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We study the non-equilibrium dynamics of Axion-like particles (ALP) coupled to Standard

Model degrees of freedom in thermal equilibrium. The Quantum Master Equation (QME)

for the (ALP) reduced density matrix is derived to leading order in the coupling of the (ALP)

to the thermal bath, but to all orders of the bath couplings to degrees of freedom within or

beyond the Standard Model other than the (ALP). The (QME) describes the damped os-

cillation dynamics of an initial misaligned (ALP) condensate, thermalization with the bath,

decoherence and entropy production within a unifying framework. The (ALP) energy density

E(t) features two components: a “cold” component from the misaligned condensate and a

“hot” component from thermalization with the bath, with E(t) = Ec e−γ(T ) t+Eh(1−e−γ(T ) t)

thus providing a “mixed dark matter” scenario. Relaxation of the (ALP) condensate, ther-

malization, decoherence and entropy production occur on similar time scales. An explicit

example with (ALP)-photon coupling, valid post recombination yields a relaxation rate γ(T )

with a substantial enhancement from thermal emission and absorption. A misaligned con-

densate is decaying at least since recombination and on the same time scale thermalizing

with the cosmic microwave background (CMB). Possible consequences for birefringence of

the (CMB) and (ALP) contribution to the effective number of ultrarelativistic species and

galaxy formation are discussed.

I. INTRODUCTION

The axion, introduced in Quantum Chromodynamics (QCD) as a solution of the strong CP

problem[1–3] may be produced non-thermally in the Early Universe, for example by a misalign-

ment mechanism and is recognized as a potentially viable cold dark matter candidate[4–6]. Exten-

sions beyond the standard model can accommodate pseudoscalar particles with properties similar

to the QCD axion, namely axion-like-particles (ALP) which can also be suitable dark matter

candidates[7–11], in particular as candidates for ultra light dark matter[12, 13]. Constraints on the
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mass and couplings of ultra light (ALP)[9–11, 14] are being established by various experiments[15–

17]. There are two important features that characterize (ALP), i) a misalignment mechanism results

in damped coherent oscillations of the expectation value of the (ALP) field which gives rise to the

contribution to the energy density as a cold dark matter component[4–6, 9–11, 18], ii) its pseu-

doscalar nature leads to an interaction between the (ALP) and photons or gluons via pseudoscalar

composite operators of gauge fields, such as ~E · ~B in the case of the (ALP)-photon interaction and

Gµν;bG̃µν;b in the case of gluons, which allows an (ALP) to decay into two photons or gluons. The

effect of this decay process in the evolution of (ALP) condensates has been studied in refs.[19–22]

including stimulated decay in a photon background. The damping of an (ALP) condensate via a

“friction” term in its equation of motion has been studied in refs.[23–25], and thermalization of

(ALP) has been studied in refs.[26, 27], these references focused on either damping via friction or

thermalization as unrelated independent processes. A recent study[28] has recognized the common

origin of these two seemingly different processes by obtaining the non-equilibrium effective action

that determines the time evolution of the reduced (ALP) density matrix. This study showed that

damping of a misaligned (ALP) condensate and thermalization are two complementary aspects

and are linked by the fluctuation dissipation relation, a fundamental and ubiquitous property of a

bath in thermal equilibrium. This reference also established that both processes contribute to the

(ALP) energy density, an important aspect if the (ALP) are suitable dark matter candidates.

Decay and thermalization of an (ALP) condensate post recombination may have profound im-

pact on birefringence of the cosmic microwave background (CMB) if its origin is the electromagnetic

coupling of a pseudoscalar (ALP)[29–32].

In ref.[28], the non-equilibrium dynamics of (ALP) was studied to leading order in the coupling of

the (ALP) to other degrees of freedom treated as a bath in thermal equilibrium by implementing

the in-in Schwinger-Keldysh formulation of non-equilibrium quantum field theory to obtain the

effective action. The equations of motion for the (ALP) obtained from the effective action are

retarded and akin to a Langevin equation with a friction term determined by the retarded self-

energy and a noise term related to the self energy via the fluctuation -dissipation relation. This

relation is a consequence of the bath degrees of freedom being in thermal equilibrium. An important

result of the Langevin nature of the effective equations of motion is a direct relationship between

the damping of an (ALP) coherent condensate and thermalization of its fluctuations. This result

was found to be general to leading order in the (ALP) coupling to the bath degrees of freedom but

to all orders in the couplings of these “environmental” fields to any other field within or beyond

the standard model other than the (ALP) and is a corollary of the fluctuation dissipation relation.
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An analysis of the coupling of (ALP) to the (CMB) post recombination in this article also revealed

a substantial enhancement of the damping and thermalization rates if the (ALP) is an ultra-light

dark matter candidate as well as unexpected possible phase transitions and exotic new phases.

Motivation and Objectives:

The results in ref.[28] and their possible cosmological consequences, motivate us to seek a

complementary formulation of the non-equilibrium dynamics of (ALP) coupled to “environmental”

degrees of freedom in equilibrium that does not rely on the in-in Schwinger-Keldysh approach to the

effective action, thereby offering an alternative and independent assessment of the non-equilibrium

dynamics of (ALP) coupled to a thermal environment.

In this article we adapt methods of quantum optics and quantum information to study the

non-equilibrium dynamics of (ALP) fields implementing a quantum master equation approach

ubiquitous in the treatment of quantum open systems[33–37]. The quantum master equation

describes the time evolution of the (ALP) reduced density matrix, it has been implemented in

particle physics[38–44] and cosmology[45–50] and has proven to be a powerful and reliable method

to study non-equilibrium dynamics.

The main objectives of this article are: i) to scrutinize the results obtained in ref.[28] with an

alternative and independent method, ii) to inquire on complementary aspects of the time evolution

of the reduced density matrix, in particular the evolution of coherences, which yield supplementary

information on thermalization and decoherence, and iii) to compare the time scales of decoherence

to those of damping of the misaligned condensate and thermalization.

In this study we are not concerned with bounds on couplings and or masses of the putative

(ALP) but focus on fundamental aspects of the non-equilibrium evolution of its density matrix

including misaligned initial states. Furthermore, while our ultimate objective is to study the non-

equilibrium dynamics in an expanding cosmology, we initiate this program as a prelude by focusing

on Minkowski space time.

Brief summary of results: We consider an (ALP) field in interaction with Standard Model

degrees of freedom which are considered to be in thermal equilibrium. In section (II), we obtain the

(QME) for the reduced density matrix of the (ALP) up to second order in the coupling of the (ALP)

to these degrees of freedom, but to all orders in the coupling of the bath degrees of freedom to fields

within or beyond the Standard Model different from the (ALP) under well defined approximations.

The resulting (QME) is of the Lindblad form[33–37], it is obtained up to second order in the

(ALP) coupling to Standard Model degrees of freedom and to all orders in the couplings of these
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degrees of freedom to any other field within or beyond the Standard Model except for the (ALP),

and includes misaligned initial conditions for the (ALP) field. The (QME) describes the damping

of the misaligned condensate, thermalization with the bath and decoherence with a concomitant

entropy production. The (ALP) energy density describes a “mixed” dark matter scenario with

a cold component Ec from the misaligned coherent condensate, and a “hot” component Eh from

thermalization with the bath, with the total energy density interpolating between the cold and hot

components as E(t) ≃ Ec e−γ(T )t + Eh (1 − e−γ(T )t), where the relaxation rate γ(T ) also describes

the decoherence rate. We study in detail (ALP) coupling to the (CMB) post recombination,

if the (ALP) is an ultralight dark matter candidate there is a substantial enhancement of the

relaxation rate, its long wavelength limit is given by γ(T ) = g2m2
a T/16π. The results suggest

that if γ(T ) < 1/H0 the misaligned condensate has been decaying at least since recombination

and thermalizing with the (CMB) on a similar time scale. Therefore, if cosmic birefringence is a

consequence of the (CMB) coupling to a pseudoscalar (ALP), the rotation angle since the surface

of last scattering should feature a thermal spectrum of fluctuations.

