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We give full details regarding the new Cauchy-characteristic evolution (CCE) system in SpEC-
TRE. The implementation is built to provide streamlined flexibility for either extracting waveforms
during the process of a SpECTRE binary compact object simulation, or as a standalone module
for extracting waveforms from worldtube data provided by another code base. Using our recently
presented improved analytic formulation, the CCE system is free of pure-gauge logarithms that
would spoil the spectral convergence of the scheme. It gracefully extracts all five Weyl scalars, in
addition to the news and the strain. The SpECTRE CCE system makes significant improvements
on previous implementations in modularity, ease of use, and speed of computation.

I. INTRODUCTION

Since the original gravitational wave detections by
the LIGO-VIRGO collaborations [1, 2], sensitivities of
ground-based detectors have continued to advance [3, 4].
A crucial requirement for the successful detection and
parameter estimation of astrophysical gravitational-wave
sources is the accurate modelling of potential gravita-
tional wave signals. Gravitational wave modelling is re-
quired both to construct templates for extracting sig-
nals from instrumentation noise [5, 6] and for performing
follow-up parameter estimation [7–11]. Currently, the
precision of numerical relativity waveforms is sufficient
to cause no significant bias in detections produced by the
present generation of gravitational wave detectors [12].

As the technology of the current network of gravi-
tational wave detectors (Advanced LIGO [13], VIRGO,
and KAGRA [14]) continues to mature, next-generation
ground based interferometers (Cosmic Explorer [15] and
Einstein Telescope [16]) are planned, and space-based
gravitational wave detector projects (LISA [17], Tian-
Qin [18] and DECIGO [19]) move forward, the demand
for high-precision waveform models for binary inspirals
continues to grow. Recent investigations [12] have indi-
cated that future ground-based gravitational wave detec-
tors will have sufficient sensitivity that current numeri-
cal relativity waveforms are not precise enough to pro-
duce unbiased parameter recovery. Further, space-based
gravitational wave detectors, such as LISA, will likely
observe several sources simultaneously, and sufficiently
precise modelling of each source will help make best use
of the resulting data by improving the capability to dis-
tinguish overlapping signals.

An important ingredient to improved precision for nu-
merical relativity waveforms is the refinement of wave-
form extraction methods. The process of waveform ex-
traction refers to the calculation of the observable asymp-
totic waveform from a strong-field simulation of the Ein-

stein field equations. Current strong-field numerical rela-
tivity simulation methods are ‘Cauchy’ methods [20–23]:
initial data is generated for a desired configuration of
the compact binary using an elliptic solve on a restricted
region, and that spacelike hypersurface data is evolved
in the timelike direction. One output of a Cauchy sim-
ulation is the metric and its derivatives as a function
of time, evaluated on one or more spheres of finite dis-
tance from the binary, typically ∼ 100−1000M from the
coalescence. Waveform extraction then uses the Cauchy
worldtube metric and its derivatives to determine the ob-
servable asymptotic waveform that is directly applicable
to data analysis efforts for gravitational wave interferom-
eters.
The most widely used technique of waveform extrac-

tion is the method of extrapolation to large radii using
several worldtubes of finite radius [24, 25]. For each wave-
form quantity of interest, such as the gravitational wave
strain or one of the Weyl scalars, there is a clear power
law asymptotic behavior in well-behaved gauges. The
extrapolation method then fits for the leading behavior
in r−1 and obtains a reasonable approximation for the
asymptotic waveform. The extrapolation method has
been used to generate a great number of useful waveforms
for gravitational wave data analysis [26–28]. However,
the extrapolation method makes a number of simplify-
ing assumptions regarding the choice of coordinates and
behavior of the field equations far from the system that
diminish the precision of the method.
In addition, there is good evidence [29] that there

are large, low-frequency parts of gravitational waveforms
(‘memory’ contributions) that are not well modeled by
waveform extrapolation. These memory effects do not
have significant impact on the frequency bands impor-
tant for LIGO, but will likely be important for more sen-
sitive detectors (such as the Einstein Telescope or Cosmic
Explorer) or detectors sensitive to lower frequency bands
(such as DECIGO or LISA).
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FIG. 1: A sketch of the Cauchy and Characteristic domains.
The Cauchy system evolves Einstein’s equations on spacelike
hypersurfaces, while the Characteristic system evolves Ein-
stein’s equations on compactified null hypersurfaces Σu that
extend to I+. Boundary conditions for the Characteristic sys-
tem are required on the worldtube Γ and are provided there
by the Cauchy system.

Cauchy-characteristic evolution1 (CCE) [30–32] is an
alternative waveform extraction method that uses metric
data on a single worldtube Γ to provide boundary con-
ditions for a second full nonlinear field simulation along
hypersurfaces generated by outgoing null geodesics. CCE
avoids many of the assumptions made by other extrac-
tion methods, and instead computes the full solution to
Einstein’s equations in a Bondi-Sachs coordinate system
at I+, from which waveform quantities may be unam-
biguously derived. The CCE domain and salient hyper-
surfaces are illustrated in Fig. 1.

There are two notable previous implementations of
CCE. The original implementation, PITT Null [33, 34],
is a part of the Einstein Toolkit, and demonstrated the
feasibility of the CCE approach. Unfortunately, as it is a
finite difference implementation, PITT Null struggles
to achieve high precision and can be very costly to run

1 The acronym CCE has also been used in the past to refer to
“Cauchy-characteristic extraction”, which describes only the part
of the computation moving from the Cauchy coordinates to a set
of quantities that could separately be evolved on null characteris-
tic curves. Most of our descriptions refer to the entire algorithm
as a single part of the wave computation, so we refer to the com-
bination of Cauchy-characteristic extraction and characteristic
evolution as simply CCE.

[35]. The first spectral implementation of CCE is a mod-
ule of the Spectral Einstein Code (SpEC). That imple-
mentation was first reported in [36], and has undergone a
number of updates and refinements [37, 38], including re-
cent work that assembled a number of valuable analytic
tests that assisted in refining and optimizing the code
[35].
In this paper, we present our new implementation of

CCE in the SpECTRE [39] code base, which incorporates
a number of improvements to the waveform extraction
system. The SpECTRE CCE module implements a mod-
ified version of the evolution system in Bondi-Sachs coor-
dinates [40] that is able to guarantee that no pure-gauge
logarithms arise that spoil the spectral convergence of the
scheme as the system evolves. Further, the SpECTRE
CCE system is able to use formulation simplifications to
implement the computation for all five Weyl scalars as
suggested in [40]. We have also implemented numerical
optimizations specific to the SpECTRE CCE system to
ensure rapid and precise waveform extraction, and we
have re-implemented and extended the collection of tests
that was previously effective in testing and refining the
SpEC implementation [35].
SpECTRE [39, 41] is a next-generation code base for

which the aim is to construct scalable multi-physics sim-
ulations of astrophysical phenomenon such as neutron
star mergers, binary black hole coalescences, and core-
collapse supernovae. It is the goal of the SpECTRE
project to construct a highly precise astrophysical simula-
tion framework that scales well to & 106 cores. The core
SpECTRE evolution system uses discontinuous Galerkin
methods with a task-based parallelism model. The dis-
continuous Galerkin method has the ability to refine a
domain by subdividing the computation into local cal-
culations coupled by boundary fluxes. SpECTRE then
uses the task-based parallelism framework, charm++
[42–44], to schedule and run the resulting multitude of
separate calculations, which ensures good scaling prop-
erties of the method.
The CCE system in SpECTRE enjoys some efficiency

gain from sharing a common well-optimized infrastruc-
ture with the discontinuous Galerkin methods and makes
modest use of the parallelization framework (see Sec. IV).
However, the characteristic evolution itself is imple-
mented as a single spectral domain that covers the entire
asymptotic region from the worldtube Γ out to I+. The
smooth behavior of the metric away from the binary co-
alescence ensures exponential convergence of the mono-
lithic spectral method. In principle, the CCE method
could be applied to a subdivided asymptotic domain.
However, the unusual features of the field equations for
CCE (reviewed in Sec. II) would require special treat-
ment to appropriately account for boundary information.
Moreover, any subdivision of the angular direction would
obscure the spherical shell geometry that permits efficient
calculation of the angular degrees of freedom of the sys-
tem via spin-weighted spherical harmonic (SWSH) meth-
ods.
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It is important to note that the SpECTRE CCE mod-
ule, like every part of SpECTRE, is a rapidly evolving
open-source code base. The discussion in this paper rep-
resents as completely as possible the state of our efforts
to optimize and refine the system at the time of writing.
However, we will continue to make modifications and im-
provements, so we encourage the reader to explore the
full code base at [45], and refer to the documentation at
[46]. For up-to-date details for how to download, build,
and run the SpECTRE code, including the standalone
SpECTRE CCE system, please see the documentation
page [47].

We first describe the mathematical aspects of the evo-
lution system, including the incorporation of formulation
improvements from [40] in Sec. II. Next, we discuss some
of the numerical methods that we have constructed for
our new SpECTRE implementation to improve runtime
and precision in Sec. III. We discuss the how the SpEC-
TRE CCE module fits into the wider task-based SpEC-
TRE infrastructure in Sec. IV. Finally, we demonstrate
the precision and accuracy of the code by applying the
system to a collection of analytic test cases in Sec. V, and
to a realistic use-case of extracting data from a binary
black-hole evolution from SpEC in Sec. VI. We describe
the major future improvements that we hope to make for
the CCE system in Sec. VII.

II. THE EVOLUTION SYSTEM

The discussion of CCE and its numerical implementa-
tions relies closely on a number of coordinate systems.
We use the following notation for coordinate variables
and spacetime indices:

• xα: {u, r, θ, φ} are generic Bondi-like coordinates.
These are the coordinates determined by the first
stage of local coordinate transformations at the
worldtube first derived in [48].

• x̂α̂: {û, r̂, θ̂, φ̂} are partially flat Bondi-like coordi-
nates introduced in [40].

• x̆ᾰ: {ŭ, y̆, θ̆, φ̆} are numeric partially flat coordi-
nates. These are the coordinates directly repre-
sented in the SpECTRE numeric implementation,
and are related to the partially flat Bondi-like co-
ordinates by

ŭ = û, y̆ = 1− 2R̂/r̂,
θ̆ = θ̂, φ̆ = φ̂, (1a)

where the worldtube hypersurface is determined by
r̂ = R̂(û, θ̂, φ̂).

• x̊α̊ : {ů, r̊, θ̊, φ̊} are the asymptotically flat ‘true’
Bondi-Sachs coordinates. These are the coordi-
nates in which we’d like to determine the final wave-
form quantities.

We use Greek letters α, β, γ, . . . to represent spacetime
indices, uppercase Roman letters A,B,C, . . . to represent
spherical angular indices, and lowercase Roman letters
from the middle of the alphabet i, j, k, . . . to represent
spatial indices.
When relevant, we similarly adorn the spin-weighted

scalars and tensors that represent components of the met-
ric to indicate the coordinates in which they are com-
ponents of the Bondi-like metric. For instance, the gr̂û
component of a partially flat Bondi-like metric is −e2β̂ .
Our notation conventions are consistent with our previ-
ous paper regarding the mathematics of the CCE system
[40].

