplished by simply repeating
the procedures we will describe in each additional dimen-
sion. To fix ideas, we first define a set of nested grids,
Vj , where

Vj =
{
xj,k : xj,k = 2−j k∆x

}
,

where j and k are nonnegative integers and ∆x is the
spacing on the base grid (or level) and which is labeled
with j = 0. This base grid, V0, is comprised of N +
1 gridpoints evenly spaced on a domain of length L =
N∆x. Each finer grid with j > 0 contains each point
in every coarser grid. Values of a field, u, at level j are
designated u(xj,k) ≡ uj,k. If known, these values are
copied from coarser grids to all required fine grids. For
example to go from Vj to Vj+1, we take uj+1,2k = uj,k.
A similar copy happens to all higher level fine grids. Of
course, on these finer grids, there will be points newly
appearing. The field values on those gridpoints new to
grid Vj+1 are interpolated from the known values on the
coarser grid Vj . We generally use Lagrange interpolation.
In this manner, all fields at any refinement level can be
had (see Fig. 2). This iterated interpolation, continued
to arbitrarily large levels produces continuous functions
with compact support [57].

The process just described is the start of how our
sparse grid will emerge. But it also produces a natu-
ral basis set with which we can represent our fields. This
basis set is comprised of interpolating functions created
via iteration from a sequence of zeros and a single value
of one living on V0 (sometimes referred to as a Kronecker
sequence). More specifically, define a function φ0,k(x)
which takes values at the points x0,l (imagine on the base
grid) of φ0,k(x0,l) = δlk. Now interpolate as described
above to find φ0,k at other gridpoints and iterate. This



4

TABLE I. The initial configuration parameters for non-spinning binary black hole systems for increasing mass ratio. The
presented numerical waveforms are based on these initial data parameters. The parameters for q ≥ 2 were obtained using the
expressions in [49]. The initial data are set using the bare mass parameters. The black holes are placed initially on the x-axis
at the locations x1 and x2 as given in the table. The linear momentum of the the second black hole is given in the last two
columns, p2 = (px, py), and p1 = −p2.

Mass ratio Puncture Parameter ADM Mass Total x-position Momentum BH2
q = m1/m2 mp2 mp1 m2 m1 ADM Mass x2 x1 px py

1 4.8240E-1 4.8240E-1 5.0010E-1 5.0010E-1 9.8844E-1 4 -4 0 0.1140
2 0.31715 0.65150 6.6667E-1 -3.3333E-1 9.8931E-1 5.3238 -2.6762 -1.7777E-03 1.0049E-01
4 1.8805E-01 7.8937E-01 2.0000E-1 8.0000E-1 9.9237E-1 6.3873 -1.6127 -1.0647E-03 7.2660E-02
8 1.0362E-01 8.8245E-01 1.1111E-1 8.8889E-1 9.9534E-1 7.1006 -8.9938E-1 -4.9937E-04 4.5037E-02
16 5.4585E-02 9.3761E-01 5.8824E-2 9.4118E-1 9.9740E-1 7.5226 -4.7741E-1 -1.9532E-04 2.5319E-02

can be repeated for φj,k with j > 0. The resulting iter-
ated interpolating functions will have a number of prop-
erties, including compact support and a two scale relation
given by

φj,k(x) =
∑
l

clj,k φj+1,l(x),

where the coefficients clj,k will depend on the order of
the interpolation. Significantly, each of these iterated,
interpolating functions are scaled, translated versions of a
single, fundamental function, φ(x), related to a particular
limiting function of the above iterated interpolation. It
is related to the Daubechies scaling function and shown
in Fig. 1.

With these iterated, interpolating functions in hand,
we can now return to and complete our wavelet repre-
sentation. Note that at each point of each level, we have
an associated scaling function

φj,k(x) = φ
(
2jx/∆x− k

)
,

which, when taken all together, constructs a basis at each
level, j. However, across levels, the set of scaling func-
tions is overdetermined and will not form a basis for the
entire grid until we deal with the redundancy introduced
by having common points in Vj and Vj+1. To this end,
we consider the complementary space to Vj , which we
call Wj , such that

Wj =
{
xj,k : xj,k = 2−jk∆x, k odd

}
,

and is that set of points in Vj that are not in Vj−1 (see
Fig. 2b). With this definition, we use the set of grids
given by {V0,Wj} and thereby have a basis with respect
to which we can define our fields u:

u(x) =
∑
k∈S0

u0,k φ0,k(x) +

∞∑
j=1

∑
k∈Sj

dj,k φj,k(x).

The coefficients u0,k and dj,k are expansion coefficients
with S0 = 0, 1, ..., N providing the index set for the base
grid, V0, and Sj = 1, 3, ..., 2j+1N − 1 being the index
set for the fine grid given by Wj . This last expression
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V2
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W2

(c) V0

W1
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(d)
V0

W1

W2

1

FIG. 2. This illustrates a simplified conception of how the
grid is constructed. In (a), one dimensional nested grids, Vj ,
(for j = 0, 1, 2) are shown. Note that every fine grid contains
all the gridpoints on every coarser grid. This redundancy
is removed in (b) on defining the complementary spaces, Wj

(colored red and blue). We compute wavelet coefficients (dj,k)
as the difference between uj,k and the field as interpolated
from level Vj−1. In (c), those gridpoints with wavelet coef-
ficients larger than a predetermined threshold, ε, are tagged
(here with circles) as essential to the calculation. For those
gridpoints with |dj,k| < ε, the corresponding terms in the in-
terpolating wavelet expansion are ignored and the gridpoints
are discarded from the mesh, as illustrated in (d).

is our interpolating wavelet expansion in which u0,k are
just the values of the field on the base points and the
coefficients dj,k, referred to as wavelet coefficients, are
but the differences between the field values uj,k and the
interpolated values at xj,k coming from the next lower
level, j − 1. If we designate these interpolated values as
ũj,k the wavelet coefficients are then computed simply as

dj,k = uj,k − ũj,k.

We can think of that part of the expansion with the
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scaling functions as encoding the smooth part of the field,
u(x), while the wavelet coefficients provide information
about the function on fine scales. Because of the highly
local nature of the wavelets used, this representation will
have many wavelets in regions exhibiting strong spatial
variations while few will be necessary in regions where
the field is changing slowly.