II. THE QUANTUM MASTER EQUATION:

We study the time evolution of the reduced density matrix of an axion-like field a(x) coupled to

generic fields χ(x) to which we refer as “environmental” fields via a pseudoscalar operator Oχ(x),

with the Lagrangian density

L[a, χ] = 1

2
∂µa(x)∂

µa(x)− 1

2
m2

a a
2(x)− ga(x)Oχ(x) + Lχ (II.1)

where Lχ is the Lagrangian density describing the “environmental” fields χ, these fields could be

the electromagnetic field, fermion or gluon fields and themselves be coupled to other degrees of

freedom within or beyond the Standard Model.

The Lagrangian density (II.1) describes several relevant couplings of (ALP), with possible op-

erators Oχ(~x) being Oχ(~x) = ~E(x) · ~B(x) ; Gµν,b(x)G̃µν,b(x) ; Ψ(x)γ5Ψ(x) · · · where ~E, ~B are

the electromagnetic fields, Gµν,b; G̃µν,b are the gluon field strength tensor and its dual respectively,

and Ψ(x) a fermionic field. These degrees of freedom are assumed to be in thermal equilibrium.

We will first treat these fields generically denoting them as χ fields, and after obtaining the gen-

eral form of the quantum master equation up to O(g2), we will focus on the relevant case with

Oχ(~x) = ~E(x) · ~B(x) since the interaction of (ALP) fields with the (CMB) could have poten-

tially observable consequences, such as birefringence[29–32], a rotation of the polarization plane
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which, in contrast to Faraday rotation, is independent of the frequency with tantalizing detection

possibilities[30–32].

The interaction of (ALP) with photons and gluons via couplings of the form ga(x) ~E(x) ·
~B(x); gsa(x)G

µν,b(x)G̃µν,b(x) are not renormalizable because the respective couplings g, gs feature

dimensions 1/(energy), an aspect that has important consequences[28] discussed below, that at

the fundamental level, indicate that the Lagrangian density (II.1) describes an effective field theory

valid below some cutoff scale.

Upon evolving the total initial density matrix in time, the degrees of freedom χ with the generic

operator Oχ are traced over to obtain a reduced density matrix for a(x) which obeys a quantum

master equation. We obtain this equation in the general case valid to order g2 in the (ALP) coupling

to the bath, and to all orders in the couplings of the bath degrees of freedom to any other degree of

freedom within or beyond the standard model except for the (ALP) under a set of approximations

that are spelled out in detail. Whereas our ultimate objective is to pursue this approach in an

expanding cosmology, here we begin this program by first carrying it out in Minkowski space time.

The quantum master equation in a Lindblad form[35–38] has recently received attention in

applications to high energy physics[39–44] and cosmology[45–49]. This formulation begins with

the time evolution of an initial density matrix that describes the total system of fields a, χ, which

is given by

ρ̂(t) = e−iHtρ̂(0)eiHt , (II.2)

with H the total Hamiltonian

H = H0a +Hχ +HI ≡ H0 +HI , (II.3)

where H0a is the free field Hamiltonian for the (ALP), Hχ is the Hamiltonian of the χ degrees

of freedom including their couplings to degrees of freedom within or beyond the Standard Model

except the (ALP), and HI = g
∫
d3xa(x)Oχ(x) is the coupling between the (ALP) and the bath

degrees of freedom obtained from the Lagrangian density (II.1).

We consider an initial factorized density matrix

ρ(0) = ρa(0)⊗ ρχ(0) , (II.4)

where the χ fields are in thermal equilibrium at temperature T = 1/β, namely

ρχ(0) =
e−βHχ

Tre−βHχ
, (II.5)
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and for the (ALP) field we chose an initial density matrix describing a “misaligned” initial condition

with a non-vanishing expectation value of the (ALP) field. This is implemented in terms of coherent

states of free fields as follows. Quantizing the free (ALP) field at the initial time t = 0 in a finite

volume V as

a(~x, t = 0) =
1√
V

∑

~k

1√
2ωk

[
b~k e

i~k·~x + b†~k
e−i~k·~x

]
; [b~k, b

†
~k′
] = δ~k,~k′ , (II.6)

and the vacuum state defined as

b~k|0〉 = 0 . (II.7)

A coherent state is given by

|∆〉 = Π~k e
− 1

2
|∆~k

|2 e
−∆~k

b†
~k |0〉 , (II.8)

it is an eigenstate of the annihilation operator,

b~k|∆〉 = ∆~k
|∆〉 , (II.9)

and describes a Poisson distribution of quanta of the free (ALP) field. The expectation values of

the (ALP) field and its canonical momentum in this coherent state are

〈∆|a(~x, 0)|∆〉 = a(~x, 0) =
1√
V

∑

~k

1√
2ωk

[
∆~k

+∆∗
−~k

]
ei
~k·~x , (II.10)

〈∆|π(~x, 0)|∆〉 = π(~x, 0) =
−i√
V

∑

~k

√
ωk

2

[
∆~k

−∆∗
−~k

]
ei
~k·~x , (II.11)

Hence we choose the initial density matrix for the (ALP) field to describe this “misaligned” initial

state, namely

ρa(0) = |∆〉〈∆| , (II.12)

yielding

Trb~kρa(0) = ∆~k
; Trb†~k

b~kρa(0) = Nq(0) = |∆~q|2 ; Trb~kb−~k
ρa(0) = ∆~k

∆
−~k

; etc. . (II.13)

We refer to the off-diagonal (ALP) density matrix elements in the occupation number basis

(eigenstates of b†~k
b~k), for example Trb~kb−~k

ρa(0) = ∆~k
∆

−~k
as coherences[33, 34]. A hallmark of a

thermal density matrix is that these coherences vanish and the density matrix is diagonal in the

occupation number basis. This observation will become important as a diagnosis of thermalization

and its link to decoherence studied below.
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Translational invariance entails that

∆~k
=

√
V ∆̃ δ~k,~0 , (II.14)

therefore

Nq(0) = V |∆̃|2δ~q,~0 , (II.15)

and

1

2ma

[
π2 +m2

a a
2
]
= |∆̃|2 . (II.16)

In the quantum master equation approach[33, 34] the time evolution of the density matrix is

considered in the interaction picture. With the full density matrix ρ̂(t) given by eqn. (II.2) the

density matrix in the interaction picture is given by

ρ̂I(t) = eiH0tρ̂(t)e−iH0t , (II.17)

whose time evolution obeys

˙̂ρI(t) = −i
[
HI(t), ρ̂I(t)

]
, (II.18)

where HI(t) is the interaction Hamiltonian in the interaction picture, HI(t) = eiH0tHIe
−iH0t. The

formal solution of eqn. (II.18) is given by

ρ̂I(t) = ρ̂I(0) − i

∫ t

0
dt′
[
HI(t

′), ρ̂I(t
′)
]
. (II.19)

This solution is inserted back into (II.18) leading to the iterative equation

˙̂ρI(t) = −i
[
HI(t), ρ̂I(0)

]
−
∫ t

0

[
HI(t),

[
HI(t

′), ρ̂I(t
′)
]]

dt′ . (II.20)

This (QME) cannot be solved exactly, and several approximations are usually invoked, based on

the following assumptions[33–36]:

• Factorization: the total density matrix factorizes into a direct product of the density matrix

for the a field, ρ̂Ia(t) and that of the bath of χ fields, ρ̂χ, namely,

ρ̂I(t) = ρ̂Ia(t)⊗ ρ̂χ(0) , (II.21)

where

ρ̂χ(0) =
e−βHχ

Tre−βHχ
, (II.22)
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this assumption which implies that the bath degrees of freedom remain in thermal equilib-

rium, relies on that the bath is a reservoir with a large number of degrees of freedom and is

not modified by its coupling to the system, hence the density matrix of the bath does not

depend on time. This assumption also relies on weak coupling: if the initial density matrix

is factorized, correlations between the system and the reservoir will build as a consequence

of the interaction, therefore such correlations will be small for very weak coupling and may

only contribute in higher orders. Factorization and its possible caveats are discussed further

in section (IV).