A. Spectral representation

The SpECTRE CCE system represents its null hyper-
surface data on the domain I×S2, where the real interval
I describes the domain y ∈ [−1, 1] for compactified radial
coordinate

y̆ = 1− 2R̂(û, x̂Â)
r̂

, (2)

where r̂ is the partially flat Bondi-like radial coordinate
and R̂ is the Bondi-like radius at the worldtube.
We use a pseudospectral representation for each

physical variable on this domain, using Gauss-Lobatto
points for the radial dependence, and libsharp[49, 50]-
compatible collocation points for the angular depen-
dence. The angular collocation points are chosen to
be equiangular in the φ direction, and Gauss-Legendre
points in cos θ 2.
The choice of Gauss-Lobatto points for the radial de-

pendence simplifies the CCE algorithm because it is con-
venient to specify boundary conditions for the radial in-
tegrals as simple boundary values.
The choice of angular collocation points enables fast

SWSH transforms, so that libsharp routines can effi-
ciently provide the angular harmonic coefficients salm(y̆)
for an arbitrary function f(y̆, θ̆, φ̆) of spin weight s, de-
fined by

f(y̆, θ̆, φ̆) =
∑
`m

sa`m(y̆)sY`m(θ̆, φ̆). (3)

Here sY`m(θ̆, φ̆) are the SWSHs as defined in Eq. (E1).
We then perform all angular calculus operations using

the spin-weighted derivative operators ð̆ and ˘̄ð. We use

2 It is of some numerical convenience that there are no points at the
poles, where spherical polar coordinates are singular. However,
care must still be taken to avoid unnecessary factors of sin θ in
quantities like derivative operators, as they give rise to greater
numerical errors when points are merely close to the pole.
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an angular dyad q̆Ă:

q̆Ă =
{
−1, −i

sin θ̆

}
. (4)

Then, for any spin-weighted scalar quantity v̆ =
q̆Ă1
1 . . . q̆Ăn

n v̆Ă1...Ăn
, where each q̆i may be either q̆ or ˘̄q,

we define the spin-weighted derivative operators

ð̆v̆ = q̆Ă1
1 . . . q̆Ăn

n q̆B̆D̆B̆vĂ1...Ăn
, (5a)

˘̄ðv̆ = q̆Ă1
1 . . . q̆Ăn

n
˘̄qB̆D̆B̆ v̆Ă1...Ăn

, (5b)

where D̆Ă is the angular covariant derivative. All angular
derivatives may be expressed in a combination of ð̆ and ˘̄ð
operators. We perform angular differentiation of an arbi-
trary function f(y̆, θ̆, φ̆) of spin weight s by transforming
to SWSH modes on each concentric spherical slice of the
domain represented by salm(y̆), then applying the diag-
onal modal multipliers

ð̆f(y̆, θ̆, φ̆)

=
∑
`m

√
(`− s)(`+ s+ 1)sa`m(y̆) s+1Y`m(θ̆, φ̆) (6a)

˘̄ðf(y̆, θ̆, φ̆)

=
∑
`m

−
√

(`+ s)(`− s+ 1)sa`m(y̆) s−1Y`m(θ̆, φ̆),

(6b)

and then performing an inverse transform.
In addition, it is occasionally valuable to apply the in-

verse of the angular derivative operators ð̆ and ˘̄ð. This
can be performed applying the inverse of the multiplica-
tive factors in the modal representation (6), and is ap-
proximately as efficient to compute as the derivative.

B. Hierarchical evolution system

For evolution in the characteristic domain (see Fig. 1),
we solve the Einstein field equations for the spin-weighted
scalars that appear in the Bondi-Sachs form of the metric:

ds2 =−
(
e2β V

r
− r2hABU

AUB
)
du2 − 2e2βdudr

− 2r2hABU
BdudxA + r2hABdx

AdxB . (7)

The spin-weighted scalars that are used in the evolution
system are then J, β,Q,U,W, and H, where

U ≡ UAqA, (8a)
Q ≡ r2e−2βqAhAB∂rU

B , (8b)
r2W ≡ V − r, (8c)

J ≡ 1
2q

AqBhAB , (8d)

K ≡ 1
2q

Aq̄BhAB . (8e)

In a Bondi-like metric, surfaces of constant u are gener-
ated by outgoing null geodesics. The Bondi-Sachs met-
ric further imposes asymptotic conditions on each com-
ponent of the metric that we will not impose for all of
our coordinate systems. The same form (7) holds in any
Bondi-like coordinates, including the partially flat Bondi-
like coordinates x̂α̂ and true Bondi-Sachs coordinates x̊α̊.
It is important to note that for numerical implementa-

tions, the system is usually not evolved in a true Bondi-
Sachs coordinate system. For convenience of numerical
calculation, most CCE implementations enforce gauge
choices only at the worldtube boundary, and therefore
do not ensure asymptotic flatness. The SpECTRE CCE
implementation employs a somewhat different tactic, as
the generic Bondi-like gauge is vulnerable to pure-gauge
logarithmic dependence that spoils spectral convergence.
Instead, we use the partially flat gauge introduced in [40],
which ensures that the evolved coordinates are in the
asymptotically inertial angular coordinates, while keep-
ing the time coordinate choice fixed by the arbitrary
Cauchy time coordinate.
In the Bondi-like coordinates, it is possible to choose a

subset of the Einstein field equations that entirely deter-
mine the scalars {J, β, U,W} and that form a computa-
tionally elegant, hierarchical set of differential equations.
Represented in terms of the numerical Bondi-like coor-
dinates {ŭ, y̆, θ̆, φ̆}, the hierarchical differential equations
take the form

∂y̆β̆ = Sβ̆(J̆), (9a)

2Q̆+ (1− y̆)∂y̆Q̆ = SQ̆(J̆ , β̆), (9b)

∂y̆Ŭ = SŬ (J̆ , β̆, Q̆), (9c)
2W̆ + (1− y̆)∂y̆W̆ = SW̆ (J̆ , β̆, Q̆, Ŭ), (9d)[

(1− y̆)∂y̆H̆+(LH̆(J̆ , β̆, Q̆, Ŭ , W̆ ) + 1)H̆

+L ˘̄H(J̆ , β̆, Q̆, Ŭ , W̆ ) ˘̄H
]

= SH̆(J̆ , β̆, Q̆, Ŭ , W̆ ), (9e)
∂ŭJ̆ = H̆. (9f)

The detailed definitions for the source functions S̆(. . . )
and the factors LH̆ in (9) can be found in Sec. IV of [40].
We emphasize that the only time derivative appearing
in the core evolution system (9) is that of J̆ (9f), so we
have only the single complex field to evolve and all of the
other equations are radial constraints within each null
hypersurface.
The SpECTRE CCE system requires input data spec-

ified on two hypersurfaces: the worldtube Γ and the ini-
tial hypersurface Σŭ0 (see Fig. 1). The worldtube sur-
face data must provide sufficient information to set the
boundary values for each of the radial differential equa-
tions in (9). Namely, we must specify β̆, Ŭ , Q̆, W̆ , and
H̆ at the worldtube (see Sec. II C below). The worldtube
data is typically specified by determining the full space-
time metric on a surface of constant coordinate radius in
a Cauchy code, then performing multiple gauge transfor-
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mations to adapt the boundary data to the appropriate
partially flat Bondi-like gauge.

The initial hypersurface data requires specification
only of the single evolved field J̆ . In contrast to Cauchy
approaches to the Einstein field equations, the initial
data for CCE does not have a collection of constraints
that form an elliptic differential equation. Instead, J̆
may be arbitrarily specified on the initial data surface,
constrained only by asymptotic flatness conditions. The
choice of “correct” initial data to best match the physi-
cal history of an inspiral system, however, remains very
difficult. We discuss our current heuristic methods for
fixing the initial hypersurface data in Sec. II E.

C. Gauge-corrected control flow

The SpECTRE CCE system implements the partially
flat gauge strategy discussed at length in [40]. The prac-
tical impact of the method is that we must include the
evolved angular coordinates in the process of determin-
ing the Bondi-Sachs scalars for the radial hypersurface
equations. Past implementations have performed the an-
gular transformation at I+, which results in a simpler
algorithm, but also gives rise to undesirable pure-gauge
logarithmic dependence.

The differential equations (9) that determine the val-
ues of Q̆, W̆ , and H̆ on the outgoing null hypersur-
face support solutions that behave asymptotically as
∝ r−2 ln(r) ∝ (1 − y)2 ln(1 − y) (for Q̆ and W̆ ) or
∝ r−1 ln(r) ∝ (1 − y) ln(1 − y) (for H̆). Whether such
terms arise is determined by the asymptotic structure of
their respective source functions S. For example, if the
source SQ̆ has a nonvanishing asymptotic contribution
∝ (1−y̆)2, then Q̆ will posses a contribution that behaves
asymptotically as (1 − y̆)2 ln(1 − y̆). The leading falloff
behavior of the source functions S can be controlled by
taking advantage of the remaining gauge freedom in the
Bondi-Sachs-like coordinate systems used for CCE nu-
merical methods. The details of selecting an asymptoti-
cally well-behaved (“partially flat”) coordinate system to
impose the needed falloff behavior of the source functions
are provided in [40].

In the abstract, the presence of undesirable gauge be-
havior may seem like a minor inconvenience, and po-
tentially correctable with a “post-processing” coordinate
transformation in the asymptotic data. For a purely sym-
bolic computation, that would be true. However, for nu-
merical computations, we must ensure that the approxi-
mations used to efficiently evolve the partial differential
field equations remain robust during intermediate steps
of the computation. For our implementation, much of the
efficiency of the algorithm comes from using pseudospec-
tral methods that represent the field values as a super-
position of Legendre polynomials. For functions that are
smooth over the domain, pseudospectral methods con-
verge exponentially in the number of gridpoints. How-

ever, a logarithmic function is not smooth—it does not
have a well-behaved Taylor series about the origin and
so is not well approximated by a polynomial expansion.
Accordingly, the pseudospectral representation of a field
with such dependence converges merely as a polynomial
of the number of gridpoints. This far slower convergence
rate threatens the efficiency and precision of our spectral
method, so it is worth the formulaic inconvenience of a
more complicated gauge treatment to preserve the expo-
nential convergence of the pseudospectral representation.
In this discussion, we make use of the local Bondi-

Sachs-like coordinates x̂µ̂ on the worldtube that are de-
termined by the standard procedure introduced in [30]
and reviewed in [35, 40]. This procedure obtains a unique
Bondi-Sachs-like coordinate system by generating a null
hypersurface with geodesics outgoing with respect to the
worldtube, and with time and angular coordinates chosen
to match the Cauchy coordinates on the worldtube.
In the below discussion, we make use of an intermedi-

ate spin-weight 1 scalar

U = Ŭ + U0, (10)

where U0 = U|I+ is a radially-independent contribution
fixed by the worldtube boundary conditions. U obeys
the same radial differential equation as Ŭ , but possesses
a constant asymptotic value that is used to determine the
evolution of the angular coordinates.
The computational procedure with the gauge transfor-

mation to partially flat coordinates is then:

1. Perform the gauge transformation from the Cauchy
gauge metric to the local Bondi-Sachs coordinates
on the worldtube Γ, generated by geodesics with
null vectors that are outgoing with respect to the
worldtube surface.

2. For each spin weighted scalar I in {β, Q, U}:

(a) Transform I to partially flat gauge Ĭ (or U)
via the angular coordinates xA(ŭ, x̆Ă) 3. All
transformations for these scalars depend only
on angular Jacobians ∂ĂxB , and are described
in Sec. IID.

(b) Evaluate the hypersurface equation for the
spin-weighted scalar Ĭ using the radial inte-
gration methods described in Sec. D.

3. Determine the time derivative of the angular coor-
dinates ∂ŭxA(x̆) (see Sec. IID) using the asymp-
totic value of U .

4. Transform U to the partially flat gauge Ŭ by sub-
tracting its asymptotic value U0 ≡ U|I+ .

3 When performing spectral interpolation, we require the position
of the target collocation points in the source coordinate system.
See Sec. B for more details regarding our interpolation methods.
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5. For each spin weighted scalar I in {W,H}:

(a) Transform I to partially flat gauge Ĭ via the
angular coordinates xA(x̆Ă) and their first
derivatives ∂ŭxA(x̆) – see Sec. IID.

(b) Evaluate the hypersurface equation for Ĭ.

6. For each output waveform quantity O in
{h,N,Ψ4,Ψ3,Ψ2,Ψ1,Ψ0}:

(a) Compute asymptotic value of O, and trans-
form to asymptotically inertial coordinate
time as described in App. C, using ů(x̆Ă).

7. Step J̆ forward in time using ∂ŭJ̆ = H̆, step xA

using Eq. (12) below for ∂ŭxA, and step ů using
Eq. (C1) below for ∂ŭů.

See Sec. B for details regarding the calculation of the
angular Jacobian factors required for the gauge trans-
formation and the practical methods used to evolve the
angular coordinates.