With the wavelet representation in hand, compression
is now possible. More particularly, we can make the rep-
resentation sparse by choosing a threshold value, ε, such
that if the magnitude of the wavelet coefficients, |dj,k|, is
smaller than ε, we truncate the expansion and discard the
corresponding gridpoints from the grid itself. Doing so
both reduces the grid size and provides an error bound on
the representation of the field. In Fig. 2c and 2d we illus-
trate this approach to constructing the grid. As already
mentioned, extending to multiple dimensions amounts to
taking the basis functions to be products of the one di-
mensional basis functions.

An example of the WAMR-constructed grid used to
evolve binary black holes is shown in Fig. 3, which shows
the grid for a q = 16 binary before merger. This compu-
tational grid is very efficient: the grid is sparse with re-
fined regions that adapt to the small-scale features of the
spacetime. The grid does not require refined regions to be
rectangular on large scales, significantly saving on com-
putational and memory costs. Moreover, large overlap-
ping regions between refinement levels are not required.

E. Refinement Functions

Interpolating wavelets are sensitive to any non-
differentiable or non-convergent parts of a solution, trig-
gering immediate refinement. This is important for re-
solving small-scale features in solutions. However, re-
finement can be triggered by uninteresting or unphysical
features as well. In binary black hole spacetimes, we are
primarily interested in resolving the binary at the center
of the grid and following radiation out to the extraction
region. To achieve computational efficiency, therefore, it
is important to control where refinement occurs, focusing
on physically interesting features in the solution.

One way to manage refinement in Dendro-GR is to
set a maximum allowed level of refinement for the entire
grid, Jmax. This limit is enforced globally for all times,
and is chosen to allow for an expected minimum grid res-
olution. It is important to note that the spacetime at the
black hole puncture is not smooth, and the WAMR grid
will continue refining on this feature until the maximum
level of refinement is reached. As we evolve binaries with
large mass ratios, we need to prevent over-refinement of
the more massive black hole in the binary. We modify
the naive use of Jmax by tracking the black hole locations
and imposing a mass dependent constraint on the maxi-
mum refinement level about each black hole. We refine a
sphere expected to extend beyond the apparent horizon
to the local maximum refinement level.

Recall that refinement in WAMR is controlled by the
wavelet tolerance ε. Usually, ε is taken to be a constant.
However, we have found that using a spatially-dependent
wavelet tolerance, ε = ε(r), allows us to focus refinement
near the center of the grid and to reduce refinement be-
yond the wave extraction zone. We typically choose min-
imum and maximum values of ε, for the inner and outer
regions of the grid, respectively, and let log ε vary linearly
between these limits.

Unfortunately, the situation is further complicated by
junk radiation in the initial data and time-dependent
gauge effects as the initial data relax onto the grid. This
latter effect includes a fast moving gauge wave whose
frequency becomes higher with increasing mass ratio, q.
These features trigger substantial refinement as q in-
creases. Over-refining on this high-frequency radiation
is a waste of computational resources. In order to limit
over-refinement at early times, we have also found it ben-
eficial to make ε a function of time near the beginning of
the run.

For the purposes of this work, we define four refine-
ment functions, labelled RF2, RF3, RF4, and RF5. RF3
is time-dependent, spherically symmetric, and linear in
log ε, as shown in Fig. 4. RF2 is time-independent, corre-
sponding to RF3 for t ≥ 100M . This refinement function
works quite well for smaller values of q, such as q . 5.
As q increases, however, this refinement function results
in prohibitively expensive runs because of spurious waves
originating around the smaller black hole. As a result,
we introduce an additional spatial dependence to the re-
finement functions at early times, RF4 and RF5, to more
sharply focus refinement at early times around the indi-
vidual black holes. Figs. 5–6 show these two refinement
functions at t = 0 and t = 40 M . Beyond t = 40 M ,
these refinement functions become identical to RF3. No-
tice that refinement is concentrated in a region around
the origin and the binary system, with ε increasing at
larger radii. Both are also tuned in time to allow for
sufficient resolution of the outgoing radiation in the ex-
traction region, while limiting refinement on the initial
burst of spurious radiation.

We note that the definitions of these refinement func-
tions are ad hoc, and tuned to the specific runs reported
here through experimentation. When used with suffi-
cient resolution, the refinement functions do not appear
to interfere with or change significantly the convergence
properties of Dendro-GR, as discussed in Sec. IV be-
low, while significantly improving the computational ef-
ficiency of the runs. In future work, we will explore gen-
eralizations that could be more widely applicable.

F. Octree

1. Octree partitioning

Octree based adaptive space discretizations (see Fig. 7)
are commonly used in computational science applica-
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FIG. 3. This figure plots the lapse on the computational grid generated for a q = 16 black hole binary, after the system
has evolved for two orbits. The top left frame shows the entire computational domain, and moving to the right each frame
successively zooms in towards the smaller of the two black holes. The computational grid is sparse, with refinement concentrated
about the black holes, making it very computationally efficient. The 2:1 refinement constraint for constructing the grid, discussed
in Sec. II F 2, is also apparent in the overall grid structure.
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r/M
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t < 20
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t = 60
t = 80
t = 100

FIG. 4. This figure shows the wavelet tolerance, ε(r),
for refinement function RF3 at a few representative times.
This refinement function is spherically symmetric, centered
on the origin of the grid, and is independent of the black hole
masses. The minimum wavelet tolerance is used over a rela-
tively large region at the center of the grid. After t = 20M ,
the wavelet tolerance decreases in the GW extraction zone,
50 < r/M < 100, allowing the initial junk radiation to pass
before triggering refinement in this region.

tions [47, 55, 59–63]. Using octrees as the underlying
data structure for spatial discretization is advantageous
due to its simplicity, intrinsic hierarchical structure and
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FIG. 5. This figure shows the wavelet tolerance, ε(r), us-
ing refinement function RF4 for a q = 4 binary at two times,
t = 0 and t = 40M . The black dots indicate representa-
tive positions and relative coordinate sizes for the two black
holes, though not necessarily the physical horizons. This re-
finement function has the minimum tolerance centered about
each black hole. After t = 20M , the refinement function be-
comes spherically symmetric and centered at the grid origin,
with ε decreasing in the wave extraction region, similar to
RF3.

relative ease of use in designing scalable parallel algo-
rithms.

