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The origin and formation of stellar-mass binary black holes remains an open question that can be
addressed by precise measurements of the binary and orbital parameters from their gravitational-
wave signal. Such binaries are expected to circularize due to the emission of gravitational waves as
they approach merger. However, depending on their formation channel, some binaries could retain a
non-negligible eccentricity when entering the frequency band of current gravitational-wave detectors,
which will decay as the binary inspirals. In order to meaningfully measure the eccentricity in an
observed gravitational-wave signal, two main ingredients are then necessary: an accurate waveform
model that describes binaries on eccentric orbits, and an estimator to measure the non-circularity of
the orbit as a function of frequency. In this work we first demonstrate the efficacy of the improved
TEOBResumS waveform model for eccentric coalescing binaries with aligned spins. We validate the
model against mock signals of aligned-spin binary black hole mergers and quantify the impact of
eccentricity on the estimation of other intrinsic binary parameters. We then perform a fully Bayesian
reanalysis of GW150914 with the eccentric waveform model. We find (i) that the model is reliable
for aligned-spin binary black holes and (ii) that GW150914 is consistent with a non-eccentric merger
although we cannot rule out small values of initial eccentricity at a reference frequency of 20 Hz.
Secondly, we present a systematic, model-agnostic method to measure the orbital eccentricity and
its evolution directly from the gravitational-wave posterior samples. This method mitigates against
the contamination of eccentricity measurements through the use of gauge-dependent quantities and
has the advantage of allowing for the direct comparison between different analyses, as the definition
of eccentricity may differ between models. Our scheme can be applied even in the case of small
eccentricities and can be adopted straightforwardly in post-processing to allow for direct comparison
between analyses.

I. INTRODUCTION

Compact binary black holes (BBHs) emit gravitational
waves (GWs) during the last stages of their coalescence.
During this process the system loses energy and angu-
lar momentum, causing the orbit to both shrink and
progressively circularize [1]. This motivates the anal-
ysis of gravitational-wave signals with theoretical tem-
plates that are generated by waveform models using the
quasi-circular approximation. However, recent studies
highlight how accurate measurements of eccentricity can
provide vital astrophysical information that could, for
example, help discriminate between different binary for-
mation channels [2–7]. Consequently, there has been a
growing interest in analyzing the GW events detected by
LIGO and Virgo with inspiral-merger-ringdown (IMR)
waveform models that include eccentricity [8–11]. For
example, the GW transient GW190521 [12] has recently
been analyzed under the hypothesis that it originated
from a hyperbolic capture that resulted in a highly ec-
centric merger [13]; other studies claim moderate eccen-
tricity and spin-induced precession as evidence for dy-
namical formation [14], a possible head-on collision [15]
or large eccentricity and strong spin-induced precession
[8].

One of the most promising approaches towards mod-
elling the full GW signal emitted by compact binaries
on arbitrarily eccentric orbits is the effective-one-body
framework (EOB) [16–19]. Early attempts at incorpo-
rating eccentricity within the EOB framework were pre-
sented in [20–22] but have seen numerous improvements
over recent years [23–31]. In addition to EOB, there
have also been numerous developments using alterna-
tive approaches towards modelling the complete IMR
signal from eccentric binaries, including Numerical Rel-
ativity (NR) surrogates [32, 33] and hybrid models that
blend post-Newtonian (PN) evolutions with NR simula-
tions [34–37]. A key limitation of these approaches, how-
ever, is that they are often constrained by the availability
of accurate numerical relativity simulations that span the
full parameter space and – in the case of surrogates – by
the length of the simulations themselves, which often do
not cover the early inspiral of the system. Conversely,
models based on analytical PN and scattering calcula-
tions [38–43] can deliver representations of signals from
long lasting inspirals, but they lack a description of the
strong-field merger and are only valid for moderate ec-
centricities.

We are particularly interested in the TEOBResumS
model [44–46] and the extension to eccentricity [23,
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24, 47] that is built on the idea of dressing the circu-
lar azimuthal component of radiation reaction with the
leading-order (Newtonian) non-circular correction [23].
This approach has been subsequently extended to each
multipole in the waveform and was further improved by
incorporating higher order post-Newtonian information
in an appropriately factorized and resummed form [25].
In particular, [25] extended the noncircular waveform up
to 2PN using results that partially build on [48]. Whilst
several proposals exist for incorporating radiation reac-
tion, a detailed survey of these schemes was conducted
in [27] concluding that the Newtonian factorization com-
plete with 2PN corrections demonstrated the best agree-
ment with results in the test-mass limit. This paradigm
was further extended in [28].

In this work we focus on TEOBResumS and study
the performance of its circular and eccentric ver-
sions (TEOBResumS-GIOTTO and TEOBResumS-Dalı́, re-
spectively) when applied to GW parameter estimation.
We do so with the aim of validating the model and
gauging possible biases due to eccentricity (or lack
thereof). We dedicate special attention to the study
of the quasi circular limit of TEOBResumS-Dalı́, and in-
vestigate how its structural differences with respect to
TEOBResumS-GIOTTO – quantified in terms of unfaithful-
ness against numerical relativity waveforms – reflect on
GW data analysis of synthetic signals and GW150914.
We then introduce a method to estimate the eccentricity
directly from GW observations and determine its evo-
lution as a function of frequency. This procedure is effi-
cient and suitable to be applied to any eccentric waveform
model in post-processing. Furthermore it is advantageous
for comparing different eccentric analysis of GW events.

The paper is organized as follows: In Sec. II we sum-
marize the main elements of the EOB waveform model
used here. In Sec. III we present a brief review of the
elements of Bayesian inference needed for our analysis.
Section IV is devoted to the validation of the waveform
model via specific injection and recovery analyses. The
model is then used to analyze GW150914 data in Sec. V
and Sec. VI is dedicated to presenting our method to es-
timate the eccentricity evolution of a coalescing BBHs
system in post-processing. Concluding remarks are re-
ported in Sec. VII. Throughout we use G = c = 1 unless
stated otherwise.

II. QUASI-CIRCULAR AND ECCENTRIC
WAVEFORM MODEL: TEOBRESUMS

All analyses presented in this paper are performed
with TEOBResumS, either in its native quasi-circular ver-
sion, TEOBResumS-GIOTTO [46], or in its eccentric ver-
sion, TEOBResumS-Dalı́ [24]. In this section we describe
in some detail the features of the two models, highlight-
ing their structural differences and quantifying their (dis-
)agreement as measured by the unfaithfulness (or mis-

match) defined as:

F̄ = 1− F = 1−max
t0,φ0

〈h1|h2〉√
〈h1|h1〉〈h2|h2〉

, (1)

where (t0, φ0) are the initial time and phase of coales-
cence, and 〈h1|h2〉 is the noise weighted inner product
between two waveforms

〈h1|h2〉 = 4<
∫ fmax

fmin

h̃1(f)h̃∗2(f)
Sn(f) df, (2)

where Sn(f) denotes the power spectral density (PSD) of
the detector strain noise and h̃1(f) and h̃2 are the Fourier
transforms of the time domain waveforms h1 and h2.