D. Worldtube data interpolation and
transformation

The collection of hypersurface equations (9) requires
data for each of the quantities {β̆, Q̆, Ŭ , W̆ , H̆} on a sin-
gle spherical shell at each timestep. For β̆ and Ŭ , the
worldtube data specifies the constant-in-y̆ part of the so-
lution on the hypersurface, for Q̆ and W̆ , the worldtube
data fixes the ∝ (1− y̆)2 part, and for H̆, the worldtube
data fixes a combination of radial modes that includes
the ∝ (1− y̆) contribution.
The worldtube data provided by a Cauchy simulation

contains the spacetime metric, as well as its first radial
and time derivatives. The procedure for transforming
the data provided by the Cauchy evolution to boundary
data for the hypersurface equations (9) is then, for each
hypersurface time ŭ,

1. Interpolate the worldtube data to the desired hy-
persurface time ŭ

2. Perform the local transformation of the Cauchy
worldtube metric and its derivatives to a Bondi-
like gauge as described in [48]

3. Perform angular transformation and interpolation
from the generic Bondi-like gauge to the partially
flat gauge used for the evolution quantities.

The worldtube data is usually generated by the Cauchy
simulation at time steps that are suited to the strong-field
calculations, but the characteristic system can usually
take significantly larger time steps. Once the character-
istic time stepping infrastructure has selected a desired
time step, we interpolate the worldtube data at each an-
gular collocation point to the target time for the next hy-
persurface. In SpECTRE, the interpolation is performed

by selecting a number of time points as centered as pos-
sible on the target time, then performing a barycentric
rational interpolation to the target time.
After the time interpolation of the worldtube data,

we have the values of the spacetime metric and its ra-
dial and time derivatives on a single inner boundary of
the CCE hypersurface of constant retarded time ŭ. We
then compute the outgoing radial null vector lµ′ (denot-
ing Cauchy coordinate quantities with ′) , construct a
radial null coordinate system using the affine parameter
along null geodesics generated by lµ′ , then normalize the
radial coordinate to construct an areal radius r. Fol-
lowing these transformations, for which explicit formulas
are given in [35, 40, 48], the spacetime metric gαβ is of
the form (7), but with no asymptotic flatness behavior
imposed. During the transformation from the Cauchy co-
ordinates to the Bondi-like coordinates, the angular and
time coordinates remain fixed on the worldtube surface,
so no alteration of the pseudospectral grid is necessary.

The final step for the worldtube computation is to per-
form a constant-in-r angular coordinate transformation
to a set of angular coordinates xA(x̆Ă) for which the met-
ric satisfies the asymptotic conditions:

lim
y̆→1

J̆ = 0, (11a)

lim
y̆→1

Ŭ = 0. (11b)

These conditions are satisfied if the angular coordi-
nates obey the radially-independent evolution equation
[40]

∂ŭx
A = −U Ă0 ∂Ăx

A, (12)

where U Ă0 q̆Ă ≡ U0.
The angular transformations for the remaining spin-

weighted scalars require the spin-weighted angular Jaco-
bian factors

ă = q̆Ă∂Ăx
BqB (13a)

b̆ = ˘̄qĂ∂Ăx
BqB (13b)

(13c)

and conformal factor

ω̆ = 1
2

√
b̆˘̄b− ă˘̄a (14a)

∂ŭω̆ = ω̆

4

(˘̄ðU0 + ð̆Ū0

)
+ 1

2

(
U0

˘̄ðω̆ + Ū0ð̆ω̆
)

(14b)

Given the angular coordinates determined by the time
evolution of (12), we perform interpolation of each of
the spin-weighted scalars {R, ∂uR, J, U, ∂rU, β,Q,W,H}
to the new angular collocation points (more details for
the numerical interpolation procedure are in Sec. B), and
perform the transformation of the spin-weighted scalars
as
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R̆ =ω̆R, (15a)

∂ŭR̆ =ω̆∂uR+ ∂ŭω̆ + ω̆

2

(
U0

˘̄ðR+ Ū0ð̆R
)
, (15b)

J̆ = 1
4ω̆2

(˘̄b2J + ă2J̄ + 2ă˘̄bK
)
, (15c)

e2β̆ =e2β

ω̆
, (15d)

∂y̆Ŭ = R̆

ω̆3(1− y̆)2

(˘̄b∂rU − c̆∂rŪ
)

+ 4R̆ e
2β̆

ω̆

[
˘̄ðω̆∂y̆J̆ − ð̆ω̆

(
∂y̆(J̆ ˘̄J)

2K̆

)]

+ 2R̆ e
2β̆

ω̆

(
J̆ ˘̄ðω̆ − K̆ð̆ω̆

)−1 + ∂y̆
˘̄J∂y̆J̆ −

(
∂y̆(J̆ ˘̄J)

2K̆

)2 , (15e)

Q̆ =2R̆e−2β̆
(
K̆∂y̆Ŭ + J̆∂y̆

˘̄U
)
, (15f)

U = 1
2ω̆ (˘̄bU − c̆Ū)− e2β̆(1− y̆)

2R̆ω̆
(K̆ð̆ω̆ − J̆ ˘̄ðω̆), (15g)

Ŭ =U − U0, (15h)

W̆ =W + (ω̆ − 1)(1− y̆)
2R̆

+ e2β̆(1− y̆)
4R̆ω̆2

[
J̆(˘̄ðω̆)2 + ˘̄J(ð̆ω̆)2 − 2K̆(ð̆ω̆)(˘̄ðω̆)

]
− 2∂ŭω̆

ω̆
− Ŭ ˘̄ðω̆ + ˘̄U ð̆ω̆

ω̆
, (15i)

H̆ =1
2

[
U0

˘̄ðJ̆ + ð̆(Ū0J̆)− J̆ ð̆Ū0

]
+
∂ŭω̆ − 1

2 (U0
˘̄ðω̆ + Ū0ð̆ω̆)
ω̆

(2J̆ − 2∂y̆J̆)− J̆ ˘̄ðU0 + K̆ð̆Ū0

1
4ω̆

(
˘̄b2H + ă2H̄ + ˘̄bc̆HJ̄ + JH̄

K

)
+ 2∂ŭR̆

R̆
∂y̆J̆ , (15j)

where K =
√

1 + JJ̄ and K̆ =
√

1 + J̆ ˘̄J . Finally, the
quantities {β̆, Q̆,U , W̆ , H̆} are used directly to determine
the integration constants in the hypersurface equations
(9). Note that in all of the equations (15h) onward, we
have explicit dependence on U0 or implicit dependence on
U0 via ∂ŭω̆. This dependence necessitates finishing the
hypersurface integration of U to determine its asymptotic
value before computing the remaining gauge-transformed
quantities on the worldtube.

E. Initial data

In addition to the specification of the worldtube data
at the interface to the Cauchy simulation, the characteris-
tic system requires initial data at the first outgoing null
hypersurface in the evolution (see Fig. 1). The initial
data problem on this hypersurface is physically similar
to the initial data problem for the Cauchy evolution: It
is computationally prohibitive to directly construct the
spacetime metric in the state that it would possess dur-
ing the inspiral. Ideally, we would like the starting state
of the simulation to be simply a snapshot of the state if
we had been simulating the system for far longer.

The initial data problem in CCE has been investigated

previously by [51], in which a linearized solution scheme
was considered. The most important part of the initial
data specification appears to be choosing the first hyper-
surface such that it is consistent with the boundary data
at the same timestep. Without that constraint, previous
authors [51], and empirical tests of our own code, indi-
cate that spurious oscillations emerge that often last the
full duration of the simulation.
Computationally, the initial data freedom in CCE

is much simpler than the Cauchy case [52, 53]. We
may specify the Bondi-Sachs transverse-traceless angu-
lar scalar J̆ arbitrarily. Even when we take the practical
constraint that J̆ must be consistent with the worldtube
data at the first timestep, we still have almost arbitrary
freedom in the specification of J , as it must be consistent
with the worldtube data only up to an arbitrary angular
coordinate transformation 4.
Current methods of choosing initial data for J do not

represent a snapshot of a much longer simulation, and

4 In our evolution system, we track and perform an angular coor-
dinate transformation at the worldtube regardless of initial data
choice, so permitting this transformation on the initial hypersur-
face amounts only to setting nontrivial initial data for xA(x̂Â).
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FIG. 2: The initial data transient for an example CCE run
using worldtube data obtained from a binary black hole sim-
ulation SXS:BBH:2096 from the SXS catalog. The dominant
modes of the strain and Ψ0 display visually apparent drift
during the first ∼ 2 orbits of the inspiral. The initial data
transient contaminates the data for the early part of the sim-
ulation and leads to a BMS frame shift in the strain waveform.
The frame shift can be seen visually from the fact that the
Y22 mode does not oscillate about 0. The initial data method
used for this demonstration is the cubic ansatz initial data
described as method 1 below.

this gives rise to transients in the resulting strain out-
puts (see Fig. 2). These initial data transients are analo-
gous to ‘junk radiation’ frequently found in Cauchy sim-
ulations, but are somewhat more frustrating for data
analysis because the CCE initial data transients tend to
have comparatively long timescales. We observe that the
strain waveform tends to settle to a suitable state within
a few orbits of the start of the simulation. However,
when recovering high-fidelity waveforms from an expen-
sive Cauchy simulation, every orbit of trustworthy world-
tube data is precious, and it is disappointing to lose those
first orbits of data to the initial data transient. It is a
topic of ongoing work to develop methods of efficiently
generating high-quality initial data for CCE to improve
the initial data transient behavior (see Sec. VIIA).

We currently support three methods for generating
initial hypersurface data:

1. Keep J̆ and ∂y̆J̆ consistent with the first timestep
of the worldtube data. Use those quantities to fix
the angularly dependent coefficients A and B in the

cubic initial hypersurface ansatz:

J̆(y̆, θ̆, φ̆) = A(θ̆, φ̆)(1− y̆) +B(θ̆, φ̆)(1− y̆)3. (16)

This is a similar initial data construction to [51],
and is chosen to omit any (1 − y̆)2 dependence,
which guarantees that no pure-gauge logarithmic
terms arise during the evolution [40].

2. Set the Newman-Penrose quantity Ψ0 = 0 on the
initial hypersurface. This amounts to enforcing a
second-order nonlinear ordinary differential equa-
tion in y ≡ 1− 2R/r for J , before constructing the
coordinate transformation from xα to x̆ᾰ. After
some simplification, the expression for Ψ0 in [40]
may be used to show that the equation

∂2
yJ = 1

16K2

(
J̄2(∂yJ)2 − 2(2 + JJ̄)∂yJ∂yJ̄ + J2(∂yJ̄)2)
× (−4J − (1− y)∂yJ) (17)

is equivalent to the condition Ψ0 = 0. The initial
hypersurface data is generated by first using (17)
to perform a radial ODE integration out to I+,
with boundary values of J and ∂yJ on the initial
worldtube. However, the data so generated is
not necessarily asymptotically flat, so an angular
coordinate transformation is calculated to fix
J̆ |I+ = 0. Encouragingly, fixing both (17) and the
asymptotic flatness condition also constrains the
(1 − y)2 part of J to vanish, which is sufficient to
prevent the emergence of pure-gauge logarithmic
dependence during the evolution of J .

3. Set J̆ = 0 along the entire initial hypersurface. In
general, this choice will be inconsistent with the
data specified on the worldtube J |Γ, so it is neces-
sary to construct an angular transformation x(x̆Ă)
such that J̆ |Γ = 0 following the transformation.

Methods 2 and 3 above require the ability to compute
the angular coordinate transformation xA(x̂B̂) such that

0 = J̆ =
˘̄b2J̆ + ă2 ˘̄J + 2ă˘̄bK̆

4ω̆2 (18)

on some surface. Solving (18) in general would amount
to an expensive high-dimensional root-find.
However, in our present application, practical solutions

in the wave zone typically have a value of J̆ no greater
than ∼ 5×10−3, and we should not expect to find a well-
behaved angular coordinate transform otherwise. So, we
take advantage of the small parameter in the equation to
iteratively construct candidate angular coordinate sys-
tems that approach the condition (18). Our linearized
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iteration is based on the approximation

ăn+1 = −1
2
J̆nω̆n
˘̄bnK̆n

(19a)

x̆in+1(x̆) = 1
2 ð̆
−1
n+1

(
ăn+1ð̆x̆i + ˘̄bn+1

˘̄ðx̆i
)
, (19b)

for a collection of Cartesian coordinates x̆i that are rep-
resentative of the angular coordinate transformation (see
Sec. B).