In octree based adaptive multiresolution (AMR) ap-
plications, the local number of octants changes rapidly
as the grid adapts and attempts to capture the spatially
varying solution. This will create load imbalances be-
tween partitions that can reduce parallel performance. In
order to maintain good load balancing, we need fast and
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FIG. 6. This figure shows the wavelet tolerance, ε(r), using
refinement function RF5 for a q = 4 binary at two times,
t = 0 and t = 40M . The black dots indicate representative
positions and relative sizes for the two black holes, however,
not the physical horizons. This refinement function has the
minimum tolerance centered about each black hole. After
t = 20M , the refinement function reduces to a functional form
similar to RF3, but centered about each black hole, rather
than the grid’s origin.

efficient partitioning algorithms which, preferably, scale
like O(n) where n is the number of octants. Doing so will
also reduce the overall communication cost between par-
titions. To this end, we use space filling curves (SFC) [64]
with a flexible partitioning scheme [55]. Based on the or-
der with which these curves traverse the octants, we are
able to define a partial ordering operator on the octree
domain, which, in turn, is used to sort the octree. Once
this happens, higher dimensional partitioning reduces to
a 1D problem along a curve.

FIG. 7. A simple illustration of a 2D quadtree (in 3D, it
would be an octree) as a data structure to represent a 2D
adaptive grid. Note that we start from the root level, and
perform a hierarchical division of each dimension to generate
spatially varying resolution on the computational domain. In
terms of storage, we only store the leaf nodes of the tree since
non-leaf nodes can be computed by performing a top-down or
bottom-up traversal of the tree.

2. Octree construction and balancing

Octree construction is the process of creating an adap-
tive octree discretization to capture a function f : Ω →
Rn defined on a computational domain Ω. The wavelet

1

FIG. 8. This figure shows a 2D example of the octant lo-
cal (center) and octant shared (right) nodal representation
(with d = 2) of the adaptive quadtree shown on the left.
Note that the octant local representation has grid points that
are local to each octant and contains duplicate grid points in
neighboring octants. By removing duplicate and hanging grid
points we get the octant shared representation. In this figure,
grid points are color coded based on the octant level.

expansion of f determines the adaptive structure for the
user-specified tolerance function ε. Initially, we begin
from the root level of the octree and continue refining
if the computed wavelet coefficients are greater than ε.
In our case, with the BSSN equations, the initial grid
is generated based on two puncture initial data (§II B).
All processes begin from the root level and continue re-
finement until at least p octants are produced (where p
denotes the number of processes). These p octants are
equally partitioned across processes. Further refinement
occurs in an element-local fashion. As the number of oc-
tants increases with refinement, the octree is periodically
re-partitioned to ensure load balancing.

We enforce an additional constraint on the octree dur-
ing refinement which we refer to as “2:1 grid balanc-
ing.” [65] This particular constraint enforces the condi-
tion that for a given octant in the octree, all of its ge-
ometric neighbors (faces, edges, and vertices) differ, at
most, by a single level. Imposing this constraint ensures
that the refinement structure varies smoothly through
the entire grid. Moreover, we are guaranteed a correct
interpolation stencil for points at level j from points at
level j − 1. As a result, this simplifies the subsequent
mesh generation process significantly.

3. Mesh generation

In order to perform numerical computations, the octree
requires the notion of neighborhood information. The
number of grid points placed in each octant depends on
the degree of the finite difference stencil or polynomial
interpolant used. For dth-order finite differences, (d+1)3

points are placed on each octant. We refer to this repre-
sentation as octant local. The wavelets are calculated via
interpolations of the same order. As octants are shared
through faces, edges, and vertices, neighboring octants
will contain redundant informaton. These are efficiently
identified and then removed in order to get the octant
shared respresentation (see Fig. 8). We have two map-
pings between these two data representations which allow
for finite difference stencil computations of arbitrary or-
der.
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1

FIG. 9. This figure shows a simplified example of the octree
to block decomposition and the unzip operation. The left fig-
ure shows the octant shared representation. The block decom-
position is shown in the middle. Note that the given octree
is decomposed into four regular blocks of different sizes. The
right figure shows the decomposed blocks padded with val-
ues coming from neighboring octants with interpolated points
when needed to give local uniform blocks.

4. Evaluating the equations

All the field variables are defined in the compact octant
shared, or zipped, representation. This zipped representa-
tion allows for efficient low overhead inter-process com-
munication. However, to enable finite-difference (FD)
computations, it is necessary to decompose the adaptive
octree into smaller regular grid patches or blocks. Fol-
lowing this decomposition from the octree to a block, we
compute a padding region for which the width depends
on the maximum FD stencil radius (see Fig. 9). The
unzipped representation denotes the octant local repre-
sentation together with the padding region constructed
from the adaptive octree. This unzipped representation
is purely local to each process and discarded after FD
stencils are evaluated (see Fig. 9).

III. THE LAZEV CODE

The LazEv code [37] was one of the two original codes
to implement the moving puncture approach [38, 66].
The current version uses the conformal function W =√
χ = exp(−2φ) [67], eighth-order centered finite differ-

encing in space [68] and a fourth-order Runge Kutta time
integrator.

The LazEv code uses the EinsteinToolkit [28, 29] /
Cactus [69] / Carpet [70] infrastructure. The Carpet
mesh refinement driver provides a “moving boxes” style
of mesh refinement. In this approach, refined grids of
fixed size are arranged about the coordinate centers of
both holes. The Carpet code then moves these fine
grids about the computational domain by following the
trajectories of the two BHs.

The LazEv code implements both the BSSN [71–73]
and CCZ4 [74] evolution systems. For the tests here, we
use the BSSN system. For the gauge conditions, we use a
modified 1+log lapse and a modified Gamma-driver shift

condition [38, 75, 76],

(∂t − βi∂i)α = −2αK, (6a)

∂tβ
a = (3/4)Γ̃a − η(~x)βa . (6b)

For the function η, we choose

η(~r) = (ηc − ηo) exp(−(r/ηs)
4) + ηo, (7)

where ηc = 2.0/M , ηs = 40.0M , and ηo = 0.25/M . With
this choice, η is small in the outer zones. The mag-
nitude of η limits how large the timestep can be with
dtmax ∝ 1/η [77], Because this limit is independent of
spatial resolution, it is only significant in the very coarse
outer zones where the standard CFL condition would
otherwise lead to a large value for dtmax.