A. Quasi-circular model: TEOBResumS-GIOTTO

TEOBResumS-GIOTTO is a semi-analytical state-of-the-
art EOB model for spinning coalescing compact bina-
ries [44–46, 49–51]. The conservative sector of the model
includes analytical Post-Newtonian (PN) information,
resummed via Padé approximants. Spin-orbit effects
are included in the EOB Hamiltonian via two gyro-
gravitomagnetic terms [49], while even-in-spin effects
are accounted for through the centrifugal radius [49].
Numerical Relativity (NR) data is used to inform the
model through an effective 5PN orbital parameter, ac6,
and a next-to-next-to-next-to leading order (NNNLO)
spin-orbit parameter, c3 [44]. In the dissipative sector,
waveform multipoles up to ` = 8 are factorized and re-
summed according to the prescription of [45]. Next-to-
quasicircular (NQC) corrections ensure a robust transi-
tion from plunge to merger, and a phenomenological NR-
informed ringdown model completes the model for mul-
tipoles up to ` ≤ 5. Although we focus here on BBH sys-
tems, we note that TEOBResumS-GIOTTO can also generate
waveforms for binary neutron star coalescences, see [44]
and references therein.

Waveforms built from TEOBResumS-GIOTTO employing
only the dominant multipole ` = |m| = 2 have been
tested against the entire catalog of spin-aligned wave-
forms from the Simulating-eXtreme-Spacetimes (SXS)
collaboration [52], and were shown to be consistently
more than 99% faithful to NR [46]. When higher modes
are included in the dissipative sector of the model,
the EOB/NR unfaithfulness always lies below the 0.3%
threshold when considering waveforms constructed only
with the ` = |m| = 2 mode, and below 3% for waveforms
with modes up to ` = 4 if the system has total mass
smaller than 120M� [45].

B. Eccentric model: TEOBResumS-Dalı́

The eccentric generalization of TEOBResumS,
TEOBResumS-Dalı́ [23, 24], builds on the features
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of the quasi-circular model detailed above but differs
in few key aspects. First, the quasi-circular Newtonian
prefactor that enters the factorized waveform multi-
poles is replaced by a general expression obtained by
computing the time-derivatives of the Newtonian mass
and current multipoles, as described in [24]. The same
approach is implemented for the azimuthal radiation
reaction force. Second, for eccentric binaries, the radial
radiation reaction force Fr that contributes to the time
evolution of the radial EOB momentum can no longer
be neglected [23]. Third, the initial conditions must be
specified in a different manner with respect to the quasi-
circular case: instead of employing the post-adiabatic
procedure of [53], TEOBResumS-Dalı́ computes adiabatic
initial conditions and always starts the evolution of the
system at the apastron, see Appendix A for further
details. These conservative eccentric initial conditions,
however, do not reduce to the quasi-circular initial
conditions in the limit of small eccentricity. To partially
correct for this issue, the quasi-circular initial conditions
are manually imposed for e0 < 10−3. Finally, the values
of a6 and c3 were modified in order to ensure that the
model remains faithful to its quasi-circular limit [24].

1. Quasi-circular limit of TEOBResumS-Dalı́

All of the modifications above allow TEOBResumS-Dalı́
to provide waveforms and dynamics that are faithful to
mildly eccentric SXS simulations [23, 24], scattering an-
gle calculations [24] and highly eccentric test-mass wave-
forms [54]. At the same time, however, because of these
structural differences, the quasi-circular limit of the ec-
centric model TEOBResumS-Dalı́ does not exactly reduce
to the TEOBResumS-GIOTTO model. In order to quantify
the agreement of TEOBResumS-Dalı́ with NR simulations
and TEOBResumS-GIOTTO, respectively, we calculate the
unfaithfulness defined in Eq. (1).

In Fig. 1 we show the unfaithfulness of
TEOBResumS-Dalı́ against almost all1 non-eccentric,
spin-aligned NR simulations in the SXS catalogue [55]
using the designed power spectral density (PSD) of Ad-
vanced LIGO [56]. This figure complements, with many
more simulations, Fig. 3 of [24]. Let us remind the reader
that the corresponding plot for TEOBResumS-GIOTTO is
centered around 10−3 with max(F̄EOBNR) ≤ 9 × 10−3

with only a few outliers above 3 × 10−3 (see Fig. 4
of [46]). We thus see here that TEOBResumS-Dalı́ and
TEOBResumS-GIOTTO are two EOB models, similarly
informed by NR simulations, that perform differently
with respect to quasi-circular NR simulations, though
both are clearly below the usual threshold of 3% unfaith-
fulness. It is therefore interesting to understand how this

1 We exclude the following simulations due to large numer-
ical errors: SXS:BBH:0002, SXS:BBH:1110, SXS:BBH:1141,
SXS:BBH:1142.
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FIG. 1. EOB/NR unfaithfulness using TEOBResumS-Dalı́ with
einj

0 = 10−8 over the non-precessing and non-eccentric SXS
catalog. See text for more details.

difference translates in terms of biases on parameters.
This will be discussed in Sec. IV.

III. METHODS

A. Bayesian inference

The measurement of the parameters that describe the
GW emitting binary is carried out within the framework
of Bayesian inference, which relies on Bayes’ theorem [57]

p(θ|d, H) = p(d|θ, H) p(θ|H)
p(d|H) , (3)

where p(θ|d, H) is the posterior probability of a set of
parameters θ given the data d assuming a specific model
H, p(θ|H) is the prior, p(d|θ, H) is the likelihood and
p(d|H) is the evidence or marginalized likelihood. The
evidence can be expressed as:

Z = p(d|H) =
∫

p(d|θ, H) p(θ|H)dθ, (4)

where the integral extends over the entire parameters
space. The evidence assumes the role of an overall
normalization constant but plays an important role in
Bayesian model selection. Given two competing hypothe-
ses HA and HB , the Bayes’ factor is defined as the ratio
of evidences

BBA = p(d|HB)
p(d|HA) , (5)

where the hypothesis HB is favoured by the data over
HA if BBA > 1. The expectation value of a parameter
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θi ∈ θ can be estimated through the likelihood as

E[θi] =
∫
θi p(θi|d, H)dθi, (6)

where p(θi|d, H) is the marginalized posterior distribu-
tion for the parameter θi.

B. Gravitational Wave Parameter Estimation

The GW signal emitted by an eccentric coalescing bi-
nary black hole system is fully described by 17 parame-
ters:

θCBC = {m1,m2,χ1,χ2, DL, ι, α, δ, ψ, t0, φ0, e0, f0},
(7)

where m1,2 denotes the (detector-frame) masses of the
two black holes such that m1 ≥ m2, χ1,2 are the dimen-
sionless spin angular momenta vectors with three spatial
components, DL is the luminosity distance to the source,
ι is the inclination angle, {α, δ} are the right ascension
and declination and define the sky location of the source,
ψ is the polarization angle, {t0, φ0} are the reference time
and phase, and {e0, f0} are the initial eccentricity mag-
nitude and the average frequency between the apastron
and periastron respectively.