We find that this procedure typically approaches
roundoff in ∼ 103 iterations. Despite the crude ineffi-
ciency of this approximation, the iterative solve needs
to be conducted only once, so it represents only a small
portion of the CCE execution time for the initial data
methods that take advantage of it.

In practical investigations, it has been found that most
frequently the simplest method of an inverse cubic ansatz
(1. above) performs best in various measures of asymp-
totic data quality [54]. However, because the reasons
for the difference in precision for different initial data
schemes are not currently well understood, we believe it
useful to include descriptions of all viable methods.

III. IMPLEMENTATION DETAILS AND
NUMERICAL OPTIMIZATIONS

Much of the good performance of the SpECTRE CCE
system is inherited from the shared SpECTRE infrastruc-
ture. In particular, the SpECTRE data structures of-
fer easy interfaces to aggregated allocations (which limit
expensive allocation of memory), fast vector operations
through the interface with the open source Blaze library
[55], and rapid SWSH transforms via the open source
libsharp library. Further, we take advantage of per-
core caching mechanisms to avoid recomputing common
numerical constants, such as spectral weights and collo-
cation values.

However, in addition to establishing ambitious “best
practices” for the mechanical details of the software de-
velopment, we have implemented numerical optimiza-
tions specialized to calculations in the CCE system.

For the SpECTRE implementation of the CCE system,
we have made two primary alterations to the core spectral
algorithms used in the computation:

Angular interpolation techniques using spin-
weighted Clenshaw recurrence algorithm: The
Clenshaw algorithm is a method of improving the pre-
cision and efficiency of computing mode-sums over basis
functions that obey three-term recurrence relations. We
developed a new method applying the Clenshaw algo-
rithm to the task of interpolating spin-weighted spheri-
cal harmonics from the generic Bondi-like coordinates to
the partially flat coordinates. The Clenshaw method is
used for the necessary sum among ` modes in the spin-
weighted spherical harmonics sY`m, and a separate re-
currence relation is used to assist in the sum over m

modes. In Appendix B, we give full details of our op-
timized interpolation method, including the application
of the Clenshaw method as well as the additional consid-
erations necessary for the Jacobian factors that appear
in gauge transforms of spin-weighted scalars.

Rapid linear algebra methods for radial integra-
tion: The SpECTRE implementation of the CCE hy-
persurface equations (9) improves on previous methods
by optimizing many of the radial integrations, re-casting
them (up to boundary contributions) as the application
of pre-computed linear operators. The technique relies
on determining the matrices for the pseudospectral dif-
ferential operators used on the left-hand sides of (9), in-
verting the matrices, and caching the inverses so that
most of the radial solves can be reduced to a series of
fast matrix multiplications. Only the equation govern-
ing H requires a full linear solve for each hypersurface.
In Appendix D we present the technical details for our
method of solving the hypersurface equations (9) for our
chosen spectral representation.

IV. PARALLELIZATION AND MODULARITY

Because of the dependence of the gauge transformation
at the inner boundary on the field values at I+ needed
to establish an asymptotically flat gauge, the opportuni-
ties for subdividing the CCE domain for parallelization
purposes are limited. However, we are able to take ad-
vantage of the task-based parallelism in SpECTRE to: a)
parallelize independent portions of the CCE information
flow, and b) efficiently parallelize the CCE calculation
with a simultaneously running Cauchy simulation.

A. Component construction

In SpECTRE, we refer to the separate units of the sim-
ulation that may be executed in parallel via task-based
parallelism as components. For instance, in the near-field
region in which the domain can be parallelized among
several subregions of the domain, each portion of the do-
main is associated with a component.
For SpECTRE CCE, we use three components (in ad-

dition to components that are used for the Cauchy evolu-
tion): one component for the characteristic evolution, an-
other component dedicated to providing boundary data
on the worldtube, and a third component for writing re-
sults to disk.
Much of the efficiency and precision of the SpECTRE

CCE system comes from the ability to cover the entire
asymptotic domain from the worldtube Γ to I+ with a
single spectral domain. In principle, there may be oppor-
tunity to parallelize multiple radial shells of the compu-
tation, but in practice our initial assessments indicated
that there would be little gain for the typical gravita-
tional wave extraction scenario. First, there is a signifi-
cant constraint that comes from the asymptotic flatness
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FIG. 3: Components of the CCE task-based parallelism system. The worldtube component (left) is modular and can be switched
out according to the desired source of worldtube data. We currently support reading worldtube data from disk, interpolating
worldtube data from a simultaneously running Generalized Harmonic system in SpECTRE, or computing analytic boundary
data from a known solution or approximation to the Einstein field equations.

condition — the gauge transformation throughout the
domain on a given hypersurface depends on the asymp-
totic value U|I+ on the same hypersurface, which forces a
significant portion of the computation to serial execution.
Additionally, we have seen very rapid convergence in the
number of radial points used for the CCE system, so it is
unlikely that subdividing the domain radially would offer
much additional gain for the typical use case.

Therefore, the entire characteristic evolution system is
assigned to a single component, and represents the com-
putational core of the algorithm. The evolution compo-
nent is responsible for

• The angular gauge transformation and interpola-
tion (via Clenshaw recurrence)

• The calculation of the right-hand sides of the set of
hierarchical equations (9)

• The integration of each of the radial ODEs

• The time interpolation and preparation of wave-
form data

The core evolution component performs no reads from or
writes to the filesystem, which ensures that the expensive
part of the computation will not waste time waiting for
potentially slow disk operations.

The second component used in CCE is the worldtube
component. A worldtube component is responsible for:

• Collecting the Cauchy worldtube metric and its
derivatives from an assigned data source

• Interpolating the data to time steps appropriate to
the CCE evolution system

• Performing the transformation to the Bondi-Sachs-
like coordinate system on the worldtube

The user has a choice of several different worldtube com-
ponents, each of which corresponds to a different source
of the metric quantities on the worldtube. Worldtube
components are available that:

• Read worldtube data directly from disk

• Accept interpolated data from a simultaneously
running Cauchy execution in SpECTRE

• Calculate worldtube data from an analytically de-
termined metric on the boundary

Our methods for reading from disk are currently opti-
mized for easily reading worldtube data written by SpEC,
but our worldtube module should accept data from any
code that can produce the spacetime metric and its first
derivatives decomposed into spherical harmonic modes.
Finally, there is a generic observer component that

handles the output of the waveform data to disk. When
CCE is simultaneously running with a Cauchy evolution,
there will be additional components running in parallel
with the CCE components, such as components that per-
form the Cauchy evolution, components that search for
apparent horizons, and components that write simula-
tion data to disk. The division of the CCE pipeline into
parallel components is illustrated in Fig. 3.
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B. Independently stepped interface with Cauchy
simulation

Because the Cauchy-characteristic evolution system
does not have much opportunity to parallelize internally,
we need to ensure that its serial execution is optimized.
Our goal is that when running simultaneously with the
highly parallel discontinuous Galerkin system used for
the Generalized Harmonic evolution, the CCE system
does not impose any significant runtime penalty.

An important contribution to the efficiency of the CCE
system is that the solutions to the Einstein field equa-
tions are smooth and slowly varying in time. As a result,
the spectral methods used in CCE converge rapidly, and
the scales that we seek to resolve with the time-stepper
are primarily on orbital timescales. Therefore, we antic-
ipate that the CCE system should be able to take far
larger timesteps than the Generalized Harmonic system
running in concert, and it will be important for the over-
all efficiency of the extraction pipeline to adjust the time
steps of the CCE evolution independently of the time
step of the Generalized Harmonic system [56].

Our implementation permits the CCE step size to vary
independently of other time scales in the simulation, and
the step size can be chosen according to estimates of the
time stepper residuals. Those estimates are frequently
obtained by comparing the results of time steppers of dif-
ferent orders, either via embedded methods [57] for sub-
step integrators, or by varying the number of points used
in the arbitrary-sized multistep methods (LMM) [58] of-
ten used in SpECTRE.

The CCE worldtube component receives the metric
and its first time derivatives from the Generalized Har-
monic system. It then uses dense output to generate
evenly spaced data sets and barycentric rational interpo-
lation [59] to generate values at the time points required
by the CCE evolution system5. This technique ensures
that the interpolated time points will have a precision
associated with the scale of stepper residuals of the Gen-
eralized Harmonic system.

To demonstrate the usefulness of our variable step size
implementation, we have performed a simple evolution
in SpECTRE using input from a SpEC binary black hole
simulation, and compared the size of the time steps be-
tween the SpEC evolution system and the SpECTRE
CCE system. In Fig. 4 we show the respective step size of
a globally stepped Generalized Harmonic system in SpEC
and the step size of the SpECTRE CCE system using an
adaptive step size based on time stepper residuals.

For the evolution system in SpECTRE, we will have
the opportunity to perform local time-stepping for sep-

5 Numerically, only one of either dense output or barycentric inter-
polation should be sufficient, but we must use both in sequence
to satisfy the constraints of the SpECTRE local time-stepping
infrastructure and communication scheduling.
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FIG. 4: A comparison of the number of substeps taken per
1M of simulation time in the SpEC Generalized Harmonic
evolution (with Dormand-Prince-5 substep method) to the
number of steps taken in the CCE system (with Adams-
Bashforth order 3 linear multistep method). We choose to
compare the number of substeps to the number of LMM steps,
as it most closely represents the factor of speedup in the CCE
system as compared to a system in which CCE is forced to
take identical steps to the GH system that supplies its world-
tube data, i.e. a global time-stepping method across all sys-
tems. The SpECTRE system chooses steps in discrete factors
of 2 as a simplification to the time-stepping infrastructure and
to maintain globally agreed-upon ‘slabs’ of the evolution, so
the time steps chosen in our CCE implementation jump by
factors of 2 during transitions. The bottom plot shows the
dominant gravitational waveform mode for reference.

arate elements in the Generalized Harmonic domain as
well, which will allow the elements in direct communica-
tion with the CCE system to take larger steps. However,
even for modest resolution in the SpECTRE General-
ized Harmonic system, and for a 100M worldtube radius
we should expect the Generalized Harmonic system to
still take O(10) steps per M of evolution for an Adams-
Bashforth order 3 scheme, so the CCE system should still
benefit from an independently chosen step size.

The examples in this section emphasize the value in
permitting the CCE system to choose its own step size —
the smoothness of the solution across the asymptotic null
hypersurface ensures that CCE can comfortably take far
larger time steps than its partner Generalized Harmonic
system. The larger time steps then permit either a far
faster extraction in the case of a standalone CCE run,
or permit the CCE system to make negligible impact on
the overall runtime when evolved in tandem with the
Generalized Harmonic evolution in SpECTRE.
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FIG. 5: Residual obtained by subtracting the numerical
SpECTRE CCE news from the linearized Bondi-Sachs news.
The residual follows closely the expected perturbative residual
∝ α2 for amplitude α, until the time stepper residual domi-
nates at ∼ 10−12 (The absolute tolerance of the time stepper
is chosen to be 10−13 in these tests and run for a duration of
5/ν).

V. BATTERY OF TESTS

A. Barkett test collection

In [35], we described a series of demanding tests for
verifying the correctness and efficiency of the SpEC im-
plementation of CCE. We have reimplemented all five
of those analytic tests for SpECTRE CCE, and simi-
larly verified the correctness and convergence properties
of the new implementation. Here, we briefly summarize
the salient features of each of the test cases and present
the results from applying the collection of tests to our
new implementation in SpECTRE. Please refer to [35] for
complete details regarding the formulation of the tests.