We use AHFinderDirect [78] to locate apparent
horizons. We measure the magnitude of the horizon spin
using the isolated horizon (IH) algorithm [79]. Note that
once we have the horizon spin, we can calculate the hori-
zon mass via the Christodoulou formula

mH =
√
m2

irr + S2
H/(4m

2
irr) , (8)

where mirr =
√
A/(16π), A is the surface area of the

horizon, and SH is the spin angular momentum of the
BH (in units of M2).

We calculate the radiation scalar ψ4 using the Antenna
thorn [80, 81]. We then extrapolate the waveform to
an infinite observer location using perturbative formulas
from [82].

While we use eighth-order centered difference stencils,
we use a fifth-order Kreiss-Oliger dissipation stencil and
fifth-order spatial prolongation operator (prolongation in
time is second-order). We found that a rather large dis-
sipation coefficient of εdis = 0.4 gave the best results.

IV. TESTS

In this section we present some numerical results to
demonstrate the overall accuracy and performance of
the Dendro-GR framework. We first present results
that suggest that the maximum amount of Kreiss-Oliger
dissipation should be used when solving BSSN-like for-
mulations of the Einstein equations. Higher amounts of
Kreiss-Oliger dissipation increase the rate of convergence
observed in our tests. Second, we study binary black hole
mergers with mass ratios 1 ≤ q ≤ 16 using Dendro-
GR. We show that these results converge to equivalent
solutions obtained using LazEv. Finally, we present
results on the numerical performance of Dendro-GR.
We discuss some of the refinement challenges in binary
black hole spacetimes, and show how different refinement
strategies affect the overall computational cost of the so-
lution.
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TABLE II. Some parameters and run-time information for the runs presented in this paper. All runs used wavelet tolerances
εmin = 10−5 and εmax = 10−3. Runs were performed on Expanse at SDSC.

Run ID Mass ratio Jmax ∆xmin Jmax ∆xmin RF SUsa Wall Timeb

q = m1/m2 (BH2) (BH2) (BH1) (BH1) (cpu · hrs) (hrs)
q1RF2c 1 15 4.069e-3 15 4.069e-3 2 – –
q2RF3l 2 15 4.069e-3 14 8.138e-3 3 5 540 43
q2RF3m 2 16 2.034e-3 15 4.069e-3 3 41 170 80
q2RF4l 2 15 4.069e-3 14 8.138e-3 4 5 229 41
q2RF4m 2 16 2.034e-3 15 4.069e-3 4 39 521 77
q4RF2 4 16 2.034e-3 14 8.138e-3 2 22 717 89
q8RF3 8 18 5.086e-4 14 8.138e-3 3 485 810 483
q8RF4 8 18 5.086e-4 14 8.138e-3 4 101 915 318
q8RF5 8 18 5.086e-4 14 8.138e-3 5 64 477 263
q16RF4 16 19 2.543e-4 14 8.138e-3 4 799 590 1 149
q16RF5c 16 19 2.543e-4 14 8.138e-3 5 – –

a Here SU =
∑

i citi, where ci is the number of CPUs used for a time ti, measured in hours, and i is an index that runs over all of the
batch jobs used to complete the run. This measure of computational workload is not exact, as Dendro-GR regularly rebalances the
workload, which may change the number of CPUs actually used in the simulation.

b This is also an imperfect measure of computational performance, as the wall-clock time depends on many factors, including the
number of CPU cores available for the job, and the workload per core.

c Timing information for these jobs is not available.

A. Effects of Kreiss-Oliger Dissipation on BBH
mergers

Kreiss-Oliger dissipation is widely used in numerical
relativity. This dissipation is explicitly added to the nu-
merical scheme to eliminate high-frequency noise that
can arise in the evolution, especially near the puncture,
where spacetime variables are non-differentiable and at
refinement boundaries. A common expectation is that
one should minimize the amount of explicit dissipation
provided that high-frequency noise is well controlled.
However, when performing the initial comparisons of re-
sults from binary black hole mergers with Dendro-GR
and LazEv, we found the opposite to be true.

In our tests, the fifth-order Kreiss-Oliger dissipation
operator in Eq. 5 is added to the RHS of the semi-discrete
equations with the parameter σ, 0 ≤ σ < 1. We per-
formed multiple binary black hole mergers for q = 1 with
different values of σ using both LazEv and Dendro-
GR. Results from LazEv are shown in Fig. 10, which
plots the coordinate separation between the two black
holes. This figure shows that the runs with small dissi-
pation, σ = 0.04, differ from those with large dissipation,
σ ∼ 0.4. Further, the solution with small dissipation
converges towards those with large dissipation with in-
creasing resolution. Curiously, for the runs with large
dissipation, the order of the spatial finite derivatives (4,
6, 8), and the order of the Kreiss-Oliger dissipation oper-
ator (5, 9), was not as important as the amount of dissi-
pation, i.e., the value of σ. Similar results were obtained
with Dendro-GR.

This result is counter-intuitive, and we are not aware
of a similar discussion in the literature. The numerical
noise in the σ = 0.04 runs was well-controlled, and vi-
sual inspection of the solutions did not indicate potential

problems. However, when solving the BSSN equations
for black hole spacetimes, better solutions at lower reso-
lutions are obtained using larger amounts of explicit nu-
merical dissipation.