In this work we utilize the bajes package for Bayesian
inference [58] employing the nested sampling [59] algo-
rithm dynesty [60] in order to extract the posterior prob-
ability density functions (PDFs) and to estimate the ev-
idence.

1. Likelihood

We are interested in the joint likelihood between N
detectors in a GW detector network

p(d|θ, HS) =
N∏
i=1

p(di|θ, HS), (8)

where HS denotes the hypothesis that the data contains
a GW signal. Under the assumption of Gaussian, sta-
tionary noise that is uncorrelated between each detector,
and assuming a time domain signal model h ≡ h(t,θCBC)
and data set d ≡ d(t), the likelihood is given by

p(d|θCBC, HS) ∝ e−
1
2

∑N

i=1
〈h−di|h−di〉, (9)

where 〈·|·〉 is the noise-weighted inner product as defined
in Eq. (2),

〈h− di|h− di〉 = 4Re
∫ ∞

0

|h̃(f)− d̃i(f)|2
Sn(f) df, (10)

where Sn(f) is the PSD of the detector strain noise, and
h̃(f) and d̃ denote the Fourier transform of h and d re-
spectively.

2. Priors

For the analyses presented in Sec. IV we adopt priors
that broadly follow [58, 61] and are given as follows:

• The prior distribution for the masses is chosen
to be flat in the components masses {m1,m2}
and can be written in terms of the chirp mass
Mc = (m1m2)3/5/(m1 +m2)1/5 and the mass ratio
q = m1/m2 ≥ 1 as

p(Mc, q|HS) = Mc

ΠMcΠq

(
1 + q

q3

)2/5
, (11)

where ΠMc
and Πq are the prior volumes, as defined

in Sec.V B of [58] delimited by the prior bounds of
Mc and q.

• To aid the comparison with results from analyses
that allow for precessing spins, we assume priors
that correspond to the projection of a uniform and
isotropic spin distribution along the ẑ-direction as
proposed by Veitch [58, 62]:

p(χi|HS) = 1
2χmax

ln
∣∣∣∣∣χmax

χi

∣∣∣∣∣, (12)

where χi is the magnitude of each black hole spin
and χmax is the maximum spin magnitude.

• The prior distribution for the luminosity distance
DL is specified by a lower and an upper bound and
its analytic form is defined by a uniform distribu-
tion over the sphere centred around the detectors:

p(DL|HS) = 3D2
L

D3
max −D3

min
(13)

• The prior distributions for α and δ, defining the
sky location, are taken to be isotropic over the sky
with α ∈ [0, 2π], δ ∈ [−π/2,+π/2] and

p(α, δ|HS) = cos δ
4π . (14)

• Analogously, for the inclination we have

p(ι,HS) = sin ι
2 , (15)

where ι ∈ [0, π].

• For {ψ, t0, ψ0}, the prior distributions are taken to
be uniform within the given bounds.

• The prior on {e0, f0} are taken to be uniform or
logarithmic-uniform within the provided bounds
that are [0.001, 0.2] and [18, 20.5], respectively.
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IV. VALIDATION OF THE WAVEFORM
MODEL

In this section, we test the consistency of
TEOBResumS-Dalı́ with TEOBResumS-GIOTTO (and
vice-versa) by performing Bayesian inference on simu-
lated GW signals (injections). The aim of this analysis
is to give a more quantitative meaning to the standard
EOB/NR unfaithfulness figures of merit discussed
above. To do so, we inject mock signals into a zero noise
realization with a signal-to-noise ratio (SNR) of ∼ 42
in the Advanced LIGO and Advanced Virgo network.
We employ the Advanced LIGO and Advanced Virgo
design sensitivity PSDs [56, 63, 64]. All injections are
performed at the same GPS time, tGPS = 1126259462.4s.
We analyze segments of 8s in duration with a sampling
rate of 4096Hz. We use dynesty to sample the posterior
distributions, using the following setting: 3000 live
points to initialise the MCMC chains, a maximum of
104 MCMC steps, a stopping criterion on the evidence
of ∆ lnZ = 0.1, and we require five autocorrelation
times before accepting a point. For all our analyses, we
restrict the waveform model to only the (2, |2|)-mode,
allowing us to analytically marginalize over the phase.

A. Quasi-circular limit of the eccentric model

As mentioned above, TEOBResumS-Dalı́ is structurally
different to the quasi-circular TEOBResumS-GIOTTO
model. Moreover, despite having been informed by the
same NR simulations, its unfaithfulness to NR is larger
than that of TEOBResumS-GIOTTO. To better understand
how this difference in the unfaithfulness translates into
parameter biases, we perform an unequal mass injec-
tion in the quasi-circular limit, as detailed in Table I.
More precisely, the injected waveform is generated with
TEOBResumS-GIOTTO from a fixed initial frequency of 20
Hz, and it is recovered with either the same model (Prior
1) or with TEOBResumS-Dalı́ assuming a fixed initial ec-
centricity of e0 = 10−8 at 20 Hz (Prior 2). In Fig. 2
we show the one-dimensional and joint posterior distri-
butions for Mc

2, q and the effective spin

χeff = m1χ1z +m2χ2z

m1 +m2
, (16)

where the two spins are taken to be aligned along the
ẑ-direction: χ1z = χ1 and χ2z = χ2. The median val-
ues of Mc, χeff and q recovered with TEOBResumS-GIOTTO
and TEOBResumS-Dalı́ are shown, with their 90% credi-
bility interval, respectively in the first and second col-
umn of Table VI in Appendix B. Comparing the re-
sults, we notice that the median values of the parameters

2 We note that we quote the detector-frame chirp mass throughout
the paper.

Parameter Injected value Prior 1 Prior 2
Mc(M�) 24.33 [18, 45] [18, 45]

q 2 [1, 3] [1, 3]
χ1 0 [−0.8, 0.8] [−0.8, 0.8]
χ2 0 [−0.8, 0.8] [−0.8, 0.8]

DL(Mpc) 800 [50, 2000] [50, 2000]
cos ι 0 [−1, 1] [−1, 1]
α(rad) 0.37 [0, 2π] [0, 2π]
δ(rad) 0.81 [−π/2, π/2] [−π/2, π/2]
ψ(rad) 0 U(0, π) U(0, π)
t0(s) 0 U(−1, 1) U(−1, 1)
φ0(rad) 0 – –
e0 0 0 10−8

f0(Hz) 20 20 20
Model GIOTTO GIOTTO DALI

TABLE I. Parameters of the circular injection and two
different priors. The prior distributions are described in
Sec. III B 2. The sky location corresponds to the maximum
sensitivity for the Advanced LIGO Hanford detector.

recovered with TEOBResumS-GIOTTO are in good agree-
ment with the injected ones, while those recovered with
the quasi-circular limit of TEOBResumS-Dalı́ are slightly
biased towards higher values. This is not surprising
given the different analytical structures (dissipative sec-
tors and NR-informed parameters) of the two models and
the fact that TEOBResumS-Dalı́ is less NR-faithful than
TEOBResumS-GIOTTO by, on average, one order of magni-
tude (∼ 10−2 vs. 10−3) (see Fig. 1 and Fig. 4 of [46]).
Moreover, when comparing the two models with each
other, we also find an average unfaithfulness of 2 − 3%,
which increases slightly with the total mass of the binary.