Each test generates Cauchy worldtube metric and its
derivatives on a chosen worldtube and uses a custom ver-
sion of the CCE worldtube component to provide the
Cauchy worldtube metric and its derivatives to the char-
acteristic evolution component. Otherwise, the remain-
der of the pipeline operates precisely as it would if ex-
tracting waves from data generated by a full Cauchy evo-
lution (see Fig. 3). The analytic tests provide a predic-
tion for the asymptotic Bondi-Sachs news function, which
is then compared against the extracted news function to
determine a residual and evaluate the precision of the
CCE system.

a. Linearized Bondi-Sachs: This solution expands
the Bondi-Sachs metric (7) around the flat space solu-
tion, and was first derived in [60]. The spin-weighted
scalars that determine the metric are expanded in modes
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FIG. 6: Numerical residual in the Linearized Bondi-Sachs
test, obtained by subtracting the extracted news from its
value at the maximum resolution (`max = 24) for each given
amplitude.

as

Jlin `m =
√

(`+ 2)!/(`− 2)! 2Z`mRe[J`(r)eiνu] (20a)
Ulin `m =

√
`(`+ 1) 1Z`mRe[U`(r)eiνu] (20b)

βlin `m = 0ZlmRe[β`(r)eiνu] (20c)
Wlin `m = 0ZlmRe[W`(r)eiνu], (20d)

where ν is a user-defined frequency and each radially de-
pendent `-mode of the solution is specified by analytic
calculation via the expansion of the Einstein field equa-
tions in the Bondi-Sachs gauge, and the spin-weighted
spherical harmonic functions sZ`m from [60] are

sZ`m =


i√
2 [(−1)msY`m − sY`−m] , m < 0,

sY`0, m = 0,
1√
2 [sY`m + (−1)msY`−m] , m > 0.

(21)

The asymptotic news function is then

Nlin `m =Re
[
eiνu lim

r→∞

(
`(`+ 1

4 J` −
iνr2

2 J`,r + β`

)]
×

√
(`+ 2)!
(`− 2)! 2Z`m. (22)

As in the SpEC implementation, we consider only ` = 2
and ` = 3 modes, for which the full radial dependence is
given in [35, 60]. Because the above linearized Bondi-
Sachs expressions are valid only to first order in the per-
turbation amplitude α, but CCE evolves the full non-
linear Einstein equations, the difference between the lin-
earized solution and CCE should depend quadratically on
the amplitude α. In Fig. 5, we plot this difference versus
α, and we recover the expected quadratic dependence, so
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FIG. 7: Residual obtained by subtracting the SpECTRE CCE
news from the news computed from an (`,m) = (2, 0) Teukol-
sky wave. The residual follows closely the expected pertur-
bative residual ∝ α2 for amplitude α, until the time stepper
residual dominates at ∼ 10−12 (The absolute tolerance of the
time stepper is chosen to be 10−13 in these tests and run for
duration 5τ).
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Convergence in Teukolsky Wave test:
 numerical convergence
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FIG. 8: Numerical residual in the Teukolsky wave test, ob-
tained by subtracting the extracted news from its value at the
maximum resolution (`max = 20) for each given amplitude.

that the relative residual is proportional to the pertur-
bation amplitude α. Figure 6 shows the convergence of
the CCE news with angular resolution `max: plotted is
the difference between the CCE news at a given `max and
the CCE news at `max = 24.

b. Teukolsky wave: A linearized perturbation on a
flat background is evaluated on the worldtube and com-
pared against the predicted asymptotic news. We use the

outgoing form of the linearized metric given in [35, 61]:

ds2 =− dt2 + (1 + frr)dr2 + 2Bfrθrdrdθ

+ 2Bfrφr sin θdrdφ+
(

1 + Cf
(1)
θθ +Af

(2)
θθ

)
r2dθ2

+ 2(A− 2C)fθφr2 sin θdθdφ

+
(

1 + Cf
(1)
φφ +Af

(2)
φφ

)
r2 sin2 θdφ2, (23)

where the functions A, B, and C are determined by the
arbitrary wave profile function F (u) = F (t− r):

A = 1
r3

(
∂2
uF + 3r−1∂uF + 3r−2∂uF

)
(24a)

B = − 1
r2

(
∂3
uF + 3r−1∂2

uF + 6r−2∂uF + 6r−3∂uF
)

(24b)

C = 1
4r
(
∂4
uF + 2r−1∂3

uF + 9r−2∂2
uF

+ 21r−3∂uF + 21r−4F
)
, (24c)

and the f (n)
ij functions are tensor harmonic functions de-

termined by the choice of sY`m modes. We follow [35]
and choose a strictly outgoing 2Y20 mode, and for that
choice of solution, the asymptotic news is

N = 3
4 sin2 θ ∂5

uF (u). (25)

We also choose a Gaussian wave profile F (u) = αe−u
2/τ2

with amplitude α and width τ .
As in the Linearized Bondi-Sachs solution, the ana-

lytic solution for the Teukolsky wave generates a nontriv-
ial waveform, but the solution is perturbative. Because
CCE evolves the full nonperturbative Einstein equations,
the difference between CCE and the perturbative solu-
tion should scale as α2. We show the convergence of
the residual with diminishing amplitude in Fig. 7, and in
Fig. 8 we show the convergence of the numerical residuals
determined by comparing to the highest resolution run
conducted (`max = 20).

c. Rotating Schwarzschild: We generate worldtube
data from the Schwarzschild metric in Eddington-
Finkelstein coordinates, with an angular coordinate
transformation φ→ φ+ ωu applied:

ds2 =−
(

1− 2M
r
− ω2r2 sin2 θ

)
du2 − 2dudr

+ 2ωr2 sin2 θdudφ+ r2 sin2 θdΩ2. (26)

This test case produces no waves, so we expect to recover
news N = 0 from the CCE system. For this test case,
we find extremely small residuals across the parameter
space that we explored. No run resulted in any mode of
the news exceeding ∼ 10−11; this test case is included in
summary Table I.
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Test name Parameters tested Maximum residual
Rotating Schwarzschild `max ∈ [8, 24];ω ∈ [0.1, 0.8] 2.94× 10−11

Gauge Wave `max ∈ [8, 24];α ∈ [0.01, 10.0] 4.05× 10−12

TABLE I: Maximum residuals across the explored parameter space for the rapidly converging test cases.
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Convergence of bouncing black hole test
ExtractionRadius: 30.0 M
ExtractionRadius: 25.0 M
ExtractionRadius: 20.0 M
ExtractionRadius: 15.0 M

FIG. 9: Convergence of SpECTRE CCE for the bouncing
black hole test across various extraction radii. Here, we have
set the absolute tolerance of the stepper residual to 10−12 to
ensure that the residuals are associated only with the spa-
tial resolution. At an extraction radius of 15M , the conver-
gence saturates slightly early, at around ∼ 10−9. However,
at even modestly larger extraction radii, the SpECTRE CCE
system approaches the expected truncation scale of the spec-
tral scheme.

d. Bouncing Schwarzschild black hole: The world-
tube data for the bouncing black hole test is similar con-
ceptually to the Rotating Schwarzschild test. However,
instead of performing an angular coordinate transforma-
tion, here we apply a time dependent linear transforma-
tion to the Kerr-Schild coordinate system (t, x, y, z):

x→ x+ a sin4(2πt/b). (27)

As in the Rotating Schwarzschild test, the expected result
of the CCE system is zero news, since the solution is
simply Schwarzschild in an oscillating coordinate system.
For our tests, we choose an oscillation amplitude a = 2M
and period b = 40M .

In practice, the bouncing black hole test has proven to
be a far more demanding test of the CCE wave extrac-
tion system than many of the other tests. A naive exam-
ination of individual Bondi-Sachs scalars in this scenario
would lead one to believe that there is wave content in the

system — it is only through the full nonlinear simulation
that the CCE system is able to resolve the motion as a
pure-gauge effect and cancel all of the contributions in the
final value of the news. We show the convergence of the
SpECTRE CCE system for the bouncing Schwarzschild
black hole test in Fig. 9.
Because the bouncing black hole test has proven to be

such a thorough test of CCE, we have chosen this test
case as a benchmark system to compare the SpEC and
SpECTRE simulation codes, both for speed and preci-
sion. In Figs. 10 and 11 we show the relative precision
and wallclock execution times for the two systems, for
similar parameters of the test system.
We use a somewhat more demanding error measure

than in the previous publication [35]: we take the maxi-
mum error over all extracted modes, instead of examining
particular modes and potentially neglecting the highest
modes that can accumulate nontrivial value. The angu-
lar resolution plotted here is the `max used during the
worldtube transformation phase of the computation, as
that is the most demanding part of the calculation for an-
gular resolution. The SpEC implementation uses twice
the angular resolution on the worldtube boundary as on
the volume, and keeps all but the top two modes from
the volume when writing to disk. The SpECTRE imple-
mentation uses the same resolution on the boundary as
in the volume, and for these runs we write the same set of
modes as SpEC for consistency in the comparison. The
SpEC runs are the same three runs as were used in the
performance and convergence tests reported in [35].
We find that the SpECTRE implementation enjoys sig-

nificantly better precision, executes more quickly, and
scales to high resolutions more gracefully than our pre-
vious SpEC implementation. At the highest resolution
that we anticipate will be practical for the typical binary
black hole wave extraction, `max = 24, we find that our
new SpECTRE implementation performs ∼ 6× faster.

e. Gauge wave: The final test in the collection of
analytic tests assembled in [35] is an exact wavelike so-
lution that is equivalent to a gauge transformation ap-
plied to the Schwarzschild spacetime. The metric is
constructed by applying the coordinate transformation
v = t + r + F (t − r)/r, where the function F (u) is the
wave profile function. Following the coordinate transfor-
mation, the Schwarzschild metric is
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ds2 =−
(

1− 2M
r

)(
1 + ∂uF

r

)2
dt2 + 2

(
1 + ∂uF

r

)[
2M
r

+
(

1− 2M
r

)(
∂uF

r
+ F

r2

)]
drdt

+
(

1− ∂uF

r
− F

r2

)[
1 + 2M

r
+
(

1− 2M
r

)(
∂uF

r
+ F

r2

)]
+ r2dΩ2. (28)
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Convergence comparison for
 bouncing black hole test

SpEC CCE
SpECTRE CCE

FIG. 10: Convergence of SpEC and SpECTRE CCE systems
when using matched parameters for the collection of tests
used for the bouncing black hole in [35]. The residual floor
reached at `max = 20 is dominated by the absolute stepper
residual. Fig. 9 shows convergence over several extraction
radii for SpECTRE alone, for runs in which we use a more
aggressive stepper residual and achieve a finer precision.

For our implementation, as in [35], we use a sine-Gaussian
wave profile F (u) = A sin(ωu)e−(u−u0)2/τ2 , with fre-
quency ω = 0.5, duration τ = 10.0, and peak time
u0 = 25.0. Once again, we expect to recover zero news,
as there is no physical wave content in the gauge wave
spacetime. The SpECTRE CCE implementation per-
forms well; across the parameter space that we tested,
we find no residuals greater than 4.05× 10−12. The test
results are summarized in Table I.

B. Robinson-Trautman solution

In addition to the five tests constructed previously, we
have implemented an analytic test of SpECTRE CCE
based on the Robinson-Trautman metric [62]. We spe-
cialize the construction of the Robinson-Trautman met-
ric to the case in which there is no coordinate singularity
in the asymptotic domain simulated in CCE. Unlike the
tests in the above collection, the Robinson-Trautman so-
lution both generates nontrivial asymptotic Bondi-Sachs
News, and does not rely on any linearized approxima-
tions. However, it is not a fully analytic solution—a sin-
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SpEC CCE
SpECTRE CCE

FIG. 11: Performance comparison between the SpEC and
SpECTRE CCE systems applied to the bouncing black hole
test. We find that the SpECTRE performs considerably bet-
ter for a comparable selection of simulation and stepper pa-
rameters. The non-monotonicity of the SpECTRE execution
time likely arises from the dependence of the core SWSH op-
erations performed via libsharp, and the corresponding de-
pendence on fast Fourier transform algorithms that perform
better for some mode numbers than others.

gle scalar variable needs to be numerically evolved on
the worldtube surface to determine the full Bondi-Sachs
metric.
The specialization of the Robinson-Trautman solu-

tion that we use depends on the scalar spin-weight zero
surface quantity that we denote ωRT. The Robinson-
Trautman metric solution takes the form [62],

ds2 =−
[
(rW + 1)ωRT − r2UŪ

]
(dt− dr)2

− 2ωRT(dt− dr)dr − 2r2UAqABdx
B(dt− dr)

+ r2qABdx
AdxB , (29)

where qAB represents the angular unit sphere metric, and
the Bondi-Sachs scalars and angular tensors are defined
in terms of the Robinson-Trautman scalar ωRT as

W = 1
r

(
ωRT + ðð̄ωRT − 1

)
− 2
r2ω2

RT
, (30a)

U ≡ UAqA = ðωRT

r
. (30b)
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Convergence in Robinson-Trautman test

Initial mode amplitude: 0.015
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FIG. 12: Residuals for the Robinson-Trautman test, com-
puted by subtracting the extracted news from the analytic
prediction of the news.