The reduced density matrix for the (ALP) field a is obtained by taking the trace of the full

density matrix over the bath degrees of freedom, which by assumption remains in thermal

equilibrium, therefore

ρ̂Ia(t) = Trχρ̂I(t) . (II.23)

Upon taking the trace over the χ degrees of freedom the first term on the right hand side of

eqn. (II.20) vanishes under the assumption that the thermal density matrix of the environ-

mental fields is even under parity, hence TrOχ ρ̂χ(0) = 0, and we find the evolution equation

for the reduced density matrix for the (ALP) field a in the interaction picture,

˙̂ρIa(t) = −g2
∫ t

0
dt′
∫

d3x

∫
d3x′

{
aI(x) aI(x

′) ρ̂Ia(t
′) G>(x− x′) + ρ̂Ia(t

′) aI(x
′) aI(x)G

<(x− x′)

− aI(x) ρ̂Ia(t
′) aI(x

′)G<(x− x′)− aI(x
′) ρ̂Ia(t

′) aI(x)G
>(x− x′)

}
(II.24)

where we use the shorthand convention x ≡ (~x, t) ; x′ ≡ (~x′, t′), and introduced the bath

correlation functions

G>(x− x′) = Trχρ̂χ(0)Oχ(x)Oχ(x
′) (II.25)

G<(x− x′) = Trχρ̂χ(0)Oχ(x
′)Oχ(x) . (II.26)

The (ALP) field in the interaction picture aI(~x, t) features free field time evolution, namely

aI(~x, t) =
1√
V

∑

~k

1√
2ωk

[
b~k e

−iωkt ei
~k·~x + b†~k

eiωkt e−i~k·~x
]
, (II.27)

where the operators b~k, b
†
~k
do not depend on time, and ωk =

√
k2 +m2

a.

• Markov approximation the second approximation entails replacing ρIa(t
′) → ρIa(t) in

the time integral. This is usually referred to as a Markov approximation and is justified in
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weak coupling, as can be seen by considering the first term in (II.24) as an example. It can

be written as

−g2a(~x, t)

∫ t

0

dK(t′)

dt′
ρ̂Ia(t

′) dt′ ; K(t′) ≡
∫ t′

0
a(~x′, t′′)G>(~x− ~x′, t− t′′)dt′′ (II.28)

which upon integration by parts yields

−g2a(~x, t)K(t)ρ̂Ia(t) + g2a(~x, t)

∫ t

0
K(t′)

dρ̂Ia(t
′)

dt′
dt′ (II.29)

in the second term dρ̂IΦ(t
′)/dt′ ∝ g2 so this term yields a contribution that is formally of

order g4 and can be neglected to second order. The same analysis is applied to all the other

terms in (II.24) with the conclusion that in weak coupling and to leading order (g2) the

Markovian approximation ρ̂Ia(t
′) → ρ̂Ia(t) is justified.

Therefore in the Markov approximation the quantum master equation becomes

˙̂ρIa(t) = −g2
∫ t

0
dt′
∫

d3x

∫
d3x′

{
aI(x) aI(x

′) ρ̂Ia(t) G
>(x− x′) + ρ̂Ia(t) aI(x

′) aI(x)G
<(x− x′)

− aI(x) ρ̂Ia(t) aI(x
′)G<(x− x′)− aI(x

′) ρ̂Ia(t) aI(x)G
>(x− x′)

}
. (II.30)

The correlation functions G>(x − x′), G<(x − x′) are obtained in appendix (A) in terms of

non-perturbative Lehmann representations to all orders in the coupling of the environmental

fields χ to any other field in thermal equilibrium except for the (ALP). They are given by

G>(x− x′) =

∫
d3q

(2π)3

∫
dq0
2π

̺>(q0, ~q) e
−iq0(t−t′) ei~q·(~x−~x′) (II.31)

G<(x− x′) =

∫
d3q

(2π)3

∫
dq0
2π

̺<(q0, ~q) e
−iq0(t−t′) ei~q·(~x−~x′) , (II.32)

where the spectral densities obey the relation

̺>(−q0, ~q) = ̺<(q0, ~q) , (II.33)

and fulfill the Kubo-Martin-Schwinger condition[51]

̺<(q0, ~q) = e−β q0 ̺>(q0, ~q) , (II.34)

which is a consequence of the fields χ being in thermal equilibrium. Introducing the spectral

density

̺(q0, ~q) = ̺>(q0, ~q)− ̺<(q0, ~q) , (II.35)
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the Kubo-Martin-Schwinger condition (II.34) leads to the following relations

̺>(q0, ~q) = [1 + n(q0)] ̺(q0, ~q) (II.36)

̺<(q0, ~q) = n(q0) ̺(q0, ~q) (II.37)

where n(q0) = [eβ q0−1]−1 is the Bose-Einstein distribution function at temperature T = 1/β.

The above relations are proven in appendix (A), they are general, non-perturbative and rely

only on that the reservoir is in thermal equilibrium.

• rotating wave approximation: in writing the products aI(~x, t) aI(~x
′, t′) of interaction

picture field operators (II.27) in (II.24) there are two types of terms with very different time

evolution. Terms of the form

b†~q b~q eiωq(t−t′) , (II.38)

are “slow”, and terms of the form

b†~q b†−~q e2iωqt eiωq(t−t′) ; b~q b−~q e−2iωqt e−iωq(t−t′) , (II.39)

are fast, the extra rapidly varying phases e±2iωqt lead to rapid dephasing on time scales

≃ 1/ωq and do not yield resonant (nearly energy conserving) contributions. Neglecting

these terms is tantamount to neglecting non-resonant terms that average out over the longer

time scales of relaxation ≫ 1/ωq. These terms only give perturbatively small transient

contributions and are discussed in section (IV). Keeping only the slow terms which dominate

the long time dynamics for t ≫ 1/ωq and neglecting the fast oscillatory terms defines the

“rotating wave approximation” ubiquitous in quantum optics[33, 34].

We will adopt these approximations and comment in section (IV) on the corrections associated

with keeping the fast terms as well as caveats in the factorization approximation and limitations

of the (QME).

Implementing the Markov approximation ρ̂Ia(t
′) → ρ̂Ia(t), and the rotating wave approximation

(keeping only terms of the form b† b, b b†) using the spectral representation of the correlators

(II.31,II.32) and carrying out the spatial and temporal integrals we obtain the Lindblad form[33–
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38] of the quantum master equation,

˙̂ρIa(t) =
∑

~q

{
− i∆q(t)

[
b†~q b~q, ρ̂Ia(t)

]

−
Γ>
q (t)

2

[
b†~q b~q ρ̂Ia(t) + ρ̂Ia(t) b

†
~q b~q − 2b~q ρ̂Ia(t) b

†
~q

]

−
Γ<
q (t)

2

[
b~q b

†
~q ρ̂Ia(t) + ρ̂Ia(t) b~q b

†
~q − 2b†~q ρ̂Ia(t) b~q

]}
, (II.40)

where

∆q(t) =
g2

2ωq

∫
dq0
2π

̺(q0, q)

[
1− cos[(ωq − q0)t]

]

(ωq − q0)
, (II.41)

Γ>
q (t) =

g2

ωq

∫
dq0
2π

̺(q0, q)
[
1 + n(q0)

]sin[(ωq − q0)t]

(ωq − q0)
, (II.42)

Γ<
q (t) =

g2

ωq

∫
dq0
2π

̺(q0, q)n(q0)
sin[(ωq − q0)t]

(ωq − q0)
, (II.43)

and we introduce

Γq(t) = Γ>
q (t)− Γ<

q (t) =
g2

ωq

∫
dq0
2π

̺(q0, q)
sin[(ωq − q0)t]

(ωq − q0)
. (II.44)

The second and third lines in (II.40) are called the dissipator [33], these are non-Hamiltonian,

purely dissipative terms, however it follows from the (QME) (II.40) that the trace of the reduced

density matrix is conserved. It is argued in refs. [35–38] that the equation (II.40) is the most

general linear evolution equation that preserves unit trace and Hermiticity of the density matrix.