B. Testing the eccentric model

In the EOB framework, the dynamics of a system of
coalescing binaries is evolved from initial conditions. For
the TEOBResumS-Dalı́ model, this is done by defining an
initial eccentricity e0 and an initial frequency f0 and,
through Eq. (A1)-(A5), determining (r0, p0

ϕ, p0
r∗). The

degree to which the initial frequency f0 has an impact
on Bayesian inference and our ability to constrain this
parameter from the observations is poorly understood.
In previous similar analyses, comparable quantities, such
as the argument of the periapsis or mean anomaly, have
typically been ignored. However, recent studies [9, 32]
suggest that the mismatches can degrade as we vary these
parameters for a given eccentricity. It is therefore useful
to quantify the impact of f0 on Bayesian inference. To do
so we perform a non-eccentric injection with e0 = 0 and
f0 = 20 Hz and recover with TEOBResumS-Dalı́ either
sampling on e0 and f0 (Prior 1) or only on e0 (Prior 2).
The details of the injection and the priors are listed in
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FIG. 2. Testing the quasi-circular limit of TEOBResumS-Dalı́.
We inject a quasi-circular waveform generated
with TEOBResumS-GIOTTO and recover it with either
TEOBResumS-GIOTTO (blue) or with TEOBResumS-Dalı́
with fixed initial eccentricity at e0 = 10−8 (teal). The
injected values are indicated by the solid lines. We find that
the parameters recovered with TEOBResumS-Dalı́ are slightly
biased. See text for discussion.

Table II. For the other parameters, the injected values
and prior ranges are the same as in Table I.

Figures 3 and 4 show the one-dimensional and joint
posterior distributions obtained with the two different
priors. In Fig. 3, we show the posterior distributions for
Mc, χeff , q and e0 obtained using the first prior choice
(orange) and the second prior choice (teal). The median
values, at 90% credibility, are shown in the third (Prior
1) and fourth (Prior 2) columns of Tab. VI in App. B.
We do not observe any significant differences between
the two analyses and we find that the posterior on f0 is
weakly correlated with e0 about its true value as can be
seen from Fig. 4. This is in broad agreement with the
conclusions of [10], who found that the argument of peri-
apsis is only likely to be resolvable for the loudest events.
However, as also discussed in Refs. [10, 11, 65], we could
potentially see biases if we fix f0 to a frequency that
effectively corresponds to the argument of the periapsis
being out of phase with the true value. In the e0 → 0
limit, however, one may expect f0 to become increasingly
degenerate with the coalescence phase.

We note that although the injected value for e0 is not
contained within the priors, we do not see evidence that
this impacts the inferred results. But we find a prior-
dependence in the posterior of e0 (see Fig. 5 and the dis-
cussion below), in addition to the systematic differences
between the two models in the circular limit already high-
lighted in Fig. 2.

We next inject mock signals with two different values
of e0 and recover them using TEOBResumS-GIOTTO and
TEOBResumS-Dalı́ respectively. The details of the in-
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FIG. 3. Injection with TEOBResumS-GIOTTO and recovery
with TEOBResumS-Dalı́. The posterior distributions are ob-
tained by sampling in (e0, f0) (orange) or by sampling only in
e0 while keeping f0 fixed (teal). The injected values are rep-
resented by the solid lines. We do not find appreciable biases
in the reconstructed parameters when sampling only in e0.
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FIG. 4. Two-dimensional eccentricity and frequency posterior
distributions for the same TEOBResumS-GIOTTO injection and
recovery with TEOBResumS-Dalı́ as in Fig. 3. We do not ob-
serve any significant correlation between e0 and f0.

jected values for e0 and f0 and their priors are described
in Table III. The injected values and priors for the other
parameters are the same as before as given in Table I. Fig-
ure 5 shows the one- and two-dimensional posterior distri-
butions for Mc, χeff and q (left) and the one-dimensional
posterior distribution for e0 (right) for a non-eccentric
injection recovered with TEOBResumS-Dalı́ with two dif-
ferent choices of prior distributions: logarithmic-uniform
(teal), uniform (orange). The recovered median values
corresponding to the Prior 1 (orange) are shown in the
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FIG. 6. Injection with TEOBResumS-Dalı́ with fixed EOB eccentricity e0 = 0.05 at 20 Hz and recovery with TEOBResumS-GIOTTO
(blue) or TEOBResumS-Dalı́ (teal). When the analysis is performed with the latter, all recovered parameters look consistent with
the injected ones. Conversely, neglecting eccentricity leads to biases in the mass ratio and effective spin posterior distributions.

third column while the one corresponding to the Prior 2
(teal) are shown in the fifth column of Tab. VI in App. B.
We observe that for eccentricities comparable to zero, the
mass and spin measurements are robust and independent
of the choice of eccentricity prior. In the right panel of
Fig. 5, we observe that when using a logarithmic-uniform
prior for the eccentricity, the recovered median value of
the eccentricity is pushed to smaller values as a result of
the priors.

In Fig. 6, instead, we show the posterior distributions
for an injection with e0 = 0.05 (TEOBResumS-Dalı́) and
recovered with both the models, TEOBResumS-GIOTTO
and TEOBResumS-Dalı́. The median values of the pa-
rameters recovered with TEOBResumS-GIOTTO (orange)
are indicated in the first column of Tab. VII in App. B,

while the ones recovered with TEOBResumS-Dalı́ (teal)
are indicated in the second column of the same Table.
In the left figure, we observe a stronger correlation be-
tween mass and spin parameters when we recover with
TEOBResumS-GIOTTO. Previous studies have pointed out
correlations between the chirp mass, the effective inspi-
ral spin and the eccentricity [11, 34, 65]. As our recov-
ery model neglects eccentricity, biases in the mass and
spin parameters are anticipated to compensate for this.
Lastly, we draw our attention on the right figure of the
bottom panel, where it is shown how excellently the re-
covery of the eccentricity is accomplished pointing out
the robustness and accuracy of the model.

In terms of model selection, we find that for
the non-eccentric injection, the recovery with
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Parameter Injected value Prior 1 Prior 2
e0 0 U(0.001, 0.2) U(0.001, 0.2)

f0(Hz) 20 U(18, 20.5) 20 (fixed)
Model – DALI DALI

TABLE II. Injected values for e0 and f0 and their priors.
Two choices of recovery are made to perform this first testing
analysis of TEOBResumS-Dalı́. We choose to sample in both
parameters in one case (Prior 1) and only in e0 in the other
case (Prior 2).