The Robinson-Trautman scalar may be chosen arbi-
trarily for a single initial retarded time u = u0, and at
all later times, is computed by integrating the evolution
equation

∂uωRT = −
[
ω4

RTð2ð̄2ωRT − ω3
RT
(
ð2ωRT

) (
ð̄2ωRT

)]
.
(31)

The news for the solution is

N = ð̄ð̄ωRT

ωRT
. (32)

We have performed the Robinson-Trautman test over
a range of angular resolutions and for various initial mag-
nitudes of the Robinson-Trautman scalar ωRT, and the
rapid convergence for this test case is shown in Fig. 12.
For our tests, we choose a starting ωRT with nonzero
modes:

a0 0 = A a1−1 = 4A/3 a1 0 = A/3(2 + i)
a1 1 = 4A(1 + 2i)/3 a2−2 = A(5 + 2i)/3, (33)

where A is the initial mode amplitude that is varied in
Fig. 12. All other modes of ωRT are zero at t = 0.

VI. BINARY BLACK HOLE SIMULATION
TRIALS

As the capstone demonstration of the efficacy of the
SpECTRE CCE system, we have performed the full
wave extraction of a representative binary black hole
simulation from SpEC. We have chosen the simulation
SXS:BBH:2096 from the SXS catalog [26, 63] , for which
SXS has stored worldtube data at extraction radii R =
(239, 436, 633, 830). The chosen simulation is an equal-
mass nonspinning binary black hole merger, and the

SpEC simulation had a full duration of 23.36 orbits. The
equal-mass non-spinning case was chosen as a valuable
benchmark case for comparing numerical implementa-
tions.
In Fig. 13, we show the extracted (2, 2) and (2, 0)

modes for each of the waveform quantities. In Fig. 15
we show the convergence in numerical resolution for each
of the extraction radii, and in Fig. 14 we show the per-
formance of the SpECTRE CCE execution for the BBH
extractions. We find that SpECTRE CCE recovers the
waveform and Weyl scalars to good precision, and is able
to perform the wave extraction very rapidly, achieving
∼ 10−9 residuals with 20-40 minutes of runtime.
In Fig. 16 and Fig. 17 we show the performance and

convergence for the same BBH worltube data as shown in
Figures 14 and 15, but using the SpEC implementation
of CCE as described in Ref. [35]. The gains in accuracy
and efficiency in SpECTRE versus SpEC are substantial,
and can be attributed to both analytical and numerical
improvements. On the analytical side, there have been
advances and simplifications in the CCE equations (see
Ref. [40]), including gauge transformations that eliminate
pure-gauge terms behaving like log(r) at large r. These
advances result in a better-behaved set of equations that
is easier to solve efficiently. On the numerical side, we
have used features of the SpECTRE infrastructure such
as aggregate memory allocations and fast vector opera-
tions, and we have implemented more efficient algorithms
than SpEC’s CCE, as described in Sec. III. These in-
clude angular interpolation via Clenshaw recurrence and
improved radial integration methods.
In the present work, we are primarily concerned with

the precision and performance of the numerical system
for extracting gravitational wave data from worldtube
data. However, even with our surface presentation of
the waveform of the system, we can see that the (2, 0)
mode of the strain waveform produced by the SpECTRE
CCE system in Fig. 13 shows that we have successfully
extracted a memory component of the waveform—the
post-merger strain shows a clear offset that does not ap-
pear in extrapolation methods. In several other publica-
tions [29, 54, 64–69], we explore the physical insights and
validation that are possible with highly precise waveform
extraction. In many of those explorations, the availabil-
ity of the full set of asymptotic Weyl scalars has provided
valuable information about asymptotic BMS degrees of
freedom and allowed cross-checks of the accuracy of the
data that are independent of the numerical convergence
checks.

VII. UPCOMING IMPROVEMENTS

A. Physically motivated initial data generation

The main remaining deficit in the accuracy of the wave-
forms determined by SpECTRE CCE is the initial-data
transient near the beginning of every characteristic evo-
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FIG. 13: The last several orbits of a waveform extracted using SpECTRE CCE, generated from the R = 436 worldtube of
simulation SXS:BBH:2096.
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FIG. 14: The runtime of SpECTRE CCE applied to the ex-
traction of binary black hole worldtube data generated by
SpEC for various stepper tolerance targets and extraction
radii. In practical cases, SpECTRE CCE is able to achieve a
high-precision wave extraction within 20-40 minutes of run-
time.
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FIG. 15: Convergence of the binary black hole trial execution
of SpECTRE CCE, computed by comparing the extracted
news to the value generated at the highest angular resolu-
tion run, `max = 16. The SpECTRE CCE system converges
rapidly for practical use-cases.
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FIG. 16: Same as Fig. 14 but computed with the SpEC CCE
code as described in Ref. [35]. Note the difference in scale on
the vertical axis; SpECTRE shows an enormous improvement,
especially at higher resolution.
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FIG. 17: Same as Fig. 15 but computed with the SpEC CCE
code as described in Ref. [35]. The new SpECTRE imple-
mentation of CCE provides a large improvement over SpEC’s
implementation.

lution. Without a better method to fix the CCE data on
the first hypersurface, waveform data analysis methods
are typically forced to discard the first ≈ 3 − 5 orbits
of the resulting strain waveform, and to correct for the
long-lived BMS frame shift following the initial data tran-
sient [54]. The BMS shift is primarily noticeable in the
strain waveform, which displays a visually apparent offset
during the inspiral. Note that there are also transients
(commonly called “junk radiation”) in the Cauchy evolu-
tion; those transients also force data analysis methods to
discard the beginning of the waveform, but they are not
as long-lived as the CCE transients and disappear after
an orbit or so.

Future work will focus on methods to generate physi-

cally motivated data for the spin-weighted scalar J̆ and
angular coordinates xA(x̂Â) on the first CCE hypersur-
face. We anticipate that an improved initial data scheme
will construct the state of the initial hypersurface as an
approximation to the system in which the inspiral had
proceeded arbitrarily far into the past of the first Cauchy
surface. With sufficiently accurate initial data, more of
the valuable Cauchy data could be recovered as high-
precision waveform data, and may reduce the demands
of the post-processing BMS gauge transformation.

B. Cauchy-characteristic Matching

Unlike past implementations of the Cauchy-
characteristic evolution system, the SpECTRE CCE
module is able to operate in concert with a simul-
taneously running Cauchy simulation with negligible
performance degradation. The key developments that
allow this accomplishment are setting the CCE step size
significantly larger than the Cauchy step as described
in Sec. IVB and numerical improvements described in
Sec. III.
The ability to gracefully run in tandem with a Gener-

alized Harmonic system makes SPECTRE CCE a well-
suited system for an implementation of Cauchy charac-
teristic matching. As derived in [56], the main piece of in-
formation that is required to determine the ingoing char-
acteristic speeds for the generalized harmonic system is
the Weyl scalar Ψ0, computed in a choice of null tetrads
associated with the Cauchy coordinates. The value of Ψ0
can be derived directly from spectral operations on any
null hypersurface in the CCE system, and transmitted to
the boundary elements in the GH system to improve the
physical boundary condition.
We anticipate that a successful Cauchy-characteristic

matching system in SpECTRE would improve the preci-
sion of the outer boundary conditions and reduce erro-
neous wave reflections at the outer boundary. Further,
with sufficient improvement in the boundary behavior,
the outer boundary of the generalized harmonic simula-
tion should be able to be placed at smaller radii than the
usual ∼ 103M without impacting the waveform preci-
sion. We expect, then, that a smaller simulation domain
for the generalized harmonic system would enable less
expensive Cauchy simulations.

VIII. CONCLUSIONS

The SpECTRE CCE system represents a significant
improvement over previous methods of performing CCE
as well as over more traditional wave extraction meth-
ods. Our new implementation of CCE is able to rapidly
extract waveforms from finished strong-field simulations
or from a simultaneously running Generalized Harmonic
strong-field simulation in SpECTRE. In the latter case,
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the SpECTRE CCE system gracefully extracts final-
ized waveform data in concert with the strong-field sim-
ulation. Our CCE implementation is extremely fast
compared to previous implementations of CCE [33–35],
which provides significant benefits both for interoperabil-
ity with other systems and in the opportunity for users to
quickly iterate on new advances in waveform processing
that require the use of CCE as a step in the analysis.

Our implementation takes advantage of recent ad-
vances in the understanding of the formalism underlying
the system of Einstein field equations in the Bondi-Sachs
and Bondi-like coordinate systems [40]. As a result, the
gauge is specialized to provably avoid any pure-gauge log-
arithms that appear in generic Bondi-Sachs-like gauges.
In addition, the implementation is then able to easily
compute the asymptotically leading contribution to all
five Weyl scalars (see Fig. 13).

SpECTRE CCE has already begun to be used to ex-
tract valuable insights from gravitational wave data. The
gains available from highly precise gravitational wave ex-
traction and the rich data encoded in the Weyl scalars
have enabled a number of valuable early investigations
of waveform properties and BMS gauge transformations
[29, 54, 64–69]. We anticipate that precise waveform ex-
traction will play an important role in the gravitational
wave modelling pipeline as next-generation ground-based
and the near future space-based gravitational wave de-
tectors will demand extremely high quality gravitational
wave models [12].

Acknowledgments

We thank Kevin Barkett, Keefe Mitman, and Sizheng
Ma for valuable discussions and suggestions regarding
this project. This work was supported in part by the
Sherman Fairchild Foundation and by NSF Grants No.
PHY-2011961, No. PHY-2011968, and No. OAC-
1931266 at Caltech and NSF Grants No. PHY-1912081
and No. OAC-1931280 at Cornell.

Appendix A: World tube data representations

The worldtube metric quantities that the interior
Cauchy code must supply to CCE are all components
of the spatial metric gij , the shift βi, the lapse α, their
radial derivatives ∂rgij , ∂rβi, ∂rα, and their time deriva-
tives ∂tgij , ∂tβi, and ∂tα. This results in a total of 30
tensor components to store and retrieve.

However, if the initial transformation to Bondi-Sachs
coordinates can be performed before storage, we need
only store the boundary values of β,Q,U,W,H, J, ∂rJ,R,
and ∂uR. The Bondi-Sachs representation totals 14 real
components. Combined with a representation in spin-
weighted spherical harmonics that make good use of the
relationships between +m and −m modes for real func-
tions, storing Bondi-Sachs data can be a factor of 2–4

cheaper than storing the full set of metric components
and their derivatives.
Because this savings is so great for large catalogs of

binary black hole simulations, SpECTRE [45] also pro-
vides a lightweight executable (ReduceCceWorldtube) for
converting inefficient metric component data to the far
smaller Bondi-Sachs data representation.