Expectation values of (ALP) operators in the interaction picture are obtained by taking the

trace of such operators with the reduced density matrix, for example

〈aI(~x, t)〉 = Tr aI(~x, t)ρ̂Ia(t) =
∑

~q

1√
2V ωq

[
〈b~q〉(t) e−iωqt + 〈b†−~q〉(t) e

iωqt
]
ei~q·~x , (II.45)

where

〈b~q〉(t) = Tr
(
b~q ρ̂Ia(t)

)
; 〈b†−~q〉(t) = Tr

(
b†−~q ρ̂Ia(t)

)
. (II.46)

For any interaction picture operator A associated with the (ALP) field

d

dt
〈A〉 = Tra

{
Ȧ ρ̂Ia(t) +A ˙̂ρIa(t)

}
, (II.47)
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where the average 〈(· · · )〉 = Tra(· · · )ρ̂Ia(t). Because b~q, b
†
~q are time independent in the interaction

picture, the time derivative of their expectation value is given solely by the second term on the

right hand side of eqn. (II.47), hence the expectation value of the number operator

Nq(t) = Tra ρ̂Ia(t) b
†
~q b~q (II.48)

obeys the quantum kinetic equation

dNq(t)

dt
= Tra

{
b†~q b~q

˙̂ρIa(t)
}
= −Γq(t)Nq(t) + Γ<

q (t) . (II.49)

Similarly, we also find the evolution equation for the averages

d

dt
〈b~k〉(t) =

[
− i∆k(t)−

Γk(t)

2

]
〈b~k〉(t)

d

dt
〈b†~k〉(t) =

[
i∆k(t)−

Γk(t)

2

]
〈b†~k〉(t) , (II.50)

and for the off-diagonal coherences,

d

dt
〈b~k b

−~k
〉(t) =

[
− 2i∆k(t)− Γk(t)

]
〈b~k b

−~k
〉(t)

d

dt
〈b†~k b†

−~k
〉(t) =

[
2i∆k(t)− Γk(t)

]
〈b†~k b†

−~k
〉(t) . (II.51)

From the evolution equations (II.50,II.51) it is clear that ∆k(t) is a time dependent renormalization

of the frequency ωk. To obtain the solutions of the above equations in the long time limit we need

the following integrals

∫ t

0
∆q(t

′)dt′ = t
g2

2ωq

∫ ∞

−∞

ρ(q0, q)

(ωq − q0)

[
1− sin(ωq − q0) t

(ωq − q0) t

]
dq0
(2π)

−−−→
t→∞

t δωq (II.52)

where

δωq =
g2

2ωq

∫ ∞

−∞
P
[

ρ(q0, q)

(ωq − q0)

]
dq0
2π

, (II.53)

is a renormalization of the frequency ωq and P stands for the principal part, and

∫ t

0
Γq(t

′) dt′ =
g2

ωq

∫ ∞

−∞

dq0
2π

ρ(q0, q)

(q0 − ωq)2

[
1− cos

[
(q0−ωq)t

]]
−−−→
t→∞

γq t+
g2

ωq

∫ ∞

−∞

dq0
2π

P ρ(q0, q)

(ωq − q0)2
,

(II.54)

where

γq = Γq(∞) =
g2

2ωq
ρ(ωq, q) , (II.55)
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is the decay rate in agreement with Fermi’s golden rule. In the long time limit, the solution of

eqns. (II.50,II.51) are

〈b~k〉(t) = Z e−iδωqt e−
γq
2
t 〈b~k〉(0) ; 〈b†~k〉(t) = Z eiδωqt e−

γq
2
t 〈b†~k〉(0) , (II.56)

〈b~kb−~k
〉(t) = Z2 e−2iδωqt e−γqt 〈b~kb−~k

〉(0) ; 〈b†~kb
†

−~k
〉(t) = Z2 e2iδωqt e−γqt 〈b†~kb

†

−~k
〉(0) , (II.57)

where to leading order in the coupling,

Z = 1− g2

2ωq

∫ ∞

−∞

dq0
2π

P ρ(q0, q)

(ωq − q0)2
(II.58)

is the wave function renormalization.

If the initial averages 〈b~k〉(0) = 0 ; 〈b~k b−~k〉(0) = 0 such values remain as fixed points of the

evolution equations. However for a “misaligned” initial condition (II.12,II.9) yielding the initial

averages (II.13), it follows that in the long time limit the solutions of eqns. (II.50,II.51) are,

respectively

〈b~q〉(t) = Z e−iδωq t e−
γq
2
t∆~q , (II.59)

〈b~q b−~q〉(t) = Z2 e−2iδωq t e−γqt∆~q∆−~q , (II.60)

along with their hermitian conjugates.

Absorbing δωq into the renormalization of the frequency and with the initial expectation values

given by (II.10,II.11),II.14) we find that the expectation value of the (ALP) field is given by

〈a〉(t) = e−
γ0
2

t
[
a(0) cos(maR t) +

π(0)

maR
sin(maR t) +O(g2)

]
, (II.61)

where maR is now the renormalized (ALP) mass and we have neglected (non-secular) terms of

order g2 associated with the wave function and mass renormalizations. Equations (II.59,II.60,II.61)

indicate that the expectation values and off-diagonal coherences decay in time, leading to a reduced

density matrix diagonal in the number representation, this is the hallmark of decoherence. These

results imply that the damping of the (ALP) condensate is directly linked to decoherence.

Neglecting perturbatively small non-secular terms of O(g2) in the long time limit yields in this

limit

〈b†~q b~q〉(t) ≡ Nq(t) = Nq(0) e
−γqt+n(ωq)(1− e−γqt) ; Nq(0) = |∆~q|2 ; n(ωq) =

1

eβ ωq − 1
(II.62)
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which describes thermalization, and an exponential approach to the thermal fixed point of the

quantum kinetic equation.

Taken together, the results given by (II.59,II.60,II.61,II.62) summarize some of the main results

from the (QME): damping of the (ALP) condensate, decoherence and thermalization are all related,

the decoherence rate is the same as the thermalization rate as well as the damping rate of the

misaligned component to the energy density. For t ≫ 1/γq the density matrix becomes diagonal in

the occupation number basis and the misaligned condensate has relaxed to zero. The (ALP) has

reached thermal equilibration with the bath.

From eqns. (II.62,II.15,II.16) we obtain the time evolution of the (ALP) energy density neglect-

ing a time independent zero point contribution, it is given by

E(t) = 1

V

∑

~q

Nq(t)ωq =
1

2

[
π2 +m2

a a
2
]
e−γ0t +

∫
d3q

(2π)3
ωq n(ωq) (1− e−γqt) . (II.63)

The first term in (II.63) describes the decay of the condensate from the misaligned initial state,

whereas the second term describes the thermalization of the (ALP) degrees of freedom.

This analysis highlights that the contribution from a misaligned condensate to the energy den-

sity, thermalization with the bath and decoherence as described by the decay of the off-diagonal

components in the (ALP) occupation number pointer basis, all occur on similar time scales, which

is completely determined by the relaxation rate γq.

The results (II.61,II.63) are in complete agreement with those of reference[28] which were ob-

tained with a very different approach based on the non-equilibrium Schwinger-Keldysh effective

action. Furthermore, the general expression for the frequency renormalization (II.53) and wave

function renormalization (II.58) are also in agreement with the general results found in ref.[28] in

the strict perturbative regime, although they cannot reproduce non-perturbative aspects which are

revealed by the effective action and are discussed in section (IV).

Decoherence and entropy production: The evolution equations (II.59,II.60) describe the

decay of the coherences, in other words, the emergence of decoherence, whereby the density matrix

becomes diagonal in the pointer basis of the eigenstates of the occupation number operator b†qbq

for t ≫ 1/γq. Furthermore, the time scale of decoherence is similar to the relaxation rate of

the misaligned component of the energy density and that of thermalization. Decoherence and

the evolution towards a diagonal reduced density matrix in the occupation number basis, in turn

imply entropy production. At long time when the off diagonal terms are negligible, and the reduced

density matrix becomes diagonal in the occupation number basis, with thermal populations, the
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total entropy becomes

S(∞) =
∑

q

{
(1 + n(ωq)) ln(1 + n(ωq))− n(ωq) lnn(ωq)

}
. (II.64)

Since the initial (ALP) density matrix (II.12) describes a pure state, hence vanishing entropy,

S(∞) > 0 implies entropy production for the (ALP) as a consequence of environment-induced

decoherence[52]. This is an important bonus of the (QME) which unambiguously describes deco-

herence via the decay of the coherences (II.59,II.60), over the usual Boltzmann equation approach

to thermalization, wherein entropy production is inferred via Boltzmann’s H-theorem from the

time evolution of a classical H(t) function which inputs solely the occupation number evolution

but which does not have any information on off-diagonal coherence.