TEOBResumS-GIOTTO is preferred with respect to the one
with TEOBResumS-Dalı́ with an estimated logarithmic
Bayes’ factor of lnBecc

circ ∼ 9. Similarly, for the eccen-
tric injection, the eccentric model TEOBResumS-Dalı́
is preferred with respect to the quasi-circular model
TEOBResumS-GIOTTO with an estimated logarithmic
Bayes’ factor of lnBcirc

ecc ∼ 5 in the case of the uniform
eccentricity prior, and lnBcirc

ecc ∼ 10 when using the log-
uniform prior. The difference in Bayes’ factor between
the two priors can be attributed to the 1/e0-scaling for
the log-uniform prior, which a priori favours smaller
values of eccentricity. The investigations presented
in this section demonstrate that TEOBResumS-Dalı́
is a reliable waveform model to analyze spin-aligned,
eccentric binaries.

V. ANALYSIS OF GW150914

In this section, we reanalyse GW150914 with the
TEOBResumS-Dalı́ and TEOBResumS-GIOTTO waveform
models. The strain data and PSDs are obtained from
the GW Open Science Center [66]. We analyse an 8s-
long data stretch centered around the GPS time of the
event tGPS = 1126259462.4 s sampled at a sampling rate
of 4096 Hz. For the inference, we use dynesty choosing
the same settings discussed in Sec. IV.

A. Quasi-circular analysis of GW150914

First, we analyse GW150914 under the assumption of
a quasi-circular binary black holes system. To do so, we
perform two analyses, either using TEOBResumS-GIOTTO
or TEOBResumS-Dalı́, fixing initial EOB eccentricity to
e0 = 10−8, as described in Table IV. In both cases
we recover a maximum likelihood SNR of ∼ 26 corre-
sponding to ∼ 20 in LIGO-Hanford and ∼ 18 in LIGO-
Livingston. In Fig. 7 we show the marginalized one-
dimensional and two-dimensional posterior distributions
for (Mc, χeff , q) obtained with TEOBResumS-Dalı́ (teal)
and TEOBResumS-GIOTTO (blue). The recovered median
values are reported in the second and third column of
Table V. We observe that the values recovered with
TEOBResumS-GIOTTO are consistent with the values for

GW150914 reported in GWTC-1 [61], while the median
values for the chirp mass and effective inspiral spin found
with TEOBResumS-Dalı́ with fixed e0 = 10−8 are slightly
higher in comparison to GWTC-1, but still consistent
at the 90% credible level. In terms of Bayes’ factors we
find that the analysis with TEOBResumS-GIOTTO is favored
with a lnBcirc

ecc,10−8 ∼ 1. Based on the results for mock sig-
nals presented in Sec. II B 1, this is not surprising because
of the structural difference between the two models and
the influence of initial conditions on the quasi-circular
limit as discussed extensively in Sec. II B.

−0
.1

5
0.

00
0.

15
0.

30

χ
ef
f

30 32 34 36

Mc[M�]

1.
00

1.
25

1.
50

1.
75

2.
00

q
=
m

1/
m

2

−0
.1

5
0.

00
0.

15
0.

30

χeff
1.

2
1.

5
1.

8
2.

1

q = m1/m2

FIG. 7. One-dimensional and two-dimensional posterior
distributions for Mc, q and χeff obtained with the quasi-
circular model TEOBResumS-GIOTTO (blue) and the eccentric
TEOBResumS-Dalı́ in the quasi-circular limit (i.e. e0 fixed to
10−8 (teal)). The solid lines indicate the values from the
quasi-circular analysis presented in GWTC-1 [61].

B. Eccentric analysis of GW150914

Finally, we reanalyse GW150914 with the eccentric
model TEOBResumS-Dalı́ sampling in both the initial ec-
centricity e0 and f0 (see Table V for prior details). For
the eccentricity we use two different priors: one uniform
in e0 and the other one logarithmic-uniform which occu-
pies a larger prior volume at low eccentricities. All other
priors and settings are identical to the quasi-circular anal-
ysis of Sec. V A. Consistently with this, we estimate a net-
work SNR of ∼ 26 with ∼ 20 in LIGO-Hanford and ∼ 18
in LIGO-Livingston for the maximum likelihood param-
eters. In Fig. 8 we show the one-dimensional and joint
posterior distributions together with the median values
reported in GWTC-1 [61] or calculated from [67] (solid
lines). The median values for (Mc, χeff , q) are given in
Table V. The two eccentric analyses give consistent re-
sults for the mass and spin parameters, i.e. we do not
find any appreciable difference between the results for
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Parameter Injection 1 Prior 1 Prior 2 Injection 2 Prior 1 Prior 2
e0 0 U(0.001, 0.2) Log-uniform(0.001, 0.2) 0.05 U(0.001, 0.2) 0 (fixed)

f0(Hz) 20 U(18, 20.5) U(18, 20.5) 20 U(18, 20.5) 20 (fixed)
Model – DALI DALI DALI DALI GIOTTO

TABLE III. Second test of TEOBResumS-Dalı́ with an eccentric recovery. First column: injected values for e0 and f0 and their
prior limits for an injection with e0 = 0 injection recovered with TEOBResumS-Dalı́ with two different prior choices. Second
column: injected values for e0 and f0 and their prior limits for an injection with e0 = 0.05 recovered with TEOBResumS-Dalı́
and TEOBResumS-GIOTTO.

Parameter Prior
Mc(M�) [12, 45] [12, 45]

q [1, 3] [1, 3]
χ1z [−0.8, 0.8] [−0.8, 0.8]
χ2z [−0.8, 0.8] [−0.8, 0.8]

DL(Mpc) [50, 2000] [50, 2000]
cos ι [−1, 1] [−1, 1]
α(rad) [0, 2π] [0, 2π]
δ(rad) [−π/2, π/2] [−π/2, π/2]
ψ(rad) U(0, π) U(0, π)
t0(s) U(−1, 1) U(−1, 1)
φ0(rad) – –
e0 0 (fixed) 10−8 (fixed)

f0(Hz) 20 (fixed) 20 (fixed)
Model TEOBResumS-GIOTTO TEOBResumS-Dalı́

TABLE IV. Choice of priors for the analysis of GW150914 to
test the quasi-circular limit of TEOBResumS-Dalı́. The prior
distributions are described in detail in Sec. III B 2.

the two different choices of the eccentricity prior. We
do, however, find differences in the e0 posterior under
the two different prior assumptions as shown in the bot-
tom panel of Fig. 8. While both posteriors are consistent
with small values of initial eccentricity, we find that the
e0-posterior peaks at ∼ 0.05 for the uniform e0-prior,
which is in mild tension with other results [68, 69]. How-
ever, we note that this may be due to the uniform prior,
which may not sufficiently explore low values of eccentric-
ity. By contrast, when choosing the logarithmic-uniform
prior, lower values of e0 are preferred in full agreement
with other analyses. We find that the maximum 90% up-
per limit is e0 . 0.08, which is consistent with the results
based on NR simulations presented in [70], where it was
shown that the log-likelihood drops sharply as the eccen-
tricity grows beyond ∼ 0.05 at about 20 Hz. For the
other parameters (see Figs. 12 and 13 in Appendix C)
we find broad agreement with the exception of the right
ascension, where a different mode is preferred. In com-
parison to the quasi-circular analysis, the eccentric anal-
yses give slightly higher median values for Mc and χeff in
agreement with [68, 69].