Appendix B: Angular interpolation techniques using
spin-weighted Clenshaw algorithm

The Clenshaw recurrence algorithm is a fast method
of computing the sum over basis functions,

f(x) =
N∑
n=0

anφn(x), (B1)

provided the set of basis functions φn obeys a standard
form of a three-term recurrence relation common to many
polynomial bases. In particular, it is assumed that φn
may be written as,

φn(x) = αn(x)φn−1(x) + βn(x)φn−2(x), (B2)

for some set of easily computed αn and βn.
The algorithm for computing the full sum f(x) [70] is

then to compute the set of quantities yn for n ≥ 1, where
yn is

yN+2(x) =yN+1(x) = 0 (B3a)
yn(x) =αn+1(x)yn+1(x)

+ βn+2(x)yn+2(x) + an (B3b)

Once the last two quantities in the chain y1(x) and y2(x)
are determined, the final sum is obtained from the for-
mula

f(x) = β2(x)φ0(x)y2(x) + φ1(x)y1(x) + a0φ0(x). (B4)

We use the Clenshaw method for interpolating SWSH
data to arbitrary points x on the sphere. For
spherical harmonics, it is successive values of ` that
have convenient three-term recurrence relations, so the
lowest modes in the recursion are Y|m|,m(θ, φ) and
Y|m|+1,m(θ, φ). The values of α`,m(θ, φ) and β`,m(θ, φ)
are cached for the target interpolation points, and the
source collocation values are transformed to spectral co-
efficients a`,m. The Clenshaw algorithm can be applied
directly at each of the target points (θ, φ), to obtain
the values f(θ, φ). Note that the step of caching the
α`,m(θ, φ) and β`,m(θ, φ) is primarily useful for interpo-
lating multiple functions to the same grid; if only one
function is needed for each grid, there will be little gain
in caching α and β, as they would each be evaluated only
once in a given recurrence chain.
In Appendix E, we give full details of the specific re-

currence relations that can be used to efficiently calculate
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the Clenshaw sum for SWSH, as well as additional recur-
rence relations that improve performance when moving
between the m modes. For the remaining discussion it
is convenient to define a few auxiliary variables that are
used in the formulas for the SWSH recurrence:

a = |s+m| (B5a)
b = |s−m| (B5b)

λ =
{

0, s ≥ −m
s+m, s < −m

(B5c)

The step-by-step procedure for efficiently interpolating
a spin-weighted function represented as a series of spin-
weighted spherical harmonic coefficients to a set of target
collocation points (θi, φi) is then:

1. Assemble the lookup table of required (α(a,b)
` (θ),

β
(a,b)
` , λm):

(a) For each m ∈ [−`max, `max] there is a pair
(a, b) from (B5) to be computed. Note that
α

(a,b)
` must be cached separately for each tar-

get point, but β(a,b)
` does not depend on the

target coordinates.

2. For m ∈ [0, `max]:

(a) If |s| ≥ |m|: Determine sY|s|,m(θ, φ) from
direct evaluation of (E1) with (E3) and
sY|s|+1,m(θ, φ) from (E10); Store sY|s|,m(θ, φ)
for recursion if |s| = |m|.

(b) If |m| > |s|: Determine sY|m|,m(θ, φ) from re-
currence (E9) and sY|m|+1,m(θ, φ) from (E10).
Store sY|m|,m(θ, φ) for recursion.

(c) Perform the Clenshaw algorithm to sum over
l ∈ [min(|s|, |m|), `max], using the spectral
coefficients a`m, the precomputed α

(a,b)
` and

β
(a,b)
` recurrence coefficients, and the first two

harmonics in the sequence computed from the
previous step.

3. For m ∈ [−1,−`max], repeat the substeps of step 2,
but for the negative set of m’s.

Although the procedure for interpolation is performed
efficiently, there are a number of details of the imple-
mentation of the angular coordinate transformation that
must be handled carefully.

First, it is important to note the counterintuitive na-
ture of the set of coordinate functions we require for the
interpolation. In both the source frame and the target
frame, we use a pseudospectral grid, evenly spaced in φ,
and at Legendre-Gauss points in θ. When interpolating,
we require the location in the source frame coordinates of
the target frame collocation points. Therefore, when ex-
pressed as a function over collocation points, the function
that we use for interpolation is xA(x̂A). We have found

Source frame

Target frame

field values at

target collocation

field values at

source collocation

FIG. 18: An illustration of the interpolation reasoning for
pseudospectral methods. The input to the interpolation is
the field values at the collocation points in the source frame,
and we wish to determine the field values for the same func-
tion at the collocation points in the target frame, which will
be at non-collocation points in the source frame coordinates.
Therefore, the interpolation seeks to calculate the field value
at points x(x̂) in the source frame, for all collocation points
x̂ in the target frame.

this feature of the interpolation for pseudospectral meth-
ods easy to misremember, so we have included Fig. 18 to
assist in recalling the correct reasoning.
Most of the quantities that we wish to interpolate have

nonzero spin-weight, so do not transform as scalars. In-
stead, their transformation involves factors of the spin-
weighted angular Jacobians (13). The tensor transforma-
tions for each of the relevant quantities at the worldtube
boundary are given in (15). For illustration, let us discuss
the transformation of the spin-weight 2 scalar J̆ :

J̆ =
˘̄b2J + ă2J̄ + 2ă˘̄bK

4ω̆ (B6)

It is important to note that at the start of the transfor-
mation procedure, we have the values of J on the source
grid xA and the values of ă, b̆, and ω̆ on the target grid
x̆Ă (the Jacobians are derivatives of x(x̆); see Fig. 18).
The spin-weighted interpolation procedure can be per-

formed only on quantities that are representable by the
SWSH basis. We can store non-representable quantities
(including, e.g. the angular coordinates themselves) on
our chosen angular grid, but we cannot perform a SWSH
transform on such quantities, so we cannot interpolate
them using pseudospectral methods with any predictable
accuracy. Inconveniently, we are burdened with a num-
ber of quantities that are not representable on the SWSH
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basis. Immediately after interpolation, J(xA(x̆Ă)) is not
representable on the basis corresponding to the new grid
because the Jacobian factors have not yet been applied.
Similarly, the Jacobian factors ă and b̆ are not repre-
sentable on the SWSH basis whenever the angular trans-
form is not trivial.

Accordingly, for our example of J̆ , we must apply the
transformation operations in a specific sequence:

1. Interpolate J(xA) and K(xA) to J(xA(x̆Ă)) and
K(xA(x̆Ă)).

2. Multiply the result by the Jacobian factors that
appear in (B6).

We meet a similar complication when manipulating
the evolved angular coordinates xA(ŭ, x̆Ă). The angu-
lar coordinates are not representable on the SWSH ba-
sis, yet we must take angular derivatives of the angular
coordinates to determine the Jacobian factors (13). The
method we use to evade the problems for the angular
coordinate representation is to introduce a unit sphere
Cartesian representation of the angular coordinates:

xunit = sin θ cosφ, (B7a)
yunit = sin θ sinφ, (B7b)
zunit = cos θ. (B7c)

The evolution equation for the unit sphere Cartesian rep-
resentation is then derived from the angular coordinate
evolution equation (12).

∂ŭx
i
unit = U Ă0 ∂Ăx

i
unit

= 1
2

(
U0

˘̄ðxiunit + Ū0ð̆xiunit

)
. (B8)

The main advantage of promoting the angular coordi-
nates xA(ŭ, x̆Ă) to their unit sphere Cartesian analogs is
that the Cartesian coordinates xi are spin-weight 0 and
so we can quickly and accurately evaluate their angular
derivatives.

The spin-weighted Jacobian factors (13) are then cal-
culated as

ă = ð̆xi∂ixAqA, (B9a)

b̆ = ˘̄ðxi∂ixAqA, (B9b)

where the factors ∂ixA are the Cartesian-to-angular Ja-
cobians in the source frame, so are analytically computed
as

∂xθ = cos[φ(x̂Â)] cos[θ(x̂Â)], (B10a)

∂xφ = − sin[φ(x̂Â)]/ sin[θ(x̂Â)], (B10b)

∂yθ = cos[θ(x̂Â)] sin[φ(x̂Â)] (B10c)

∂yφ = cos[φ(x̂Â)]/ sin[θ(x̂Â)], (B10d)

∂zθ = − sin[θ(x̂Â)], (B10e)
∂zφ = 0. (B10f)

Appendix C: Interpolation at I+

The core evolution system using the hierarchical sys-
tem of CCE equations (9) gives the spin-weighted scalars
{J̆ , β̆, Ŭ , W̆ , H̆} that determine the asymptotic partially
flat Bondi-like metric (7). However, to determine the
waveform quantities in asymptotically inertial coordi-
nates, we must perform a final gauge transformation at
I+. Because the partially flat coordinates of the evo-
lution system ensure that the angular coordinates are
asymptotically inertial—their defining equation (12) is
identical to the asymptotically inertial angular coordi-
nates constructed in [34]—we just need to perform a coor-
dinate transformation to asymptotically inertial retarded
time ů(ŭ, x̆Ă).
The asymptotically inertial retarded time ů is deter-

mined by evolving

∂ŭů = e2β̆ . (C1)

All other coordinates are identical to their partially flat
counterparts r̊ = r̂, θ̊ = θ̂, φ̊ = φ̂.

Once the asymptotically inertial retarded time ů is de-
termined, we must perform the explicit computations of
the asymptotic quantities

h = ˘̄J (1) + ˘̄ð2ů (C2a)

N =e−2β̆(0)
[ ˘̄H(1) + ˘̄ð2e2β̆(0)

]
(C2b)

ΨBondi(1)
4 =ΨPF(1)

4 (C2c)

ΨBondi(2)
3 =ΨPF(2)

3 + 1
2 ð̆ůΨPF(1)

4 (C2d)

ΨBondi(3)
2 =ΨPF(3)

2 + ð̆ůΨPF(2)
3 + 1

4(ð̆ů)2ΨPF(1)
4 (C2e)

ΨBondi(4)
1 =ΨPF(4)

1 + 3
2 ð̆ůΨPF(3)

2 + 3
4(ð̆ů)2ΨPF(2)

3

+ 1
8(ð̆ů)3ΨPF(1)

4 (C2f)

ΨBondi(5)
0 =ΨPF(5)

0 + 2ð̆ůΨPF(4)
1 + 3

4(ð̆ů)2ΨPF(3)
2

+ 1
2(ð̆ů)3ΨPF(2)

3 + 1
16(ð̆ů)4ΨPF(1)

4 . (C2g)

However, once we’ve computed these waveform quanti-
ties, we still need to perform the interpolation to cuts of
I+ at constant inertial retarded time ů. To perform the
interpolation, we record several time steps of the CCE
evolution, until we have sufficient data at I+ to perform
a barycentric rational [59] interpolation to the target cut
of constant ů. This process is illustrated in Fig. 19.

Appendix D: Rapid linear algebra methods for
radial integration

SpECTRE CCE uses a Legendre Gauss-Lobatto spec-
tral representation for the radial dependence of the spin-
weighted scalars on its domain. The use of spectral
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FIG. 19: A sketch of the interpolation required at I+. The
black rings represent the time series of spherical surface data
produced by CCE at I+ and the points represent the collo-
cation points on which the field values are provided. The red
curve represents a single value of asymptotically inertial time
ů(ŭ, x̆Ă) on which we wish to evaluate the waveform. The
red points are those we would use to perform a second-order
interpolation to the asymptotically inertial time. Note that
we may need to use different sets of source time values ŭ at
different collocation points.

methods allows rapid integration of the radial differential
equations of the hierarchical CCE system (9). The nu-
merical methods we employ in this section are not them-
selves new, but they have not previously been applied to
efficiently solving the CCE system of equations.

Each of the angular derivatives that appears in the hi-
erarchy of radial differential equations is first evaluated
by the procedure described around Eq. (6): perform a
spin-weighted spherical harmonic transform using lib-
sharp, multiply by

√
(`− s)(`+ s+ 1) in the modal ba-

sis for the ð̆ and −
√

(`+ s)(`− s+ 1) for ˘̄ð, and recover
the nodal representation of the derivative with an inverse
spin-weighted transform. Using these nodal values of the
angular derivative terms, we may then directly compute
each of the right-hand sides of the radial differential equa-
tions over the nodal grid. Therefore, for each of the radial
differential equations, the problem reduces to a collection
of radial ODE solves.

The spectral representation in the radial direction al-
lows the further simplification of determining linear op-
erators that correspond to indefinite integration. Given
the function f expressed in the modal representation

f(y̆) =
∑
n

anPn(y̆), (D1)

we seek the integration matrix I such that∑
n

an

∫ y̆

Pn(y̆) =
∑
n

(I · a)nPn(y̆),

=⇒
∑
n

anPn(y̆) =
∑
n

(I · a)n∂y̆Pn(y̆), (D2)

The relevant identity for Legendre polynomials that we
use to determine the integration matrix I is

Pn(y̆) = 1
2n+ 1

d

dy̆
[Pn+1(y̆)− Pn−1(y̆)] . (D3)

By integrating both sides of this equation and applying
the result to the modal representation (D1), we find the
almost-tridiagonal indefinite integration matrix for the
spectral representation

I =



−1 1 −1 1 · · · (−1)n+1

−1 0 −1/3 0 · · · 0
0 1 0 −1/5 · · · 0
...

... . . . . . . . . . ...
0 0 · · · 1/(2n− 1) 0 −1/(2n+ 3)


.