B. Convergence tests for Dendro-GR and LazEv

Convergence is an important test not only of the com-
putational code, but it is also the only way to establish an
estimate of the overall error in the waveform. To test the
convergence of both codes, we evolved initial data for an
equal mass (q = 1), non-spinning binary. The initial data
parameters are shown in Table I. For the q = 1 binary,
we ran the LazEv code at three resolutions, ∆x = h0,
h0/1.2 and h0/1.44 with h0 = 3.3M , on the coarsest grid
with nine levels of refinement. As shown in the center
panel of Fig. 11, the waveform is not initially convergent,
as relatively small stochastic errors owing to reflections
of high-frequency spurious radiation off the refinement
boundaries dominate the error. As these high-frequency
waves dissipate and the physical signal gets larger, con-
vergence of the error becomes clear. The bottom panel
shows that the waveform is convergent for the late inspi-
ral at order 3.5. Note that Fig. 10 also shows conver-
gence of the radial separation for the q = 1 case. The
q = 2 binaries were run with base resolutions of h0/1.2
and h0/1.4, but added an additional level of refinement
around the smaller BH. Similar convergence results were
obtained for q = 2. Finally, for q = 4, we ran with a base
resolution of h0/1.2 and added two additional refinement
levels (compared to q = 1) about the smaller black hole.

Dendro-GR uses an unstructured grid, and conver-
gence is both more difficult to define and more challeng-
ing to demonstrate. Convergence depends both on the
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FIG. 10. This figure shows the effect of Kreiss-Oliger dissi-
pation on the q = 1 binary BH merger using the LazEv code.
Shown are results of the binary separation versus time using
both different finite difference orders and different dissipation
amplitudes (σ). The top frame plots the coordinate separa-
tion (r) between the BHs as a function of coordinate time
for runs with large (σ ∼ 0.4) and small (σ = 0.04) Kreiss-
Oliger dissipation, different finite difference orders (4, 6, 8)
and at two resolutions. Fifth-order Kreiss-Oliger dissipation
and fifth-order prolongation is used for all cases, except the
one marked 8/9th order. The latter use 8th-order finite differ-
encing and both 9th-order dissipation and 9th-order prolonga-
tion. All of the high dissipation cases computed with different
FD orders are indistinguishable on this plot (dotted curves).
The two low-dissipation-coefficient runs (6th-order FD at two
resolutions) converge to the higher-dissipation-coefficient re-
sults as O(h5). The low-dissipation results, while convergent,
show a systematically larger error than the higher-dissipation
results. The lower panel plots the difference between the 4th
and 6th-order results (r46 = r4th − r6th) and the 6th and
8th-order (r68 = r6th − r8th) results for σ = 0.4 (5th-order
dissipation). Note that even though the corresponding three
curves in the top panel are indistinguishable, clear conver-
gence with increasing order is seen in the lower panel. Note
that h indicates the coarsest resolution of the AMR grid and
h0 = 3.3M .

spatial resolution, ∆x, as well as the wavelet tolerance, ε.
Fig. 12 shows the convergence of Dendro-GR solutions
(for ψ4) at two resolutions, labeled low (runs q2RF3l and
q2RF4l) and medium (q2RF3m and q2RF4m) , for q = 2
binaries. The highest resolution LazEv ψ4 is also plot-
ted for comparison. With respect to changing ∆x, the
low and medium resolution runs converge to the LazEv
solution.

As mentioned above, we choose the wavelet tolerance ε
to be a function of both time and space in Dendro-GR.
Thus choosing different refinement functions can also po-
tentially affect the solution. Fig. 12 also shows this effect
by plotting results from two different wavelet refinement
functions, RF3 and RF4, for each resolution. In this
case, the effect of changing the refinement function had
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FIG. 11. Convergence test of a q = 1, non-spinning binary
using LazEv. The top panel shows the low and high reso-
lution waveforms. The middle panel shows the differences in
the waveforms between the low and medium resolutions (in
blue) and the medium and high resolutions (in red). Because
the waveforms are of comparable size, initially there is small,
but non-convergent noise (at these resolutions). The bottom
panel shows the differences rescaled, assuming 3.5 order con-
vergence, at the peak of the waveform. At the peak, the
stochastic AMR noise is smaller than the truncation error.

a relatively small effect on the solution and the overall
runtime, see Table II.

Fig. 13 illustrates the effect of only varying ε on the
solution. This figure compares the Dendro-GR wave-
forms for three values of εmin = {10−3, 10−5, 10−6} with
the highest resolution LazEv waveform, by plotting the
difference. Clearly the differences decrease with decreas-
ing ε, as smaller values for ε triggers larger refined re-
gions in the octree. While this is a form of convergence
with respect to wavelet tolerance, the maximum refine-
ment level, Jmax, and the minimum resolution, ∆xmin,
are fixed, so this is not convergence in the Richardson
sense of the term.

C. Dendro-GR binaries with different mass ratios

Table II gives some refinement and performance infor-
mation for the Dendro-GR runs reported in this pa-
per. The refinement information includes the maximum
allowed refinement level, Jmax, the minimum resolution
used in the run, ∆min, and the refinement function. The
performance information provides an estimate for the to-
tal number of SUs, defined as the number of CPU·hours
to complete the run. This number is approximated, be-
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FIG. 12. This figure shows the convergence of Dendro-GR
solutions with decreasing ∆x. For q = 2, GW solutions were
computed at two resolutions with two refinement functions
with fixed εmin. The low resolution runs are plotted with
dashed lines, with some representative points indicated with
circles and squares. The higher resolutions runs are plotted
with dashed dot lines, and representative points are indicated
with triangles and diamonds. The RF3 solutions are in red
and the RF4 in green. Both RF3 and RF4 solutions converge
to the LazEv solution (solid black line) as the maximum re-
finement level is increased. The convergence is largely unaf-
fected by the choice of refinement function.
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FIG. 13. This figure shows convergence with respect to ε
given a fixed maximum refinement level. The plot shows the
difference between the extracted GWs using the LazEv and
Dendro-GR codes for the real part of the ψ4 scalar with
decreasing ε. The Dendro-GR solutions with decreasing ε
converge to the LazEv waveforms. Refinement function RF3
was used here.

cause Dendro-GR dynamically changes the number of
active threads during a run. Finally, the table includes
the total wall-clock time used to complete the run. While
this information is valuable in providing a general view
of Dendro-GR’s performance, we caution that detailed
conclusions cannot be drawn. First, the runs in this ta-

ble were run over a long time period. During this time
code changes were made, and parameters were adjusted
as we gained experience with the code. These changes
impacted the computational costs of the runs. Secondly,
wallclock times depend on the number of cores used for
each job, the final integration time, the workload per
core, etc. For comparison, the LazEv q = 1 medium
resolution run used 27472 SUs, while the high resolution
run used 71651 SUs. The LazEv q = 2 medium res-
olution run used 100766 SUs, while the high resolution
run used 228065 SUs. Finally, the LazEv q = 4 medium
resolution used 169799 SUs, while the LazEv q = 4 high
resolution used 474683 SUs. All the LazEv runs were
performed on the same Intel Skylake cluster. Note that
the LazEv runs were performed at relatively high res-
olution to ensure that the error in the LazEv simula-
tions is small compared to the Dendro-GR simulations.
These high resolution runs are required because we will
use the LazEv simulations to calibrate the accuracy of
the Dendro-GR simulations.