In terms of model selection we find that
TEOBResumS-GIOTTO is favoured over TEOBResumS-Dalı́

with an estimated Bayes’ factor of lnBcirc
ecc ∼ 2 ir-

respective of the prior. This is in agreement with
the results reported in [68], but differs from the ones
in [69]. However we note that Ref. [69] uses higher
order modes while in our analysis we only employ the
dominant multipole ` = |m| = 2 in the waveform. We
conclude that, while the hypothesis of a quasi-circular
BBH merger is preferred for GW150914, we cannot
exclude a small value of eccentricity at 20 Hz. All
three analyses, however, give consistent results for the
intrinsic parameters at 90% confidence. Our results are
in agreement with previous analyses [11, 61, 68].

VI. MODEL-AGNOSTIC ESTIMATE OF THE
ECCENTRICITY EVOLUTION

Bayesian inference allows us to determine the posterior
distributions of binary parameters at a certain reference
frequency. Certain parameters are, however, frequency
dependent and hence change over time. One of these
parameters is the eccentricity of the orbit, which decays
due to the emission of GWs. In Sec. V B we determined
the posterior distribution of the initial eccentricity e0 of
the EOB model measured at a (varying) reference av-
erage frequency f0. We now devise a scheme to deter-
mine the evolution of the eccentricity as a function of fre-
quency using a previously introduced eccentricity estima-
tor [71]. Gravitational radiation at future null infinity is
expected to be manifestly gauge invariant, motivating the
use of an estimator based on the relative oscillations in
the gravitational-wave frequency. This mitigates against
the contamination of eccentricity measurements through
the use of gauge dependent quantities [72]. This has the
additional advantage of allowing for the direct compari-
son between different eccentric analyses, which often use
different definitions of eccentricity [73]3. Our scheme is
computationally efficient and applicable to any eccentric

3 We remind the reader that in general relativity one does not
have a unique, Newtonian-like definition of orbital eccentricity:
due to periastron precession elliptic orbits do not generally close,
even in the absence of dissipation caused by GW. Moreover, and
most importantly, eccentricity is not a gauge invariant quantity,
but rather it depends on the specific choice of coordinates. A
detailed discussion on this topic can be found in e.g. [39].
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GW150914 Analysis
Model TEOBResumS-GIOTTO TEOBResumS-Dalı́ TEOBResumS-Dalı́ TEOBResumS-Dalı́ GWTC-1
e0-prior e0 = 0(fixed) e0 = 10−8 (fixed) U(0.001,0.2) Log-uniform(0.001, 0.2) –
f0-prior f0 = 20 Hz (fixed) f0 = 20 Hz (fixed) U(18, 20.5) U(18, 20.5) –
Mc(M�) 31.33+0.75

−0.52 32.53+0.84
−1.08 31.54+0.92

−1.19 31.79+1.12
−0.94 31.23+1.08

−0.96

χeff 0.01+0.05
−0.03 0.13+0.06

−0.08 0.06+0.06
−0.10 0.08+0.08

−0.07 −0.01+0.12
−0.11

q 1.14+0.14
−0.10 1.15+0.15

−0.10 1.18+0.17
−0.11 1.21+0.19

−0.14 1.16+0.19
−0.11

e0 – – 0.05+0.03
−0.02 0.02+0.03

−0.01 –

TABLE V. Results for the different analysis of GW150914 with TEOBResumS-GIOTTO or TEOBResumS-Dalı́. The prior ranges for
e0 and f0 for each analysis are indicated. We give the median values and symmetric 90% credible interval for Mc, χeff and q.
Our results are contrasted by the values obtained from the non-eccentric, precessing analysis presented in GWTC-1 [61] shown
in the last column.

waveform model in post-processing. A benefit of this way
of estimating the eccentricity in post-processing is that it
can be calculated directly from the GW signal in contrast
to definitions inferred from the dynamics 4. In addition,
it also reduces to the Newtonian definition of eccentricity,
even in the high eccentricity limit [34, 71].

To calculate the eccentricity evolution, we employ the
eccentricity estimator first introduced by Mora et al. [71]:

eω(t) = ωp(t)1/2 − ωa(t)1/2

ωp(t)1/2 + ωa(t)1/2 , (17)

where ωp(t) and ωa(t) are fits to the GW frequency of
the (2, 2)-mode at the periastron and the apastron, re-
spectively. We note that this eccentricity estimator is
also used in other works, e.g. either based on the or-
bital [32, 34, 74] or the GW frequency [23, 24].

To calculate ωp(t) and ωa(t), we first generate the
TEOBResumS-Dalı́ waveform for each posterior sample
and compute the GW frequency as ω(t) = φ̇(t), where
φ(t) is the phase of the (2, 2)-mode defined as h22 =
A(t)e−iφ(t) with A(t) being the amplitude of the wave-
form. We then identify the maxima (periastron) and the
minima (apastron) of the second time-derivative of the
GW frequency. We use the second derivative in order to
amplify the peaks such that the identification of the max-
ima and minima is more robust for small eccentricities.

Once the minima and maxima are identified, we fit
f(t) = ω(t)/(2π) using cubic spline interpolation. An
example of this is shown in the upper panel of Fig. 9,
where the red curve shows the GW frequency with clearly
visible eccentricity-induced oscillations and the green and
orange curves show the fits to the maxima and minima
respectively. From Eq. (17) we calculate eω(t) for each
posterior sample to find the corresponding eccentricity
evolution, as shown in the bottom panel of Fig. 9. We

4 Nonethless, we note that since we also have at hand the EOB dy-
namics, the same approach could be applied to the EOB orbital
frequency.

note that the eccentricity estimated at the initial time
eω(t = 0) can differ from the initial EOB eccentricity e0
defined by the EOB dynamics as the eccentricity at the
average frequency between apastron and periastron, as
explained by Eq. (A3).

Since we are interested in determining how the eccen-
tricity decays as the GW frequency increases towards
merger, we need to map t → f . Due to the non-
monotonic behavior of the GW frequency, such a map-
ping is not unique and hence we introduce the average
GW frequency f̄(t) instead:

f̄(t) = 1
2
(
fp(t) + fa(t)

)
, (18)

where fp(t) = ωp(t)/(2π) and fa(t) = ωa(t)/(2π), and
use linear interpolation to infer the eccentricity as a func-
tion of f̄ throughout the inspiral.