III. (ALP)-PHOTON INTERACTIONS:

The results obtained in the previous section are general up to O(g2) and to all orders in the

couplings of the bath field χ to any other field except for the (ALP). Whereas our study addresses

the non-equilibrium dynamics of (ALP) fields, the results also apply to any field with an interaction

of the form (II.1) and initial conditions that allow for the evolution of a coherent condensate[18].

However, although the results are generic, the relaxation rate γq, frequency and wave function

renormalizations depend on the spectral properties of the bath correlations.

In this section we focus on (ALP) interaction with photons via the coupling

LI = −ga(x) ~E(x) · ~B(x) . (III.1)

We consider the thermal bath of (CMB) blackbody radiation of freemassless photons, neglecting

electromagnetic interactions with charged leptons and quarks. This restricts the validity of our

treatment to temperatures well below the masses of these other degrees of freedom and under

conditions when the electron density in particular is vanishingly small, therefore there is no (gauge

invariant) thermal mass or plasma frequency for the photons. These conditions are certainly fulfilled

in cosmology after recombination at temperatures T ≃ eV when the free electron density vanishes

rapidly and the distribution functions of quarks and charged leptons are thermally suppressed at

these temperatures.

The spectral density ρ(q0, ~q) has been obtained in ref.[28] and summarized in appendix (B) for
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consistency of presentation, it is given by

ρ(q0, ~q) =
(Q2)2

32π

{(
1 +

2

βq
ln

[
1− e−βωI

+

1− e−βωI
−

])
Θ(Q2) +

2

βq
ln

[
1− e−βωII

+

1− e−βωII
−

]
Θ(−Q2)

}
sign(q0) ,

(III.2)

where

Q2 = q20 − q2 ; ω
(I)
± =

|q0| ± q

2
; ω

(II)
± =

q ± |q0|
2

. (III.3)

and β = 1/T with T the temperature of the radiation bath.

From equation (II.55) we obtain the relaxation rate

γq(T ) = γq(0)

(
1 +

2

βq
ln

[
1− e−βωI

+

1− e−βωI
−

])

q0=ωq

; γq(0) =
g2 m4

a

64π ωq
. (III.4)

The zero temperature contribution γq(0) is recognized as the (ALP) decay rate into two photons[9],

whereas the finite temperature contribution is a consequence of stimulated emission and absorption

processes in the radiation bath. In the long-wavelength limit we find

γq(T ) =
g2 m3

a

64π

(
1 + 2n

(ma

2

))
, (III.5)

which in the high temperature limit T ≫ ma yields

γq(T ) =
g2 m3

a

16π

(
T

ma

)
. (III.6)

For example, if T corresponds to the temperature of the cosmic microwave background today

T ≃ 10−4 eV the finite temperature correction yields a very large enhancement over the zero

temperature rate if the (ALP) is an ultra-light candidate with ma . 10−22 eV. A substantial

relaxation rate of the (ALP) post recombination may yield important cosmological consequences,

for example in birefringence if it is caused by the coupling of (CMB) photons to a pseudoscalar

(ALP)[29–32] (see discussion below).

From the results of appendix (B), the frequency renormalization given by eqn. (II.53) is found

to be

δωq = δω(0)
q + δω(T )

q , (III.7)

where δω
(0)
q is obtained from the T = 0 contribution to the spectral density (III.2) and by intro-

ducing an ultraviolet cutoff Λ, it is given by

δω(0)
q = − g2

128π2 ωq

[1
2
Λ4 + 2m2

aΛ
2 + (m2

a)
2 ln

[Λ2 e3/2

m2
a

]]
. (III.8)
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In appendix (C) the finite temperature contribution in the high temperature limit T ≫ ωq is found

to be

δω(T )
q = −g2π2T 4

30ωq

[
1 +

15m2
a

24π2 T 2
+O(m4

a/T
4) + · · ·

]
. (III.9)

The frequency renormalization (III.7) is identified as a temperature dependent mass renormaliza-

tion by writing the renormalized frequency Ωq = ωq + δωq up to O(g2) as

Ωq =
√

q2 +m2
R(T ) =

√
ω2
q +∆m2(T ) = ωq +

∆m2(T )

2ωq
+ · · · ≡ ωq + δωq , (III.10)

from which we find the finite temperature renormalized mass up to O(g2)

m2
R(T ) = m2

R(0)

[
1− T 4

T 4
c

]
; m2

R(0) = m2
a −

g2

64π2

[1
2
Λ4 +2m2

aΛ
2 + (m2

a)
2 ln

[Λ2 e3/2

m2
a

]]
, (III.11)

where

Tc ≃ 1.11

√
mR(0)

g
, (III.12)

and we kept the leading order in the high temperature limit T/ma ≫ 1 in the finite temperature

correction. The result (III.11) agrees with ref.[28] which obtained a similar finite temperature

mass from the non-equilibrium effective action, and indicates that m2
R(T ) becomes negative for

T > Tc suggesting a long wavelength instability and the possibility of an inverted phase transition

as discussed in ref.[28]. However, within the context of the quantum master equation there is a

caveat on this interpretation because the result for the frequency renormalization has been obtained

in strict perturbation theory and the renormalized frequency ωq+δωq does not yield any instability.

This caveat is discussed in more detail in section (IV).

IV. DISCUSSION AND CAVEATS

Counterrotating terms:

In the derivation of the quantum master equation (II.40) we neglected terms of the form

b~q b−~q e
−2iωqteiωq(t−t′) ; b†~q b

†
−~q e

2iωqte−iωq(t−t′) . (IV.1)

The time integral over t′ can be carried out following the steps leading to equation (II.40) yielding

contributions of the form b~q b−~q e
−2iωqtρ≶(q0, q)ρ̂Ia(t) etc. The contribution of these terms to the

equations of motion for linear or bilinear forms of b, b† are straightforward to obtain, they do

not yield terms that grow secularly in time because the rapid dephasing of the oscillatory terms
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average out in the time integrals. These are non-resonant terms and yield perturbatively small

subleading contributions of the form δωq/ωq ≪ 1 ; γq/ωq ≪ 1 in weak coupling, as compared to

those obtained from equation (II.40) which captures the secular growth in time because of the

resonances and describes the leading behavior in the long time dynamics.

Factorization: Factorization of the full density matrix (II.21) is one of the main assumptions

in the derivation of the Lindblad form of the quantum master equation[33, 34]. This assumption

neglects correlations between (ALP) field and the thermal bath as discussed above, it may be

justified for weak coupling: assuming an initial factorization, correlations will build up upon time

evolution but will remain perturbatively small, hence they may be neglected to leading order in

the coupling g. The assumption that the total density matrix remains factorized with the bath

in thermal equilibrium which remains unaffected by the coupling to the (ALP) at all times is

consistent with the interpretation of the bath as a reservoir. However, as the (ALP) population

builds up as a consequence of thermalization, it is plausible that correlations between the (ALP)

and the bath become stronger as the (ALP) population reaches a thermal state, leading up to a

possible breakdown of the factorization assumption. Such a scenario merits deeper scrutiny which

is beyond the scope of this study.

Non-equilibrium effective action vs. quantum master equation: In reference[28] the

time evolution of an initial density matrix was studied by implementing the in-in Schwinger-Keldysh

formulation of non-equilibrium field theory. In this formulation the time evolution is described by

the in-in effective action that leads to a Langevin equation of motion for the (ALP) field in terms

of the retarded self energy Σ and a noise term both related by the fluctuation dissipation relation.

The solution of the Langevin equation of motion inputs the full propagator including the self-energy

correction, and the (complex) poles in the propagator at

ω2
P (q) = ω2(q) + Σ(ωP (q); q) , (IV.2)

determine the frequency and lifetime of (ALP) oscillations. The finite temperature effective mass

is obtained from the real part of the solution of the equation (IV.2) for q = 0, namely m2(T ) =

Re[ω2
P (q = 0)].

In the case of (ALP)-photon interaction with the coupling (III.1), after absorbing the zero tem-

perature, ultraviolet divergent contributions into a definition of the zero temperature renormalized

mass maR, the solution of the pole equation (IV.2) at q = 0 yields precisely the result (III.11)

to leading order in the high temperature expansion T ≫ maR. The finite temperature mass, as

properly defined by the position of the pole in the propagator at zero momentum, indicates the
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possibility of an instability and an inverted phase transition for T > Tc as advocated in ref.[28], a

conclusion that does not rely on an expansion near the bare frequency.