Figs. 14–15 show gravitational waveforms computed
for non-spinning binaries with mass ratios up to q = 16.
Parameters for the initial data are shown in Table II,
which also gives resolution and refinement function data,
as well as the computational cost and time to solution.
As noted in Sec. II B, the initial data for q ≥ 2 are con-
structed from a single family of initial data [49], while
data for q = 1 are constructed from ad hoc parame-
ters. For q = 1, 2 and 4, the figures also show wave-
forms computed with LazEv. Due to the relativity long
walltime required, we chose not to complete the corre-
spondingly high-resolution simulations for q = 4 simula-
tions. Thus the difference between the Dendro-GR and
LazEv waveforms for q = 4 may only indicate that the
LazEv simulation was underresolved. Importantly, due
to its scaling, the Dendro simulations were obtained
more quickly. The binaries with q = 8 and q = 16
were performed only with Dendro-GR. These figures
show that Dendro-GR produces gravitational wave-
forms very similar to LazEv. The mismatch for these
different waveforms are calculated below, in Sec. IV D.
Unfortunately, it is difficult to draw conclusions the accu-
racy of Dendro-GR across different values of q, because
these runs were performed over a long period of time with
changing refinement strategies and a changing code base.
Many of the code changes and new approaches were mo-
tivated, in fact, in the process of running these cases.
We were not able to go back and rerun all cases with
the same version of the code and consistent refinement
criteria.

As discussed in Sec. II E, a gauge wave propogates
across the computational domain at early times, as the
coordinates transition from the Bowen-York gauge con-
ditions, used to calculate the initial data [48], to the
puncture gauge conditions used in the evolution. The
wavelength of the gauge wave is related to the black hole
size, and thus the frequency of this unphysical wave in-
creases with mass ratio, q. The high frequency wave trig-
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gered excessive refinement at the beginning of the higher
mass ratio runs, particularly for q ≥ 8, prompting our
experimentation with different wavelet refinement func-
tions. We ran simulations of the q = 8 binary with
three different refinement functions, and plot the result-
ing waveforms in Fig. 15. RF3 uses εmin over a larger
volume of the grid, while RF4 and RF5 allow for a larger
wavelet tolerance over a larger region of the grid. Con-
sequently, RF3 likely gives a more precise solution but
at a greater computational cost as it may tend to over-
refinement. While RF4 and RF5 are more computation-
ally efficient, differences in the waveforms become noti-
cable. For q = 16, RF3 was too expensive, and this run
was only done with RF4 and RF5. The RF5 run was not
completed, as the differences in results for RF3 and RF5
for q = 8 were large. Interestingly, the differences in RF3
and RF4 occur only at the initial time. After t = 40M ,
both refinement functions are identical. The phase dif-
ferences seen in the figure seem to arise solely from small
variations in the refinement at early times.

The number of computational cores used in the q = 8
and q = 16 runs are plotted in Figs. 16 and 17, respec-
tively. Dendro-GR regularly repartitions the compu-
tational workload across the available cores. To balance
the communication cost between cores, it will use fewer
cores than the total number available if the workload per
core drops below some threshold. In these runs, over-
refinement on the high frequency gauge wave and junk ra-
diation remains a problem, and causes the large increase
in demand for computational resources at the beginning
of the run. As this radiation moves beyond gravitational
wave extraction region, the grid is coarsened and the runs
become much more efficient.

D. Overlaps

When using numerical waveforms for gravitational
wave data analysis, numerical convergence provides an
important estimation of the error in the numerical solu-
tion. Ideally, the convergence error, determined by com-
paring the solutions computed at two different resolu-
tions, is smaller than the other errors in the analysis.
However, convergence testing overlooks the frequency re-
sponse of a real-world detector. The overlap provides a
way to compare two waveforms as measured in a detector
with a given frequency response. In addition, the over-
lap helps us to determine the computational resources
required to simulate a particular configuration. This al-
lows us to determine how similar two waveforms, com-
puted at different resolutions or with different codes, are
to one another.

For this analysis, we will measure the
consistency of two waveforms using the
CreateCompatibleComplexOverlap function in LaL-
SimUtils (which is freely available) [83, 84]. This
function automatically optimizes over both time
translations and phase shifts. Because of this, the

mode-by-mode mismatch allows for the phase shifts of
different modes to be inconsistent. That is, one expects
each m-mode to be shifted by mφ.

Internally, this function uses the inner product

〈h1|h2〉 = 2

∫ ∞
−∞

h∗1(f)h2(f)

Sn(f)
df, (9)

where h(f) is the Fourier transform of the complex wave-
form h(t) and we use the Advanced-LIGO design sensi-
tivity Zero-Detuned-HighP noise curve [85], Sn(f), with
fmin = 20 Hz and fmax = 2000 Hz. This inner product
is then further maximized over time and phase shifts as
described in [86]

〈h1|h2〉 = max
t0,φ0

[
2

∣∣∣∣∫ ∞
−∞

h∗1(f)h2(f)

Sn(f)
df

∣∣∣∣ ] . (10)

The overlap of two waveforms is then given by

O =
〈h1|h2〉√

〈h1|h1〉 〈h2|h2〉
(11)

and the mismatch is given by

M = 1−O. (12)

Because Eq. (9) directly involves the detector’s noise
sensitivity curve, Sn(f), the mismatch is a function of the
actual frequency waveform and is not invariant under a
change in the total mass of the system. Depending on
the total mass, only a portion of the waveform may be
in the detector’s sensitivity region. As an example, for
systems with small total mass, LIGO is most sensitive
to the low-frequency portion of the signal at early times.
For systems with a large total mass, however, LIGO is
most sensitive to the high-frequency merger and early
ringdown portion of the waveforms.