As we mentioned before, this method benefits of the
fact that it allows the eccentricity to be calculated di-
rectly from the GW signal and it reduces to the Newto-
nian definition of eccentricity, even in the high eccentric-
ity limit, however, the method also has some limitations.
A caveat to the correct calculation of eω(t) is, in fact, that
it requires the inspiral to be sufficiently long such that
many periastron and apastron peaks can be resolved. In
particular, for short waveforms where we only have one
or two maxima and minima available, this method is ex-
pected to become inefficient and inaccurate [34]. A way
to circumvent this situation is to generate the EOB wave-
forms from a lower starting frequency but at the cost of
increasing the waveform generation time and hence the
time taken for a Bayesian inference run to complete. Sim-
ilarly, in the low-eccentricity limit, we may also expect
peak-finding algorithms to become numerically unstable.
While strategies to amplify the peaks, such as the use
of the second derivative of the frequency, help to iso-
late the stationary points, in practice we found that the
peaks can still be poorly resolved for a small subset of
the samples. However, by cutting the frequencies at suf-
ficiently small times (t = 0.4 s), we found the eccentricity
estimator to be numerically robust with only a small per-
centage of samples (. 0.03%) potentially suffering from
pathologies. For those samples, we can adjust the cutoff
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FIG. 8. Analyses of GW150914 with TEOBResumS-GIOTTO
(blue) and TEOBResumS-Dalı́ with a uniform e0-prior (teal)
and a logarithmic-uniform e0-prior (orange). Upper panel:
Joint posterior distributions with 90% and 50% credibility
interval and median values reported in GWTC-1 [61] (solid
lines). Bottom panel: Marginalised one-dimensional posterior
distributions and median values of e0 (dashed lines) for the
two eccentric analyses.

time/frequency to produce an estimate of the eccentric-
ity.

In Fig. 10 we show the 90% upper limit of the eccen-
tricity evolution eω(f̄) as a function of the average fre-
quency for the simulated eccentric signal with e0 = 0.05
and f0 = 20Hz, as discussed in Sec. IV B. In addition,
we also show the eccentricity evolution for the injected
waveform itself (black triangles). We see that it is always
contained within the 90% upper limit.

Finally, we apply the same method to calculate the
eccentricity evolution for GW150914 from the posterior
samples obtained using the eccentric TEOBResumS-Dalı́
model as outlined in Sec. V B. Figure 11 shows the 90%

FIG. 9. Upper panel: Illustration of the fitting procedure to
determine the maxima (teal) and minima (orange) of the GW
frequency (red). Bottom panel: Evolution of the eccentricity
eω(t) calculated using the method described in the text for a
BBH with Mc = 24.74, χeff = 0 and q = 1.5.

upper limit of eω(f̄) obtained for the uniform e0-prior dis-
tribution (blue) as well as for the log-uniform e0-prior dis-
tribution (orange). We obtain an upper limit of eω(f̄) at
∼ 20 Hz of ∼ 0.075 for the analysis with the uniform e0-
prior and ∼ 0.055 for the analysis with the logarithmic-
uniform e0-prior. This is comparable with Fig. 7 of [70]
where it was found that GW150914 is unlikely to have an
eccentricity higher than ∼ 0.05 at about 20 Hz at 90%
credibility. We also see that while we cannot exclude
small values of eccentricities at low frequencies, once an
average frequency of ∼ 30 Hz is reached, any residual
eccentricity eω(f̄) can no longer be distinguished from
zero.

VII. DISCUSSION

In this work we present a Bayesian validation of
the TEOBResumS-Dalı́ waveform model [24] for eccen-
tric coalescing binary black holes with aligned spins, a
fully Bayesian reanalysis of GW150914 and a systematic
method to estimate the eccentricity in post-processing.
Our study explores the potential of TEOBResumS-Dalı́
and allows us to test its reliability. Our work is
an extension of our previous study [24] and demon-
strates the efficacy of the model in distinguishing be-
tween circular and eccentric GW signals. In particular,
we find that the differences between the quasi-circular
limit of TEOBResumS-Dalı́ and its quasi-circular com-
panion TEOBResumS-GIOTTO are relevant, and lead to
clear (though small) biases in the recovered parameters.
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FIG. 10. Upper limit of the 90% credibility interval for the
estimated eccentricity evolution eω(f̄) for an injection with
e0 = 0.05. The upper limit is calculated estimating eω(f̄) for
all the posterior samples, interpolating it at different values of
f̄ and then taking the 90 % credibility interval of the of the
data. The black triangles represent the injection. We note
that the estimated initial eccentricity is slightly lower than
e0 = 0.05, where e0 is defined from the EOB dynamics.

We attribute these biases to differences between the two
models in both the dynamics (and especially in the ra-
diative sector) and the waveform itself. When perform-
ing parameter estimation with small fixed eccentricity5

this results in appreciable differences in the posteriors
of numerous parameters. This indicates that the original
TEOBResumS-Dalı́ model needs improvements, notably to
recover a quasi-circular limit that is as accurate as the
one of TEOBResumS-GIOTTO. Some work in this direction
has been done [47] (see in particular Fig. 8 therein) but
more investigations are needed to improve the model in
the nearly equal-mass regime6.

After testing TEOBResumS-Dalı́ for quasi-circular bi-
naries, we validate the model on injections with
nonzero initial eccentricity. In particular we find that
TEOBResumS-Dalı́ excellently recovers the injected value
of eccentricity. In addition, we quantify the impact of ec-
centricity on the estimation of the intrinsic parameters of
the binary: notably, we observe that the correlations be-
tween parameters became less strong when introducing
eccentricity. If neglecting eccentricity, however, we see

5 We note that if the initial eccentricity is sufficiently small the
setup of the initial data is identical in both models.

6 We also note that the TEOBResumS strategy is rather different from
the one followed by the SEOBNRv4EHM model [29] that substan-
tially limits itself at changing initial conditions, without touching
the structural elements of the dynamics. Although this choice
guarantees, by construction, an excellent quasi-circular limit, it
introduces inaccuracies for eccentric dynamics, as highlighted in
Ref. [27]
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FIG. 11. Upper limit of the 90% credibility interval for the
estimated eccentricity evolution eω(f̄) for the two eccentric
analyses of GW150914 with TEOBResumS-Dalı́. The upper
limit is calculated estimating eω(f̄) for all the posterior sam-
ples, interpolating it at different values of f̄ and then taking
the 90 % credible interval of the data. This result is agree-
ment with previous results [70].

biases in the mass and spin parameters to compensate
for it.

We then perform Bayesian inference with
TEOBResumS-Dalı́ on the first GW event, GW150914.
We find that the circular analysis is preferred with
respect to the eccentric ones with lnBcirc

ecc ∼ 2. However,
we also find that we cannot exclude small values of
eccentricities at low frequencies, and that once an
average frequency of ∼ 30 Hz is reached, any residual
eccentricity becomes indistinguishable from zero.