In contrast, the quantum master equation approach yields a perturbative correction to the bare

frequency in the form ωq+ δωq with a real δωq which obviously does not entail any instability. The

main reason for this discrepancy between the effective action and the quantum master equation

can be traced to the fact that in the latter approach the time integrals in (II.30), convolve the

spectral representations (II.31,II.32) with the time dependence (II.38) featuring the external (ALP)

frequency ωq. Therefore, the rates (II.41-II.43) in the Lindblad (QME) (II.40), are effectively

evaluated at the frequencies ωq yielding strictly perturbative corrections for the frequency and

wave function renormalizations. At heart, this is a consequence of the perturbative nature of the

(QME) in interaction picture.

Another important difference with the non-equilibrium effective action, is that as found in

ref.[28], the zero temperature contribution to the real part of the self energy is

Σ
(0)
R (ω, q) = − g2

64π2

[1
2
Λ4 + 2Q2Λ2 + (Q2)2 ln

[Λ2 e3/2

|Q2|
]]

; Q2 = ω2 − q2 , (IV.3)

where the logarithmic divergence multiplying (Q2)2 implies that the renormalized effective action

requires a new higher derivative term ∝ (∂µ∂µ)
2a2(x) to absorb the logarithmic divergence from the

self-energy. This is a consequence of the non-renormalizable interaction (III.1) since the coupling

g has dimensions of (energy)−1.

In contrast, the (QME) yields the frequency renormalization δω
(0)
q (III.8), which is proportional

to the real part of the self-energy (IV.3) evaluated on the (bare) mass shell, namely for Q2 = m2
a.

Again this is a consequence of the time integrals leading to the (QME) in Lindblad form, and can

be traced to the interaction picture representation of the density matrix.

Therefore, the (QME) confirms the damping of the misaligned (ALP) condensate, thermal-

ization, and that the (ALP) energy density features a mixture of a “cold” component from the

damped misaligned condensate and a “hot” component from thermalization, and that damping of

the cold and thermalization of the hot components and decoherence occur on similar time scales.

An instability and possible phase transition cannot be captured by the (QME) which relies on

a perturbative expansion in interaction picture field theory, assuming a well defined mass shell and

stable oscillations of the various degrees of freedom. An instability will lead to a breakdown of most

approximations: certainly the Markov and rotating wave approximations, since the former relies

on a wide separation of time scales and the second on well defined mass shells associated with the

oscillation frequencies. Therefore, an instability associated with a possible phase transition and
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novel phases for T > Tc is well beyond the realm of validity of the (QME) and should not be

expected to be described reliably by it.

While the (QME) cannot directly confirm the possibility of an inverted phase transition and

the emergence of exotic phases both described by the Schwinger-Keldysh effective action and truly

non-perturbative aspects, it does allow to understand the sources of these discrepancies in strict

perturbation theory.

An important advantage of the (QME) is that it allows to obtain the time evolution of coherences

and populations in a more direct manner thereby establishing that thermalization and decoherence

with the concomitant entropy production occur on similar time scales.

On the similarity of time scales: An important result is that the time scales of damping

of the condensate (II.61), decoherence (II.60) and thermalization (II.62) are all very similar and

simply related. This similarity originates in the form of the Lindblad (QME), eqn. (II.40), which

solely inputs bilinears of the form b†qbq (one annihilation and one creation operator), and this form

of the (QME) unequivocally leads to the quantum kinetic equations (II.49-II.51) whose solutions

display the time scales of damping, decoherence and thermalization in terms of the same function

Γk(t). In turn, the particular form of the Lindblad (QME) is a consequence of the linear coupling of

the axion to the composite operators Oχ as described by the Lagrangian density (II.1). Although

we have not studied non-linear axion couplings, it is quite possible that in the case of non-linear

couplings the time scales could be quite different. Investigating this possibility would merit further

study beyond the scope of our objectives.

Possible cosmological consequences:

Although we have studied the non-equilibrium dynamics of (ALP)’s in Minkowski space time,

the results allow us to provide a preliminary extrapolation to cosmology.

A pseudoscalar (ALP) coupled to photons as in eqn. (III.1) leads to cosmic birefringence,

namely a frequency independent rotation (in contrast to Faraday rotation) in the polarization

angle Ψ between the surface of last scattering and today[29–32]. For a homogeneous misaligned

condensate slowly varying in time 〈a〉(t) such a change is given by[29]

∆Ψ =
g

2

(
〈a〉(tLSS)− 〈a〉(t0)

)
. (IV.4)

The amplitude of the misaligned condensate decays as a consequence of the (ALP) interaction

with the (CMB) photons, therefore the condensate is decaying during the cosmological expansion

since recombination, and as described above the (ALP) fluctuations are thermalizing with the

radiation bath on similar time scales. This hitherto unappreciated fact has important consequences.
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If the lifetime 1/γ(T ) ≪ 1/H0 the amplitude of the condensate 〈a〉(t0) ≃ 0, however, the (ALP)

thermalizes on the same time scale as the condensate decays, therefore, if the misaligned condensate

has completely decayed between the surface of last scattering and today, we conjecture that the

fluctuations of Ψ would feature a thermal power spectrum as a consequence of thermalization of

axion fluctuations with the (CMB).

This conjecture is motivated precisely by the similarity of the condensate damping and ther-

malization time scales revealed by the Lindblad (QME). The arguments in ref.[29] leading up to

the result (IV.4) hinge on the change in the photon frequency for the different polarizations as a

consequence of the coupling to the axion condensate, namely the expectation value of the axion

field. However, as the solution from the Lindblad (QME) shows, the fluctuations of the axion

thermalize on the same time scale as damping of the condensate, therefore we expect that the

polarization angle will feature thermal fluctuations, since it is modified by the axion field. Rather

than focusing solely on the change in frequency for the different polarization as a consequence of

the dynamical axion condensate, the dynamics of the polarization post recombination should be

described by the Stokes parameters which involve combinations of the transverse components of

the electric field squared. At the quantum level the electric field is associated with a quantum oper-

ator, whose Heisenberg equation of motion involves the full axion field[29–32] both its expectation

value as well as the fluctuating component. Therefore we conjecture that the square of the electric

field operator will depend on the square of the axion field which includes the fluctuations of the

axion field. As described by the Lindblad (QME) the fluctuations thermalize with the (CMB) on

the same time scale as the mean-field (expectation value) decays. Hence, this reasoning leads us

to expect that fluctuations in the Stokes parameters, which describe the polarization field, should

feature a thermal spectrum. At this stage, this remains as a plausible conjecture which merits

deeper scrutiny on its own, which, however, is well beyond the original scope of this article.

If the (ALP) lifetime is much shorter and the misaligned condensate decays prior to the last

scattering surface, then it has reached full thermalization with the (CMB) and if it is an ultralight

dark matter candidate it contributes to the effective number of ultrarelativistic degrees of freedom.

If the lifetime is of the order of 1/H0 then the (ALP) contributes as “mixed” dark matter, with a

cold component with weight e−γ(T )/H0 and a hot (thermal) component with weight (1−e−γ(T )/H0).

This latter possibility opens a window to an interesting scenario, where the cold dark matter

component would dominate at earlier time during galaxy formation and the hot component would

dominate later, with a larger velocity dispersion, hence a larger free streaming length, featuring a

crossover between cold and hot components on time scales that depend on the coupling and (ALP)
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mass. This scenario brings interesting and hitherto unexplored consequences for galaxy formation

that merit further study.

V. CONCLUSIONS AND FURTHER QUESTIONS:

We studied the non-equilibrium dynamics of (ALP)’s motivated by the possibility that these

particles belonging to a sector beyond the Standard Model may be suitable dark matter candidates.