(D4)
Here the first row is chosen to zero the function at the
innermost gridpoint (at y̆ = −1). It is convenient to gen-
erate linear operators acting entirely on the nodal rep-
resentation. These are composed as M−1IM , where M
is the linear operator that maps the nodal representa-
tion to the modal representation. We may then add an
integration constant freely to the result of the indefinite
integration operator in the nodal representation to satisfy
the boundary conditions.
Two of the five equations (those that determine β̆ and

Ŭ) take the simple form

∂y̆f = Sf . (D5)

The radial ODE solves for these cases are a straightfor-
ward application of the nodal integration matrixM−1IM
using (D4). In the CCE system, the choice to zero the
value at the innermost boundary point ensures that we
may impose the boundary conditions for the worldtube
quantities β̆|Γ and Ŭ |Γ by adding the appropriate bound-
ary value to all points along the radial rays for each an-
gular point on the boundary.

Two more of the radial differential equations (those
that determine Q̆ and W̆ ) take the form

(1− y̆)∂y̆f + 2f = Sf . (D6)

This case requires more care than the original indefinite
integral, but the full integration matrix is still readily
calculable for arbitrary Legendre order n.

Considering again the modal representation (D1), we
wish to find the linear operator K such that∑

n

anPn(y̆) =
∑
n

(K · a)n[(1− y̆)∂y̆Pn(y̆) + 2Pn(y̆)].

(D7)
The operatorK is the inverse of the operator in Eq. (D6).
We will again make use of the integration matrix I

(D4). We also require the inverse of the matrix C asso-
ciated with multiplication by (1− y̆):∑

(C · a)nPn(y̆) =
∑

an(1− y̆)Pn(y̆). (D8)

The matrix C is derived by algebraic manipulations of



23

Bonnet’s recursion formula for Legendre polynomials

(n+ 1)Pn+1 = (2n+ 1)y̆Pn − nPn−1

⇒ (1− y̆)Pn = − n+ 1
2n+ 1Pn+1 + Pn −

n

2n+ 1Pn−1

(D9)

Therefore, composing the operations of C and I, we find∑
n

((C+2I) ·a)nPn(y̆) =
∑
n

(I ·a)n [(1− y̆)∂y̆Pn + 2Pn]

(D10)
and

K = I · (C + 2I)−1 (D11)

To compute K in practice, we determine the values of C
and I analytically, then perform a single numerical inver-
sion to finish the computation of (D11). Boundary con-
ditions then determine the quadratic part of the solution,
so are imposed by adding the appropriate b(θ̆, φ̆)(1− y̆)2

contribution along each radial ray.
Importantly, for both of the above types of the radial

ODE solve, the integration matrix in question is inde-
pendent of the values of the fields. So, at the start of
the simulation, we precompute and store the necessary
integration matrices, reducing each of the ODE solves de-
scribed above to a matrix-vector multiplication for each
radial ray. In SpECTRE, these matrix-vector product
calculations are optimized via the vector intrinsic library
libxsmm [71].

The final type of radial differential equation appears
only in the equation that determines H. This type is
more complicated:

(1− y̆)∂y̆f + [1 + (1− y̆)LGLJ ]f + (1− y̆)L̄GLJ f̄ = S,
(D12)

in which the L factors depend on the field quantities of
the current hypersurface. In this case, there is little hope
of determining an elegant simplification using the modal
basis. In any case, there would be no opportunity for
caching and reusing an integration matrix, as the differ-
ential operator that acts on f depends on the other fields
on the hypersurface. So, for the integration of the H
equation, we decompose the complex linear differential
equation into a real linear equation on vectors of length
2n:{[(1− y̆)∂y̆ + 1 0

0 (1− y̆)∂y̆ + 1

]

+ (1− y̆)
[
Re(LJ)Re(LG) Re(LJ)Im(LG)
Im(LJ)Re(LG) Im(LJ)Im(LG)

]}[Re(f)
Im(f)

]

=
[
Re(S)
Im(S)

]
, (D13)

where the multiplication by (1 − y̆) and differentiation
∂y̆ are understood to represent linear operators on the

Legendre Gauss-Lobatto nodal representation. We then
solve (D13) by numerically computing the linear opera-
tor along each radial ray and performing an aggregated
linear solve via LAPACK [72]. Boundary conditions are
imposed as usual by setting the first row of the operands
Re(S) and Im(S) to the desired boundary value before
the operation, and adjusting the first and (n + 1) row
of the linear operator to be equivalent to the first and
(n+ 1) row of the identity matrix.

Appendix E: Clenshaw recurrence details

a. Spin-weighted spherical harmonics in terms of Jacobi
polynomials

A number of representation choices exist for the spin-
weighted spherical harmonic basis, most of which are re-
lated by phase and sign changes. For simplicity, we take
the definition of the spin-weighted spherical harmonics
sY`m(θ, φ) directly in terms of the Wigner rotation ma-
trices dl−m,s(θ) [73],

sY`m(θ, φ) = (−1)m
√

2`+ 1
4π eimφd`−m,s(θ) (E1)

The Wigner rotation matrices d`−m,s may then be ex-
pressed in terms of Jacobi polynomials [74]. Define:

a = |s+m| (E2a)
b = |s−m| (E2b)

k = −1
2(a+ b) (E2c)

λ =
{

0, s ≥ −m,
s+m, s < −m.

(E2d)

Then,

d`−m,s(θ) =(−1)λ
√

(`+ k)!(`+ k + a+ b)!
(`+ k + a)!(`+ k + b)!

× sina
(
θ

2

)
cosb

(
θ

2

)
P

(a,b)
`+k (cos θ). (E3)

We have deviated from the notation of [74] and others
by separating out the ` contribution from the variable k.
With the notation in (E3), all dependence on ` is explicit.
This assists the derivation below of recurrence relations
for successive ` at fixed s and m (and so also fixed a, b,
and k).
Note that for any particular (s,m), the lowest `-mode

that is required is `min = max(|m|, |s|), and that k =
min(−|m|,−|s|). Thus each of the recurrence relations
has its lowest two contributions determined by P (a,b)

0 and
P

(a,b)
1 , which have convenient closed forms:

P
(a,b)
0 (cos θ) = 1 (E4a)

P
(a,b)
1 (cos θ) = (a+ 1) + (a+ b+ 2)cos θ − 1

2 (E4b)
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For reference, the three-term recursion relation we use for the Jacobi polynomials is [75]

P (a,b)
n (x) = Pα

(a,b)
n (x)Pn−1(x) + Pβ

(a,b)
n Pn−2(x) (E5a)

Pα
(a,b)
n (x) = 2n+ b+ a− 1

2n(n+ a+ b)

[
(2n+ a+ b)x+ (a2 − b2)

2n+ a+ b− 2

]
(E5b)

Pβ
(a,b)
n = −(2n+ a+ b)(n+ a− 1)(n+ b− 1)

n(n+ a+ b)(2n+ a+ b− 2) . (E5c)

In (E5), we denote the recurrence coefficients with a lead-
ing subscript P , to avoid ambiguity with other recurrence
coefficients in this paper.

b. Recursion relations for application of Clenshaw
algorithm

In general, to perform a spin-weighted spherical har-
monic interpolation from a prescribed set of colloca-
tion points, one first performs a transformation to spin-
weighted coefficients sa`m, then interpolates to each de-
sired (θi, φi) by evaluating the sum

f(θi, φi) =
`max∑

m=−`max

`max∑
`=min(|m|,|s|)

sa`m sY`m(θi, φi). (E6)

The Clenshaw-based algorithm will possess an outer loop
over m ∈ [−`max, `max] modes for a given spin s. The in-

ner sum will then be evaluated using the Clenshaw recur-
rence algorithm described in section B. For this section,
we focus on the formulas necessary to apply the Clenshaw
algorithm to the innermost loop.

For spin-weighted spherical harmonics with ` ≥
max(|m|, |s|) + 2, we seek a recurrence relation of the
form

sY`m(θ, φ) =Y α
(a,b)
` (θ, φ)sY`−1m(θ, φ)

+ Y β
(a,b)
` sY`−2m(θ, φ). (E7)

The coefficients in (E7) are labeled with a leading sub-
script Y , and may be inferred from the relation between
the spin-weighted spherical harmonics and the Jacobi
polynomials. The result is the recurrence coefficients

Y α
(a,b)
` =

√
2`+ 1
2`− 1

√
(`+ k)(`+ k + a+ b)
(`+ k + a)(`+ k + b) Pα

(a,b)
`+k (cos θ)

=
√

2`+ 1
2`− 1

2(`+ k) + b+ a− 1
2
√

(`+ k)(`+ k + a+ b)(`+ k + a)(`+ k + b)

×
[
(2(`+ k) + a+ b) cos θ + a2 − b2

2(`+ k) + a+ b− 2

]
, (E8a)

Y β
(a,b)
` =

√
2`+ 1
2`− 3

√
(`+ k)(`+ k − 1)(`+ k + a+ b)(`+ k + a+ b− 1)
(`+ k + a)(`+ k + a− 1)(`+ k + b)(`+ k + b− 1) Pβ

(a,b)
`+k

=−

√
(2`+ 1)(`+ k + a− 1)(`+ k + b− 1)(`+ k − 1)(`+ k + a+ b− 1)

(2`− 3)(`+ k)(`+ k + a+ b)(`+ k + a)(`+ k + b)
2(`+ k) + a+ b

2(`+ k) + a+ b− 2 . (E8b)

When generating the Y α and Y β coefficients, it would
be wasteful to populate a full two-dimensional space of
integers for (a, b) values. For each spin s, there is a one-
to-one mapping between m and (a, b) pairs, so for each

spin value, exactly 2`max + 1 recurrence coefficient sets
should be generated. For each coefficient set, coefficients
are needed with indices ` ∈ [min(|m|, |s|), `max].
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c. Relations between successive iterations for spin-weighted
spherical harmonics

In this section, we describe the computations necessary
to obtain the two lowest spin-weighted spherical harmon-
ics for each Clenshaw recurrence evaluation, and suggest
a method by which several of these explicit functions may
also be determined by recurrence in m to limit evalua-
tions of the factorial prefactor and powers of trigonomet-
ric functions found in (E3).

First, we note that it is desirable to first evaluate the
recurrence for m = 0, then perform the sequence of pos-
itive m and negative m as further branches. The reason
for this evaluation structure is based on the observation
that successive factors of sina(θ/2) cosb(θ/2) can be com-
puted from previous ones provided that a and b both in-

crement from one step to the next. From (B5), we see
that that this will be true for ascending values of |m|
whenever |s| < |m|.
Therefore, it is possible to recursively obtain sY|m|m

and sY|m|+1m from the previously determined harmonics,
for all harmonics where |m| > |s|. Recursive construction
won’t be available for complete generality, as the steps
for which |s| ≥ |m| involve both the increase and decrease
of a’s and b’s, so would involve the potentially dangerous
division by sin(θ/2), which is ill-defined near one pole.
For those 2|s| steps, our algorithm accepts the cost of the
direct evaluation of the (small) powers. For most realistic
applications, the value |s| will be far smaller than `max, so
most m steps can be evaluated by the recursive method.
In particular, for |m| > |s|, the first required explicit

function for the Clenshaw recurrence is

sY|m|m = (−1)∆λ

√
2|m|+ 1
2|m| − 1

(`+ k + a+ b− 1)(`+ k + a+ b)
(`+ k + a)(`+ k + b) eiφ sin (θ/2) cos (θ/2)

{
sY|m|−1m−1, m > 0,
sY|m|−1m+1, m < 0,

(E9)

where the difference ∆λ = λm−λ±m is sufficiently cheap
to compute on a case-by-case basis. Finally, the second
harmonic can always be easily evaluated from the first
harmonic of a sequence. The simple relation arises from

noting that the first Jacobi polynomial in each sequence
is unity. Therefore, computation can once again be saved
in determining sY`min+1,m:

sY`min+1m =
√

2`min + 3
2`min + 1

√
(`min + k + 1)(`min + k + a+ b+ 1)
(`min + k + a+ 1)(`min + k + b+ 1)

[
(a+ 1) + (a+ b+ 2)(cos θ − 1)

2

]
sY`min m. (E10)

With the above recurrence for the successive startingm
modes, it is only necessary to evaluate sY`min m for |m| ≤

|s| from the explicit formulas for the Wigner rotation
matrices (E3).
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