We use the mismatch, M, to compare the Dendro-
GR and LazEv waveforms. A mismatch of M < 0.005
was determined in Ref. [87] to be minimally accept-
able for advanced LIGO analysis. Ideally, a mismatch
M � 0.005 is desired. However, this limit of < 0.005
is for the net mismatch in the observed waveforms (i.e.,
after summing all modes). Setting the mismatch toler-
ance to < 0.005 for all subdominant modes is therefore
more restrictive than required. Here, we want to use the
mismatch between the LazEv and Dendro-GR simula-
tions to measure the truncation error in the Dendro-GR
simulations. This is only true if the error in the LazEv
simulations is much smaller than the Dendro-GR sim-
ulations. To an attempt to guarantee this, we require
that the corresponding LazEv-to-LazEv mismatches
(between the medium and high resolutions) are much
smaller than the corresponding LazEv-to-Dendro-GR
mismatches (we note that a small LazEv-to-LazEv mis-
match may not account for all possible global errors).
When this is not the case, the mismatch between the two
codes is not a measure of the error of the Dendro-GR
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FIG. 14. Plots comparing the waveform for the q = 1, 2, 4, 16 cases. LazEv and Dendro-GR waveforms are given for all
except q = 16, where only Dendro-GR results were produced. This figure plots the real part of ψ4 for the highest resolution
Dendro-GR and LazEv (where available) runs.

simulations. Figs. 18 - 20 show the overlaps for different
modes of ψ4 computed with Dendro-GR and LazEv,
for the q = 1, q = 2, and q = 4 binaries, respectively. In
particular, we use the high-resolution LazEv solutions as
the base solutions for comparison with the Dendro-GR
and medium-resolution LazEv waveforms. The figure
shows the modes in order of decreasing amplitude. The
q = 1 subdominant Dendro (2, 0) mode shows a signifi-
cant mismatch with the corresponding LazEv mode. All
modes with amplitude larger than the (2, 0) mode show
much smaller mismatches between Dendro and LazEv.
The q = 2 and q = 4 comparisons show similar behavior
(here, more modes are non-trivial, and the (2, 0) mode is
subdominant to all modes shown).

Fig. 21 shows the mismatch in the (`,m) = (2,−2)
mode of ψ4 between Dendro-GR waveforms computed
with different refinement criteria and the high-resolution
LazEv waveform. These mismatches compare solutions
computed with different refinement functions, RF3 and
RF4, with a refinement tolerance ε = 10−5. The fig-
ure also shows the mismatch for a solution computed

with RF3 and the refinement tolerance set to ε = 10−6.
The main result from this figure is that higher resolution
(more restrictive error tolerance) leads to a better agree-
ment between LazEv and Dendro. Finally, the mis-
match between the medium and high resolution LazEv
solutions is shown. Consistent with the earlier conver-
gence results, the Dendro-GR runs match the high-
resolution LazEv solution well, and the RF3 solution
is slightly closer. Finally, Fig. 22 shows the mismatch
between the Dendro-GR solutions for the q = 8 binary
computed with the RF3 and RF4 refinement functions.

V. DISCUSSION

This paper presents binary black hole evolutions per-
formed with Dendro-GR for different mass ratios up to
q = 16. We present validation tests in comparison with
results from LazEv, and we give performance informa-
tion for these runs.

While the focus of this paper is on evolving binary
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FIG. 15. This figure shows the real part of ψ4 for a q = 8
black hole binary, computed with Dendro-GR using three
different refinement functions with the same minimum spatial
resolution. RF3 has the smallest error tolerance at the center
of the grid, but is very computationally expensive. The RF4
solution is quite similar to RF3, but at roughly one fifth of
the computational cost (see Table II). The RF5 solution is
the least expensive to compute, but for the parameters used
here, the phase error is significant.
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FIG. 16. This figure shows the effect of different refine-
ment functions on the computational cost of evolving a q = 8
black hole binary with Dendro-GR by plotting the number of
computational cores used during the simulation as a function
of the computational time. The three refinement functions,
RF3, RF4, and RF5, differ only for t ≤ 40 M . Thus, the dif-
ferences arise primarily in how the initial junk radiation and
gauge waves are resolved. As shown in Fig. 15, the gravita-
tional wave results from RF3 and RF4 are similar, although
the maximum workload for RF4 was about 6 times smaller
than the maximum workload for RF3. The results for RF5,
while the most efficient run, show larger differences from the
other two cases.
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FIG. 17. This figure shows the number of computational cores
used in q = 8 and q = 16 binary black holes merger simula-
tions with RF4.

50 100 150 200
M/M

10 7

10 6

10 5

10 4

10 3

10 2

10 1

M
ism

at
ch

(2,-2)
(4,-4)
(3,-2)
(2,0)

FIG. 18. This figure shows the mismatch in various (`,m)
gravitational waveform modes between the Dendro-GR and
the high resolution LazEv solutions for a q = 1 binary. The
dot-dashed lines show the mismatch between the modes of the
LazEv medium resolution waveforms and the LazEv high-
resolution waveforms. The solid lines show the overlaps of the
Dendro-GR waveforms against the LazEv high-resolution
waveforms. The modes are presented in order of decreasing
amplitude. The (2, 0) mode, which fails our accuracy goal of
M < 0.005 is subdominant to all the other modes.

black holes with Dendro-GR, the first result that we
presented has general applicability in the numerical rel-
ativity community. We found that in binary black hole
evolutions with the BSSN formalism, the rate of conver-
gence is increased when a large amount of Kreiss-Oliger
dissipation is added to the solution. In our tests, runs
with a dissipation parameter of σ = 0.4 had a better
rate of convergence than runs with σ = 0.04, where σ is
bounded by σ < 1 for numerical stability.