A hallmark of (ALP)’s is their coupling to pseudoscalar composite operators associated with Stan-

dard Model degrees of freedom, and in particular their coupling to electromagnetism may lead to

cosmic birefringence, namely the rotation of the plane of polarization of the (CMB) with tantaliz-

ing possibilities of detection. In this article we consider generic couplings of the (ALP) field (a(x))

of the form ga(x)Oχ(x) where Oχ(x) are pseudoscalar composite operators of Standard Model

degrees of freedom (χ) assumed to be a bath in thermal equilibrium, and derive a quantum master

equation that describes the time evolution of the (ALP) reduced density matrix upon tracing the

χ degrees of freedom. The (QME) is obtained up to O(g2) but to all orders in the coupling of

the χ (Standard Model) degrees of freedom to any other degree of freedom within or beyond the

Standard Model except for the (ALP). The initial (ALP) density matrix allows for a misaligned

condensate. The (QME) describes the damping of the misaligned condensate, thermalization with

the bath and decoherence, namely the damping of the off-diagonal reduced density matrix elements

in the occupation number basis within a unified framework.

The (ALP) time dependent energy density E(t) features two components: a cold (c) component

from the misaligned condensate and a hot (h) component from thermalization with the bath, with

E(t) ≃ Ec e−γ(T )t+Eh(1−e−γ(T )t) where the relaxation rate γ(T ) also describes the decoherence rate.

Therefore, the damping of the misaligned condensate energy density, the approach to thermalization

with the bath and decoherence all occur on the same time scales. We focus on the particular

example of the (ALP) coupling to electromagnetism where Oχ(x) = ~E(x)· ~B(x) where the radiation

field describes the (CMB) post recombination. The long wavelength relaxation rate is enhanced

by emission and absorption in the photon bath and at high temperature T ≫ ma and in the

long wavelength limit is given by γ(T ) = g2

16πm
2
aT featuring a substantial enhancement over the

zero temperature rate. These results are in agreement with those of ref.[28] but obtained with an

independent method.

The time dependence of the energy density suggests that if the (ALP) is a dark matter candidate

and interacts with Standard Model degrees of freedom in (local) thermal equilibrium, it provides a
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“mixed” dark matter scenario where the “warmth” depends on time: at earlier times it describes

a cold dark matter component and at late times a hot component, with potentially profound

implications on galaxy formation. If the (ALP) is an ultralight candidate, and if the misaligned

condensate has completely decayed prior to the last scattering surface the thermal component

contributes to the effective number or ultrarelativistic degrees of freedom. If its lifetime is smaller

than the Hubble time, γ(T ) ≪ 1/H0, the misaligned condensate is decaying at least since after

recombination and thermalizing with the (CMB) on similar time scales. Therefore, if cosmic

birefringence is a consequence of the coupling of photons to a pseudoscalar (ALP), the rotation

angle since the last scattering surface should include thermal features in its fluctuation spectrum.

These extrapolations to the cosmological setting must be taken as indicative based on the results

in Minkowski space time. The next step of the program is to include cosmological expansion and

assess if and how it modifies the conclusions above, we expect to report on this aspect in forthcoming

studies.
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Appendix A: Environmental correlation functions: Lehmann and spectral representations

The dynamics and dissipative processes depend on the correlation functions G≶ of the environ-

ment in eqn. (II.24,II.25,II.26).

Because the bath is in thermal equilibrium, its initial density matrix is ρχ(0) = e−βHχ/Tr e−βHχ

which is space-time translationally invariant, and the Heisenberg picture operators associated with

the bath are given by Oχ(~x, t) = eiHχtOχ(~x, 0) e
−iHχt we can write

G>(~x− ~x′; t− t′) = 〈Oχ(~x, t)Oχ(~x
′, t′)〉χ =

∫
d4k

(2π)4
ρ>(~k, k0)e

−ik0(t−t′) ei
~k·(~x−~x′) (A.1)

G<(~x− ~x′; t− t′) = 〈Oχ(~x
′, t′)Oχ(~x, t)〉χ =

∫
d4k

(2π)4
ρ<(~k, k0)e

−ik0(t−t′) ei
~k·(~x−~x′) . (A.2)

These representations are obtained by writing Oχ(~x, t) = eiHχt e−i ~P ·~xOχ(~0, 0) e
−iHχt ei

~P ·~x and in-

troducing a complete set of simultaneous eigenstates of Hχ and the total momentum operator ~P ,
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(Hχ, ~P )|n〉 = (En, ~Pn)|n〉, from which we obtain the following Lehmann representations,

ρ>(k0, ~k) =
(2π)4

Trρχ(0)

∑

m,n

e−βEn |〈n|Oχ(~0, 0)|m〉|2 δ(k0 − (Em − En)) δ(~k − (Pm − Pn)) (A.3)

ρ<(k0, ~k) =
(2π)4

Trρχ(0)

∑

m,n

e−βEn |〈m|Oχ(~0, 0)|n〉|2 δ(k0 − (En − Em)) δ(~k − (Pn − Pm)) .(A.4)

Upon relabelling m ↔ n in the sum in the definition (A.4) and recalling that Oχ is an hermitian

operator, we find the Kubo-Martin-Schwinger relation[51]

ρ<(k0, k) = ρ>(−k0, k) = e−βk0ρ>(k0, k) . (A.5)

The spectral density is defined as

ρ(k0, k) = ρ>(k0, k)− ρ<(k0, k) = ρ>(k0, k)
[
1− e−βk0

]
(A.6)

therefore

ρ>(k0, k) = ρ(k0, k)
[
1 + n(k0)

]
; ρ<(k0, k) = ρ(k0, k) n(k0) , (A.7)

where

n(k0) =
1

eβk0 − 1
. (A.8)

Furthermore, from the first equality in (A.5) it follows that

ρ(−k0, k) = −ρ(k0, k) , (A.9)

ρ(k0, k) > 0 for k0 > 0 . (A.10)

We emphasize that these are exact relations, the “environmental” fields χ may be coupled to

other fields, for example, in the case of the (ALP) interaction with the electromagnetic fields, the

gauge field also interacts with electrons, charged leptons and quarks. The Lehmann representations

(A.3,A.4) are non-perturbative and unambiguously yield the relations (A.5-A.10) which are general,

non-perturbative statements relying on thermal equilibrium and space-time translational invariance

and do not depend on these couplings.

Appendix B: Spectral density for ~E · ~B correlation functions.

We begin with the quantization of the gauge field within a volume V eventually taken to infinity,

~A(x) =
1√
V

∑

~k,λ=1,2

ǫ̂~k,λ√
2k

[
d~k,λ e

−ik·x + d†~k,λ
eik·x

]
, (B.1)
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where ǫ̂~k,λ are the transverse polarizaton vectors chosen to be real. From eqns (A.1,A.2) we need

the correlation functions

G>(x− y) = 〈 ~E(x) · ~B(x) ~E(y) · ~B(y)〉 , (B.2)

G<(x− y) = 〈 ~E(y) · ~B(y) ~E(x) · ~B(x)〉 = G>(y − x) , (B.3)

where we now refer to 〈(· · · )〉 as averages in the thermal density matrix of free field photons.

In the thermal ensemble the expectation value 〈 ~E(x) · ~B(x)〉 = 0 by parity invariance. Using

Wick’s theorem, the ( ~E · ~B) correlation function becomes

〈 ~E(x)· ~B(x) ~E(y)· ~B(y)〉 =
∑

i,j

{
〈Ei(x)Ej(y)〉〈Bi(x)Bj(y)〉+〈Ei(x)Bj(y)〉〈Bi(x)Ej(y)〉

}
. (B.4)

A straightforward calculation yields

〈Ei(x)Ej(y)〉 = 〈Bi(x)Bj(y)〉 = 1

2V

∑

~k

k
(
δij − ~̂ki~̂kj

) [
(1 + n(k)) e−ik·(x−y) + n(k) eik·(x−y)

]
,

(B.5)

similarly

〈Ei(x)Bj(y)〉 = −〈Bi(x)Ej(y)〉 = − 1

2V

∑

~k

k
(
ǫ̂i~k,1 ǫ̂

j
~k,2

−ǫ̂i~k,2 ǫ̂
j
~k,1

) [
(1+n(k)) e−ik·(x−y)+n(k) eik·(x−y)

]
,

(B.6)

where n(k) = 1/(eβk − 1). Combining the two terms in (B.4) we find

G>(x− y) =
1

4V 2

∑

~k

∑

~p

kp(1− ~̂k · ~̂p)2
{[

(1 + n(k)) e−ik·(x−y) + n(k) eik·(x−y)
]