Lastly we perform the calculation of the eccentricity
evolution using an eccentricity estimator deduced from
the instantaneous GW frequency. After testing the calcu-
lation on mock signals, we apply the method to the data
of GW150914 finding that, at about 20 Hz, the maxi-
mum eccentricity allows for the system is ∼ 0.075 for
a uniform prior and ∼ 0.055 for a logarithmic-uniform
prior on the initial eccentricity. This is quantitatively
comparable with the findings of [70]. In the late stages
of the preparation of this manuscript we became aware
of related but independent work on eccentricity defini-
tions [75].

Given current BBH merger rate estimates [76] and
the sensitivity of the LIGO-Virgo-KAGRA detector net-
work [77], future detections of eccentric binaries will sig-
nificantly constrain the lower limit of mergers that result
from clusters and other dynamical channels [6]. The pos-
sibility of several eccentric BBH candidates [9, 69] makes
it crucial to have a reliable method to infer the eccen-
tricity directly from observations. For the first time we
present a systematic method to infer the eccentricity evo-
lution directly from observations of GWs from coalescing
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BBHs that can be used in the future to robustly mea-
sure the eccentricity and make meaningful comparisons
between different models.
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Appendix A: Quasi-circular and eccentric initial
conditions

For quasi-circular binaries, TEOBResumS applies Ke-
pler’s law to the initial frequency of the orbit to compute
the initial separation r. Then, the initial values of the

EOB angular and radial momenta pϕ, pr∗ are estimated
via an iterative process (known as post-adiabatic expan-
sion, “PA” henceforth) in which the right-hand side of
the Hamilton equations is solved analytically under the
assumption that pr∗ ∼ 0 [53, 78]. At zeroth PA order,
one assumes that pr∗ = 0 exactly. Then, by evaluat-
ing ∂rĤEOB = 0 one can analytically find the circular
angular momentum j0(r) at the requested initial sepa-
ration. Neglecting terms of O(p2

r∗
), one can then use

dpϕ/dr = F̂ϕṙ−1 to compute pr∗ at the first PA or-
der. This procedure can then be repeated any number of
times, with even (odd) PA orders providing corrections
to pϕ (pr∗). Correctly computing the initial conditions of
the systems and having pr∗ different from zero at the ini-
tial separation is crucial to avoid effects due to spurious
eccentricity.

For eccentric binaries, initial conditions necessarily
need to be specified in a different manner. Let us de-
note with e the eccentricity of the ellipse that the system
would orbit along assuming no GW emission. Similarly,
let us denote with p its semilatus rectum and with ξ its
anomaly. A generic point on the ellipse has radial co-
ordinate r = p/(1 + e cos ξ). To find adiabatic initial
conditions for our EOB dynamics we need to find a way
to map (f0, e, ξ) into (r0, p

0
ϕ, p

0
r∗

). In practice, for conve-
nience, the initial orbital frequency Ω0 is always assumed
to correspond either to the apastron (r0 = p0/(1 − e)),
periastron (r0 = p0/(1 + e)) or to the average frequency
between the two points. We then solve numerically

∂pϕ
H(r0(p0), j0(p0), pr∗ = 0) = Ω0 (A1)

where j0 is the adiabatic angular momentum computed
using energy conservation

Ĥ0
eff(p0, j0, ξ = 0) = Ĥ0

eff(p0, j0, ξ = π), (A2)

and estimate the semilatus rectum of the obit p0. The
evolution of the system is then always started at the apas-
tron, so that

r0 = p0

(1− e) , (A3)

p0
ϕ = j0, (A4)

p0
r∗

= 0. (A5)

This adiabatic procedure can be generalized to higher PA
orders7. We leave a discussion of such initial conditions
to future work.

Appendix B: Tables

In this section we report the posteriors for Mc, χeff and
q for two injections and different recoveries performed.

7 1PA eccentric initial conditions have been implemented in the
public TEOBResumS code in commit eb5208a

https://bitbucket.org/eob_ihes/teobresums/
https://bitbucket.org/eob_ihes/teobresums/
https://github.com/matteobreschi/bajes
https://github.com/matteobreschi/bajes
https://github.com/RoxGamba/bajes/commits/dev/teob_eccentric
https://github.com/RoxGamba/bajes/commits/dev/teob_eccentric
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Appendix C: Full corner plots for the GW150914
eccentric analysis

In this section we report the full corner plots show-
ing the posterior distributions of the intrinsic and ex-
trinsic parameters relative to the eccentric analysis of
GW150914.
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Circular injection
Model TEOBResumS-GIOTTO TEOBResumS-Dalı́ TEOBResumS-Dalı́ TEOBResumS-Dalı́ TEOBResumS-Dalı́
e0-prior e0 = 0 (fixed) e0 = 10−8 (fixed) U(0.001,0.2) U(0.001,0.2) Log-uniform(0.001, 0.2)
f0-prior f0 = 20 Hz (fixed) f0 = 20 Hz (fixed) U(18, 20.5) f0 = 20 Hz U(18, 20.5)
Mc(M�) 24.38+0.17

−0.16 24.53+0.18
−0.17 24.32+0.18

−0.19 24.33+0.18
−0.21 24.35+0.17

−0.16

χeff 0.010.03
−0.03 0.04+0.03

−0.03 0.00+0.03
−0.03 0.00+0.03

−0.03 0.00+0.02
−0.02

q 2.00+0.22
−0.19 2.08+0.18

−0.20 2.00+0.14
−0.19 2.02+0.17

−0.18 1.97+0.17
−0.20

e0 – – 0.01+0.01
−0.01 0.01+0.01

−0.01 0.00+0.01
−0.01

TABLE VI. Posterior distribution functions for Mc, χeff and q for a circular injection (einj
ω = 0 and f0 = 20Hz) with different

recoveries using TEOBResumS-GIOTTO and TEOBResumS-Dalı́.

Eccentric injection
Model TEOBResumS-GIOTTO TEOBResumS-Dalı́
e0-prior e0 = 0 (fixed) U(0.001,0.2)
f0-prior f0 = 20 Hz (fixed) U(18, 20.5)
Mc(M�) 24.34+0.17

−0.17 24.43+0.19
−0.24

χeff −0.03+0.03
−0.03 −0.03+0.03

−0.03

q 1.84+0.19
−0.21 1.97+0.17

−0.20

e0 – 0.05+0.01
−0.01

TABLE VII. Posterior distribution functions for Mc, χeff
and q for an eccentric injection (einj

ω = 0.05 and f0 =
20Hz) with different recoveries using TEOBResumS-GIOTTO and
TEOBResumS-Dalı́.
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Lucena, Marta Colleoni, and Rafel Jaume, “First sur-
vey of spinning eccentric black hole mergers: Numer-
ical relativity simulations, hybrid waveforms, and pa-
rameter estimation,” Phys. Rev. D 101, 083015 (2020),
arXiv:1909.11011 [gr-qc].

[35] Srishti Tiwari and Achamveedu Gopakumar, “Combin-
ing post-circular and Padé approximations to compute
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