While the performance and scaling of Dendro-GR is
very good, we are currently working on additional im-
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FIG. 19. This figure shows the mismatch in various (`,m)
gravitational waveform modes between the Dendro-GR and
the high resolution LazEv solutions for a q = 2 binary. The
dot-dashed lines show the mismatch between the modes of the
LazEv medium resolution waveforms and the LazEv high-
resolution waveforms. The solid lines show the overlaps of the
Dendro-GR waveforms against the LazEv high-resolution
waveforms. The modes are presented in order of decreasing
amplitude (i.e., (3,-3) is subdominant to (2,-2), (4,-4) to (3,3),
etc.).

provements. In particular, we are improving the unzip
process, in which an octant of the tree in locally expanded
to a uniform Cartesian grid, to reduce the communica-
tion overhead. As shown in this paper, we have started
exploring different ways to control the refinement algo-
rithm, especially during the initial times of an evolution.
We want to improve the computational performance of
Dendro-GR, while not sacrificing the accuracy of the
solutions. While we have had some initial success, much
more work remains to be done. We continue working on
a more general method to monitor errors in the evolu-
tion of black hole spacetimes. Finally, in an independent
project, we are developing a version of Dendro-GR that
runs primarily on GPUs.

The version of Dendro-GR used to produce the re-
sults in this paper is distributed subject to the MIT li-
cense at https://github.com/paralab/Dendro-GR.
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[19] C. Garćıa-Quirós, M. Colleoni, S. Husa, H. Estellés,
G. Pratten, A. Ramos-Buades, M. Mateu-Lucena,
and R. Jaume, Multimode frequency-domain model
for the gravitational wave signal from nonprecessing
black-hole binaries, Phys. Rev. D 102, 064002 (2020),
arXiv:2001.10914 [gr-qc].

[20] M. Punturo et al., The Einstein Telescope: A third-
generation gravitational wave observatory, Class. Quant.
Grav. 27, 194002 (2010).

https://arxiv.org/abs/2111.03606
https://arxiv.org/abs/2111.03634
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://arxiv.org/abs/1602.03837
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.1103/PhysRevD.91.062005
https://dcc.ligo.org/LIGO-T1800042/public
https://dcc.ligo.org/LIGO-T1600119/public
https://doi.org/10.3390/galaxies10030063
https://doi.org/10.3390/galaxies10030063
https://doi.org/10.1103/PhysRevD.96.104041
https://arxiv.org/abs/1705.09833
https://doi.org/10.1103/PhysRevD.94.064035
https://doi.org/10.1103/PhysRevD.94.064035
https://arxiv.org/abs/1606.01262
https://doi.org/10.1103/PhysRevD.81.084041
https://arxiv.org/abs/0912.3466
https://arxiv.org/abs/0912.3466
https://doi.org/10.1103/PhysRevD.84.124052
https://arxiv.org/abs/1106.1021
https://doi.org/10.1103/PhysRevD.86.024011
https://arxiv.org/abs/1202.0790
https://arxiv.org/abs/1202.0790
https://doi.org/10.1103/PhysRevD.89.084006
https://arxiv.org/abs/1307.6232
https://arxiv.org/abs/1307.6232
https://doi.org/10.1103/PhysRevD.98.084028
https://arxiv.org/abs/1803.10701
https://doi.org/10.1103/PhysRevD.93.044006
https://arxiv.org/abs/1508.07250
https://arxiv.org/abs/1508.07250
https://doi.org/10.1103/PhysRevLett.120.161102
https://arxiv.org/abs/1708.00404
https://doi.org/10.1103/PhysRevD.102.064002
https://arxiv.org/abs/2001.10914
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002


18

[21] D. Reitze et al., Cosmic Explorer: The U.S. Contribu-
tion to Gravitational-Wave Astronomy beyond LIGO,
Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833
[astro-ph.IM].

[22] S. Dwyer, D. Sigg, S. W. Ballmer, L. Barsotti, N. Maval-
vala, and M. Evans, Gravitational wave detector with
cosmological reach, Phys. Rev. D 91, 082001 (2015).

[23] C. Cutler and M. Vallisneri, Lisa detections of massive
black hole inspirals: Parameter extraction errors due to
inaccurate template waveforms, Phys. Rev. D 76, 104018
(2007).

[24] M. Pürrer and C.-J. Haster, Gravitational waveform ac-
curacy requirements for future ground-based detectors,
Phys. Rev. Res. 2, 023151 (2020), arXiv:1912.10055 [gr-
qc].

[25] D. Ferguson, K. Jani, P. Laguna, and D. Shoemaker,
Assessing the readiness of numerical relativity for LISA
and 3G detectors, Phys. Rev. D 104, 044037 (2021),
arXiv:2006.04272 [gr-qc].

[26] B. Daszuta, F. Zappa, W. Cook, D. Radice, S. Bernuzzi,
and V. Morozova, GR-Athena++: Puncture Evolutions
on Vertex-centered Oct-tree Adaptive Mesh Refinement,
Astrophys. J. Supp. 257, 25 (2021), arXiv:2101.08289
[gr-qc].

[27] T. Andrade et al., GRChombo: An adaptable numerical
relativity code for fundamental physics, J. Open Source
Softw. 6, 3703 (2021), arXiv:2201.03458 [gr-qc].

[28] S. R. Brandt, G. Bozzola, C.-H. Cheng, P. Diener,
A. Dima, W. E. Gabella, M. Gracia-Linares, R. Haas,
Y. Zlochower, M. Alcubierre, D. Alic, G. Allen, M. An-
sorg, M. Babiuc-Hamilton, L. Baiotti, W. Benger,
E. Bentivegna, S. Bernuzzi, T. Bode, B. Bren-
dal, B. Bruegmann, M. Campanelli, F. Cipolletta,
G. Corvino, S. Cupp, R. D. Pietri, H. Dimmelmeier,
R. Dooley, N. Dorband, M. Elley, Y. E. Khamra, Z. Eti-
enne, J. Faber, T. Font, J. Frieben, B. Giacomazzo,
T. Goodale, C. Gundlach, I. Hawke, S. Hawley, I. Hin-
der, E. A. Huerta, S. Husa, S. Iyer, D. Johnson, A. V.
Joshi, W. Kastaun, T. Kellermann, A. Knapp, M. Kop-
pitz, P. Laguna, G. Lanferman, F. Löffler, J. Masso,
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