×
[
(1 + n(p)) e−ip·(x−y) + n(p) eip·(x−y)

]}
. (B.7)

Expanding the product, we perform the following change of variables in the various terms:

1) in the term n(k)n(p): ~k → −~k, ~p → −~p;

2) in the term with (1 + n(k))n(p): ~p → −~p;

3) in the term with n(k)(1 + n(p)): ~k → −~k.
Taking the infinite volume limit with (1/V )

∑
~q →

∫
d3q/(2π)3 we obtain

G>(x− y) =

∫
dq0
2π

∫
d3q

(2π)3
ρ>(q0, q) e

−iq0(t−t′) ei~q·(~x−~y) , (B.8)
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where

ρ>(q0, q) =
π

2

∫
d3k

(2π)3
k|~q − ~k|

{(
1−

~k

k
· ~q − ~k

|~q − ~k|

)2 [
(1 + n(k))(1 + n(|~q − ~k|))δ(q0 − k − |~q − ~k|)

+ n(k)n(|~q − ~k|) δ(q0 + k + |~q − ~k|)
]

+
(
1 +

~k

k
· ~q − ~k

|~q − ~k|

)2 [
(1 + n(k))n(|~q − ~k|)δ(q0 − k + |~q − ~k|)

+ n(k)(1 + n(|~q − ~k|))δ(q0 + k − |~q − ~k|)
]}

. (B.9)

Writing

G<(x− y) =

∫
dq0
2π

∫
d3q

(2π)3
ρ<(q0, q) e

−iq0(t−t′) ei~q·(~x−~y) , (B.10)

and using the relation (B.3) we find that ρ<(q0, ~q) = ρ>(−q0,−~q), however the sign change in ~q

can be compensated by ~k → −~k inside the k-integral with the final result

ρ<(q0, ~q) = ρ>(−q0, ~q) , (B.11)

furthermore, using the identity (1 + n(w)) = eβwn(w) and using the various delta functions in the

definition of ρ> we find

ρ<(q0, ~q) = e−βq0 ρ>(q0, ~q) , (B.12)

which is the Kubo-Martin-Schwinger relation[51], thereby confirming the general results (A.5). The

spectral density is given by (see eqn. (A.6)) ρ(q0, q) = ρ>(q0, q)− ρ<(q0, q) with

ρ(q0, q) =
π

2

∫
d3k

(2π)3
1

kw

{
(
kw + k2 − ~k · ~q

)2
[1 + n(k) + n(w)]

(
δ(q0 − k − w)− δ(q0 + k + w)

)

+
(
kw − k2 + ~k · ~q

)2
(n(w)− n(k))

(
δ(q0 − k + w)− δ(q0 + k − w)

)
}

; w = |~q − ~k| . (B.13)

The spectral density is calculated by implementing the following steps:
∫

d3k

8π3
=

∫ ∞

0
k2

dk

4π2
d(cos(θ)) ; w = |~q − ~k| =

√
q2 + k2 − 2kq cos(θ) ;

d(cos(θ))

w
= −dw

kq
.

(B.14)

Carrying out the integrations, which are facilitated by the delta function constraints we find

ρ(q0, ~q) =
(Q2)2

32π

{(
1 +

2

βq
ln

[
1− e−βωI

+

1− e−βωI
−

])
Θ(Q2) +

2

βq
ln

[
1− e−βωII

+

1− e−βωII
−

]
Θ(−Q2)

}
sign(q0) ,

(B.15)

where

Q2 = q20 − q2 ; ω
(I)
± =

|q0| ± q

2
; ω

(II)
± =

q ± |q0|
2

. (B.16)
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Appendix C: Finite temperature contribution to δωq

δω(T )
q =

g2 T

64π2 q ωq
P
∫ ∞

−∞

(q20 − q2)2

ωq − q0
ln
[1− e−βω+

1− e−βω−

]
dq0 ≡

g2 T

64π2 q ωq
I(q) ; ω± =

∣∣∣
q ± q0

2

∣∣∣ . (C.1)

Since the argument of the logarithm is odd under q0 → −q0, it follows that I can be written as

I(q) = P
∫ ∞

0

2q0(q
2
0 − q2)2

q20 − ω2
q

ln

[
1− e−

β
2
|q0−q|

1− e−
β
2
(q0+q)

]
dq0 . (C.2)

Using the results

∫ ∞

0
xn ln

[
1− e−(x+y)

]
dx = −Γ(n+ 1)Li2+n(e

−y) (C.3)

∫ ∞

0
xn ln

[
1− e−|x−y|

]
dx = (−1)nΓ(n+ 1)Lin+2(e

−y)− 2

[n
2
]∑

i=0

(
n

2i

)
Γ(1 + 2i)ζ(2 + 2i) yn−2i ,

(C.4)

where Li is the polylogarithm, along with the identities

P
∫ ∞

0

dx

x+ z

(
− 1

n
e−n(x+y)

)
=

1

n
e−n(y−z)Ei(−nz) (C.5)

P
∫ k

0

dx

x+ z

(
− 1

n
e−n(k−y)

)
= − 1

n
e−n(y+z)

[
− Ei(nz) + Ei(n(y + z))

]
(C.6)

P
∫ ∞

k

dx

x+ z

(
− 1

n
e−n(x−y)

)
=

1

n
en(k+z)Ei(−n(y + z)) , (C.7)

and the representation of the exponential integral function

Ei(x) = γ + ln(|x|) +
∞∑

n=1

xn

nn!
, (C.8)

where γ is Euler’s constant, we find in the high temperature limit T ≫ ωq

δω(T )
q = −g2π2T 4

30ωq

[
1 +

15m2
a

24π2 T 2
+O(m4

a/T
4) + · · ·

]
. (C.9)

[1] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977), Phys. Rev. D 16, 1791 (1977).



28

[2] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).

[3] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

[4] J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. B 120, 127 (1983).

[5] L. F. Abbott and P. Sikivie, Phys. Lett. B 120, 133 (1983).

[6] M. Dine and W. Fischler, Phys. Lett. B 120, 137 (1983).

[7] T. Banks and M. Dine, Nuclear Physics B 479, 173 (1996).

[8] A. Ringwald, Physics of the Dark Universe, 1, 116 (2012).

[9] D.J.E. Marsh, Phys. Rept., 643, 1 (2016); F. Chadha-Day, J. Ellis, D. J. E. Marsh, arXiv:2105.01406,

D. J. E. Marsh, arXiv:1712.03018; A. Diez-Tejedor, D. J. E. Marsh, arXiv:1702.02116; J. E. Kim, D.

J. E. Marsh, Phys. Rev. D93, 025027 (2016).

[10] P. Sikivie, Rev. Mod. Phys. 93, 015004 (2021).

[11] P. Sikivie, Lect. Notes in Physics 741, 19 (2008).

[12] W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett., 85, 1158 (2000).

[13] L. Hui, J. P. Ostriker, S. Tremaine, E. Witten, Phys. Rev. D 95, 043541 (2017).

[14] N. Banik, A. J. Christopherson, P. Sikivie, E. M. Todarello, Phys. Rev.D95, 043542 (2017).

[15] CAST collaboration, Nature Physics, 13, 584 (2017).

[16] ADMX Collaboration, Phys. Rev. Lett.127, 261803 (2021).

[17] P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A. Lindner, K. A. van Bibber, Ann. Rev. Nucl. Part.

Sci. 65, 485 (2015).

[18] M. S. Turner, Phys. Rev. D 28, 1243 (1983); Phys. Rev. D 33, 889 (1986).

[19] Z. G. Berezhiani, M. Yu. Khlopov, R. R. Khomeriki, Sov.J.Nucl.Phys.52, 65 (1990); Z. G. Berezhiani,

A. S. Sakharov, M. Yu. Khlopov, Sov.J.Nucl.Phys.55, 1063 (1992).

[20] P. Carenza, A. Mirizzi, G. Sigl, Phys. Rev. D101,103016 (2020).

[21] A. Arza, T. Schwetz,E. Todarello, JCAP 10 (2020) 013.

[22] D. S. Lee, K-W.Ng, Phys. Rev. D61, 085003 (2000).

[23] L. D. McLerran, E. Mottola, M. E. Shaposhnikov, Phys. Rev. D43, 2027 (1991).
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